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Abstract

As a tool developed to translate geospatial data into geometrical descriptors, Tracktable offers a
highly efficient means to detect anomalous flight and maritime behavior. Following the success of
using geometrical descriptors for detecting anomalous trajectory behavior, the question of whether
Tracktable could be used to detect satellite maneuvers arose. In answering this question, this re-
port will introduce a brief description of how Tracktable has been used in the past, along with
an introduction to the fundamental properties of astrodynamics for satellite trajectories. This will
then allow us to compare the two problem spaces, addressing how easily the methods used by
Tracktable will translate to orbital mechanics. Based on these results, we will then be able to out-
line the current limitations as well as possible path forward for using Tracktable to detect satellite
maneuvers.
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Chapter 1

Introduction

Tracktable for Geospatial Trajectory Analysis

In this section we will introduce a brief description for Tracktable’s current functionality. For
more information regarding Tracktable please reference Danny Rintoul et al’s Sandia report, PAN-
THER: Trajectory Analysis [4].

The idea behind converting the position data into geometric descriptors was presented as a
means to handle the inefficiency for which trajectory analysis has been evaluated in the past. The
earlier methods required a one-to-one comparison between each pair of trajectories. Metrics com-
paring the distance between all of constituent position data were used to conclude that two trajecto-
ries were similar. This can clearly become computationally expensive very quickly. Alternatively,
with the introduction of Tracktable the process for considering whether trajectories are similar
follows the given generalized procedure.

Tractable Trajectory Comparison Method:

1. The raw input data for aircrafts and ships, given by geospatial position data that varying over
time, is ingested and processed from a database of flight or maritime tracking information.

Geospatial Position Data:

(a) timestamp

(b) latitude

(c) longitude

(d) altitude (sometimes, but often unreliable)

2. For an aircraft or ship trajectory, with a unique identifier, a trajectory is built by organizing
the corresponding position data chronologically.

3. For any given trajectory, a set of geometrical descriptors can be computed to uniquely de-
scribe its shape or other features. This allows for a much faster means to detect similar, and
also anomalous, behavior.

Examples of Geometrical Descriptors:
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(a) Total distance traveled

(b) Total curvature

(c) Eccentricity of the convex hull

(d) Start/Stop point

(e) ect...

4. With each trajectory now described by a set of geometric descriptors, a spacial indexing
scheme is used to store this information to allow for quick processing.

5. Clustering based on geometric descriptors results in similar trajectories getting grouped to-
gether and trajectories not sharing geometric descriptions with other trajectories being la-
beled as outliers. These outliers then determine the set of anomalous flight or maritime
trajectories.

In addition to introducing the conversion from geospatial position data to geometrical descrip-
tors, Rintoul et al also introduce a variation to traditional DBSCAN (Density-Based Spatial Clus-
tering of Applications with Noise). The new method, implemented by Tracktable, is referred to as
box DBSCAN where clustering is determined by feature specific parameter definitions as opposed
to a single spherical neighborhood defined by traditional DBSCAN. The idea is as follows. In-
stead of scaling the data so that a single parameter can be used to define proximity across multiple
dimensions, box DBSCAN defines a parameter for each dimension of the data. Thus, we end up
with a neighborhood shaped as a hyperrectangle (or box in 3-dimensions). As we consider us-
ing Tracktable for satellite maneuver detection, we will start by implementing box DBSCAN. To
do so more effectively we will need to introduce the fundamentals of astrodynamics for satellite
trajectories in the following section.

Astrodynamics of Satellite Trajectories

“Astrodynamics is the study of the motion of man-made objects in space, subject to both natural
and artificialy induced forces” -Vallado [5].

The man-made objects Vallado refers to are in reference to rockets, spaceships and satellites,
but the focus of our research is specific to the trajectories that satellites take once they are in orbit.
Our discussion regarding astrodynamics will focus on the elliptical orbits that satellites follow
around an astronomical body. More specifically, we focus on low earth orbiting (LEO) satellites,
primarily due to the nature of the data accessible for our analysis.

To lay a foundation for detecting satellite maneuvers, we will begin with a brief description of
astrodynamics. If more detail regarding astrodynamics is needed, please reference Vallado’s book
Fundamentals of Astrodynamics and Applications [5].

