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« Ceramics are conventionally processed at high temperature.

« Aerosol Deposition (AD) process
o Room temperature (RT) in vacuum
o Sub-micron particles travel @ 200-600 m/s, impact, and
consolidate on substrate to form a film.
 AD ceramic film microstructures
o Small final grain sizes (20-75 nm)
o Planar defects and amorphous regions.

AD Flexible electronics from J. Akedo. JTTEE5., 2007:17:181
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AD AI203 and PZT composite film from J. Akedo. J. Am. Ceram. Soc., 2006:89:1834

Aerosol chamber

Consolidation process is not yet well understood. 11/9/2015 @2
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A few clues... (@) i

Before

« Empirical observation that micron-
sized particles do not consolidate.

« Length-scale dependent plasticity in
Al,O4

slip step
[2-1-10]

Compressed Sapphire pillars S. Montagne, et al, Ceram Int. 40, 2083 (2014). 2:C pillar S. Kiani, et al. J. Am. C T
rC pillar S. Kiani, et al. ]. Am. Ceram. Soc., :98:

Clear evidence of a strong size effects on deformation.
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Compressed sapphire particles. P. Sarobol, et al., JTST., 2016:25



A multi-scale problem...

Tens of nm

Atomistic Simulations
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P. Sarobol, et al., JTST., 2016:25

Hundreds of nm

Experimental

Characterization

Thousands of nm

What microstructural features and processes enable this size-dependent behavior?
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Initial Particle Structures @P:&L‘:zﬁéﬁes

« Particles received in 300 nm
and 3 um diameters

« Faceted surfaces

« Varying internal defect
densities

3.0um Highly Defective 0.3um Nearly Defect Free

Smaller particles have lower initial internal defect densities.
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Experimental Tools @&,

Hysitron orp.

Hysitron P195 In Situ Nanoindentation TEM Holder
« Sub nanometer displacement resolution

*  Quantitative force information with uN resolution
« Concurrent real-time imaging by TEM
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Correlates microstructural processes with quantitative mechanical loading.
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In Situ TEM Compression )&=,
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« Elastic to Plastic fransitions are unclear
« Differencesin strain burst behavior
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In Situ TEM Compression () s

Diameter ~ 0.24 um, Compression rate ~ 0.009 s
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Large displacement burst at a
constant load corresponds to particle
fracture.
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In Sii]fu TEM Compression ()

Zone axis near [99 18 6 Laboratories
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o= = Pre-burst plasticity: little dislocation activity.
-~y = Crack nucleation and propagation
= Post-burst plasticity: high dislocation activity, change in
deformation mechanism as indicated by lower slope.
= Mosaicity with a 20 degree orientation spread.

Multiple orientations

within 20 degree rotation of .
original orientation. = Strain energy release rate = 17 J/m?

= Contact stress estimated at 14 GPa
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In Situ TEM Compression () s

Diameter ~ 0.38 um, Compression rate ~0.005 s

Load (uN)
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Large displacement gain at a constant
load (“burst”) corresponds to particle
fracture.

Particle 2

/
s n

0 50 100 150

Depth (nm)

11/9/2015 @10



National
|lahoratories

In Situ TEM Compression )

Zone axis near [ 2 532]
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Pre-burst plasticity: moredislocation activity.
Crack nucleation and propagation
Strain energy release rate = 17 J/m?
Contact stress estimated at 14 GPa
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Post-Deformation (@) i

Particle 2

» Cracks more clearly evident

e Possible evidence of coordinated
shear process

« Qualitatively similar final structures

Particle 1

Cracks .7
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Flattened shapes and arrested cracks suggest plasticity.
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Summary & Conclusions (@)=,

« Experiments enable estimates of contact stress, strain,
and fracture information, and observations of internal
defect behavior

« Substantial dislocation activity
and shape change before
fracture, and crack arrest
suggest plasticity.

 Open gquestions
o Strainrate?
o Compression axise
o Kinetic energy?
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Particle Properties Particle1 |Particle 2

)

Initial Particle Diameter (nm) 235 380

(nm) 20.6 59

Indenter displacement during plasticity
Compression % 7.0 3.5
(nm) 14.8 29.5

Indenter displacement during strain burst

Compression % 5.4 18.3
Load at first fracture (uN) 240 433

Before burst 12.6 14.4
Maximum contact stress (GPa)

After burst 7.2 11.7
Stored Energy prior to first fracture (pJ) 8.9 16.9
Stored Strain Energy prior to first fracture per unit volume (GJ/m3) 1.3 0.6
Estimated Energy Released during Displacement Burst (p]) 3.9 3.9
Estimated Strain Energy Release Rate (J/m?) 45 17

) ®14
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In Situ SEM micro-compression — 3.0 um

Displacement control, Strain rate ~ 0.003 s
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=  Compressed 4 particles
= No observable shape change prior to fracture and fragmentation
= Displacement excursion corresponded to a fast fracture event
=  Strain Energy Density before Fracture ~203 MJ/m?3
=  Strain at fracture ~7%

Tip could not keep up with large displacement gained during fracture.
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In Situ SEM micro-compression — 0.

dia
National
Displacement control, Strain rate ~ 0.05 s Laboratories
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=  Compressed 4 particles
Significant plastic deformation/ shape change and stayed intact
Displacement excursion corresponded to??? Ex situ observation
=  Strain Energy Density before displacement excursion ~675 MJ/m3
=  Strain at displacement excursion ~16%

Tip could not keep up with large displacement gained during fracture. 17



