

MELCOR CAV Package Overview

SAND2015-9563PE

Presented by
Larry Humphries

Tokyo, Japan

November 4, 2015

MELCOR/CORCON MCCI Models

Outline of Presentation

- ◆ Overview of MCCI* models in MELCOR
 - How MELCOR models ex-vessel debris
 - ★ Models inherited from CORCON-Mod3
 - ★ Internal interfaces replace stand-alone input
 - ★ Generalizations possible in MELCOR application
 - ★ Limitations resulting from integration into MELCOR
- ◆ Details of phenomenological models
 - Debris geometry
 - Mass and energy transport and conservation
 - ★ Concrete ablation
 - ★ Chemistry

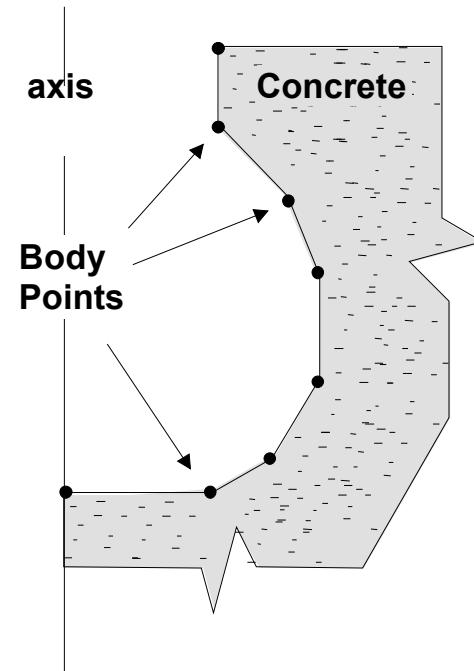
* “MCCI” is “Melt Coolability and Concrete Interactions”

MELCOR/CORCON MCCI Models Physical Processes

- ◆ Debris ejected from vessel attacks concrete
 - Attack is primarily thermal: surface ablates
 - ★ Concrete decomposes
 - ★ Gases (H_2O and CO_2) interact with debris
 - Stir and mix it, enhance heat transfer
 - Are reduced by active metals to H_2 , CO , and possibly $C(c)$
 - Drive release of fission products by reactive vaporization
 - ★ Oxides (CaO , SiO_2 , Al_2O_3 , etc.) add to debris
 - ◆ Top surface communicates with surroundings
 - Heat is lost by radiation, convection, or boiling
 - Gaseous reaction products pass to atmosphere
 - ◆ Sustained by decay and chemical heat
 - Heat balance determines progression

MELCOR/CORCON MCCI Models Framework (1)

- ◆ **MELCOR models based on CORCON-Mod3**
 - Uses CCM3 routines for phenomenological models
 - ★ Geometry, heat transfer, chemistry, concrete ablation
 - Obtains boundary condition and source data from other MELCOR packages rather than user input
 - ★ Stand-alone options available (in MELCOR format)
 - Interface to VANESA preserved
 - ★ VANESA is fission product release model
 - Implemented as part of the RN package
 - Separate scrubbing model replaced by general SPARC model
- ◆ **MELCOR executive replaces top coding levels**
 - Controls input, advancement, output
 - Input format consistent with other MELCOR packages
 - Allows integrated restart, plot, and fallback capabilities


MELCOR/CORCON MCCI Models Framework (2)

- ◆ **Generalizations in MELCOR implementation**
 - Internally consistent calculation of boundary conditions
 - ★ Volume conditions (pressure, temperature, and presence of water pool) respond to heat and gases
 - Calculate MCCI in more than one location
 - ★ Allow cavity rupture/debris overflow between locations
- ◆ **Limitations in MELCOR integration**
 - CORCON does not use MELCOR elevation reference
 - ★ Z is measured positive *downward*
 - Debris doesn't displace water or gases
 - Hydrodynamic fluids don't "see" concrete
 - Some CORCON user "flexibility" inputs are not accessible
 - ★ These are connected only as a need is perceived