To begin we will start with the six standard orbital elements (Keplerian elements), required to
interpret the orbit of a satellite.
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1. Semi-Major Axis, a

2. Eccentricity, e

3. Inclination, i

4. Argument of Periapsis/Perigee, ω

5. True Anomaly, ν

6. Right Ascension of the Ascending Node (RAAN), Ω

All of which are illustrated in figure 1.1. These six orbital elements are required for representing,
unambiguously, the satellite in its unperturbed ideal orbit in three dimensional inertial space and
time. These six elements correspond and can be converted to another expression, in six degrees of
freedom, namely three spatial (position) dimensions and three displacement (velocity) dimensions.
(Specifically and respectively, X position, Y position, Z position, velocity in the X , Y , and Z
directions.)

Figure 1.1. Illustrative interpretation of the orbital elements.

This latter form of describing the orbit is often termed the “orbital state vector”. Both forms
of representation require a so called “epoch”. Some may call it a seventh element. This is a time
stamp that declares the moment in history when these six variables were computed to describe the
satellite’s orbit and where in the orbit the satellite is located.
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Because a satellite also experiences non-conservative forces, i.e. solar pressure, atmospheric
drag, perturbations from distant celestial bodies, etc, the motion of the satellite is perturbed away
from its ideal Keplerian motion. Therefore, this two-line element set (TLE) (which is an ideal orbit
solution) will become “stale” after a certain time, requiring new data to be collected and a new TLE
to be estimated for the satellite of interest. An example with a description for interpreting a TLE
is presented in Table 1.1

0 Envisat
1 27386U 02009A 10001.24505451 -.00000032 00000-0 42006-5 0 9998
2 27386 098.5500 070.7584 0001076 091.7123 358.2472 14.32247531409841

Line 1 Line 2

Line number 1
Satellite number 27386
International Designator

(launch year) 02
International Designator

(launch # of the year) 009
International Designator

(piece of teh launch) A
Epoch Year (last two digits) 10
Epoch

(fractional part of the day) 001.24505451
First Time Derivative of

Mean Motion divided by 2 -.00000032
Second Time Derivative of

Mean Motion divided by 6 00000-0
BSTAR drag term

(decimal assumed) 42006-5
The number 0

originally ”Ephemeris type” 0
Element set number 999
Checksum(modulo 10) 8

Line number 2
Satellite number 27386
Inclination (degrees) 098.5500
Right ascension of the

ascending node (degrees) 070.7584
Eccentricity

(decimal assumed) 0001076
Argument of Perigee

(degrees) 091.7123
Mean Anomaly (degrees) 358.2472
Mean Motion

(revolutions per day) 14.32247531
Revolutions number

at Epoch (revolutions) 40984
Checksum (modulo 10) 1

Table 1.1. Description of the components in a TLE.
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From the TLE data we are able to collect all six of the orbital elements. Some directly, while
true anomaly and the semi-major axis can be derived from mean motion and the mean anomaly.
Although it can be argued, from a data analysis perspective, deriving true anomaly and the semi-
major axis are just translations of the data and that processing mean motion and mean anomaly
may be sufficient. This can be explored in more detail when we consider feature and parameter
selections for a given detection algorithm.

Considering the earlier discussion regarding geometric descriptors, it does seem as though the
orbital elements align nicely with the methods used for geospatial trajectory analysis. Although in
this case, we will emphasize that the raw data collected for satellite tracking is already in the form
of geometric descriptors. This implies that it is not necessary to process the data for determining
a trajectory as well as generate geometric descriptors. Therefore, we will start the preliminary
analysis by implementing box DBSCAN for detecting outliers from a collection of features from
the raw TLE data in chapter 3.

13



This page intentionally left blank.



Chapter 2

Problem Space Comparison

Anomalous Flight Trajectories

To give a more concise description between the two problem spaces we will focus primarily
on detection of anomalous flight trajectories. The consideration for maritime trajectories has its
own distinctions from flight trajectories, but none that align with the problem space for satellite
trajectories. Therefore, we have determined it is sufficient to focus on the comparison between the
detection of anomalous flight trajectories with the detection of satellite maneuvers.

In figure 2.1 we can see the results of detecting anomalous flight patterns from a database of
geospatial position data for archived flight tracking information. Each one is very unique in its
pattern. These are the flights that can later be addressed in more detail allowing an analyst to
determine exactly why these flights do not match more common patterns found within other flight
trajectories. This gives us the first point we want to emphasize.

The classification for an anomalous flight trajectory is defined by the shape of the trajectory,
as a whole.
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Satellite Maneuver Detection

With regards to detecting satellite maneuvers, we are asking the following question.

Considering one particular satellite’s orbit, where does the natural trend in the TLE data
break?

This is very different from determining what trajectories have dissimilar shapes. Instead of look-
ing at the whole picture, where the individual data points collectively describe a trajectory, we are
now considering the individual data points and the patterns that are traversed as a single trajec-
tory evolves. Figure 2.2 shows this concept as a graph comparing detected maneuvers to known
maneuvers as plot of mean motion against epoch time.

