

1 Evaluation of Simulated Marine Aerosol Production Using the WaveWatchIII Prognostic
2 Wave Model Coupled to the Community Atmosphere Model within the Community
3 Earth System Model
4
5 M.S. Long – Harvard John A. Paulson School of Engineering and Applied Sciences,
6 Cambridge, MA USA (corresponding author: mlong@seas.harvard.edu)
7 W.C. Keene – University of Virginia Department of Environmental Sciences,
8 Charlottesville, VA USA
9 J. Zhang – University of North Dakota Department of Atmospheric Sciences, Grand
10 Forks, ND USA
11 B. Reichl – University of Rhode Island Graduate School of Oceanography, Narragansett,
12 RI USA
13 Y. Shi – University of North Dakota Department of Atmospheric Sciences, Grand Forks,
14 ND USA
15 T. Hara – University of Rhode Island Graduate School of Oceanography, Narragansett,
16 RI USA
17 J. S. Reid – Naval Research Laboratory, Monterey, CA USA, 93907
18 B. Fox-Kemper – Brown University Earth, Environmental and Planetary Sciences,
19 Providence, RI USA
20 A. P. Craig – National Center for Atmospheric Research, Boulder, CO USA
21 D.J. Erickson - Computer Science and Mathematics Division, Oak Ridge National
22 Laboratory, Oak Ridge, TN, USA
23 I. Ginis – University of Rhode Island Graduate School of Oceanography, Narragansett,
24 RI USA
25 A. Webb - University of Tokyo Department of Ocean Technology, Policy, and
26 Environment, Tokyo, Japan
27
28 Submitted to the *Journal of Geophysical Research*
29

30 Key Points: (1) Marine aerosol emission scales with prognostic wind-wave model. (2)
31 10-meter wind speed unable to capture basin-scale wind-wave properties. (3) Wave-
32 based aerosol emission did not improve comparison to observed particulate Na^+ .

33

34 Abstract

35 Primary marine aerosol (PMA) is emitted into the atmosphere via breaking wind waves
36 on the ocean surface. Most parameterizations of PMA emissions use 10-meter wind
37 speed as a proxy for wave action. This investigation coupled the 3rd generation prognostic
38 WAVEWATCH-III wind-wave model within a coupled Earth system model (ESM) to
39 drive PMA production using wave energy dissipation rate – analogous to whitecapping –
40 in place of 10-meter wind speed. The wind speed parameterization did not capture basin-
41 scale variability in relations between wind and wave fields. Overall, the wave
42 parameterization did not improve comparison between simulated versus measured AOD
43 or Na^+ , thus highlighting large remaining uncertainties in model physics. Results confirm
44 the efficacy of prognostic wind-wave models for air-sea exchange studies coupled with
45 laboratory- and field-based characterizations of the primary physical drivers of PMA
46 production. No discernible correlations were evident between simulated PMA fields and
47 observed chlorophyll or sea surface temperature.

48 1. Introduction

49 Particle production by bursting bubbles at the air-sea interface is the dominant global
50 source of aerosol mass and a major global source of aerosol number (Andreae and
51 Rosenfeld, 2008). Primary marine aerosol (PMA) is an important composition-dependent
52 reaction medium that influences the multiphase physicochemical evolution of the marine
53 troposphere [*von Glasow and Crutzen*, 2004; *Long et al.*, 2014a]. These particles are
54 highly enriched (typically by 2 to 3 orders of magnitude based on bulk composition) in
55 marine-derived organic matter (OM) [*Hoffman and Duce*, 1976; *Keene et al.*, 2007;
56 *Facchini et al.*, 2008] the chemical processing of which is a significant source of the OH
57 radical, hydroperoxides, and probably other low molecular weight reaction products
58 including carboxylic acids, ketones, and alcohols [*Zhou et al.*, 2008]. PMA also scatters
59 incident solar radiation and accounts for significant fractions of cloud condensation
60 nuclei (CCN) over the world's oceans thereby influencing Earth's radiative balance and
61 climate [*Clarke et al.*, 2006; *Pierce and Adams*, 2006; *Quinn and Bates*, 2011].

62 Despite their global significance, the size-resolved physical (mass and number) and
63 chemical (organic and inorganic) properties and production fluxes of PMA are not
64 adequately parameterized in comprehensive Earth system models as functions of major
65 drivers (wind and wave fields and the chemical and physical characteristics of surface
66 seawater). Some parameterizations are based on *in situ* measurements which are
67 advantageous in that they directly relate variability in PMA production rates as inferred
68 from ambient aerosol concentrations to the corresponding environmental drivers (e.g.
69 wind speed). These include parameterizations based on measured number size
70 distributions in near-surface marine air [*Gong*, 2003], vertical gradients in number size
71 distributions measured immediately downwind of coastal surf [*Clarke et al.*, 2006],
72 gradients in offshore flow regimes [*Reid et al.*, 2001], and eddy covariance measurements
73 of sub- μm number concentrations during onshore flow [*Geever et al.*, 2005] and
74 associated measurements of ambient aerosol composition [*Rinaldi et al.*, 2013]. However,
75 these and other measurement techniques for ambient marine aerosol cannot reliably
76 characterize size-resolved properties over the full relevant size range at high temporal
77 resolution [*Reid et al.*, 2006]. In addition, size distributions of freshly produced PMA
78 change rapidly (minutes to hours) in response to variable size-dependent dry-deposition

79 rates and meteorological conditions [Keene *et al.*, 2009]; and the corresponding chemical
80 compositions change rapidly (seconds to minutes) via exposure to light and reactive trace
81 gases [Chameides and Stelson, 1992; Erickson *et al.*, 1999; Zhou *et al.*, 2008]. PMA are
82 also injected onto air already populated with aged particles that exhibit variable degrees
83 of physicochemical modification, and (in many regions) contain components from non-
84 marine sources (e.g. Clarke *et al.*, [2013]) . Consequently, it is extremely difficult to
85 reliably deconvolve the characteristics of freshly produced versus aged aerosols based on
86 measurements in ambient marine air.

87 Other recently published parameterizations have been developed based on aerosols
88 generated artificially by bubbling air through or impinging water jets onto surfaces of
89 natural or synthetic seawater. However, some of these studies consider only the sub- μm -
90 diameter size fractions [Sellegrí *et al.*, 2006; Tyree *et al.*, 2007; Hultin *et al.*, 2010]
91 thereby ignoring the larger aerosols that dominate the mass and volume flux. In addition,
92 aerosol produced from commercial synthetic seawater [e.g. Mårtensson *et al.*, 2003] or
93 synthetic or natural seawater amended with addition of organic surfactant concentrations
94 and compositions that are not representative of ambient seawater [e.g., Modini *et al.*,
95 2013] may not be representative of PMA produced from ambient seawater. The reader is
96 referred to [Hultin *et al.*, 2010] for an intercomparison of normalized number size
97 distributions reported by the above investigators. Spatial and temporal variability in
98 cycling and impacts of size-resolved marine aerosols have also been simulated globally
99 using models incorporating PMA production parameterizations based on results of some
100 of the above studies (e.g., [Pierce and Adams, 2006; Langmann *et al.*, 2008; Roelofs,
101 2008; Spracklen *et al.*, 2008; Gantt *et al.*, 2009; Long *et al.*, 2014b]).

102 Most parameterizations of PMA production rely upon 10-m wind speed as a proxy for
103 wave action. However, this approach cannot account for important non-linear processes
104 involving wind waves that are not in equilibrium with local conditions, as is more
105 commonly the case [Hanley *et al.*, 2010; Webb and Fox-Kemper, 2011; Edson *et al.*,
106 2013]. Several previous investigations of links between PMA emissions and wind-wave
107 characteristics have focused on the wave-roughness Reynolds number [Norris *et al.*,
108 2013; Partanen *et al.*, 2014], which demonstrated better skill than wind speed alone in
109 reproducing observations. We report herein a new approach using a prognostic wind-

110 wave model to simulate air entrainment into the surface ocean by breaking wind waves
111 coupled with measured characteristics of size-resolved aerosols over full size
112 distributions that were produced via the detrainment of artificially generated bubbles
113 from fresh and artificial seawater under controlled conditions [Mårtensson *et al.*, 2003;
114 *Keene et al.*, 2007; *Facchini et al.*, 2008; *Long et al.*, 2014]. This effort builds on prior
115 work that parameterized PMA production based on the energetics of wind-wave breaking
116 [Long *et al.*, 2011]. We examine the sensitivity of simulated PMA production, PMA
117 burden, and associated first-order radiative impacts to the nature of the source function
118 based on results from production parameterizations driven by wind speed versus those
119 driven by the wind wave model. Simulated results are compared to measurements of
120 ambient marine aerosol mass and optical depth. This work is part of a larger effort to
121 develop, within the NCAR Community Atmosphere Model (CAM) component of the
122 Community Earth System Model (CESM), a more explicit description of the sources,
123 multiphase processing, and climatic interactions of naturally produced aerosols.

124

125 2. Methods

126 2.1 Models

127 Atmospheric processes were simulated in three dimensions (3-D) using the
128 Community Atmosphere Model (CAM, version 5.3.16 [*Gent et al.*, 2009]) as part of
129 Community Earth System Model (CESM, version 1.3; [*Hurrell et al.*, 2013]). Version
130 3.14 of the NOAA WAVEWATCH-III (WWIII) third-generation ocean wind-wave
131 model [*Tolman*, 2009] was included as a separate component within the standard CESM
132 to simulate wave fields for PMA emissions. WWIII solves the wave-number and
133 direction resolved wind-wave energy spectrum on an Eulerian grid. The energy source
134 term includes inputs from wind action on the ocean surface, dissipation from wave
135 breaking, non-linear wave-wave interactions, interactions with the ocean bottom, depth-
136 induced breaking, and terrain-based wave scattering. Zonal and meridional wind and
137 ocean current velocities, sea-surface temperature (SST), and air temperature at 2 m were
138 passed from CESM to the WWIII component. CESM's default ocean surface roughness
139 parameters were used for momentum flux and atmospheric boundary layer calculations.
140 WWIII operates in the CESM similarly to the atmosphere, ocean, sea ice, land, land-ice,

141 and runoff components via communication within the hub-and-spoke coupled system. A
142 top-level driver sequences all components (including WWIII) by calling component-
143 specific initialization, run, and final interfaces. Fields are passed into and out of
144 components via these interfaces, and all coupling fields are passed between models via
145 the central "hub" coupler component. Synchronous restarts (from initial conditions saved
146 from previous model executions) and time coordination in components are handled
147 through the interface to the driver. The CESM was configured with online atmosphere
148 and land model components, and was initialized at 1 January 2000. All other components
149 were run in offline ('data') mode. To reduce model spin-up time, the sea-surface
150 temperature was based on offline data for the 2000 calendar year and was cycled annually
151 based on the NOAA Reynolds' SST climatology [Reynolds *et al.*, 2002, 2007]. Enhanced
152 ocean mixing from prognostic waves (Q. Li, A. Webb, B. Fox-Kemper, A. Craig, G.
153 Danabasoglu, W. G. Large, and M. Vertenstein, Langmuir mixing effects on global
154 climate: WAVEWATCH III in CESM. Submitted to Ocean Modelling, 2015) was not
155 active in this version of the model.

156

157 2.2 Marine Aerosol Source

158 Observations indicate that the total number production flux of PMA (F_T ; $\text{m}^{-2} \text{s}^{-1}$) via
159 bursting bubbles at the seawater surface is linearly proportional to the flux of air
160 detrained from the water column [Keene *et al.*, 2007]. Measurements demonstrate that the
161 total volume of air entrained within the water column by breaking waves (V_0 in m^3) is
162 proportional to the energy dissipated by the wind-wave field through wave breaking (E_D
163 in J; [Lamarre and Melville, 1991; Loewen and Melville, 1994; Hoque, 2002;
164 Blenkinsopp and Chaplin, 2007]). Therefore, assuming that all air entrained into the
165 water column detrains as bubbles that produce particles and neglecting impacts of
166 surface-active material in seawater on bubble plume dynamics, the number production
167 flux of marine aerosol can be estimated from the corresponding energy dissipated by
168 wave breaking. The dissipation of wave energy by wave breaking involves work against
169 the buoyant force of air entrained into the water column. Although the physical
170 characteristics of plunging versus spilling breakers differ (e.g., [Loewen and Melville,
171 1994]), available evidence suggests that the V_0 -to- E_D ratio (heretofore referred to as α)

172 varies across a narrow range for both types of breakers [Long *et al.*, 2011]. For example,
173 measurements of V_0 and E_D for 2-D plunging breakers [Lamarre and Melville, 1991]
174 yield α values of $5.6 (\pm 0.2) \times 10^{-4} \text{ m}^3 \text{ J}^{-1}$ ($n = 3$) whereas measurements for both 2-D
175 plunging and spilling breakers reported by Blenkinsopp and Chaplin [2007] yield α
176 values of $2.2 (\pm 0.2) \times 10^{-4} \text{ m}^3 \text{ J}^{-1}$ ($n \approx 10^3$). Here, as in Long *et al.* [2011] we use an α
177 value of $4.0 \times 10^{-4} \text{ m}^3 \text{ J}^{-1}$.

178 The air detrainment flux resulting from wave breaking (F_{Det} in m s^{-1}) can be estimated
179 from [Long *et al.*, 2011]

180
$$F_{Det} = \alpha \varepsilon_d \quad (1)$$

181 where ε_d is the *rate* of energy dissipation by wave breaking ($\text{J m}^{-2} \text{ s}^{-1}$) simulated with
182 WWIII as described in more detail below.

183 Measurements of size-resolved PMA production efficiency, defined as the size-
184 resolved particle yield per unit volume of air detrained from the water column (PE_{Num} in
185 units of m^{-3} , [Long *et al.*, 2014b]) allow the PMA number production flux (F_{Num} in units
186 of m^{-2}) to be calculated from F_{Det} :

187
$$F_{Num} = PE_{Num} \cdot \alpha \varepsilon_d \quad (2)$$

188 Currently in CAM, emissions of PMA with dry diameters (D_p) smaller than $2.8 \mu\text{m}$ are
189 based on the parameterization of [Mårtensson *et al.*, 2003] and those for larger particles
190 are based on Monahan *et al.* [1986] as described by Liu *et al.* [2012]. The number flux for
191 particles with dry diameters of $2.8 \mu\text{m}$ or smaller is in the form $dF_{Num}/dLogD_p$ (units of
192 $\text{m}_{oc}^{-2} \text{ m}_{wc}^{-2} \text{ s}^{-1}$ where subscripts *oc* and *wc* refer to surface area of the ocean and
193 corresponding surface area covered by whitecaps, respectively) scaled with the wind-
194 speed-dependent (U_{10} at 10 m height in m s^{-1}) white-cap area function of Monahan and
195 O'Muircheartaigh [1986]. Although not reported in the literature, PMA emissions based
196 on the default parameterization in CAM as summarized above are increased by a constant
197 scaling factor of 1.35 to better fit cloud droplet number concentrations measured in the
198 marine atmosphere (A. Gettleman, pers. comm., 2014).

199 Because the energy of wave breaking and associated air detrainment is a function of
200 interactions between both wind and wave fields [Tolman and Chalikov, 1996], we
201 hypothesize that sea state rather than wind velocity alone is the primary driver for PMA
202 production. In the ambient environment, many wave properties are not in equilibrium

203 with associated wind fields due to temporal lags in wave response to changes in wind
204 speed or direction. Unlike simplified scaling based on wind speed, prognostic wave
205 models are able to simulate such non-equilibrium conditions. Wave breaking and
206 associated PMA production are highly nonlinear processes that are sensitive to wave
207 disequilibria [Hanley *et al.*, 2010; Webb and Fox-Kemper, 2011; Cavalieri *et al.*, 2012;
208 Edson *et al.*, 2013]. Consequently, wave fields must be considered explicitly to reliably
209 simulate PMA emissions.

210

211 To evaluate the influence of sea state, PMA emissions were simulated using four
212 different production parameterizations as summarized below (details regarding the latter
213 three approaches are described in subsequent subsections):

- 214 1) CAM's standard default parameterization driven by U_{10} and based on *Mårtensson*
215 *et al.* [2003] and *Monahan et al.*, [1986] as described above (hereafter referred to
216 as STD- U_{10}). Results using this parameterization represent the base case.
- 217 2) A wind-wave parameterization based on equation (1) and (2) using size-resolved
218 PE_{Num} values measured by *Long et al.* [2014b] (hereafter referred to as WAVE).
- 219 3) A hybrid version of CAM'S default parameterization for which the wind-driven
220 whitecap fraction was replaced with a wind-wave mechanism based on equation
221 (1) and (2) and scaled to generate approximately the same integrated global PMA
222 mass production flux as that simulated with STD- U_{10} . Relative to those simulated
223 with STD- U_{10} , PMA production fluxes in this simulation (hereafter referred to as
224 STD-WAVE) varied spatially in response to sea state rather than wind velocity
225 alone.
- 226 4) To evaluate the influence of temperature on PMA production, a modified version
227 of STD-WAVE was run for which the SST term in the PMA emission function
228 was held constant at 291K (hereafter referred to as STD-WAVE_{291K}).

