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Outline

= Background on arms-control-treaty verification & project
summary

= GEANT4 simulations to acquire data on inspection objects

= Applying mathematical observer models developed by
medical imaging community to arms-control-treaty

verification

= QObserver: human or mathematical model that makes decisions




Arms-Control-Treaty Verification

= Current treaties holds accountable number of delivery
systems
= New START treaty limits US to 1550 warheads on 700 delivery systems

= Future treaties may want to count warheads.

= Monitor wants to verify presence of warhead, host wants to
preserve sensitive information on construction.

= Many current proposed methods utilize an information
barrier (I1B)

= |B: hardware or software
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Verification task

Is it really a warhead?

Photo from National Museum
of the USAF




Verification Task

Is it really a warhead?
Photo from National Museum
of the USAF

Is it warhead A or warhead B?
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“Traditional” Template Matching
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Our proposal

Trusted object

Hypothetical
observer stores
info sufficient for
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Task — Discriminate Idaho Inspection Objects

= Binary discrimination using spectral information.

= Distinguish objects 8 (Pu surrounded by DU) and 9 (Pu surrounded by
HEU) developed by Idaho National Laboratory.

= Fast-neutron coded-aperture detector with liquid scintillator.

INL/EXT-11-20876

= Rotational variability included (simulated grid of orientations)
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GEANT4 Simulations

= Models built into transport application using GEANT4 toolkit
to acquire testing and training data.

= Difficult to simulate gamma transport in plutonium objects
with thick high-Z shielding.
= Set gamma-energy threshold, applied linear energy bias
= Used multithreaded capability of GEANT4.10
= Ran on high-performance-computing clusters at SNL.



Simulation Data

= Similar geometries, no significant spatial difference in detector

data.
= QObservers make decisions based on gamma spectra differences

= Data is summed over pixels
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Definitions

= List-mode data A, :

= Estimated energy, pixel, and particle type (photon or neutron) for
event n. Define N to be total number of detected events.

= Nuisance parameters :

= Characteristics of the objects being imaged that affect the data but
are of no interest

= Examples include orientation, material age, construction, storage
container characteristics.

Official Use Only



Linear Template Observers

= Testing and training event data {A,, } binned into data vector

g (P x1). N
9p = Z fp(Ap)
n=1

= gis binned detector data —image, spectra or both.

= Linear template W (P x 1) acts on g,,,,, result is thresholded to
make a decision

t = WTgtest U Z tthresh
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Hotelling Observer

= Hotelling observer is sensitive template W defined as:

L —1
W =K, "Ag
= W is optimal template when data statistics are Gaussian.

Hotelling weights
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Hotelling Observer with Nuisance Parameters

Hotelling weights
no nuisance parameters
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+/- of Hotelling Observer

Positives

= Only storage is Hotelling template W — not image data g.
= Average over nuisance parameters smears out data.

= Analogous to secondary imaging system that filters out
information other than the differences between objects.

= |mpossible to reconstruct g, only W.

Negatives

= Template contains product of first and second order statistics,
but still (likely) constitutes sensitive information




Hotelling Observer in Practice
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Channelized Hotelling Observer (CHO)

= Can we channelize data into non-sensitive channel values that
monitor can work with?

= Channelize data vector g (Px1) with channelizing matrix T
(QxP) into much smaller vector v (Qx1).

v="Tg
Dim(v) << Dim(g)

vatest § tthresh




Optimizing T

« T can be optimized to maximize SNR? of test statistic
distributions for best performance.

 Gradient descent with backtrack

fovi(T) = SNRQ(T)

= Av(T)'K, (T) 'Av(T)




Example Channelization

= Standard optimization leads to fairly nonsensitive channels.

= Optimal performance requires sum of optimally weighted
channels to equal Hotelling weights.

Normalized Channels —Channel 1
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Performance of HO & CHO

 Task is to discriminate 108 and |09 when orientation is unknown

Template performance
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* However, best channel in other tasks has equal performance to
CHO
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+/- of CHO

Positives

= Q non-sensitive channel values that monitor can use to make
decisions

= More channels = improved ability to verify tested sources is one of
two in discrimination task, and not a spoof

=  Optimizing SNR? results in optimal performance

" |Impossible to reconstruct image, only Hotelling weights (difference in
images).

Negatives

= Optimally weighted sum is sensitive information
= Channelizing matrix itself often sensitive, cannot be shared.
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CHO in practice
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Current/Future work

= Build off channelized Hotelling observer groundwork

= Create nonsensitive channels by penalizing channel

performance Q
_ 2 2
fObj — SNRQchannels — 7] Z SNRchannel q
q=1
= Add noise to channels to reduce sensitive storage and
performance.

= |f host defines sensitive parameters in geometry construction,
we can penalize the ability to discriminate between slight
differences in the object
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Summary

= Applying methods developed by medical imaging community
to arms-control-treaty verification tasks

= Modeled inspection objects in transport application using
GEANT4 toolkit to simulate data

= Hotelling observer gives optimal results while only storing
differences between objects

= Channelized Hotelling observer gives monitor access to more
information

= Adding terms to optimization routine offers paths to non-sensitive
storage 24






CHO with penalty

= Use penalty term in optimization to limit channel

performance
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CHO inverse problem

T X g = Vv
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CHO inverse problem

T X g = Vv

Channel value

Channels, singular vectors, reconstruction are all very noisy,
But channel 3 looks like W
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CHO inverse problem w/ perform. penalty

T X g = Vv
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CHO inverse problem w/ perfom. penalty

= SVD of channelizing matrix: S.V. 4 looks like Hotelling weights

Singular vectors

Channel value
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Channelized Hotelling penalty

* Hotelling and channelized Hotelling perform well
* Individual channels perform poorly

Template performance

0.9+
—Hotelling observer
0.8 ——Channelized Hotelling observer
O —Best channel
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Mean Signal Counts
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Future work — reducing sensitive info

= Example: Source A is a BeRP ball with 1” of poly shielding. The
host country doesn’t want the monitor to know what source
A’s poly thickness is down to a tolerance of At

_ 2 2
fobj — SNR(B—A) o USNR(A(1”+At)_A(1”))

= Will lead to drop in performance with benefit that host
needn’t worry.




Future work — reducing sensitive Info
_ 2 2
Jobj = SNR{g_a) =NSNE(A L xy-A00)

= A channelizing matrix that optimizes this objective function
wouldn’t be based on sensitive data

= Likewise, sensitive data could not be gained through the
inverse problem




Future work — null hypothesis test

= Need an observer to address “Is this source A or not source
A?H

= We developed a model based on likelihood expression, but it
is spoofable.

= Standard tests based on distance metrics

= |sthere alinear model similar to the Hotelling observer?