Figure 2.2. The outliers (labeled red) from the sequence of TLE
data, plotted in terms of mean motion (radians per minute) against
epoch day.
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Can Tracktable be used to Detect Satellite Maneuvers?

Tracktable does have the potential to be a viable tool for detecting satellite maneuvers, espe-
cially since there are already discussions within the Tracktable development community to consider
the sub-trajectory problem. The sub-trajectory problem considers how to break-up a trajectory to
detect particular patterns that occur within the trajectories course. This type of analysis will align
much better with the satellite maneuver detection problem, but it is not a current feature of the tool.
Therefore, as a trajectory analysis tool today, Tracktable does not have the required functionality
to detect satellite maneuvers. Although, there does seem to be a common path forward for which
future functionality of Tracktable aligns well with the satellite maneuver detection problem.

We have already mentioned some concerns in the introduction and the comparison of the two
problem domains. As a comprehensive list of the concerns we are currently aware of we have
outlined the following

1. The problem space.

Current Functionality: When detecting anomalous flight trajectories, an outlier is
a flight trajectory that does not meet a particular similarity index when compared to
thousands of other flight trajectories.

Required Functionality: For satellite maneuver detection, an outlier is a single point
within the tracking data for a particular satellite that indicates a sufficiently large1

change in the orbital elements (or state vector).

The Distinction: The classification of an outlier as an anomalous flight trajectory trans-
lates well since the conversion made to the geometric descriptors space implies that an
outlier corresponds to the flight trajectory as a whole. The fact that the pattern for an
anomalous flight does not agree with any other flight pattern in the database allows us
to make this consideration that an outlier is an anomalous behavior.
This concept does not translate well into the TLE descriptor space where the considera-
tion for clustering is used to detect satellite maneuvers. As the raw data being ingested
for analysis, the TLE data can unfortunately be contaminated with noise during the
process of its calculations (by the NORAD ground segment). Therefore, assuming
that an outlier translates directly to a maneuver, without pre-processing the data (or
post-processing the results), will result with legitimately ’noisy’ data points classifying
maneuvers.

2. Data processing.

Current Functionality:

Position Data ⇒ Trajectory Generated⇒ Geometric Descriptors

1What it means to be sufficiently large has yet to be defined.
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Required Functionality:

Position Data 6⇒ Trajectory Generated 6⇒ Geometric Descriptors

If change in velocity is the primary focus for the detection algorithm, then the required
functionality will extend to,

Geometric Descriptors ⇒ SGP4⇒ Position Data.

The Distinction: Since the TLE data is already storing geometric descriptors, the satel-
lite maneuver detection problem does not require the processing steps to generate a
trajectory and derive the geometric descriptors. It can be argued that the ’noise’ in the
raw data for flight trajectories is managed in the process of converting geospatial po-
sition data into a trajectory. Alternatively, receiving the geometric descriptors in raw
data form and jumping into clustering algorithms, the ’noisy’ data will not have been
filtered. Therefore, additional consideration of this issue has to be made when we use
clustering techniques to detect satellite maneuvers.

With these caveats in mind we will consider a preliminary analysis of the box DBSCAN clus-
tering approach to get a better understanding of this geometric descriptor type data, the pitfalls of
the clustering method and develop an insight into possible paths forward.
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Chapter 3

Satellite Maneuver Detection

The initial research for detecting satellite maneuvers began with reviewing Kelecy et al’s paper
Satellite Maneuver Detection Using Two-line Element (TLE) Data [2]. Instead of using a clustering
approach, the authors consider a sliding window where a determination of possible maneuvers is
defined by large changes in smoothed data (approximated by polynomial fits) between adjacent
segments. These possible maneuvers are then run through a second round of analysis, where the
differences derived in the first run of the data are then plotted against time. The peaks of this plot
then determine the set of detections for a satellite’s maneuvers.

Although we are considering a different approach, Kelecy et al’s paper gives a solid foundation
for understanding the problem and outlining a methodology for analysis.

Box DBSCAN Approach to Satellite Maneuver Detection

Realizing that a clustering approach was successful in detecting anomalous flight behavior,
we began our analysis of satellite maneuver detection by implementing a similar approach to an-
alyzing TLE data. Recall that raw TLE data stores geometric descriptors regarding the orbits of
satellites. Therefore we started with a direct clustering evaluation for satellite maneuver detection
by determining large changes in a subselection of orbital elements.