229

230 2.2.1 WAVE

231 The size-resolved particle number flux can be estimated directly from the wave field
232 via a function of the form

$$233 \frac{dF}{d\log D_p} = F_{Det} \cdot \frac{dPE_{Num}}{d\log D_p} \quad (3)$$

234 where

235

$$\frac{dPE_{Num}}{d\log D_p} = 10^{P_N} \quad (4)$$

236 and P_N are polynomials fit to the size-resolved PE_{Num} values reported by Long et al.
237 [2014b] for two aerosol size modes, N . Mode-1 corresponds to particles in the size range
238 $0.01 < D_p < 0.4 \mu\text{m}$, and mode-2 corresponds to particles in the range $0.04 \leq D_p < 14 \mu\text{m}$.
239 Long et al. [2014b] reported PE_{Num} values for PMA produced from both biologically
240 productive and oligotrophic seawater and for bubble plumes generated with either a bank
241 of fine porosity frits (10- to 20- μm pore size) or a coarse porosity frit (145- to 147- μm
242 pore size). Since about 90% of the surface ocean is oligotrophic, the data used in this
243 analysis correspond to those reported for oligotrophic conditions and, thus, we infer
244 represent lower limits. PE_{Num} values for bubbles produced with fine frits were similar but
245 not identical to those produced with the coarse frit [Long et al., 2014b]. For consistency
246 with past results reported for this generator, this analysis utilized data corresponding to
247 the fine frits. For mode-1 and mode-2 particles, respectively,

248

249

$$P_1 = -0.28 \cdot \log D_p^3 - 3.73 \cdot \log D_p^2 - 7.31 \cdot \log D_p + 6.59 \quad (5)$$

250 and

251

$$P_2 = -2.21 \cdot \log D_p^3 - 1.4 \times 10^{-2} \cdot \log D_p^2 - 0.85 \cdot \log D_p + 8.95 \quad (6)$$

252

253 2.2.1. STD-WAVE

254 Differences between size-resolved PMA production fluxes simulated with STD-U₁₀
255 versus WAVE originate from two primary sources: (1) Differences between the relative
256 shapes of PMA size distributions produced by a comparable set of physical drivers and
257 (2) differences between the PMA produced as a function of wind speed versus sea state.
258 To normalize for the influence of differences in the shape of the PMA size distribution
259 and thereby enable direct comparisons between results based on wind speed alone (STD-
260 U₁₀) versus the wind-wave approach, a hybrid parameterization was employed. The shape
261 of the size distribution based on the default STD-U₁₀ parameterization was adapted to
262 utilize a wind-wave forcing in place of the wind-driven white-cap fraction. The
263 parameterization for size-resolved number flux in STD-U₁₀ is

264
$$\frac{dF}{d\log D_p} = W\Phi \quad (7)$$

265 where W is the white-cap fraction based on

266
$$W = 3.84 \times 10^{-4} U_{10}^{3.41} \quad (8)$$

267 from *Monahan and O'Muircheartigh* [1986] and Φ is size-resolved, SST-dependent
 268 number production flux per whitecap fraction (m^{-2}). Our revised approach converts the
 269 whitecap fraction (W) in equation (7) to an air detrainment rate per equation (2) using a
 270 conversion factor C_F , which represents the ratio of whitecap-area dependence to air
 271 detrainment. C_F was calculated as

272
$$C_F = A_b \cdot R_{Det}^{-1} \quad (9)$$

273 where A_b (m^2) is whitecap area per *Mårtensson et al.* [2003] and R_{Det} ($\text{m}^3 \text{ s}^{-1}$) is the air
 274 volume detrainment rate. *Mårtensson et al.* [2003] report values for A_b and R_{Det} of 3.0173
 275 $\times 10^{-4} \text{ m}^2$ and $1.67 \times 10^{-7} \text{ m}^3 \text{ s}^{-1}$, respectively, which yields a C_F of 1810 s m^{-1} . As
 276 described in detail below (see Section 3.1), available evidence indicates that the value of
 277 C_F calculated directly from data reported by *Mårtensson et al.* [2003] is too high by a
 278 factor of approximately 13. It was necessary to scale C_F accordingly to yield production
 279 fluxes for STD-WAVE that were consistent with those based on the default *Mårtensson*
 280 *et al.* [2003] parameterization in STD-U₁₀.

281 For particles larger than 2.8- μm dry diameter, CAM employs the source function of
 282 [Monahan *et al.*, 1986], which scales directly with U_{10} rather than a U_{10} -driven white-cap
 283 fraction. Thus, the conversion factor used for emissions of PMA smaller than 2.8- μm
 284 diameter cannot be used to parameterize production of larger particles. For consistency,
 285 and in order to permit emissions for this portion of size range to be scaled as a function of
 286 ε_d , U_{10} was estimated based on *Hanson and Phillips* [1999] yielding

287
$$U_{10,Est.} \approx (2.34 \times 10^4 \varepsilon_d)^{0.2674} \quad (10)$$

288 and thereby permitting direct scaling across the entire size distribution based on ε_d .

289 The final forms of the PMA emissions functions are,

290
$$\frac{dF}{d\log D_p} = C_F \cdot \alpha \varepsilon_d \Phi \quad (11)$$

291 for particles with dry diameters ranging from 0.1- to 2.8- μm , and

292
$$\frac{dF}{dr} = 1.373 U_{10,Est.}^{3.41} r^{-3} (1 - 0.057 r^{1.05}) \cdot 10^{1.19 e^{-B^2}} \quad (12)$$

293 for particles larger than 2.8- μm dry diameter. In equation (12), r is the particle radius at
294 80% RH, and $B = (0.380 - \text{Log}(r))/0.650$.

295

296 2.2.3. STD-WAVE_{291K}

297 The *Mårtensson et al.* [2003] source function includes a sea-surface temperature
298 dependence in equation (9) where $\Phi = A \cdot \text{SST} + B$, A and B are size-resolved regression
299 parameters, and SST is in Kelvin. Evidence based on model calculations using offline
300 meteorology also suggest a SST dependence in PMA production [*Jaeglé et al.*, 2011;
301 *Grythe et al.*, 2014], albeit different from that reported by *Mårtensson et al.* [2003].
302 To evaluate the temperature dependence of PMA emissions in STD-WAVE, aerosol
303 production was simulated using an alternate version of the wave parameterization in
304 which SST was held constant at 291K, the average temperature for the NOAA Reynolds
305 SST climatology [*Reynolds et al.*, 2002, 2007]. Temperature was held constant only for
306 the calculation of PMA. Temperature dependence of the simulation of atmospheric
307 boundary layer stability or the air-sea momentum coupling was not modified.

308 The PMA flux parameterization for WAVE evaluated the dry-particle diameter range
309 of 0.013 to 14 μm whereas those for STD-U₁₀, STD-WAVE and STD-WAVE_{291K}
310 evaluated the range 0.02 to 11.4 μm . However, the CAM PMA emission routine
311 integrates the particle source flux across dry diameters ranging from 0.2 μm to 10 μm
312 into three lognormal modes specified below (Section 2.4). Thus, differences in the ranges
313 of particles sizes evaluated by these PMA production parameterizations did not impact
314 results.

315

316 2.3 Calculation of Wave Breaking Energy

317 The energy dissipation rate ε_d was estimated at every wave model grid point from the
318 wave model output of the wave variance spectrum, $\psi(k, \theta)$. ε_d can be estimated by directly
319 integrating the wave energy loss term evaluated by the wave model. However, at the time
320 of the model runs reported herein, the wave energy loss term was not a standard model
321 output. For this work, ε_d was estimated as described below based on the simulated flux of
322 energy from wind into waves, \tilde{F}_W , (kg s^{-3}) and the energy taken up or released by the
323 waves. Wave energy loss was subsequently added as a standard output of the most recent

324 version of WWIII and an as yet unpublished comparison of simulated versus
 325 independently calculated loss terms revealed very good agreement [B. Reichl and T.
 326 Hara, unpublished results].

327 The flux of energy from the wind into the waves can be calculated from the wave
 328 growth rate, $\beta_g(k, \theta)$ (s^{-1}), and the wave variance spectrum, $\Psi(k, \theta)$:

$$329 \quad \tilde{F}_W = \int_{-\pi}^{\pi} \int_0^{\infty} \beta_g(k, \theta) \rho_W g \Psi(k, \theta) k dk d\theta, \quad (13)$$

330 where $\beta_g(k, \theta)$ is specified (e.g., [Hara and Belcher, 2004]) as

$$331 \quad \beta_g(k, \theta) = c_{\beta} \sigma \frac{\rho_a u_*^2}{\rho_w c^2} \cos^2(\theta - \theta_{wind}) \quad (14)$$

332 and the non-dimensional growth rate coefficient is

$$333 \quad c_{\beta} = 32 \quad \text{if } \cos(\theta - \theta_{wind}) > 0 \text{ and } u_*/c > 0.07,$$

$$334 \quad c_{\beta} = 0 \quad \text{otherwise.}$$

335 k is the wavenumber (m^{-1}), θ is the wave direction (radians), ρ_W and ρ_a are the water and
 336 air density, respectively ($kg\ m^{-3}$), g is acceleration by gravity ($m\ s^{-2}$), $\sigma = \sqrt{gk}$ is the
 337 angular frequency, $c = \sigma/k$ is the wave phase speed ($m\ s^{-1}$), θ_{wind} is the wind direction
 338 (radians), and u_*^2 is the air-side friction velocity in the wave model ($u_*^2 = \tau/\rho_a$ in units of
 339 $m^2\ s^{-2}$ and τ is the wind stress).

340 The energy contained within the surface wave field (E in units of J) is calculated from
 341 the spectrum:

$$342 \quad E = \int_{-\pi}^{\pi} \int_0^{\infty} \rho_W g \Psi(k, \theta) k dk d\theta, \quad (15)$$

343 and the horizontal energy fluxes (in x and y directions) due to wave propagation are
 344 calculated as:

$$345 \quad EF_x = \int_{-\pi}^{\pi} \int_0^{\infty} \rho_W g C_g \Psi(k, \theta) \cos(\theta) k dk d\theta, \quad (16)$$

$$346 \quad EF_y = \int_{-\pi}^{\pi} \int_0^{\infty} \rho_W g C_g \Psi(k, \theta) \sin(\theta) k dk d\theta, \quad (17)$$

347 where C_g is the group velocity ($c/2$ in $m\ s^{-1}$). The energy dissipation rate (ε_d) can then be
 348 calculated as the energy input from air minus the energy taken up by the waves (the
 349 horizontal divergence of the wave energy flux and the time rate of change (growth or
 350 decay) of the wave energy):

$$351 \quad \varepsilon_d = \tilde{F}_W - \left(\frac{\partial EF_x}{\partial x} + \frac{\partial EF_y}{\partial y} \right) - \frac{\partial E}{\partial t}. \quad (18)$$

352 Contributions from waves with frequencies less than $3 \times f_\pi$ where f_π is the wind-wave
353 peak frequency are not resolved by the wave model but are negligibly small [Fan *et al.*,
354 2010].

355

356 2.4 Modeled AOD

357 Details of the aerosol microphysical scheme and calculation of aerosol optical
358 properties are reported by *Ghan and Zaveri* [2007] and *Liu et al.* [2012]. Briefly, for
359 simulations reported herein, CAM explicitly calculated number and mass moments of
360 three log-normally distributed size modes equivalent to Aitken, accumulation, and coarse
361 aerosol size ranges centered log-normally on 0.026-, 0.11-, and 2.0- μm geometric mean
362 dry diameters (GMD), respectively. Corresponding lognormal standard deviations were
363 1.6, 1.8, and 1.8, respectively, and the corresponding ranges were 0.0087-to-0.052-,
364 0.053-to-0.44-, and 1.0-to-4.0- μm dry diameter, respectively. Each mode is comprised of
365 an internal mixture of non-sea-salt (nss) sulfate, OM from primary sources, secondary
366 OM from condensation of volatile organic precursors, black carbon, inorganic sea salt,
367 and mineral dust. AOD in CAM is calculated based on *Ghan and Zaveri* [2007] and
368 varies as a function of deliquesced particle size, area density, volume-weighted mean
369 hygroscopicity of internally mixed aerosol, and relative humidity (RH). Hygroscopic
370 growth factors are set to 0.507, 0.10, 0.14, 1×10^{-10} , 1.16, and 0.068 for nss sulfate,
371 primary OM, secondary OM, black carbon, sea salt, and dust, respectively.

372

373 2.5 Simulations

374 All results reported herein correspond to simulations at a horizontal resolution of $0.9^\circ \times$
375 1.25° latitude/longitude for the ocean, atmosphere, wave, and land component grids
376 (including land ice), and a 1° displaced-pole grid (GX1v6) for the ocean. CAM was
377 configured with CAM5 physics options using the finite volume dynamical core and the 3-
378 mdre aerosol module [*Liu et al.*, 2012]. Each simulation was run for 6 years including
379 one year for atmospheric equilibrium. Statistical analysis was performed on the final five
380 simulation years. All simulations were performed on the Oak Ridge National Laboratory
381 – Oak Ridge Leadership Computing Facility’s Titan Cray XK7 system.

382

383 2.5 Observational Data

384 2.5.1 Sea-Surface Temperature

385 SST used for both boundary conditions for CAM within the CESM and for data
386 analysis were derived from the Reynolds climatology [Reynolds *et al.*, 2002, 2007].
387 These data were derived from a series of interpolated global analysis products in 1° and
388 $\frac{1}{4}^{\circ}$ grid horizontal grids, followed by regridding to the horizontal resolution used in
389 simulations here.

390

391 2.5.2 Particulate Na^+ Concentrations

392 Mean simulated concentrations of bulk particulate Na^+ in the lowest level of the model
393 were compared with corresponding mean concentrations of bulk particulate Na^+
394 measured in near-surface marine air at 19 sampling stations operated over multi-year
395 periods under the auspices of the Atmosphere/Ocean Chemistry Experiment (AEROCE),
396 Sea-Air Exchange (SEAREX), and the U.S. Department of Energy Environmental
397 Monitoring Laboratory (DOE-EML) programs [Savoie and Prospero, 1977; Galloway *et*
398 *al.*, 1993; Dentener *et al.*, 2006; Textor *et al.*, 2006]. These observations provide broad
399 geographic coverage ranging from 63.4N to 67.6S latitude.

400

401 2.5.3 Aerosol Optical Depth (AOD)

402 AOD data evaluated herein are from the newly released Collection 6 (C6) over ocean
403 Aqua MODIS Dark Target (DT) aerosol product [Levy *et al.*, 2013]. Uncertainties and
404 sporadic positive biases due to cloud contamination and whitecaps exist in the standard
405 C6 over ocean DT aerosol products [Shi *et al.*, 2014]. Consequently, we applied
406 additional quality assurance methods similar to those used in constructing data
407 assimilation grade Collection 5 MODIS DT aerosol products [e.g., Shi *et al.*, 2011]. To
408 minimize cloud contamination, retrievals with cloud fractions greater than 20% and
409 retrievals with average distances to clouds of less than 2 pixels (as determined from the
410 Cloud_Pixel_Distance_Land_Ocean parameter) were excluded. Buddy checks and a bias
411 correction for lower boundary conditions based on operational wind speed data (similar
412 to that described by Shi *et al.* [2011, 2014] were also applied to further reduce
413 uncertainties and biases.

414 Only conditions dominated by marine aerosol (clean marine regions) are relevant to this
415 study. However, some regions over the global oceans often contain high concentrations
416 of aerosols from continental sources such as combustion-derived and mineral aerosol
417 transported from eastern Asia over the western North Pacific Ocean and from North
418 Africa over the tropical North Atlantic Ocean. The Navy Aerosol Analysis and
419 Prediction System (NAAPS) reanalysis (Peng et al., Development Studies Towards a 11-
420 year Global Gridded Aerosol Optical Thickness Reanalysis for Climate and Applied
421 Applications, 2015, in preparation) was used to differentiate between AOD observations
422 that were dominated by aerosol from marine versus continental sources. NAAPS is a
423 chemical transport modeling system that provides 6-day aerosol forecasts for the US
424 Navy operationally (<http://www.nrlmry.navy.mil/aerosol/>). The NAAPS reanalysis is
425 generated with an offline version of NAAPS that simulates contributions of sea salt, dust,
426 smoke, and anthropogenic and biogenic fine particles (ABF) to AOD at 1x1°
427 (Latitude/Longitude) resolution every 6 hours from 2003-2013. The NAAPS analysis,
428 which is available from the GODAE server (<http://www.usgodae.org/docs/naaps-reanalysis.html>), is generated through assimilation of quality assured Collection 5
429 MODIS DT and Multi-angle Imaging SpectroRadiometer (MISR) AOD data [Zhang *et
430 al.*, 2008, 2014; Hyer *et al.*, 2011; Shi *et al.*, 2011].

