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Abstract

 In projects with many conflicting stakeholder objectives, 
negotiating compromise requires understanding tradeoffs 
(see Alex’ talk for more background)

 We wish to understand tradeoffs for a class of problems with 
nonlinear constraints and 30+ nonlinear objectives

 For very-many-objective problems, Pareto dominance is not a 
differentiator; provides no pressure and confounds GAs

 Existing approaches to many-objective optimization focus on 
converging to a small portion of the Pareto by incentivizing 
compromise; e.g. aggregation or nearness to a preferred region

 This can severely obfuscate the tradeoffs between solutions

 We need to go back to the drawing board for our problem



Typical many-objective philosophy

 Focused on improving convergence toward (some portion of) the Pareto, 
for fewer than 10 objectives

 “a small improvement in one objective at a large expense to another is 
unacceptable”
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Our philosophy

 Focused on characterizing the Pareto

 Showing only compromises gives very little/misleading tradeoff information

 We want to know about the extremes as well as the knee
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The problem with very many objectives
(>10)

 Everything is Pareto, so “convergence toward 
the Pareto” is effectively meaningless
 One exception: solutions containing genes that are 

trivially inferior are not Pareto, and it may be very 
unlikely to dominate/remove these, but these can be 
detected and removed a priori anyway

 Constraint-infeasible solutions may be dominated 
depending on how infeasibility is penalized, but these 
can be detected and removed too
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 No dominance-based evolutionary pressure within feasible set
 If population size unbounded, leads to (effectively) unbounded growth, 

beyond the limits of system memory or human interpretability

 If population size bounded, population can be modified and shuffled 
indefinitely without stabilizing, depending on selection/niching strategy

From H. Ishibuchi, N. Tsukamoto, and Y. Nojima, 
“Evolutionary many-objective optimization: A short review,” 
Proc. of 2008 IEEE Congress on Evolutionary 
Computation, pp. 2424-2431, Hong Kong, June 1-6, 2008.



How compromises distort tradeoff info
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What we don’t want

 Loss of information about extreme points

 Clumps (overrepresentation of an area)

 Holes where there shouldn’t be (underrepresentation of an area)

 Over-compromising, leading to lack of representation of tradeoffs
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Research Objective

 Our hypothesis is that 

a well-spaced subset of Pareto points in 30+ dimensions

which includes all 1-d objective optima

will preserve (at least) the most important tradeoff information.

…basically, instead of using the GA to find the “best” set of points, we want to 
find the most diverse subset of feasible points.
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Research plan

 Proposed process:
 Find extremal points via 1-d optimization

 Put these points in the initial population

 Run GA that

 preserves extremes

 preserves diversity 

 stabilizes over time

 Research topics:
 How to choose which points to preserve when 1-d optima are not unique

 How to incentivize diversity

 How to not get stuck with “inbred” families of local optima

 How to prevent constant population churn

 How to decide when to stop
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Extreme preservation 
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Old

New

For each dimension �, 
select the optimal 
point(s) in that 
dimension.  Of these, 
keep the best for each  
dimension � ≠ �. 

This will use at most 
�� points where � is 
the number of 
dimensions.



Problems with “inbreeding”
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• Mutation unlikely to introduce sufficient genetic diversity
• Crossover problematic

• Children likely to be dominated by other population members 
(not a problem in our case)

• Children likely to be infeasible to
• Structural constraints (A cannot work with B)
• Attribute constraints (weight of solution cannot exceed Y)



Mitigations to “inbreeding”

 Could try to “seed” knee points via 1-d optimization, but this is a 
hack and becomes quickly unmanageable if you want to do more 
than 2-d knees or more than just the single X+Y knee for each pair 
of dimensions.

 Conceptually easy to heal structural dependencies between genes; 
this is a partial mitigation that appears to work very well

 Not clear how to heal infeasibilities to nonlinear constraints –
ongoing research
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Problems with existing niche operator

 Without dominance as a pressure, and with bad/infeasible points 
removed, selection within the feasible set comes down to 
measuring and dis-incentivizing crowding.

 Existing niche operator did not stabilize population and led to 
undesirable emergent clumping behavior
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Niche operator research
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• Selection heuristic based on Euclidean 
distance; tries to greedily maximize minimum 
distance between selected points

• Works well regardless of original point density

• Works well on sub-dimensional manifolds



Parameter settings

 Each generation consists of the previous generation and its children 
– there’s no point in having children be identical to parents

 Want every child to be a result of a mutation, crossover, or both
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Mutated offspring
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Conclusion

 (Reiterate abstract)

 Next steps
 Prove that new niche operator removes emergent clumping issue

 Determine whether new niche operator also helps with population churn/ 
nonconvergence issues

 Experiment with stopping criteria

 Research ways to make GAs more robust to feasibility dependencies between 
alleles
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