Description of Box DBSCAN

The box DBSCAN algorithm is very similar to traditional DBSCAN with the one exception
that a neighborhood for the box DBSCAN method is defined by a hyperrectangle, instead of a
hypersphere. To implement box DBSCAN requires defining the ε-hyperrectangle neighborhood
as well as MinPts.

1. ε-hyperrectangle, defines the neighborhood surrounding a point used to collect other ’nearby’
points.

2. MinPts, is the minimum number of points within the ε-hyperrectangular neighborhood (in-
cluding the point itself) needed to initiate a cluster.
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As the data is processed and clusters are evaluated, each point is classified as one of the following

1. Core point: a point is evaluated to be a core point if it has at least MinPts in its ε-hyperrectangle
neighborhood.

2. Reachable point: is a non-core point for which a path of core points connected by ε-
hyperrectangle neighborhoods can be used to reach it.

3. Outlier: Any point that does not have at least MinPts in its ε-hyperrectangle neighborhood
and can not be reached by any sequence of core points.

Clusters are defined by the core points that are a collection of overlapping neighborhoods, along
with any reachable points. Then the outliers, or the points that are not reachable from any cluster,
are determined to be the detected maneuvers.

The Satellite Data

To begin our analysis required both TLE data for an unclassified satellite and the known maneu-
vers for the same period of time. The collection of TLE data for the satellites is currently collected
from TARDIS (TLE Analysis and Research Database Information Service) at tardis.sandia.
gov1. The known maneuvers, for a handful of satellites, can be found on ‘http://ilrs.gsfc.nasa.gov/
data and products /predictions/maneuver.html’. Using these two sites to collect our data we are re-
stricted to running our analysis for the Envisat LEO satellite (27386) from 2010 to 2012. Although
we evaluated the Envisat TLE data from 2010 to 2012 and compared various orbital parameters to
known maneuvers for all three years, the bulk of our research focuses on the year 2011.

Box DBSCAN Results

Features: Perigee, Inclination, Eccentricity and Mean Motion

For the feature space [Eccentricity, Inclination, Perigee, Mean Motion], we set the following
parameters to detect satellite maneuvers using box DBSCAN:

ε[E,I,P,MM] = [1e−05,5e−05,1e−01,1e−08] (3.1a)

MinPts = 5 (3.1b)

1This is an internal site managed by Sandia Natinoal Laboratories and requires permission for access.
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Confusion Matrix

Positive Negative

True 18 1005 1023

False 175 7 185

193 1012 1205

Table 3.1. The above confusion matrix shows the results of the
detection algorithm when we use box DBSCAN with the feature
space [Eccentricity, Inclination, Perigee, Mean Motion] with the
epsilon hyperrectangle = [1e-05,5e-05,1e-01,1e-08]

Sensitivity (Recall) 72%

Precision 9%

Specificity 85%

Accuracy 85%

F1 score 16%

Table 3.2. Evaluations of the detection algorithm using box DB-
SCAN with the feature space [Eccentricity, Inclination, Perigee,
Mean Motion] with the epsilon hyperrectangle = [1e-05,5e-05,1e-
01,1e-08]

From the results laid out in table 3.1, a determination for how well the detection algorithm did
can be evaluated using a number of various metrics derived from the confusion matrix. For our
analysis, we evaluated sensitivity/recall (proportion of true positives relative to all known maneu-
vers), precision (proportion of true positives relative to all detections), specificity (true negatives
relative to the total non-detections expected), accuracy (total true positives and true negatives rela-
tive to the total data processed) and the F1 score (harmonic mean of precision and recall). Typically
in evaluating detection algorithms, sensitivity and specificity will usually be associated. These two
metrics together give us an understanding for how well the algorithm classified the data. Alter-
natively, as another common means to evaluate detection algorithms, precision and recall can be
considered, which gives an indication for how reliable the results are. We present these five metrics,
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sensitivity (recall), precision, specificity, accuracy and the F1 score to give us a full understanding
of the results.

From the results in table 3.2, we can see that the detection method using box DBSCAN with the
parameters defined by 3.1a and 3.1b generated reasonable results for sensitivity (recall), specificity
and accuracy. There were, however, highly inaccurate results for precision and consequently the
F1 score. As an interesting alternative to precision, if we instead consider the ratio of true positive
results to false positive we get approximately 1:10. This implies that for every true positive, we
get an average of 10 false positive detections. For this reason we will discuss the consideration of
running a layered analysis approach in chapter 4.