432 Four steps were applied to the C6 MODIS AOD data to identify the subset of retrievals
433 that were dominated by marine aerosol and to construct the level 3 AOD data used in this
434 analysis. 1) MODIS retrievals with AOD less than 0.07 (at 0.55 μm) were retained as
435 these retrievals are within the baseline oceanic AOD value suggested by Kaufman *et al.*,
436 [2002]. 2) Retrievals with AODs greater than 0.3 were assumed to be dominated by non-
437 marine aerosol and, thus, excluded. 3) For retrievals with AODs between 0.07 and 0.3,
438 ratios of column-integrated contributions of sea-salt AOD to total AOD (R_{seasalt}) were
439 computed from the collocated NAAPS data. Only retrievals with R_{seasalt} greater than or
440 equal to 0.5 were assumed to be dominated by marine aerosol and, thus, retained. Based
441 on C6 MODIS AOD retrievals filtered as described above, monthly-averaged AODs were
442 constructed at a 1x1° (Latitude/Longitude) spatial resolution for the period of July 2002
443 to December 2006.

444 For comparison to model output, only AOD in grid cells with $U_{10} \geq 6 \text{ m s}^{-1}$ were used.
445 Further, MODIS AOD at high latitudes is limited to spring and summer periods,
446 warranting caution when interpreting model versus observed AOD.

447

448 2.5.4 RH and Surface Wind

449 RH and surface wind data for use in model comparison and validation were based on
450 the NCEP/NCAR Reanalysis 1 project long term monthly means datasets derived from
451 data for years 1981 – 2010 [Kalnay *et al.*, 1996] available from
452 <http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html>.

453

454 3. Results and Discussion

455 3.1 Size-Resolved PMA Production Fluxes

456 The size-resolved PMA source functions were evaluated for consistency prior to
457 running within the full CESM. Size-resolved production based on STD- U_{10} at $U_{10} = 9 \text{ m}$
458 s^{-1} and $\text{SST} = 298\text{K}$ was compared to that based on WAVE at an equivalent F_{Det}
459 calculated as per Long *et al.* [2011] ($F_{Det} = 2 \times 10^{-8} U_{10}^{3.74}$). Both functions yielded
460 similar results (Figure 1a). Production based STD-WAVE per equation (11) was
461 compared to WAVE at $\varepsilon_d = 0.16 \text{ J m}^{-2} \text{ s}^{-1}$, which is equivalent to $U_{10} \approx 9 \text{ m s}^{-1}$ per on
462 equation (10), and $F_{Det} = 6.4 \times 10^{-5} \text{ m s}^{-1}$ per Long *et al.* [2011]. It is evident from Figure
463 2 that equation (10) provides a reasonable approximation of U_{10} based on ε_d calculated
464 online with WWIII. For D_p less than $2.8 \mu\text{m}$, the production function in STD-WAVE
465 (equation 11) yields size-resolved PMA fluxes that are more than an order of magnitude
466 greater than those based on STD- U_{10} and WAVE (Figure 1b).

467 The likely cause for this large discrepancy is that C_F calculated from equation 9 is
468 substantially overestimated. For D_p less than $2.8 \mu\text{m}$, the relative shapes of PMA
469 production as functions of particles size are similar (Figure 1), which strongly suggests
470 that (1) whitecap area and energy dissipation are directly related and (2) the empirical
471 relationships between W and ε_d versus U_{10} (per *Monahan and O'Muircheartigh* [1986]
472 and *Hanson and Phillips*, [1999], respectively) permit reasonable and interchangeable
473 approximations. These results also imply that PE reported by *Long et al.* [2014b] and the
474 estimation of α in *Long et al.* [2011] yield reasonable approximations of particle

475 production relative to other PMA source functions. For D_p less than 2.8 μm , the
476 consistency between size-resolved production based on STD- U_{10} and WAVE (Figure 1a)
477 coupled with the results presented in *Mårtensson et al.* [2003], suggests that the
478 conversion of PMA flux as a function of W to flux as a function of ε_d using C_F is the
479 cause for the high PMA flux for STD-WAVE depicted in Figure 1b.

480 Per equation (9), C_F is based upon the air detrainment rate, R_{Det} , and the corresponding
481 surface area covered with bubbles, A_b (equivalent to whitecap area). We assumed that the
482 measurement of the air detrainment rate is accurately reported by *Mårtensson et al.*,
483 [2003]. However, the measurement of A_b was probably associated with greater
484 uncertainty and the authors do not describe the corresponding methodology. Assuming
485 that Figure 1 confirms the relationships between W and ε_d versus U_{10} , we estimate that a
486 whitecap area between 4×10^{-3} and 5×10^{-3} m^2 would be generated at the reported air
487 detrainment rate of 10 mL min^{-1} ($1.67 \times 10^{-7} \text{ m}^3 \text{ m}^{-2} \text{ s}^{-1}$), which is equivalent to that at a
488 U_{10} of approximately 2 m s^{-1} . This value for A_b differs from that in *Mårtensson et al.*,
489 [2003] by a factor of approximately 0.075. When production of particles with D_p less
490 than 2.8 μm in STD-WAVE were scaled by 0.075, the resulting size-resolved PMA flux
491 was in far better agreement with those based on STD- U_{10} and WAVE (Figure 1b). We
492 conclude that the A_b reported in *Mårtensson et al.* [2003] may be incorrect. We note that
493 the units for A_b reported by *Mårtensson et al.* [2003] are also incorrect; m^{-2} should be m^2 .
494 Based on the above, for D_p less than 2.8 μm STD-WAVE and STD-WAVE_{291K}, C_F in
495 equation (11) was scaled by 0.075 yielding an adjusted C_F value of 135.8 s m^{-1} .
496

497 3.2 U_{10} vs. ε_d

498 The wave-energy dissipation fluxes simulated by WWIII for the major ocean basins
499 were generally greater (mean factor of 2.3 ± 2.0) than those predicted by *Hanson and*
500 *Phillips* [1999] based on U_{10} alone (Figure 2), though are well within the range of scatter
501 of their observations (statistics were not reported). In mid- to high-latitude regions with
502 climatologically higher wind velocities and more developed and energetic wave fields,
503 the simulated wave dissipation fluxes were systematically greater. The relative
504 differences are most evident for the North Pacific and North Atlantic Oceans above 30°N
505 (Figure 2a and c, blue and pale green markers, respectively), and the high-latitude

506 Southern Ocean south of 30°S (Figure 2d). In the vicinity of the Pacific and Atlantic
507 gyres (Figure 2a and c, green and olive markers, respectively), simulated ε_d was only
508 slightly higher (factors of 1.4 ± 0.7 and 1.1 ± 0.1 , respectively) than that based on
509 [Hanson and Phillips, 1999] and overlaps the observed ε_d vs. U_{10} estimated by [Felizardo
510 and Melville, 1995] (not shown).

511 The systematic offset between simulated ε_d relative to that predicted based on *Hanson*
512 and *Phillips* [1999] (Figure 2, black lines) in the high-latitude Pacific and Atlantic basins
513 versus gyre regions implies fundamental differences in relationships among wind
514 velocity, wave fields, and energy dissipation in high- versus low-latitude regions.
515 Differences in the magnitudes of the offsets between mid and high-latitude ε_d fields in the
516 Pacific and Atlantic Oceans (Figure 2a and c) and the relatively high ε_d / U_{10} ratio in the
517 Southern Ocean (Figure 2d) suggest more efficient transfer of wave energy into the
518 dissipation term in high-latitude wave fields. It is evident from equation (2) that this more
519 efficient transfer would in turn drive relatively greater PMA emissions per unit wind
520 velocity at higher latitudes. Consequently, relative to those scaled from ε_d , PMA
521 production fluxes scaled directly from U_{10} also diverge systematically among major
522 oceanic regions.

523

524 3.3 STD- U_{10} versus WAVE

525 Relative to WAVE, number production fluxes simulated with STD- U_{10} were lower in
526 tropical oceanic regions but moderately higher in the high-latitude southern ocean (Figure
527 3). Integrated globally, the mean number production flux simulated with WAVE was
528 higher by a factor of 1.3 (Table 1). In contrast, the corresponding global mass flux based
529 on WAVE was lower by a factor of 2.3. As indicated in Section 2.2.1, these differences
530 are driven primarily by two factors: (1) the shape of the size-resolved PMA production
531 distribution and (2) variability in PMA produced as a function of U_{10} versus ε_d . This is
532 consistent with the relative differences between PMA production based on STD- U_{10} ,
533 STD-WAVE, and WAVE size distributions as depicted in Figure 1.

534 Relative shapes of measured production distributions for size-resolved PMA vary in
535 response to numerous factors including the mechanisms by which bubble plumes were
536 produced (frits, jets, and waves tanks, and associate variability in air detrainment rates

537 and bubble-plume dynamics), the types of solutions from which PMA were produced
538 (natural open-ocean seawater in biologically productive versus oligotrophic regions and
539 associated time of day, coastal seawater, artificial seawater, seawater amended with
540 organic surfactants), and temperature [e.g., *Mårtensson et al.*, 2003; *Hultin et al.*, 2010,
541 *Long et al.*, 2011, 2014; *Prather et al.*, 2013]. Some parameterizations (including STD-
542 U₁₀) consider poorly constrained contributions from spume droplets whereas others
543 (including WAVE) do not, which contributes to relatively higher mass fluxes in the
544 former [*Long et al.*, 2011]. A related source of variability in simulated mass flux based on
545 different parameterizations involves to the upper size cutoff for the production
546 distribution [e.g., *Lewis and Schwartz*, 2004; *Andrea and Rosenfeld*, 2008]. With
547 increasing cutoff size, relative contributions from very coarse but short-lived particles
548 increase thereby driving greater integrated mass fluxes for given sets of condition. A
549 detailed evaluation of variability in number and mass production fluxes introduced by
550 differences in the shape PMA size distribution is beyond the scope of this study. The
551 primary focus of this effort is to differentiate relative influences of wind speed versus sea
552 state on number and mass production fluxes of PMA. As described above, to evaluate this
553 source of variability, we developed the hybrid parameterization (STD-WAVE), which
554 adopted the shape of the production parameterization in STD-U₁₀ but replaced the U₁₀
555 driver with an energy dissipation function, which yielded approximately the same
556 integrated global mass flux of PMA. This approach allowed spatial variability in PMA
557 production fluxes for the two simulations to be evaluated based on differential influences
558 of the U₁₀ versus ε_d drivers.

559

560 3.4 STD-U₁₀ versus STD-WAVE

561 The integrated global mass fluxes of PMA simulated with STD-U₁₀ and STD-WAVE
562 were nearly identical (Table 1). However, significant geographic differences were evident
563 in both mass fluxes and burdens (Figure 4 and 5, respectively). Two important features
564 stand out: 1) The zonal band of high aerosol mass flux in the mid and high-latitude
565 southern ocean was much less pronounced in the STD-WAVE results (Figure 4b)
566 whereas (2) the corresponding number fluxes tended to be greater (Figure 4a). Similarly,
567 the STD-WAVE PMA mass concentration in the atmospheric surface layer of the high-

568 latitude southern hemisphere (Figure 5b) lacks the distinctive zonal maximum band
569 evident in the STD-U₁₀ results (Figure 5a), and the overall mass concentration
570 distribution reflects the latitudinal variability in the aerosol production flux (Figure 4).

571 In contrast to the good agreement between globally integrated mass fluxes in the two
572 simulations, number fluxes differed by a factor of 1.4 (Table 1). The primary cause for
573 this divergence was relatively greater number production fluxes simulated by STD-
574 WAVE in near-coastal regions where fetch-limitation and sea ice are prevalent, and
575 influences of bathymetry and wind-wave field interaction impact ε_d (Figure 3f).

576

577 3.5 STD-WAVE versus STD-WAVE_{291K}

578 Relative to STD-WAVE, STD-WAVE_{291K} yielded lower integrated number and mass
579 production fluxes of PMA (Table 1). These differences reflect the SST dependence of
580 size-resolved PMA production in STD-WAVE as originally formulated by *Mårtensson et*
581 *al* [2003] (equation 7). For a given wind velocity in STD-WAVE, relative production of
582 smaller particles decreases and relative production of larger particles increases with
583 increasing temperature. These temperature-dependent relationships were evident in
584 relative differences in latitudinal variability for number and mass production fluxes
585 simulated based on the two parameterizations (Figure 6). Compared to STD-WAVE,
586 STD-WAVE_{291K} yields proportionately higher number fluxes and proportionately lower
587 mass fluxes in lower, warmer latitudes and visa-versa in higher, colder latitudes.

588

589 3.6 Comparison to Observation

590 3.6.1 Observed Atmospheric Na⁺ Concentrations

591 Na⁺ concentrations in the lowest model layer simulated with STD-U₁₀ and STD-
592 WAVE were weakly correlated with average Na⁺ concentrations measured in near-
593 surface marine air but results indicate substantial scatter (Figure 7). In addition, ratios of
594 simulated to observed Na⁺ for the two parameterizations tended to increase with
595 increasing U₁₀ greater than about 8 m s⁻¹. Removing the SST dependence in STD-
596 WAVE_{291K} did not significantly improve the comparison to observations relative to STD-
597 U₁₀ (p>0.2) (Figure 7).

598 Unpublished tests by the University of Miami (D. Savoie and M. Izaguirre, personal
599 communication, 2013) indicate collection efficiencies ranging from 85% to ~100% for
600 particulate Na^+ and other particulate-phase species suggesting that Na^+ concentrations
601 associated with the long-term datasets reported by the University of Miami should be
602 reasonably representative of those in ambient air. However, physical relationships
603 indicate that inertial segregation of larger particles at inlets may cause negative sampling
604 bias at higher wind velocities. Such effects may have contributed to the systematic
605 divergence between simulated versus measured concentrations at higher wind speeds
606 (Figure 7).

607 Other factors such as uncertainties associated with aerosol physics and wind fields
608 within the CAM atmosphere likely contribute to these differences. For example, mass-
609 median diameters for ambient marine aerosol size distributions tended to increase with
610 increasing mass concentration [e.g., *Keene et al.*, 2009]. Because larger particles exhibit
611 relatively higher dry-deposition velocities and associated shorter lifetimes against
612 deposition [e.g., *Hummelshøj et al.*, 1992], disproportionately greater production fluxes
613 of larger particles would be required to sustain higher mass median diameters, which
614 implies that mass-integrated atmospheric lifetimes of marine aerosols tend to decrease
615 with increasing mass. However, in CAM, super-um diameter size fractions, which
616 dominate marine aerosol mass, are binned into a single log-normally distributed size
617 mode centered on $2.0 \mu\text{m}$ dry GMD. Because the relative shape and geometry of the
618 coarse-mode marine aerosol distribution in CAM does not vary as a function of mass, it
619 follows that simulated dry-deposition fluxes at higher wind velocities may underestimate
620 ambient dry-deposition fluxes. Consequently, the corresponding simulated mass
621 concentrations may overestimate ambient concentrations, consistent with the divergence
622 between simulated versus measured Na^+ concentrations at higher wind velocities evident
623 in Figure 7.

624

625 3.6.2 Comparison to Observed AOD

626 Regional differences between modeled versus remotely-sensed AOD (Figure 8) reflect
627 numerous factors in addition to those associated directly with the calculation of AOD in
628 the model. For example, widespread cloud cover over high-latitude regions during winter

629 limits the availability of AOD measurements. Consequently, annual average AODs at
630 higher latitudes are weighted disproportionately by measurement during warmer months
631 when wind speeds, sea states, and PMA production are typically lower. However, annual
632 averages based on simulated AODs are weighted equally by all seasons. Consequently,
633 the absence of AOD observations for the higher-wind season would introduce negative
634 bias in annual average values. Negative bias in AOD may also occur under clear sky
635 conditions [Zhang and Reid, 2009]. Conversely, other sources of biases in AOD
636 retrievals are largely positive (e.g., cloud contamination, whitecap error, etc.). While the
637 filters applied to assimilation-grade data minimize such sources of bias, they do not fully
638 eliminate them. Finally, aerosols in marine air are never comprised exclusively of one
639 aerosol type, which constrains the reliability of direct comparisons between simulated
640 and observed AOD. It is evident that annual average AOD based on observations,
641 particularly at higher latitudes, may not be entirely representative of annual average AOD
642 in the ambient atmosphere and, thus, should be interpreted with caution and an
643 appreciation of associated limitations. Nevertheless, observed AOD provides a useful
644 benchmark against which model performance can be evaluated.

