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Abstract: The goal of this project is to study the affects of element selection on the Sierra/SM explicit solution to

four common dynamics problems. A total of nine elements are used for all problem; a table to the right shows
each of the elements. Every model is run multiple times with varying spatial and temporal discritization in order
to ensure convergence. The first three problems are compared to analytical solutions, and all numerical results,
independent of mesh density, are found to be sufficiently accurate. The penetration problem is found to have a

high mesh dependence in terms of element type, mesh discritezation, and meshing scheme. Also, the time to
solution is shown for each problem in order to facilitate element selection when computer resources are limited.
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Material Properties — Plate (aluminum):

Material Properties — Penetrator (copper):

Density = 2.780e-9
Young's modulus = 71.7e3
Poisson's ratio = 0.33

Rate independent yield constant = 350
|sotropic dynamic recovery constant = 9.9
Isotropic hardening constant = 2.69549e3

Damage exponent = 228
Initial damage = 1e-4
Initial void size = 2e-5

Initial void count per volume =

Nucleation parameter1 = 540

Density = 7.764e-9
Young's modulus = 110e3
Poisson's ratio = 0.343

Boundary Conditions:

Wall Time, hours

« Symmetric boundary condition

along x-y and y-z planes

1T mm

5

Time, seconds

« Initial velocity of -300 m/s for the penetrator
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Hexahedral - Run 3

Run 2 — Tet10 — Uniform Gradient
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Deviatoric
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Wall Time, hours

14

12

10

(o]

Tetrahedral - Run 2
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Run 2 - TetlO — Fully Integrated

Mesh dependent
fracture

first shrapnel seperation

B Tet4 — Mean
Quadrature

I Tet4 — Nodal Based

[ Tet10 — Uniform
Gradient

M Tet10 — Fully
Integrated

Hl Tet10 — Composite

Penetration Model

Decreasing

flexural
stiffness

Velocity change is
minimal

penetrator displ. of 9.5 mm complete penetration

M Hex8 — Mean Quadrature
M Hex8 — Selective Deviatoric
1 Hex8— Q1PO Run 1

B Hex8 - Fully Integrated
jRun 1

B Tet4 — Mean Quadrature

[ Tet4 — Nodal Based

M Tet10 — Uniform Gradient

[ Tet10 — Fully Integrated

H Tet10 — Composite

[ Tet4 — Mean Quadrature

B Tet4 — Nodal Based

M Tet10 — Uniform Gradient >Run 2
B Tet10 — Fully Integrated
B Tet10 — Composite

[J Hex8— Mean Quadrature
B Hex8 - Q1P0
B Hex8 — selective Deviatoric Run 2

[0 Hex8 - Fully Integrated

B Hex8 - Mean Quadrature
E Hex8-Q1P0
M Hex8 — selective Deviatoric Run 3

[ Hex8— Fully Integrated

\

Run 1 - Hex8 — Fully Integrated

propagates along the mesh lines

the fracture pattern, because the fracture
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The hexahedral meshing scheme controls

Run 2 - Tet4 — Mean Quadrature
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Run 3 - Hex8 — Fully Integrated




	Slide 1