Data and Cluster Analysis

In an attempt to better understand the results we received, we further analyzed the data as it
relates to the known maneuvers. Figure 3.1 plots each of the analyzed TLE features against epoch
time, where the vertical lines indicate the known maneuvers for the Envisat satellite in 2011. The
most prevalent pattern that we have noticed from these results exists within the variation in mean
motion, presented in figure 3.2. From the TLE data for the Envisat satellite in 2011, the pattern
associated with a known maneuver consistently shows a decrease in mean motion for an average
of 4-5 days immediately after the known maneuver occurs.
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There were 25 known maneuvers for the Envisat satellite during the year 2011, 16 of which
show consistency with the pattern illustrated in figure 3.2. We chose to emphasize this pattern
relationship, not because we believe it will hold true for a general detection scheme, but instead to
highlight that a very clear pattern association exists between one of the clustering features and our
known maneuvers. With this in mind, and the consideration that the detection algorithm results
showed low precision, we considered a plot of the cluster labels against epoch time to determine
if the data was clustering the way we were expecting it to. In figure 3.3, we can see that the
fifth cluster includes TLE data spanning approximately 150 days. After noting this unexpected
clustering, we chose to investigate the impact of adding epoch day to the feature set.
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Features: Perigee, Inclination, Eccentricity, Mean Motion and Epoch Day

Building upon our previous approach to detecting satellite maneuvers, we added epoch day to
the clustering feature vector and evaluated the impact on the resultant clustering. For the feature
space [Eccentricity, Inclination, Perigee, Mean Motion and Epoch Day], we set the following
parameters to detect satellite maneuvers using box DBSCAN:

ε[E,I,P,MM,ED] = [1e−05,5e−05,1e−01,1e−08,4.5] labeleqn : param2a (3.2a)

MinPts = 5 labeleqn : param2b (3.2b)

Confusion Matrix

Positive Negative

True 25 808 833

False 372 0 372

397 808 1205

Table 3.3. The above confusion matrix shows the results of the
detection algorithm when we use box DBSCAN with the feature
space [Eccentricity, Inclination, Perigee, Mean Motion and Epoch
Day] with the epsilon hyperrectangle = [1e-05, 5e-05, 1e-01, 1e-
08, 4.5]

From the results of adding Epoch Day, in table 3.4 we can see that sensitivity (recall) jumped to
100%, but that every other metric decreased by a reasonable amount. It is very common that feature
and parameter changes for detection algorithms will have a trade-off between sensitivity (recall)
with both precision and specificity. To better understand the nature of this trade-off, we can think
of the following scenarios. Achieving the result where 100% of the maneuvers are detected can be
easily obtained if we define an algorithm that classifies every data point as a maneuver. In this case,
with 1205 data points and 25 known maneuvers, sensitivity (recall) will be 100% but precision is
only 2% and specificity will be 0%. If we allow this to be the base from which we can build from,
we can tailor the algorithm to focus on increasing precision or specificity. Once we start doing
such, we introduce rules and/or parameters that aid in a classification process. If precision is the
priority, we require high confidence that any detection received is a true maneuver. If specificity is
the priority, then the alternative objective is to know when not to detect. Classification for either
objective will inherently result in detection error.
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Sensitivity (Recall) 100%

Precision 6%

Specificity 68%

Accuracy 69%

F1 score 12%

Table 3.4. Evaluations of the detection algorithm using box DB-
SCAN with the feature space [Eccentricity, Inclination, Perigee,
Mean Motion and Epoch Day] with the epsilon hyperrectangle =
[1e-05, 5e-05, 1e-01, 1e-08, 4.5]

Therefore, we want to emphasize that in adding epoch day as a feature, the algorithm detected
all of the maneuvers, but we didn’t get those additional detections for free. The additional correct
maneuver detections came with additional incorrect detections as well. The ratio of true positive
results to false positive results is now approximately 1:15. An increase of approximately 112% to
the false positive detections, while true positive detections only increased by approximately 39%.

Data and Cluster Analysis

The goal in adding epoch day was to generate clustering results that seemed to align more
closely with our intuition for detecting satellite maneuvers. The cluster results of doing such with
an epoch day epsilon bound set at 4.5 days is shown in figure 3.4. The impact of adding epoch day
as a feature generated 56 cluster labels and 397 outliers, as well as a graph of clusters that seems
to make more intuitive sense.
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Summary of Preliminary Results

As a summary to the preliminary results we have indicated that epoch day, although not an
orbital element, may play a critical role in generating more effective clustering when used for de-
tecting satellite maneuvers. Although the results generated a 100% recall for all 25 maneuvers,
the impact to precision and specificity were less than desirable. Therefore, more considerations re-
garding satellite maneuver detection have to be made. A number of possible areas for development
are outlined in chapter 4.
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Chapter 4

Possible Paths Forward

Feature Selection

The first path forward that we will document and address is the consideration of variations in
feature and parameter selections. In chapter 1, when we introduced astrodynamics for satellite
trajectories, we briefly discussed the importance of the six orbital elements.