645 As discussed in Section 3.6.1, the binning of most marine aerosol mass into a single
646 size mode may introduce positive bias in the simulated aerosol burden and associated
647 AOD at higher wind velocities. In addition, differences between modeled and ambient
648 wind patterns, boundary layer structure, and aerosol populations also constrain the
649 reliability of direct comparisons. For example, in some regions, differences between
650 modeled and observed AOD varied in response to the corresponding positions and size of
651 major synoptic circulation features. Large positive deviations in AOD simulated with
652 both STD- U_{10} and STD- WAVE (Figure 8a and b) relative to observed AOD (Figure 8c)
653 over the eastern South Pacific and southern Indian Oceans, and a large zonal negative
654 deviation over the higher-latitude southern ocean adjacent to Antarctica suggests that
655 CAM was unable to accurately predict wind and wave fields and the corresponding
656 marine-aerosol burdens in these regions.

657 Inaccurate RH, aerosol hygroscopicity, and mixed layer structure within the model
658 may also introduce bias. Relative to MODIS-C6 AOD, simulations based on STD- U_{10} ,
659 STD-WAVE, and STD-WAVE_{291K} overestimated AOD over the northern hemisphere

660 oceans by median factors of $25\pm42\%$, $22\pm40\%$ and $44\pm33\%$ respectively. As noted
661 previously, a scale factor of 1.35 is applied to PMA production in CAM to correct for
662 systematic divergence between simulated versus observed cloud droplet number
663 concentrations in marine regions. If this scale factor were removed, global mean biases
664 between simulated and observed AOD would decrease to $-7.7\pm31\%$, $-9.8\pm29\%$ and
665 $6.5\pm24\%$ for the STD-U₁₀, STD-WAVE, and STD-WAVE_{291K} results, respectively.

666 While this bulk comparison suggests that the use of the standard 1.35 scale factor may
667 have contributed to systematic positive bias in simulated AOD, such a result can easily be
668 over-interpreted. The standard error in AOD over oceanic regions that are dominated by
669 marine aerosol (e.g. the southern ocean) is on the order of $\pm50\%$ [Shi *et al.*, 2011].
670 No discernible relationship between AOD deviations and RH biases were evident (Figure
671 8 and 9; Also see Figure S2). Relative to NCEP Reanalysis data from 2002-2006, CAM
672 systematically underestimated mid-latitude RH at the surface and overestimated RH at
673 850 hPa (Figure 9), though the NCEP reanalysis is known to have significant regional
674 biases as well [Vey *et al.*, 2009]. This implies a vertical component to differences
675 between modeled and observed AOD. Given the aerosol size modes in CAM, virtually all
676 PMA would be mixed throughout the marine boundary layer. Thus, the net influence of
677 uncertainty in RH on simulated AOD and associated comparison with observations is
678 unclear.

679

680 3.7 Comparison to Surface Seawater State

681 3.7.1 SST Dependence

682 Several studies report evidence of a direct link between rates of marine aerosol
683 production and sea-surface temperature. Jaeglé *et al.* [2011] report a weak but significant
684 correlation between modeled and observed marine aerosol concentration differences and
685 sea-surface temperature. Data from Long *et al.*, 2014b suggest a weak correlation
686 between SST and daytime PE_{Num}, though it is not sustained during nighttime, and
687 variable operating conditions constrain resolution in evaluating the effect. Mårtensson *et*
688 *al.* [2003] also observed a size-resolved temperature dependence of the number
689 production flux that was included in the STD-U₁₀ and STD-WAVE parameterizations
690 used here.

691 Figure 10 compares the ratio of modeled to observed marine-aerosol mass for STD-U₁₀,
692 STD-WAVE, and STD-WAVE_{291K} to the Reynolds SST climatology. The observations
693 correspond to those at the long-term sampling stations described in Section 2.5.2 that
694 were used both here and by *Jaeglé et al.* [2011]. Our simulations revealed no trends in
695 observed Na⁺ concentrations relative to SST (Figure 10).

696 Differences between our results and those presented in *Jaeglé et al.* [2011] could be due
697 to differences in meteorology between our fully prognostic simulation and the offline
698 assimilated meteorology used by *Jaeglé et al.* [2011]. However, simple comparison
699 between 5-year mean surface wind speed from STD-U₁₀ and the NCEP/NCAR reanalysis
700 long-term monthly climatological mean (covering 1981-2010; Figure S1) indicated no
701 significant difference between them. Standard linear regression yielded the line $y = 0.92x$
702 + 0.068 ($r^2 = 0.79$; $p << 0.05$). The regression slope was significantly different than 1 (p
703 < 0.05); but a slope of 0.92 is within the cumulative uncertainty in observations of Na⁺
704 [Long et al., 2011]. Thus, we conclude that the difference between the our results and
705 those of *Jaeglé et al.* [2011] are due to factors other than differences in surface winds,
706 and are more likely due to large differences in processes controlling aerosol transport and
707 physics (e.g. see Liu et al. 2012 and <http://www.geos-chem.org/#Aerosols>).

708 Since simulated aerosol optical properties represent the cumulative result of modeled
709 aerosol processes, comparison of modeled to observed AOD as a function of SST can
710 reveal differences not captured by corresponding comparisons of aerosol mass. Several
711 relevant relationships are evident in Figure 11: (1) The inclusion of a wave-state based
712 Na⁺ emission function in STD-WAVE did not modify the SST dependence in AOD
713 relative to that simulated by STD-U₁₀ (Figure 11a,b,d). (2) Relative to STD-U₁₀, the STD-
714 WAVE_{291K} simulation revealed a step-wise transition from a high to low bias in Na⁺
715 emission versus SST (Figure 11e). The step-wise change reflects the basin-scale
716 variability in the wind-wave field discussed in Section 3.2. (3) Relative to STD-U₁₀, the
717 wind-wave based parameterization in STD-WAVE had little discernible impact on the
718 SST dependences of the ratio between observed to simulated AOD (Figure 12a,b,d).
719 These relationships are consistent with similarities in distributions of AOD simulated by
720 STD-U₁₀ and STD-WAVE (Figure 8) and, in particular, do not reflect the relatively
721 larger corresponding differences in spatial distributions of simulated PMA mass

722 production fluxes (Figure 4). As discussed above, these results suggest that factors other
723 than the PMA source function account for most of the divergence between observed and
724 simulated AOD. (4) Removing the SST dependence improved the agreement between
725 simulated vs. observed AOD (Figure 12c). The large model uncertainty associated with
726 convection and cloud processes at high SST (e.g. the tropics), and the combined
727 uncertainty in model RH and observed AOD at high latitudes discussed above constrain
728 unequivocal interpretation of these results. We infer that any apparent SST dependence in
729 simulated PMA production is small relative to other sources of uncertainty and may be an
730 artifact resulting from differences in aerosol treatment among model systems.

731

732 3.7.2 Chl-a dependence

733 Several studies have suggested links between PMA and biological activity in the
734 surface ocean that impacts the associated emission, composition, processing and optical
735 properties of aerosol. Most focus on the inferred influence of marine microbiology on the
736 partitioning of inorganic sea salt constituents and organic matter associated with size
737 resolved PMA based on weak or hypothetical correlations with remotely sensed Chl *a*
738 (e.g. [Gantt *et al.*, 2009; Long *et al.*, 2011; Rinaldi *et al.*, 2013; Partanen *et al.*, 2014]).
739 Others find no correlation with Chl-a [Quinn *et al.*, 2014] and a primary impact of
740 biological activity on total emission fluxes rather than on organic/inorganic fractionation
741 [e.g. Long *et al.*, 2014b]. It is reasonable to hypothesize that any impact of ocean biology
742 on PMA optical properties could be discerned by comparing AOD in the marine
743 atmosphere to our simulated results that do *not* include a biological effect. Comparing the
744 ratios of modeled to observed AOD and Na⁺ mass concentration to average observed
745 Chl-a from 2002 to 2006 revealed no significant correlations (Figure 13). Ultimately,
746 while connections between some metric of surface ocean biology and PMA production
747 are clearly evident in laboratory and field studies, the signal is negligible relative to the
748 overall variability and uncertainty in the system [Long *et al.*, 2014b; Quinn *et al.*, 2014].
749

750 4. Summary and Conclusions

751 1) The offset between mid and high-latitude ε_B fields in the Pacific and Atlantic oceans
752 (Figure 2) reflects a more efficient transfer of wave energy into the dissipation term in

more highly developed wave fields, yielding relatively higher PMA emissions per unit wind velocity. These results imply that interactions among wind fields and wave fields must be considered explicitly to reliably simulate the corresponding PMA production.

- 2) Relative to results based on STD-U₁₀, the incorporation of a the coupled wind-wave parameterization in STD-WAVE did not significantly improve overall model performance against observed AOD or Na⁺ concentrations.
- 3) Air entrainment rates simulated by WWIII were within ranges reported for wave tank studies and used for chamber and tank-based PMA production experiments. These results suggest that experimentally determined rates of PMA production per unit air detained can be reliably extrapolated based on the simulated air detrainment rates.
- 4) There was no discernible correlation between observed SST or Chl-a and observed or modeled AOD or Na⁺ concentrations.
- 5) Ultimately, comparison of simulated results to observations relevant to PMA production and processing in the CESM underscored the uncertainty in the model physics. This uncertainty coupled with the combined uncertainty of the observations themselves constrain our ability to identify model improvement using an arguably more physically accurate description of the dominant global source for aerosol mass. The use of assimilated meteorology to minimize meteorological bias globally would likely eliminate sole of the uncertainty thereby facilitating more useful comparisons with observations. Still, this study has provided several advances, primarily,
 - a. The use of a prognostic wave model to simulate wind-wave interactions reduces a major source of uncertainty in current parameterizations of PMA production thereby improving resolution in addressing other sources of uncertainty.
 - b. Our results support for the efficacy and scalability of direct lab and field based observations of the primary physical processes controlling PMA production (e.g. *Lamarre and Melville, 1991; Keene et al., 2007, Blenkinsopp and Chapin, 2007; Long et al., 2014*).

5. Acknowledgements

784 Financial support was provided by the US Department of Energy's Office of Science
785 through the Office of Biological and Environmental Research (BER, grant number DE-
786 SC0007120 to the University of Virginia). Additional support was provided by the
787 National Science Foundation (awards OCE-1129836 and NSF-1258907) and NASA
788 (NNX09AF38G). NCEP Reanalysis Derived data provided by the NOAA/OAR/ESRL
789 PSD, Boulder, Colorado, USA, from their Web site at <http://www.esrl.noaa.gov/psd/>.
790 Data used for this manuscript is available upon request to the corresponding author.
791

792 6. Notation

793	A_b	water surface area through which bubbles are bursting, m^2
794	c	wave phase speed, $m s^{-1}$
795	c_β	non-dimensional wave growth rate coefficient
796	CF	whitecap area to PE conversion factor, $s m^{-1}$
797	C_g	wave group velocity, $m s^{-1}$
798	D_p	dry particle diameter, μm
799	E	energy contained in the surface wind-wave field, J
800	E_D	wave energy dissipated by breaking, J
801	F_{Det}	bubble plume air detrainment flux, $m s^{-1}$
802	F_{Num}	particle number flux, $m^{-2} s^{-1}$
803	F_T	total particle number flux, $m^{-2} s^{-1}$
804	F_w	energy flux from wind into the wave field, $J m^{-2} s^{-1}$
805	f_π	wind-wave peak frequency, s^{-1}
806	g	acceleration due to gravity, $m s^{-2}$
807	k	wave number, m^{-1}
808	PE_{Num}	PMA number production efficiency per unit bubble volume, m^{-3}
809	P_N	regression polynomial for particle mode n .
810	r	particle radius at 80% RH
811	R_{Det}	bubble plume air detrainment rate, $m^3 s^{-1}$
812	RH	relative humidity
813	u_*	wind friction velocity, $m s^{-1}$
814	U_{10}	wind speed at 10 meters above the surface, $m s^{-1}$

815	V_0	volume of air entrained by a breaking wave, m^3
816	W	whitecap fraction
817	α	ratio of air entrained per unit energy dissipated by wave breaking
818	β_g	wave growth rate, s^{-1}
819	ε_d	wave energy dissipation flux, $\text{J m}^{-2} \text{ s}^{-1}$
820	θ	wave direction, radians
821	Φ	size-resolved number production flux per unit whitecap area, $\text{m}^{-2} \text{ s}^{-1}$
822	ψ	wave variance spectrum
823	ρ_w	density of seawater, kg m^{-3}
824	ρ_a	density of air, kg m^{-3}
825	σ	angular frequency, s^{-1}
826	τ	wind stress, Pa

827

828 7. References

829 Blenkinsopp, C. E., and J. R. Chaplin (2007), Void fraction measurements in breaking
 830 waves, *Proc. R. Soc. Math. Phys. Eng. Sci.*, 463(2088), 3151–3170,
 831 doi:10.1098/rspa.2007.1901.

832 Cavalieri, L., B. Fox-Kemper, and M. Hemer (2012), Wind Waves in the Coupled Climate
 833 System, *Bull. Am. Meteorol. Soc.*, 93(11), 1651–1661, doi:10.1175/BAMS-D-11-
 834 00170.1.

835 Chameides, W. L., and A. W. Stelson (1992), Aqueous-phase chemical processes in
 836 deliquescent sea-salt aerosols: A mechanism that couples the atmospheric cycles
 837 of S and sea salt, *J. Geophys. Res. Atmospheres*, 97(D18), 20565–20580,
 838 doi:10.1029/92JD01923.

839 Clarke, A. D., S. R. Owens, and J. Zhou (2006), An ultrafine sea-salt flux from breaking
 840 waves: Implications for cloud condensation nuclei in the remote marine
 841 atmosphere, *J. Geophys. Res.*, 111(D6), doi:10.1029/2005JD006565.

842 Clarke, A. D., S. Freitag, R. M. C. Simpson, J. G. Hudson, S. G. Howell, V. L.
 843 Brekhovskikh, T. Campos, V. N. Kapustin, and J. Zhou (2013), Free troposphere
 844 as a major source of CCN for the equatorial pacific boundary layer: long-range
 845 transport and teleconnections, *Atmos Chem Phys*, 13(15), 7511–7529,
 846 doi:10.5194/acp-13-7511-2013.

847 Dentener, F., S. Kinne, T. Bond, O. Boucher, J. Cofala, S. Generoso, P. Ginoux, S. Gong,
 848 J. J. Hoelzemann, and A. Ito (2006), Emissions of primary aerosol and precursor
 849 gases in the years 2000 and 1750, *Atmos Chem Phys Discuss*, 6.

850 Edson, J. B., V. Jampana, R. A. Weller, S. P. Bigorre, A. J. Plueddemann, C. W. Fairall,
851 S. D. Miller, L. Mahrt, D. Vickers, and H. Hersbach (2013), On the Exchange of
852 Momentum over the Open Ocean, *J. Phys. Oceanogr.*, 43(8), 1589–1610,
853 doi:10.1175/JPO-D-12-0173.1.

854 Erickson, D. J., C. Seuzaret, W. C. Keene, and S. L. Gong (1999), A general circulation
855 model based calculation of HCl and ClNO₂ production from sea salt
856 dechlorination: Reactive Chlorine Emissions Inventory, *J. Geophys. Res.*
857 *Atmospheres*, 104(D7), 8347–8372, doi:10.1029/98JD01384.

858 Facchini, M. C. et al. (2008), Primary submicron marine aerosol dominated by insoluble
859 organic colloids and aggregates, *Geophys. Res. Lett.*, 35(17),
860 doi:10.1029/2008GL034210.

861 Fan, Y., I. Ginis, and T. Hara (2010), Momentum Flux Budget across the Air–Sea
862 Interface under Uniform and Tropical Cyclone Winds, *J. Phys. Oceanogr.*,
863 40(10), 2221–2242, doi:10.1175/2010JPO4299.1.

864 Felizardo, F. C., and W. K. Melville (1995), Correlations between Ambient Noise and the
865 Ocean Surface Wave Field, *J. Phys. Oceanogr.*, 25(4), 513–532,
866 doi:10.1175/1520-0485(1995)025<0513:CBANAT>2.0.CO;2.

867 Gantt, B., N. Meskhidze, and D. Kamikowski (2009), A new physically-based
868 quantification of marine isoprene and primary organic aerosol emissions,
869 *Atmospheric Chem. Phys.*, 9(14), 4915–4927, doi:10.5194/acp-9-4915-2009.