1. Semi-Major Axis, a

2. Eccentricity, e

3. Inclination, i

4. Argument of Periapsis/Perigee, ω

5. True Anomaly, ν

6. Right Ascension of the Ascending Node (RAAN), Ω

These six orbital elements are essential to uniquely describe the trajectory of an orbiting satel-
lite. Using these six orbital elements, we are capable of deriving additional orbital descriptors.
To begin with, clustering using all six orbital elements as the feature space, along with Epoch
time, should be investigated. It should be noted that these six orbital elements can also be used
to derive a state vector which defines the position and velocity of the satellite at each Epoch time.
This alternative interpretation of the satellite trajectory is an especially important consideration
since the detection of maneuvers should ideally focus on changes in velocity, which aligns with
the considerations made by Kelcey et al in their paper [2].

In addition to the translation from orbital elements to the position and velocity descriptors, an
alternative basis of elements used to describe an orbit is the Equinoctial elements. The Equinoctial
elements are useful for handling special geometric difficulties that can be introduced by the clas-
sical orbital elements [5]. Therefore, we recommend the consideration for this change of basis be
explored in more detail as research continues.
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Determining the ideal feature and parameter selection needed to detect satellite maneuvers is
not only the first consideration we will make, but also one that is likely to continue throughout
future research. As we develop a better understanding for handling the additional concerns we laid
out in chapter 2, we will continually need to return to and address fine tuning of the parameters as
well as feature space selection.

Alternative Clustering Methods

The consideration for introducing alternative clustering methods for processing the TLE data
to detect satellite maneuvers can be best explained using the illustration in figure 4.1. We first
introduced this graph in chapter 2 as a means to illustrate the difference between the current use of
Tracktable as a detection tool to the problem space of satellite maneuver detection. In this chapter
we are reintroducing the graph to highlight the variance in patterns associated with mean motion.
In the first 200 days there is a lot of consistency to the pattern associated with the rise and fall
of mean motion. After day 200, we can see a much larger variance in the mean motion values

Figure 4.1. The outliers (labeled red) from the sequence of TLE
data, plotted in terms of mean motion (radians per minute) against
Epoch day.
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although the TLE date has a fairly consistent sampling over the entire year. This generates the
question of whether a fixed set of parameters is sufficient to accurately detect satellite maneuvers.
The suggestions for future research to consider alternative clustering methods, such as hierarchical
clustering or adaptive density based clustering, is being made to determine whether these methods
would be more effective in detecting abrupt changes in the orbital elements with varying densities.

Hierarchical Clustering

The first alternative clustering approach that we want to consider is one that aligns with the
considerations being made for Tracktable development. Hierarchical clustering methods are an
approach that can be implemented when clusters of varying densities need to found in a data set.
There are two extreme cluster levels in hierarchical clustering. The first assumes there is only one
cluster and all the data belongs to it. The second extreme consideration is that every data point is
its own cluster. Then there exists a breakdown of clusters in between these two extremes that have
similar densities that can be illustrated using a dendrogram.

OPTICS (Ordering Points To Identify the Clustering Structure) Algorithm

OPTICS is an unsupervised clustering algorithm that is classifed as a hierarchical clustering
algorithm method [1]. The development of the OPTICS algorithm was introduced shortly after
DBSCAN with a similar concept in mind. Just as DBSCAN requires the notion of a neighborhood
and a minimum number of points to justify the forming of a cluster OPTICS will also require these
parameters to detect core points. In contrast to DBSCAN, OPTICS considers whether there exists
a more densely connected cluster within the ε-neighborhood. Instead of classifying all of the data
points as either core points, reachable points, or outliers the objective is to evaluate core distance
and reachability distance, defined for each core point as the following

1. (Recall) Core point: a point is evaluated to be a core point if it has at least MinPts in its
ε-neighborhood.

2. Core distance: is defined for each core point as the distance to the MinPtsth nearest neighbor.

3. Reachablility distance: is defined for each point within the ε-neighborhood of a core point
as either the distance between the two points or the core distance, whichever is greater.

This defines a prioritized structure based on proximity between points to allow for the hierar-
chical clustering method to detect varying density within a data set. One of the restrictions, we
noted with DBSCAN, that we will persist with the hierarchical clustering approach is the restric-
tion to the shapes of the clusters. This leads us to the consideration of the following clustering
approach as another alternative.
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Adaptive Density Based Clustering

Adaptive density based clustering algorithms expand upon the concept of clustering data with
varying densities to also considering varying shapes of clusters as well as non-uniform densities.
From a preliminary review of the literature adaptive density based clustering is one of the more
recent areas of research for unsupervised clustering methods. The benefits of considering an adap-
tive density based clustering approach is the freedom from user bias in the selection of parameters.
The article Automatic Clustering and Boundary Detection Algorithm based on Adaptive Influence
Funtion presented by Nosovskiy et al introduces a clustering approach that is parameter indepen-
dent and does not assume a uniform density of the data to be clustered [3]. Alternatively, their
novel approach allows for variance in the distribution of the data and can therefore be applied to
both stochastic as well as deterministic data, while staying robust to noise. This opens the potential
for a much wider application space for solving unsupervised clustering problems while removing
human bias in the interpretation and expectations of the data. The attraction to such a algorithm
is the potential it has for detecting not only the breaks in natural trends that we are expecting, but
also detection for those that we did not expect.

The Nosovskiy paper is just one reference of this alternative clustering approach that has been
reviewed so far. The recommendation is to further investigate additional adaptive density based
clustering schemes.

Layered Analysis Approach

Another consideration for increasing precision and specificity is to perform a layered analysis.
The initial analysis, much like the one presented in section 3, would ideally have a sensitivity
(recall) of 100% for which we can then take the results of the detection algorithm and assume the
subset of data as a set of possible maneuvers. These possible maneuvers are then run through a
second layer of analysis for which a refined consideration for detecting maneuvers can be made.
The idea here is to use a fast analysis on the first pass to filter the data to a smaller set of information
that can be further analyzed in the second layer to achieve higher precision. Ideally, the result will
be a set of detected maneuvers that we can be more confident are associated with real maneuvers.

As a quick experiment we considered exploiting the pattern associated with mean motion. We
are not offering these results as a solution to the overall problem of detecting satellite maneuvers.
Instead, we wanted to include these results to show the impact of running a layered analysis ap-
proach. The following script is the R code used to run a sliding window analysis to capture the rise
and fall of mean motion, using a 5 day average.

36



R script:

possibleManeuvers<-data.frame(envisatData$Epoch.Day,envisatData$clusterLabel)
possibleManeuvers<-subset(possibleManeuvers,possibleManeuvers$clusterLabel==-1)

day1=0
day2=4
track<-data.frame(day = seq(1:365) , averageMeanMotion = rep(NaN,365) ,
negativeSlopeIndicator = rep(0,365) , maneuvers = rep(0,365) )

for(ii in 1:364){
windowData<-subset(possibleManeuvers,possibleManeuvers$Epoch.Day>=(day1+ii)
& possibleManeuvers$Epoch.Day<(day2+ii))

if(nrow(windowData)>1){
track[(ii+1),2]<-mean(diff(windowData$Mean.Motion))

if(track[(ii+1),2]<0){
track[(ii+1),3]<-1

}
}

}

for(ii in 2:365){
if(track[(ii-1),3]==1 & track[ii,3]==1 & track[(ii+1),3]==0 ){
track[ii,4]<-track[ii,1]
}

}

detectedManeuvers<-subset(track,track[,4]!=0)

For the feature space [Eccentricity, Inclination, Perigee, Mean Motion, Epoch Day], we set the
following parameters to detect the set of possible satellite maneuvers using Box DBSCAN.

ε[E,I,P,MM,ED] = [1e−05,5e−05,1e−01,1e−08,4.5] (4.1a)

MinPts = 5 (4.1b)

The results from running Box DBSCAN for the preliminary analysis generated 397 outliers that
we will now refer to as the set of possible satellite maneuvers. This set of 397 possible maneuvers is
re-evaluated using the algorithm outlined above. The results of running this rudimentary approach
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Confusion Matrix

Positive Negative

True 19 1178 1197

False 2 6 8

21 1184 1205

Table 4.1. The above confusion matrix shows the results of the
detection algorithm when we use Box DBSCAN with the fea-
ture space [Eccentricity, Inclination, Perigee, Mean Motion, Epoch
Day] with the epsilon hyperrectangle = [1e-05, 5e-05, 1e-01, 1e-
08, 4.5] to determine the set of possible maneuvers. Then a sliding
window used to detect the average rate of change for mean motion
is used to determine where mean motion decreases consistently for
4 days.