870 Geever, M., C. D. O'Dowd, S. van Ekeren, R. Flanagan, E. D. Nilsson, G. de Leeuw, and
871 Ü. Rannik (2005), Submicron sea spray fluxes, *Geophys. Res. Lett.*, 32(15),
872 L15810, doi:10.1029/2005GL023081.

873 Ghan, S. J., and R. A. Zaveri (2007), Parameterization of optical properties for hydrated
874 internally mixed aerosol, *J. Geophys. Res.*, 112(D10),
875 doi:10.1029/2006JD007927.

876 Glasow, R. von, and P. J. Crutzen (2004), Model study of multiphase DMS oxidation
877 with a focus on halogens, *Atmospheric Chem. Phys.*, 4(3), 589–608.

878 Gong, S. L. (2003), Canadian Aerosol Module: A size-segregated simulation of
879 atmospheric aerosol processes for climate and air quality models 1. Module
880 development, *J. Geophys. Res.*, 108(D1), doi:10.1029/2001JD002002.

881 Grythe, H., J. Ström, R. Krejci, P. Quinn, and A. Stohl (2014), A review of sea-spray
882 aerosol source functions using a large global set of sea salt aerosol concentration
883 measurements, *Atmospheric Chem. Phys.*, 14(3), 1277–1297, doi:10.5194/acp-14-
884 1277-2014.

885 Hanley, K. E., S. E. Belcher, and P. P. Sullivan (2010), A Global Climatology of Wind–
886 Wave Interaction, *J. Phys. Oceanogr.*, 40(6), 1263–1282,
887 doi:10.1175/2010JPO4377.1.

888 Hanson, J. L., and O. M. Phillips (1999), Wind sea growth and dissipation in the open
889 ocean, *J. Phys. Oceanogr.*, 29(8), 1633–1648.

890 Hara, T., and S. E. Belcher (2004), Wind Profile and Drag Coefficient over Mature
891 Ocean Surface Wave Spectra, *J. Phys. Oceanogr.*, 34(11), 2345–2358,
892 doi:10.1175/JPO2633.1.

893 Hoffman, E. J., and R. A. Duce (1976), Factors influencing the organic carbon content of
894 marine aerosols: A laboratory study, *J. Geophys. Res.*, 81(21), 3667–3670,
895 doi:10.1029/JC081i021p03667.

896 Hoque, A. (2002), Air Bubble Entrainment by Breaking Waves and Associated Energy
897 Dissipation, Toyohashi University of Technology, Japan.

898 Hultin, K. A. H., E. D. Nilsson, R. Krejci, E. M. Mårtensson, M. Ehn, Å. Hagström, and
899 G. de Leeuw (2010), In situ laboratory sea spray production during the Marine
900 Aerosol Production 2006 cruise on the northeastern Atlantic Ocean, *J. Geophys.
901 Res. Atmospheres*, 115(D6), n/a–n/a, doi:10.1029/2009JD012522.

902 Hurrell, J. W. et al. (2013), The Community Earth System Model: A Framework for
903 Collaborative Research, *Bull. Am. Meteorol. Soc.*, 94(9), 1339–1360,
904 doi:10.1175/BAMS-D-12-00121.1.

905 Hyer, E. J., J. S. Reid, and J. Zhang (2011), An over-land aerosol optical depth data set
906 for data assimilation by filtering, correction, and aggregation of MODIS
907 Collection 5 optical depth retrievals, *Atmos Meas Tech*, 4(3), 379–408,
908 doi:10.5194/amt-4-379-2011.

909 Jaeglé, L., P. K. Quinn, T. S. Bates, B. Alexander, and J.-T. Lin (2011), Global
910 distribution of sea salt aerosols: new constraints from in situ and remote sensing
911 observations, *Atmospheric Chem. Phys.*, 11(7), 3137–3157, doi:10.5194/acp-11-
912 3137-2011.

913 Kalnay, E. et al. (1996), The NCEP/NCAR 40-Year Reanalysis Project, *Bull. Am.
914 Meteorol. Soc.*, 77(3), 437–471, doi:10.1175/1520-
915 0477(1996)077<0437:TNYRP>2.0.CO;2.

916 Kaufman, Y. J., D. Tanré, and O. Boucher (2002), A satellite view of aerosols in the
917 climate system, *Nature*, 419(6903), 215–223.

918 Keene, W. C. et al. (2007), Chemical and physical characteristics of nascent aerosols
919 produced by bursting bubbles at a model air-sea interface, *J. Geophys. Res.*,
920 112(D21), doi:10.1029/2007JD008464.

921 Keene, W. C., M. S. Long, A. A. P. Pszenny, R. Sander, J. R. Maben, A. J. Wall, T. L.
922 O'Halloran, A. Kerkweg, E. V. Fischer, and O. Schrems (2009), Latitudinal
923 variation in the multiphase chemical processing of inorganic halogens and related
924 species over the eastern North and South Atlantic Oceans, *Atmospheric Chem.*
925 *Phys.*, 9(19), 7361–7385.

926 Lamarre, E., and W. K. Melville (1991), Air entrainment and dissipation in breaking
927 waves, *Nature*, 351(6326), 469–472, doi:10.1038/351469a0.

928 Langmann, B., C. Scannell, and C. O'Dowd (2008), New Directions: Organic matter
929 contribution to marine aerosols and cloud condensation nuclei, *Atmos. Environ.*,
930 42, 7821–7822, doi:10.1016/j.atmosenv.2008.09.002.

931 Levy, R. C., S. Mattoo, L. A. Munchak, L. A. Remer, A. M. Sayer, F. Patadia, and N. C.
932 Hsu (2013), The Collection 6 MODIS aerosol products over land and ocean,
933 *Atmos Meas Tech*, 6(11), 2989–3034, doi:10.5194/amt-6-2989-2013.

934 Liu, X. et al. (2012), Toward a minimal representation of aerosols in climate models:
935 description and evaluation in the Community Atmosphere Model CAM5, *Geosci.*
936 *Model Dev.*, 5(3), 709–739, doi:10.5194/gmd-5-709-2012.

937 Loewen, M. R., and W. K. Melville (1994), An experimental investigation of the
938 collective oscillations of bubble plumes entrained by breaking waves, *J. Acoust.*
939 *Soc. Am.*, 95(3), 1329–1343, doi:10.1121/1.408573.

940 Long, M. S., W. C. Keene, D. J. Kieber, D. J. Erickson, and H. Maring (2011), A sea-
941 state based source function for size- and composition-resolved marine aerosol
942 production, *Atmospheric Chem. Phys.*, 11(3), 1203–1216, doi:10.5194/acp-11-
943 1203-2011.

944 Long, M. S., W. C. Keene, R. C. Easter, R. Sander, X. Liu, A. Kerkweg, and D. Erickson
945 (2013), Sensitivity of tropospheric chemical composition to halogen-radical
946 chemistry using a fully coupled size-resolved multiphase chemistry/global climate
947 system – Part 1: Halogen distributions, aerosol composition, and sensitivity of
948 climate-relevant gases, *Atmospheric Chem. Phys. Discuss.*, 13(3), 6067–6129,
949 doi:10.5194/acpd-13-6067-2013.

950 Long, M. S., W. C. Keene, D. J. Kieber, A. A. Frossard, L. M. Russell, J. R. Maben, J. D.
951 Kinsey, P. K. Quinn, and T. S. Bates (2014), Light-enhanced primary marine
952 aerosol production from biologically productive seawater, *Geophys. Res. Lett.*,
953 2014GL059436, doi:10.1002/2014GL059436.

954 Mårtensson, E. M., E. D. Nilsson, G. de Leeuw, L. H. Cohen, and H.-C. Hansson (2003),
955 Laboratory simulations and parameterization of the primary marine aerosol
956 production, *J. Geophys. Res. Atmospheres*, 108(D9), 4297,
957 doi:10.1029/2002JD002263.

958 Modini, R. L., L. M. Russell, G. B. Deane, and M. D. Stokes (2013), Effect of soluble
959 surfactant on bubble persistence and bubble-produced aerosol particles, *J.
960 Geophys. Res. Atmospheres*, 118(3), 1388–1400, doi:10.1002/jgrd.50186.

961 Monahan, E. C., and I. G. O'Muircheartaigh (1986), Whitecaps and the passive remote
962 sensing of the ocean surface, *Int. J. Remote Sens.*, 7(5), 627–642,
963 doi:10.1080/01431168608954716.

964 Monahan, E. C., D. E. Spiel, and K. L. Davidson (1986), A Model of Marine Aerosol
965 Generation Via Whitecaps and Wave Disruption, in *Oceanic Whitecaps*, vol. 2,
966 edited by E. Monahan and G. Niocaill, pp. 167–174, Springer Netherlands.

967 Norris, S. J., I. M. Brooks, and D. J. Salisbury (2013), A wave roughness Reynolds
968 number parameterization of the sea spray source flux, *Geophys. Res. Lett.*, 40(16),
969 4415–4419, doi:10.1002/grl.50795.

970 Partanen, A.-I. et al. (2014), Global modelling of direct and indirect effects of sea spray
971 aerosol using a source function encapsulating wave state, *Atmos Chem Phys*,
972 14(21), 11731–11752, doi:10.5194/acp-14-11731-2014.

973 Pierce, J. R., and P. J. Adams (2006), Global evaluation of CCN formation by direct
974 emission of sea salt and growth of ultrafine sea salt, *J. Geophys. Res.*, 111(D6),
975 doi:10.1029/2005JD006186.

976 Quinn, P. K., T. S. Bates, K. S. Schulz, D. J. Coffman, A. A. Frossard, L. M. Russell, W.
977 C. Keene, and D. J. Kieber (2014), Contribution of sea surface carbon pool to
978 organic matter enrichment in sea spray aerosol, *Nat. Geosci.*, 7(3), 228–232,
979 doi:10.1038/ngeo2092.

980 Reid, J. S., H. H. Jonsson, M. H. Smith, and A. Smirnov (2001), Evolution of the vertical
981 profile and flux of large sea-salt particles in a coastal zone, *J. Geophys. Res.
982 Atmospheres*, 106(D11), 12039–12053, doi:10.1029/2000JD900848.

983 Reid, J. S., B. Brooks, K. K. Crahan, D. A. Hegg, T. F. Eck, N. O'Neill, G. de Leeuw, E.
984 A. Reid, and K. D. Anderson (2006), Reconciliation of coarse mode sea-salt
985 aerosol particle size measurements and parameterizations at a subtropical ocean
986 receptor site, *J. Geophys. Res.*, 111(D2), doi:10.1029/2005JD006200.

987 Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang (2002), An
988 Improved In Situ and Satellite SST Analysis for Climate, *J. Clim.*, 15(13), 1609–
989 1625, doi:10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

990 Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax
991 (2007), Daily High-Resolution-Blended Analyses for Sea Surface Temperature, *J.
992 Clim.*, 20(22), 5473–5496, doi:10.1175/2007JCLI1824.1.

993 Rinaldi, M. et al. (2013), Is chlorophyll-a the best surrogate for organic matter
994 enrichment in submicron primary marine aerosol?, *J. Geophys. Res. Atmospheres*,
995 118(10), 4964–4973, doi:10.1002/jgrd.50417.

996 Roelofs, G. J. (2008), A GCM study of organic matter in marine aerosol and its potential
997 contribution to cloud drop activation, *Atmospheric Chem. Phys.*, 8(3), 709–719.

998 Savoie, D. L., and J. M. Prospero (1977), Aerosol concentration statistics for the
999 Northern Tropical Atlantic, *J. Geophys. Res.*, 82(37), 5954–5964,
1000 doi:10.1029/JC082i037p05954.

1001 Sellegri, K., C. D. O'Dowd, Y. J. Yoon, S. G. Jennings, and G. de Leeuw (2006),
1002 Surfactants and submicron sea spray generation, *J. Geophys. Res.*, 111(D22),
1003 doi:10.1029/2005JD006658.

1004 Shi, Y., J. Zhang, J. S. Reid, B. Holben, E. J. Hyer, and C. Curtis (2011), An analysis of
1005 the collection 5 MODIS over-ocean aerosol optical depth product for its
1006 implication in aerosol assimilation, *Atmos. Chem. Phys.*, 11(2), 557–565,
1007 doi:10.5194/acp-11-557-2011.

1008 Shi, Y., J. Zhang, J. S. Reid, E. J. Hyer, T. M. McHardy, and L. Lee (2014), Evaluating
1009 MODIS Collection 6 Dark Target Over Water Aerosol Products for Multi-sensor
1010 Data Fusion, *AGU Fall Meet. Abstr.*, -1, 3093.

1011 Spracklen, D. V. et al. (2008), Contribution of particle formation to global cloud
1012 condensation nuclei concentrations, *Geophys. Res. Lett.*, 35(6),
1013 doi:10.1029/2007GL033038.

1014 Textor, C., M. Schulz, S. Guibert, S. Kinne, Y. Balkanski, S. Bauer, T. Berntsen, T.
1015 Berglen, O. Boucher, and M. Chin (2006), Analysis and quantification of the
1016 diversities of aerosol life cycles within AeroCom, *Atmospheric Chem. Phys.*, 6(7),
1017 1777–1813.

1018 Tolman, H. L. (2009), *User manual and system documentation of WAVEWATCH III*
1019 *version 3.14*.

1020 Tolman, H. L., and D. Chalikov (1996), Source Terms in a Third-Generation Wind Wave
1021 Model, *J. Phys. Oceanogr.*, 26(11), 2497–2518, doi:10.1175/1520-
1022 0485(1996)026<2497:STIATG>2.0.CO;2.

1023 Tyree, C. A., V. M. Hellion, O. A. Alexandrova, and J. O. Allen (2007), Foam droplets
1024 generated from natural and artificial seawaters, *J. Geophys. Res.*, 112(D12),
1025 doi:10.1029/2006JD007729.

1026 Vey, S., R. Dietrich, A. Rülke, M. Fritsche, P. Steigenberger, and M. Rothacher (2009),
1027 Validation of Precipitable Water Vapor within the NCEP/DOE Reanalysis Using
1028 Global GPS Observations from One Decade, *J. Clim.*, 23(7), 1675–1695,
1029 doi:10.1175/2009JCLI2787.1.

1030 Webb, A., and B. Fox-Kemper (2011), Wave spectral moments and Stokes drift
1031 estimation, *Ocean Model.*, 40(3–4), 273–288, doi:10.1016/j.ocemod.2011.08.007.

1032 Zhang, J., and J. S. Reid (2009), An analysis of clear sky and contextual biases using an
1033 operational over ocean MODIS aerosol product, *Geophys. Res. Lett.*, 36(15),
1034 L15824, doi:10.1029/2009GL038723.

1035 Zhang, J., J. S. Reid, D. L. Westphal, N. L. Baker, and E. J. Hyer (2008), A system for
1036 operational aerosol optical depth data assimilation over global oceans, *J.*
1037 *Geophys. Res. Atmospheres*, 113(D10), D10208, doi:10.1029/2007JD009065.

1038 Zhang, J., J. R. Campbell, E. J. Hyer, J. S. Reid, D. L. Westphal, and R. S. Johnson
1039 (2014), Evaluating the impact of multisensor data assimilation on a global aerosol
1040 particle transport model, *J. Geophys. Res. Atmospheres*, 119(8), 2013JD020975,
1041 doi:10.1002/2013JD020975.

1042 Zhou, X., A. J. Davis, D. J. Kieber, W. C. Keene, J. R. Maben, H. Maring, E. E. Dahl, M.
1043 A. Izaguirre, R. Sander, and L. Smoydzyn (2008), Photochemical production of
1044 hydroxyl radical and hydroperoxides in water extracts of nascent marine aerosols
1045 produced by bursting bubbles from Sargasso seawater, *Geophys. Res. Lett.*,
1046 35(20), doi:10.1029/2008GL035418.

1047

1048 Figure Legends

1049 Figure 1. Size-resolved number production fluxes based on (a) STD-U₁₀ at $U_{10} = 9 \text{ m s}^{-1}$
1050 and WAVE at an equivalent $F_{Det} = 6.3 \times 10^{-5} \text{ m s}^{-1}$ and (b) STD-WAVE, STD-WAVE
1051 scaled by 0.075 per Section 3.1, and WAVE at $\varepsilon_d = 0.16 \text{ J m}^{-2} \text{ s}^{-1}$ (equivalent to $U_{10} =$
1052 9 m s^{-1} and $F_{Det} = 6.4 \times 10^{-5} \text{ m s}^{-1}$).

1053 Figure 2. Simulated energy dissipation flux due to wave breaking (ε_d) versus U_{10} for (a)
1054 the Pacific Ocean from 30S – 29N (green) and from 30 -70N (blue), (b) the Indian
1055 Ocean from 30S to 30N, (c) the Atlantic Ocean from 30S – 29N (dark green) and from
1056 30 -70N (light green), and (d) the Southern Ocean below 30S latitude. The black lines
1057 depict regressions from Hanson and Phillips [1999], $\varepsilon_d = 4.28 \times 10^{-5} U_{10}^{3.74}$.

1058 Figure 3. PMA number and mass production fluxes simulated with STD-U₁₀ (a and b,
1059 respectively) and WAVE (c and d, respectively) and the corresponding fractional
1060 differences expressed as percent $((\text{WAVE} - \text{STD-U10}) / \text{WAVE})$ (e and f,
1061 respectively).

1062 Figure 4. PMA number and mass production fluxes simulated with STD-WAVE (a and b,
1063 respectively) and the corresponding fractional differences relative to STD-U₁₀
1064 expressed as percent $((\text{STD-WAVE} - \text{STD-U10}) / \text{STD-WAVE})$ (c and d,
1065 respectively).

1066 Figure 5. NaCl mass concentration in the surface layer simulated with (a) STD-U₁₀ and
1067 (b) STD-WAVE and (c) the corresponding percent relative difference.

1068 Figure 6. PMA number and mass production fluxes simulated with STD-WAVE_{291K} (a
1069 and b, respectively) and the corresponding fractional differences relative to STD-
1070 WAVE expressed as percent $((\text{STD-WAVE}_{291K} - \text{STD-WAVE}) / \text{STD-WAVE}_{291K})$ (c
1071 and d, respectively).

1072 Figure 7. Comparison of annual average Na⁺ concentrations simulated with STD-U₁₀,
1073 STD-WAVE, and STD-WAVE_{291K} for the lowest model level versus those from the
1074 AEROCE, SEAREX and DOE-EML (Section 2.5.2) measurement programs (a, c,
1075 and e, respectively), and the corresponding ratio of average modeled to measured Na⁺
1076 concentrations versus modeled U_{10} (b, d, and f, respectively).

1077 Figure 8. Average AOD simulated with (a) STD-U₁₀ and (b) STD-WAVE, (c) AOD
1078 retrieved from MODIS-Aqua/Terra, and (d) the corresponding ratio of AOD

1079 simulated with STD-WAVE (from panel (b) versus measured AOD (from panel (c)).
1080 White regions in (a-c) indicate regions where no MODIS data were available. White
1081 regions in (d) correspond to those for which all MODIS data were excluded based on
1082 criteria described in Section 2.5.3.

1083 Figure 9. Annually averaged percent bias in model (STD-WAVE_{291K}) RH compared to
1084 NCEP reanalysis for 2002-2006 at (a) the surface and (b) 850 hPa.

1085 Figure 10. Ratio of observed to modeled average annual concentrations of Na⁺ in near
1086 surface air. Measurements are from the AEROCE, SEAREX and DOE-EML (Section
1087 2.5.2) programs to simulated with STD-U₁₀, STD-WAVE, and STE-WAVE_{291K}
1088 versus model SST. The red line is the regression from Jaeglé et al. [2011].

1089 Figure 11. Na⁺ mass flux vs. SST (°C) for (a) STD-U₁₀, (b) STD-WAVE, (c) STD-
1090 WAVE_{291K}, and the corresponding ratio wave model to STD-U₁₀ Na⁺ for (d) STD-
1091 WAVE and (e) STD-WAVE_{291K}.

1092 Figure 12. Ratio of observed to modeled AOD for (f) STD-U₁₀, (g) STD-WAVE, and (h)
1093 STD-WAVE_{291K} and the corresponding ratio wave model to STD-U₁₀ AOD for (d)
1094 STD-WAVE and (e) STD-WAVE_{291K}. The green line in (h) depicts the polynomial
1095 regression reported by Jaeglé et al. [2011].

1096 Figure 13. Ratios of observed to modeled AOD (top) and surface Na⁺ concentration
1097 (bottom) for STD-WAVE_{291K} versus chlorophyll *a*.

1098

1099

Figure 1. Size-resolved number production fluxes based on (a) STD-U₁₀ at $U_{10} = 9 \text{ m s}^{-1}$ and WAVE at an equivalent $F_{Det} = 6.3 \times 10^{-5} \text{ m s}^{-1}$ and (b) STD-WAVE, STD-WAVE scaled by 0.075 per Section 3.1, and WAVE at $\varepsilon_d = 0.16 \text{ J m}^{-2} \text{ s}^{-1}$ (equivalent to $U_{10} = 9 \text{ m s}^{-1}$ and $F_{Det} = 6.4 \times 10^{-5} \text{ m s}^{-1}$).

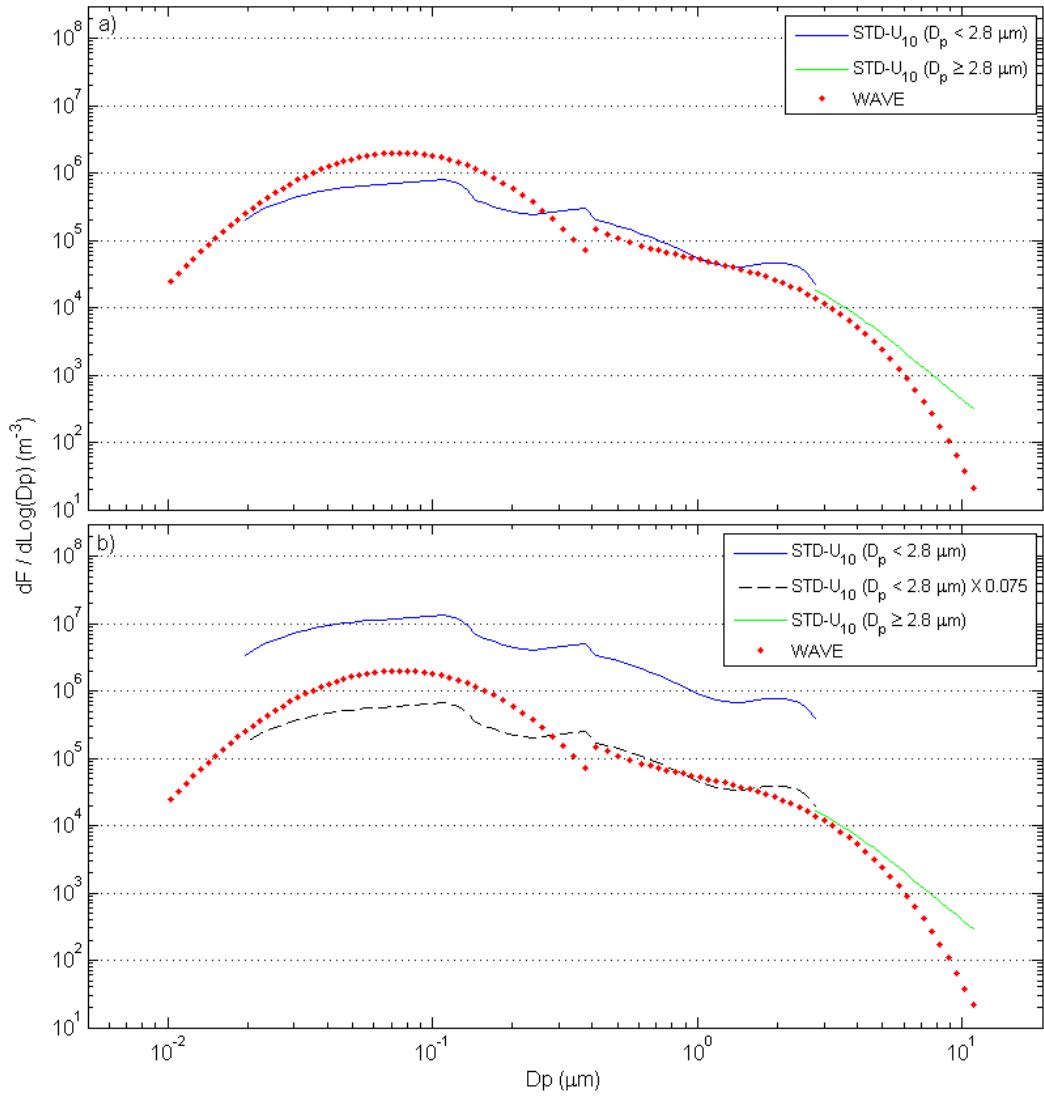


Figure 2. Simulated energy dissipation flux due to wave breaking (ε_d) versus U_{10} for (a) the Pacific Ocean from 30S – 29N (green) and from 30 -70N (blue), (b) the Indian Ocean from 30S to 30N, (c) the Atlantic Ocean from 30S – 29N (dark green) and from 30 -70N (light green), and (d) the Southern Ocean below 30S latitude. The black lines depict regressions from Hanson and Phillips [1999], $\varepsilon_d = 4.28 \times 10^{-5} U_{10}^{3.74}$.

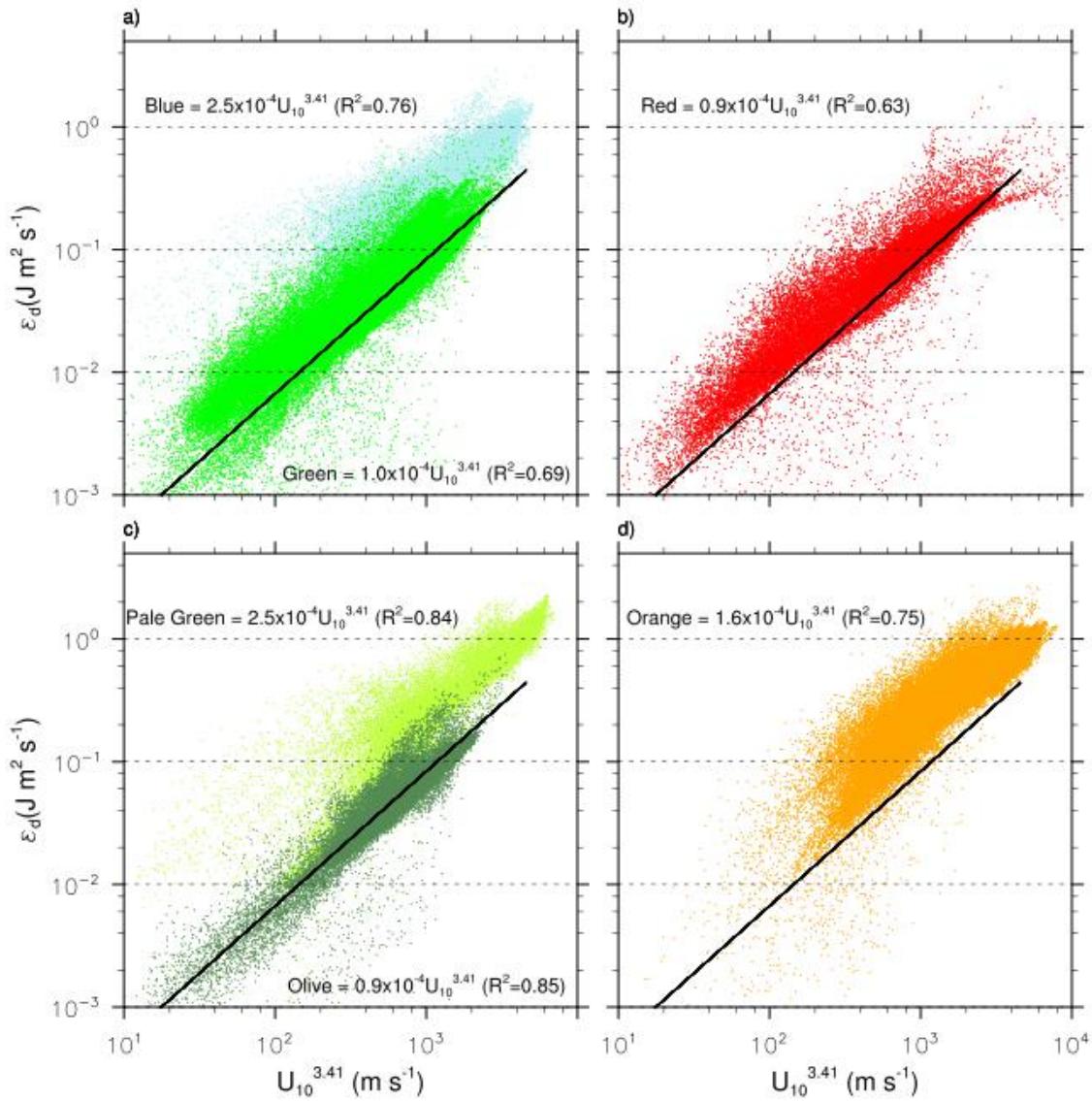


Figure 3. PMA number and mass production fluxes simulated with STD-U₁₀ (a and b, respectively) and WAVE (c and d, respectively) and the corresponding fractional differences expressed as percent ((WAVE – STD-U₁₀) / WAVE) (e and f, respectively).

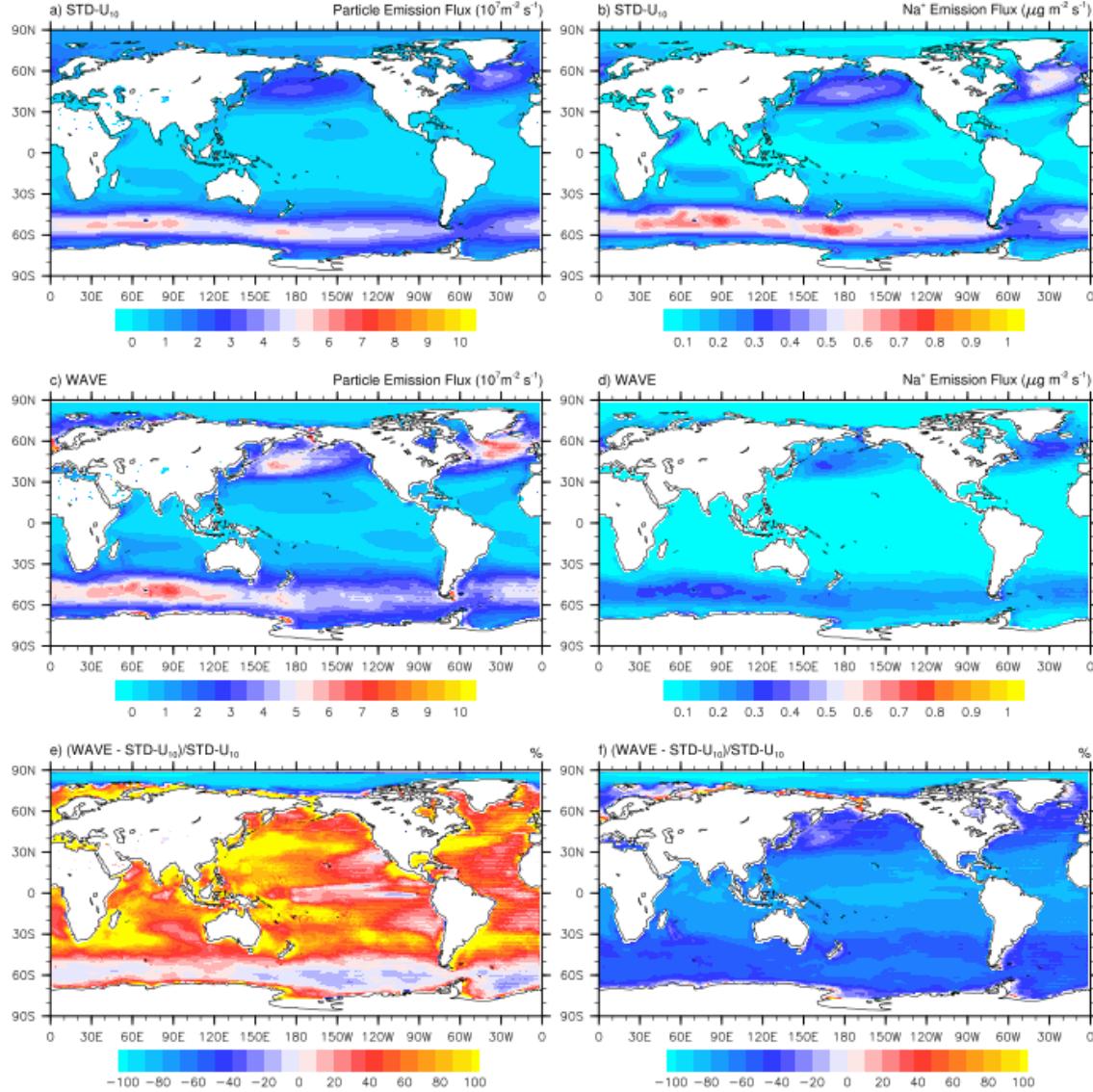


Figure 4. PMA number and mass production fluxes simulated with STD-WAVE (a and b, respectively) and the corresponding fractional differences relative to STD-U₁₀ expressed as percent ((STD-WAVE – STD-U₁₀) / STD-WAVE) (c and d, respectively).