Sensitivity (Recall) 76%

Precision 90%

Specificity 99.8%

Accuracy 99%

F1 score 82%

Table 4.2. Evaluations of the detection algorithm using Box DB-
SCAN with the feature space [Eccentricity, Inclination, Perigee,
Mean Motion, Epoch Day] with the epsilon hyperrectangle = [1e-
05, 5e-05, 1e-01, 1e-08, 4.5] to determine the set of possible ma-
neuvers. Then a sliding window used to detect the average rate of
change for mean motion is used to determine where mean motion
decreases consistently for 4 days.

to a layered analysis is presented in tables 4.1 and 4.2. From an overall comparison to the results
we started with in chapter 3, the addition of epoch day as a feature and the second layer of analysis
for filtering the results from box DBSCAN, we were able to increase recall by 5.5% and precision
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855%. Although recall is still not very high, these are results that we could more readily except
if we can devise a generalized scheme for a layered analysis approach. Therefore, as another
recommendation, considerations for a layered analysis can be made as a viable path forward to
developing a detection algorithm for satellite maneuvers.
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Chapter 5

Conclusion

Tracktable offers a novel and highly efficient means to detect anomalous flight and maritime
behavior. By computing geometric descriptions of aircraft and ship trajectories, and utilizing a
spatial index, patterns can be identified quickly and efficiently. We studied the related but dif-
ferent problem of detecting maneuvers within a satellite trajectory and investigated the suitability
and reported on the performance of Tracktable towards this end. In our study, we researched the
nature of satellite trajectory (Two-Line Element Set) data and astrodynamics noting that raw data
represented a geometric description of a satellite orbit. This stands in contrast to raw flight and
maritime data that is traditionally reported as position and sometime velocity state information. We
performed several clustering analyses and through careful selection of trajectory features and use
of a multi-layered analysis we improved upon previous approaches. Through a comparison across
problem domains, potential limitations of box DBSCAN were identified. Paths for improvement
may include utilizing hierarchical or adaptive density based clustering techniques or developing
effective techniques for conducting automated sliding window, or sub-trajectory, analyses.

41



This page intentionally left blank.



References

[1] Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, and Jörg Sander. Optics: Ordering
points to identify the clustering structure. SIGMOD Rec., 28(2):49–60, June 1999.

[2] T Kelecy, D Hall, K Hamada, and D Stocker. Satellite maneuver detection using two-line
elements data. In Advanced Maui Optical and Space Surveillance Technologies Conference,
volume 1, page 19, 2007.

[3] Gleb V. Nosovskiy, Dongquan Liu, and Olga Sourina. Automatic clustering and boundary
detection algorithm based on adaptive influence function. Pattern Recognition, 41(9):2757 –
2776, 2008.

[4] Mark Daniel Rintoul, Andrew T Wilson, Christopher G Valicka, W Philip Kegelmeyer, Tim-
othy Shead, Kristina Rodriguez Czuchlewski, and Benjamin D Newton. Panther: Trajec-
tory analysis. Technical report, Sandia National Laboratories (SNL-NM), Albuquerque, NM
(United States); Sandia National Laboratories, Livermore, CA, 2015.

[5] David A Vallado. Fundamentals of astrodynamics and applications, volume 12. Springer
Science & Business Media, 2001.

43



DISTRIBUTION:

1 MS 0519 Kristina Czuchlewski, 5346
1 MS 0519 Erin Acquesta, 5346
1 MS 0980 David Cox, 5554
1 MS 0980 Drew Woodbury, 5554
1 MS 0980 Prabal Nandy, 5554
1 MS 1027 Carollan Ehn, 5635
1 MS 1243 Chris Valicka, 5523
1 MS 1243 Mark Hinga, 5523
1 MS 1326 Mark ”Danny” Rintoul, 1462
1 MS 1326 Andy Wilson, 1461
1 MS 0899 Technical Library, 9536 (electronic copy)

44



v1.40

45



46


	Introduction
	Tracktable for Geospatial Trajectory Analysis
	Astrodynamics of Satellite Trajectories

	Problem Space Comparison
	Anomalous Flight Trajectories
	Satellite Maneuver Detection
	Can Tracktable be used to Detect Satellite Maneuvers?

	Satellite Maneuver Detection
	Box DBSCAN Approach to Satellite Maneuver Detection
	Box DBSCAN Results
	Features: Perigee, Inclination, Eccentricity and Mean Motion
	Features: Perigee, Inclination, Eccentricity, Mean Motion and Epoch Day

	Summary of Preliminary Results

	Possible Paths Forward
	Feature Selection
	Alternative Clustering Methods
	Hierarchical Clustering
	Adaptive Density Based Clustering

	Layered Analysis Approach

	Conclusion
	References