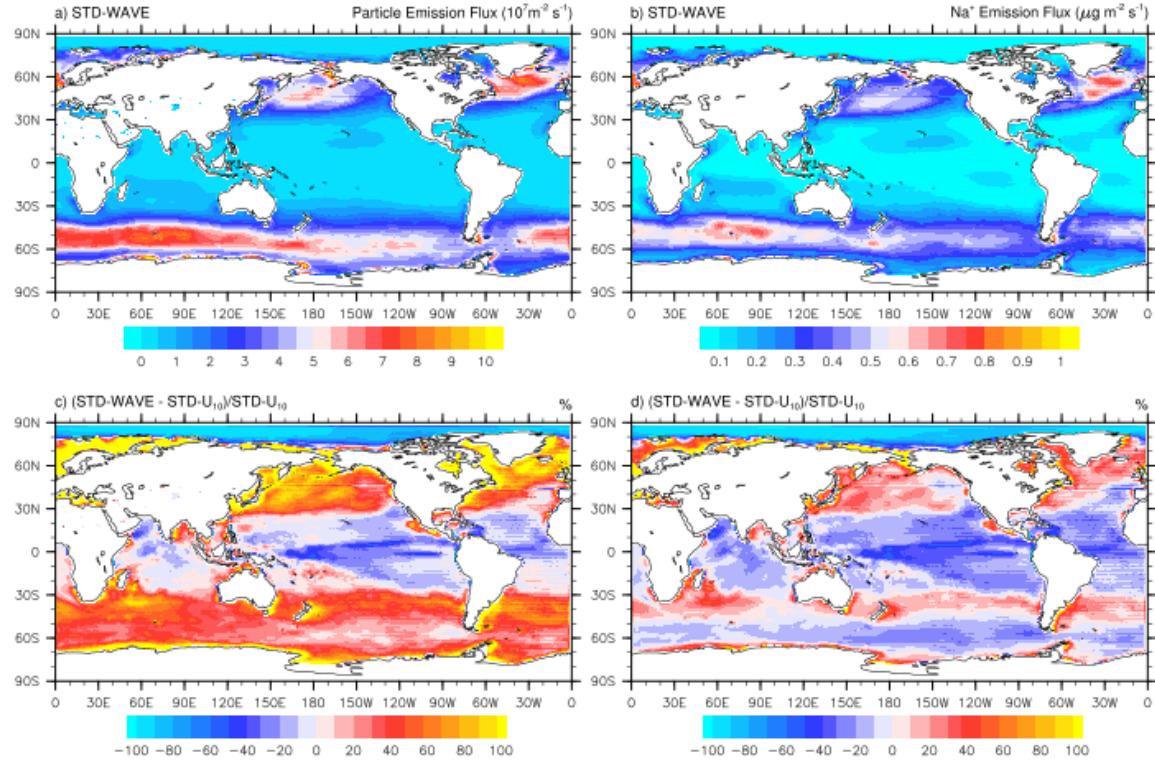


Figure 5. NaCl mass concentration in the surface layer simulated with (a) STD-U₁₀ and (b) STD-WAVE and (c) the corresponding percent relative difference.

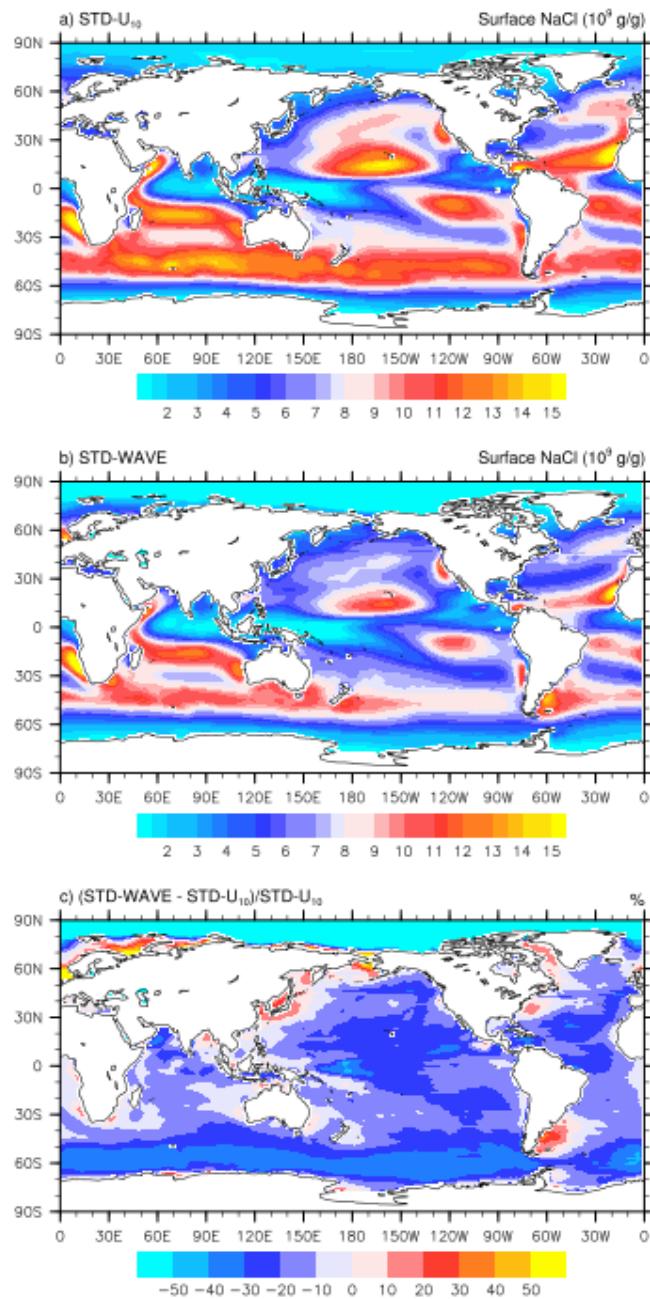


Figure 6. PMA number and mass production fluxes simulated with STD-WAVE_{291K} (a and b, respectively) and the corresponding fractional differences relative to STD-WAVE expressed as percent $((\text{STD-WAVE}_{291K} - \text{STD-WAVE}) / \text{STD-WAVE}_{291K})$ (c and d, respectively).

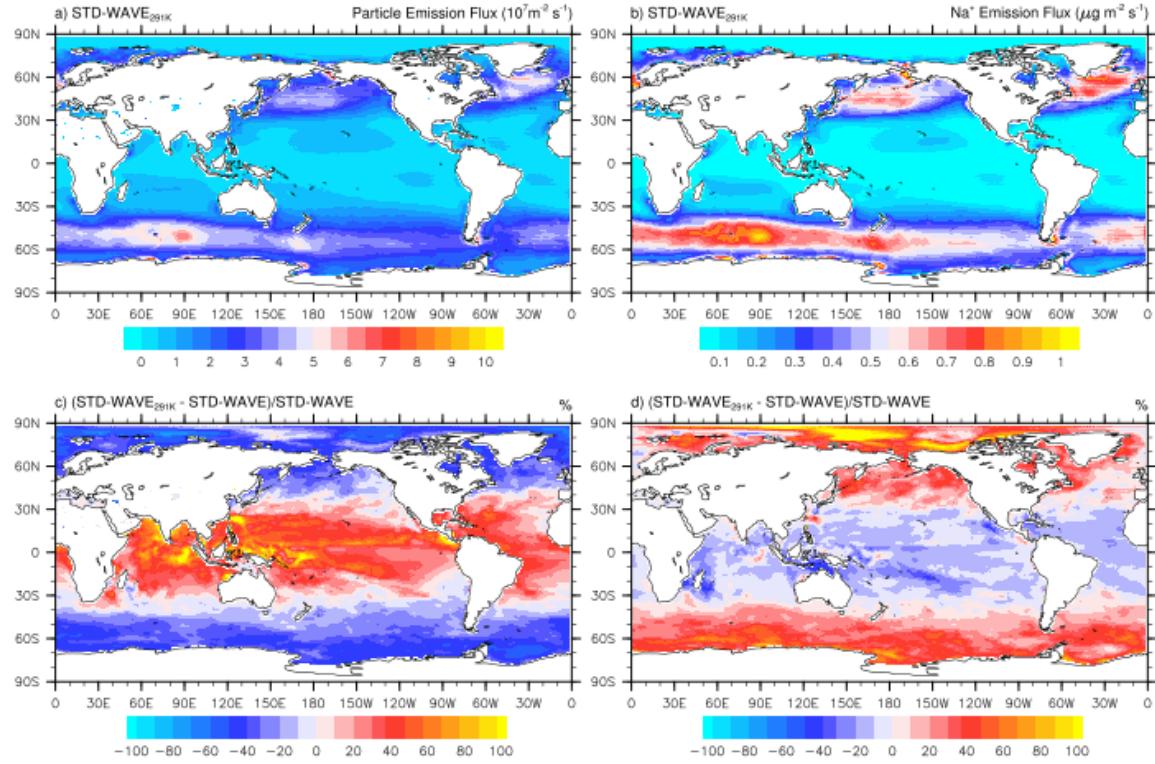


Figure 7. Comparison of annual average Na^+ concentrations simulated with STD- U_{10} , STD-WAVE, and STD-WAVE_{291K} for the lowest model level versus those from the AEROCE, SEAREX and DOE-EML (Section 2.5.2) measurement programs (a, c, and e, respectively), and the corresponding ratio of average modeled to measured Na^+ concentrations versus modeled U_{10} (b, d, and f, respectively).

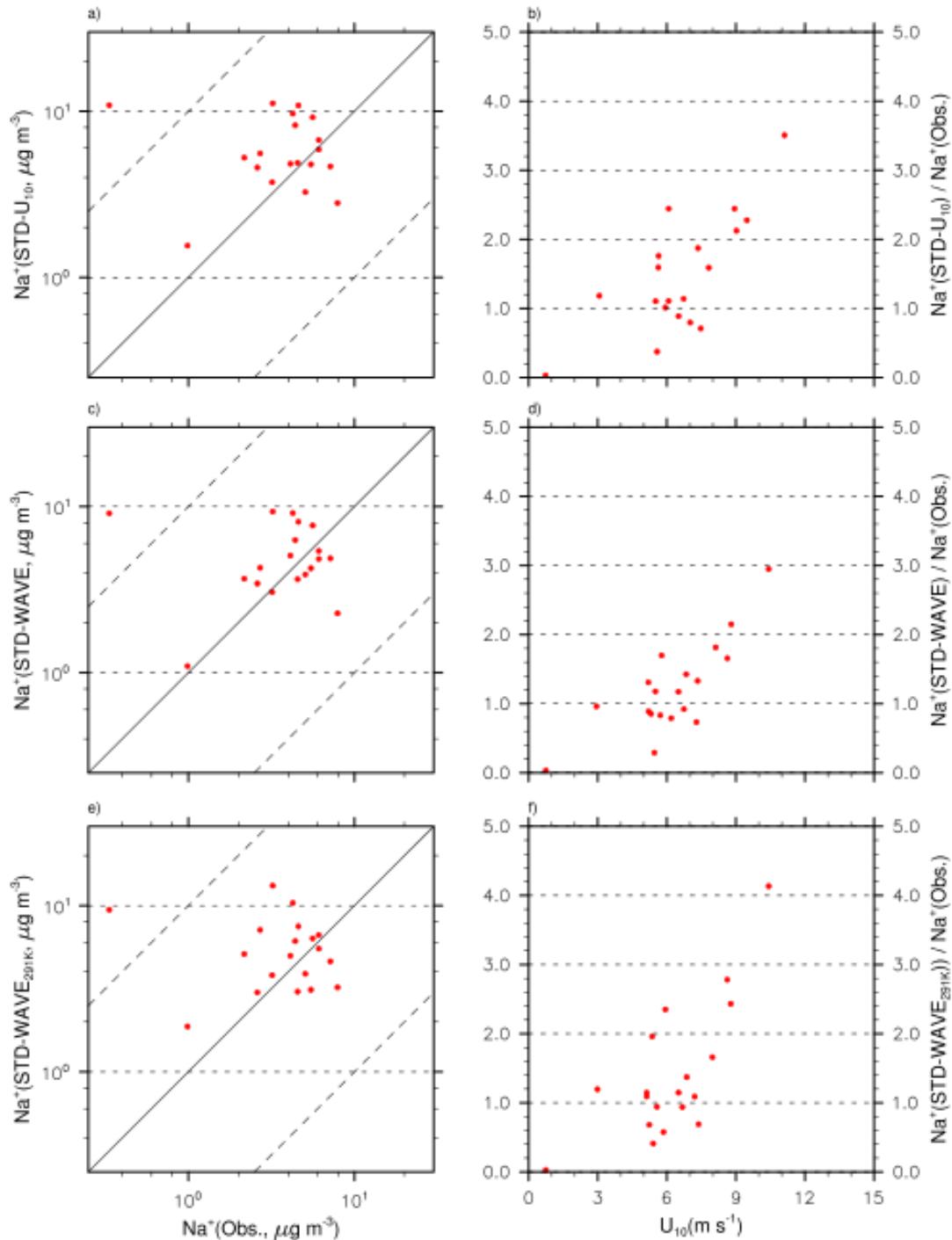


Figure 8. Average AOD simulated with (a) STD-U₁₀ and (b) STD-WAVE, (c) AOD retrieved from MODIS-Aqua/Terra, and (d) the corresponding ratio of AOD simulated with STD-WAVE (from panel (b)) versus measured AOD (from panel (c)). White regions in (a-c) indicate regions where no MODIS data were available. White regions in (d) correspond to those for which all MODIS data were excluded based on criteria described in Section 2.5.3.

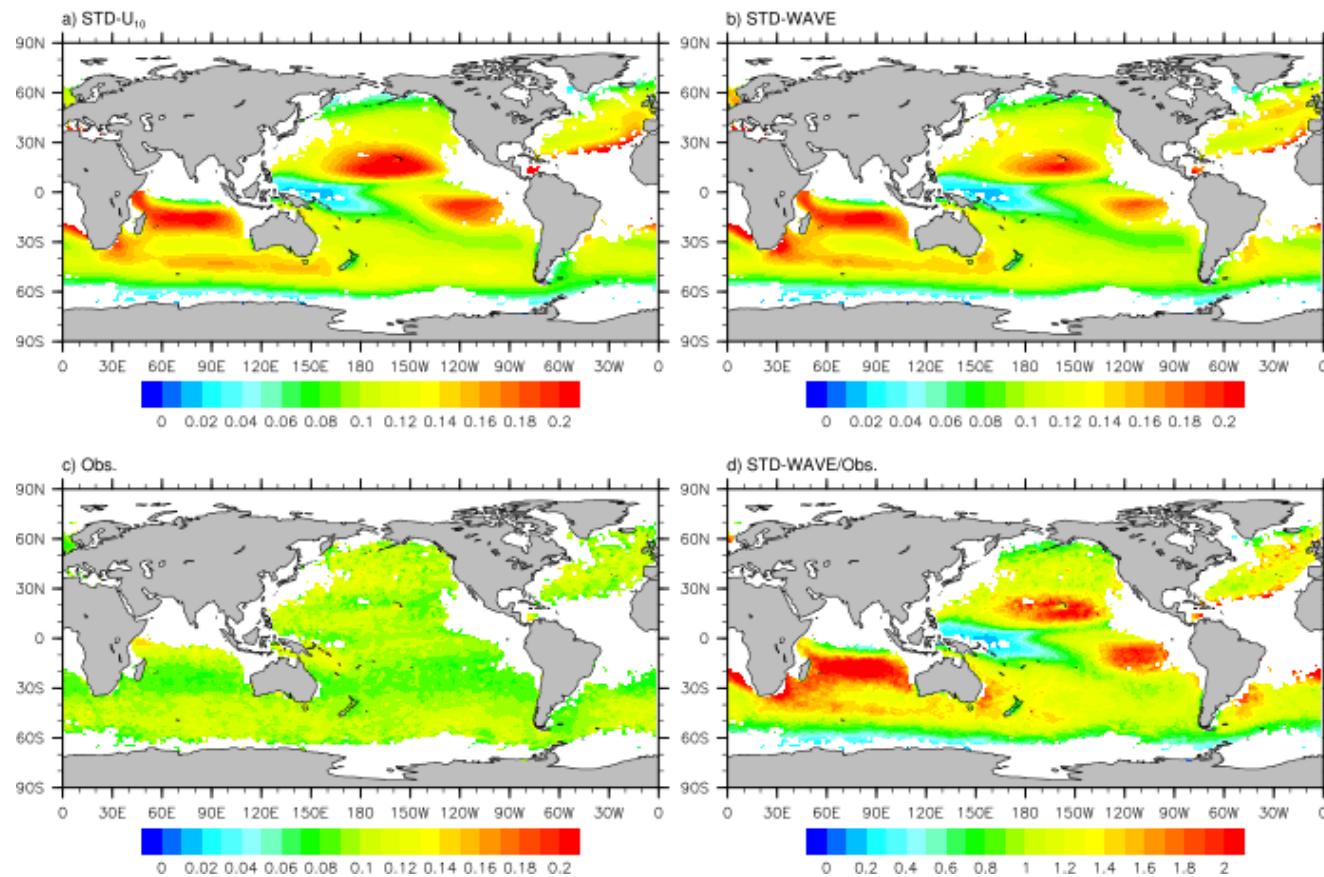


Figure 9. Annually averaged percent bias in model (STD-WAVE_{291K}) RH compared to NCEP reanalysis for 2002-2006 at (a) the surface and (b) 850 hPa.

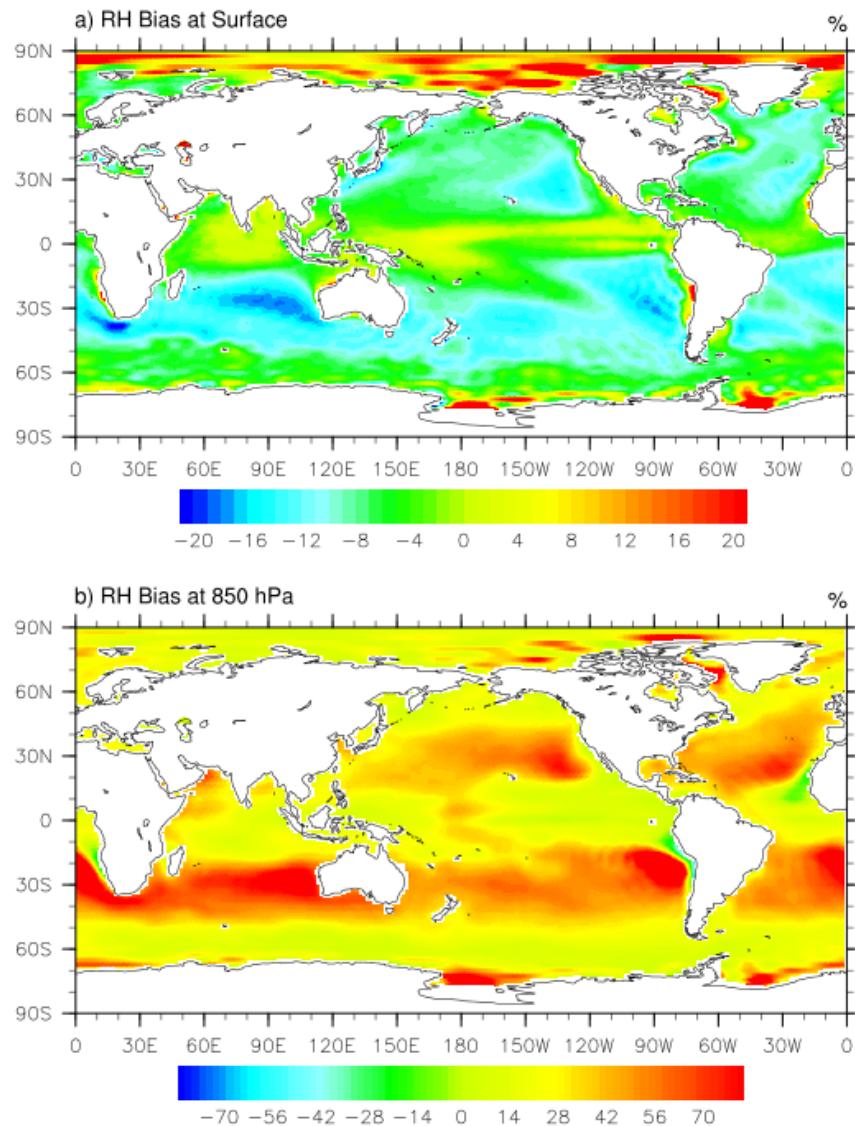


Figure 10. Ratio of observed to modeled average annual concentrations of Na^+ in near surface air. Measurements are from the AEROCE, SEAREX and DOE-EML (Section 2.5.2) programs to simulated with STD-U₁₀, STD-WAVE, and STE-WAVE_{291K} versus model SST. The red line is the regression from *Jaeglé et al.* [2011].

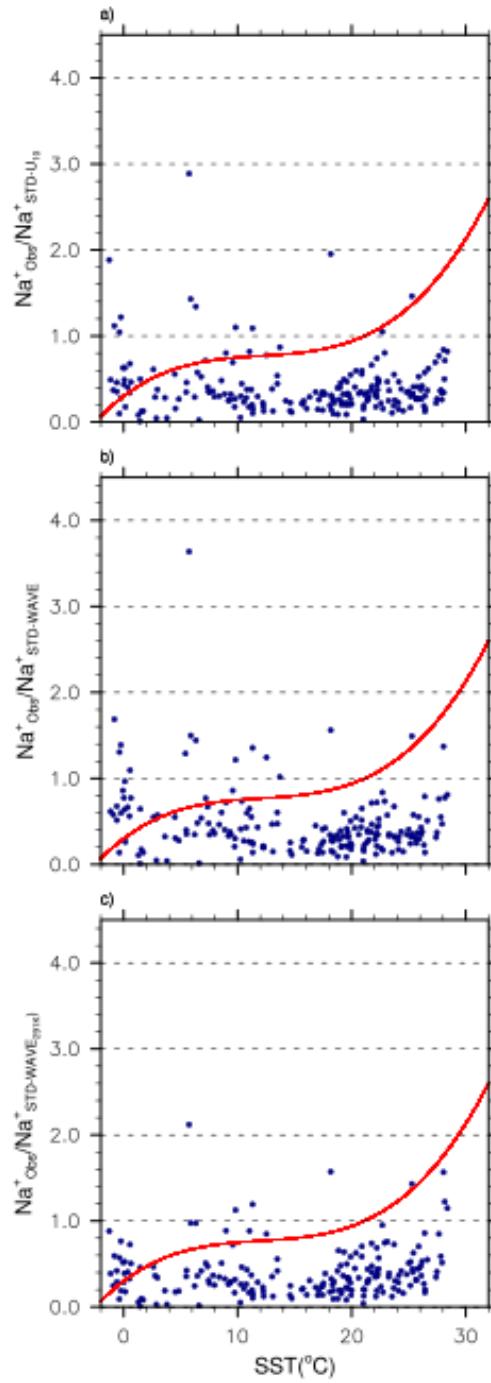


Figure 11. Na^+ mass flux vs. SST ($^{\circ}\text{C}$) for (a) STD-U₁₀, (b) STD-WAVE, (c) STD-WAVE_{291K}, and the corresponding ratio wave model to STD-U₁₀ Na^+ for (d) STD-WAVE and (e) STD-WAVE_{291K}.

Figure 12. Ratio of observed to modeled AOD for (f) STD-U₁₀, (g) STD-WAVE, and (h) STD-WAVE_{291K} and the corresponding ratio wave model to STD-U₁₀ AOD for (d) STD-WAVE and (e) STD-WAVE_{291K}. The green line in (h) depicts the polynomial regression reported by Jaeglé et al. [2011].

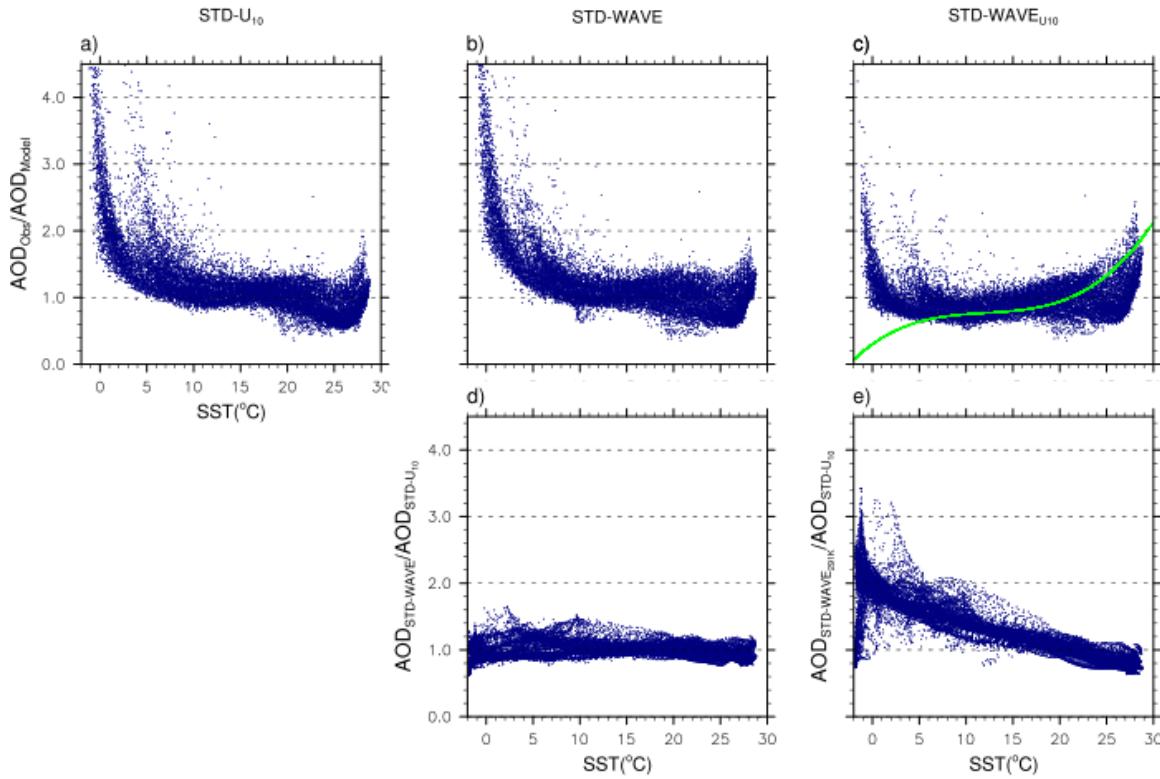


Figure 13. Ratios of observed to modeled AOD (top) and surface Na^+ concentration (bottom) for STD-WAVE_{291K} versus chlorophyll *a*.

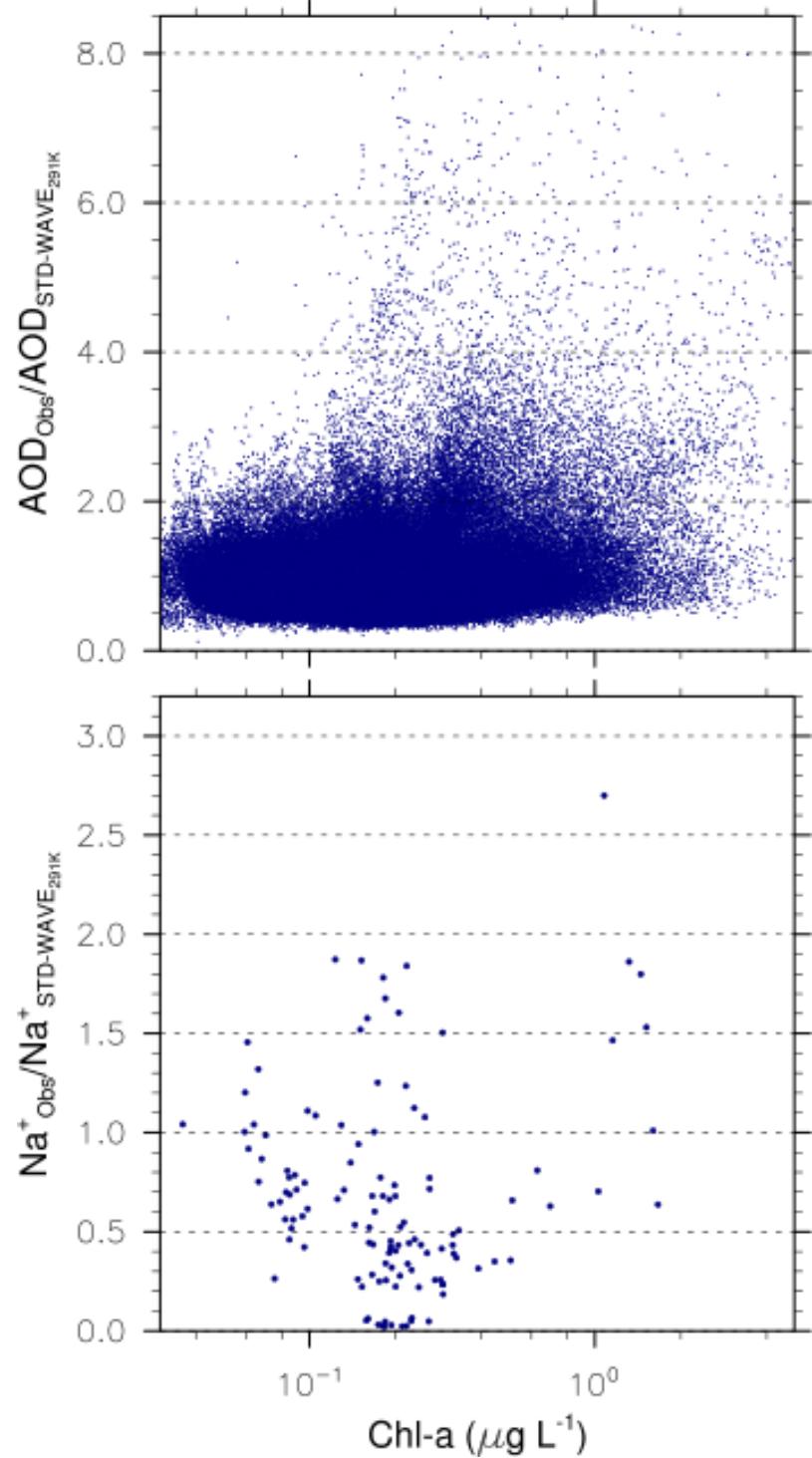


Table 1. Global annual mean particle number production flux; number concentration; and Na^+ production flux, burden, lifetime, and dry- and wet-deposition fluxes compared with published results based on other marine aerosol source functions (adapted from [Long *et al.*, 2014a]. Uncertainties correspond to year-over-year standard deviation for the 5-year annual mean.

Source Function	Number Flux $10^6 \text{ m}^{-2} \text{ s}^{-1}$	Number Conc. (Range) (cm^{-3})	Na^+ Source (10^3 Tg y^{-1})	Na^+ Burden (Tg)	Na^+ Lifetime (d)	Na^+ Dry Dep. (10^3 Tg y^{-1})	Na^+ Wet Dep. (10^3 Tg y^{-1})
<i>STD-U₁₀ (this work)</i>	0.89 ± 0.01	$138 (1.8 \times 10^0 - 4.7 \times 10^4)$	2.3 ± 0.07	3.7 ± 0.16	0.60 ± 0.01	1.1 ± 0.01	1.2 ± 0.01
<i>WAVE (this work)</i>	1.20 ± 0.02	$158 (2.3 \times 10^0 - 4.8 \times 10^4)$	1.0 ± 0.01	0.74 ± 0.03	$0.26 \pm >0.01$	0.74 ± 0.01	0.28 ± 0.01
<i>STD-WAVE (this work)</i>	1.24 ± 0.03	$148 (1.4 \times 10^0 - 4.8 \times 10^4)$	2.3 ± 0.09	3.2 ± 0.11	0.51 ± 0.01	1.2 ± 0.01	1.1 ± 0.01
<i>STD-WAVE_{29IK} (this work)</i>	1.00 ± 0.01	$141 (0.6 \times 10^0 - 4.7 \times 10^4)$	2.6 ± 0.07	3.4 ± 0.12	0.49 ± 0.01	1.3 ± 0.01	1.3 ± 0.01
Long <i>et al.</i> , 2011 ^a		$266 (4.0 \times 10^0 - 4.4 \times 10^4)$	1.1 ± 0.02	2.5 ± 0.03	0.86 ± 0.01	0.49 ± 0.01	0.56 ± 0.01
Monahan <i>et al.</i> , 1986 ^b			1.7	2.4	0.5	0.76	0.90
Various ^c			1.6	2.4	0.5		
Clarke <i>et al.</i> , 2006 ^d			2.2	4.0	0.66	1.5	0.68
Mårtensson <i>et al.</i> , 2003 ^d			1.7	0.55	1.2	0.061	0.11
O'Dowd <i>et al.</i> , 1997 ^d			4.1	5.2	0.47	2.9	1.2
Monahan <i>et al.</i> , 1986 ^d			0.55	1.2	0.79	0.34	0.19

^a As reported in Long *et al.* [2014a].

^b From reported in Kerkweg *et al.* [2008].

^c From Textor *et al.* [2006].

^d From Pierce and Adams [2006], Table 2