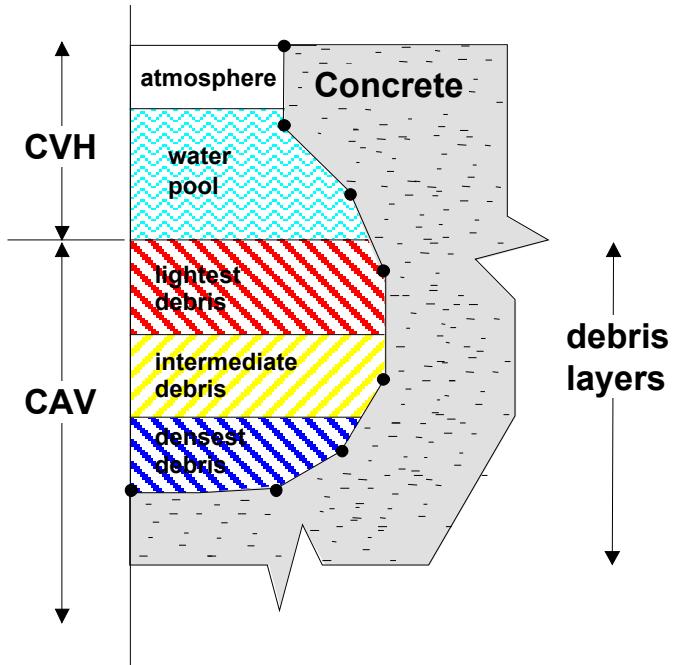
MELCOR/CORCON MCCl Models

Concrete Cavity


- ◆ Domain of MCCl model is a concrete “cavity”
 - Axisymmetric shape defined by a series of “body points”
 - Flexible definition of concrete properties
 - Contains debris
- ◆ Thermal attack on concrete
 - Shape changes as concrete erodes
 - Ablated oxides added to debris
 - Evolved gases (H_2O and CO_2) stir debris, react with it (producing H_2 and CO), and rise to surface

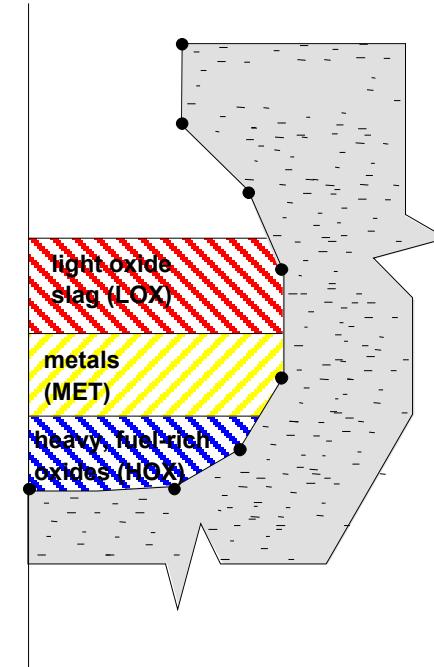
MELCOR/CORCON MCCI Models

Cavity Shape Changes


- ◆ Guiding rays emanate from origin on the vertical axis to body points at start of calculation.
 - Exception is the tangent ray
- ◆ Assume that concrete recession follows local normal
 - Calculated as bisector of angle formed by lines from the body point to nearest neighbors
- ◆ Resulting surface points are projected back onto guiding rays
 - Circle passed through receded point and its two nearest neighbors. Intersection of ray and circle defines new body point

MELCOR/CORCON MCCl Models

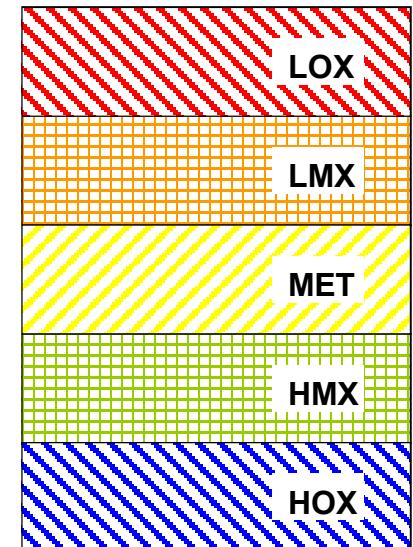
Cavity Contents


- ◆ Debris and fluids in cavity
 - Debris treated by MCCl models
 - ★ May be stratified by density
 - Pool, atmosphere treated by CVH hydrodynamic models
 - Limited interfaces
 - ★ CVH defines upper boundary conditions for debris
 - Temperature, pressure, water
 - Sink for heat and evolved gases
 - ★ CVH “sees” nothing else
 - No thermal interaction with concrete wall
 - No volume displaced by debris
 - No volume change by concrete ablation

MELCOR/CORCON MCCI Models

Debris Layering and Mixing (1)

- ◆ CORCON-Mod2 considered only complete stratification
 - Assumed immiscible metals and oxides
 - Allowed one to three layers
 - ★ Oxide slag layer above metals (LOX)
 - ★ Unoxidized metal layer (MET)
 - ★ Possible denser, fuel-rich oxide layer below metal (HOX)
 - If HOX became less dense than MET (by dilution), debris “flipped”
 - ★ Instantaneous combination of HOX and LOX into LOX

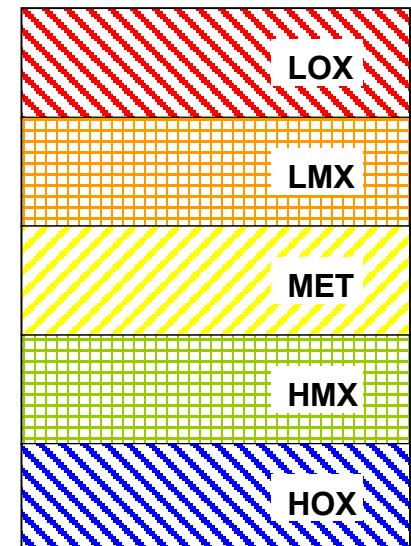


MELCOR/CORCON MCCI Models

Debris Layering and Mixing (2)

- ◆ **Structure of CORCON-Mod2 allowed mixed layers, but there were no mixing models**
- ◆ **CORCON-Mod3 added mixing models**
 - Two distinct mixing processes considered
 - ★ Metal entrained by rising gases into lighter slag to form a “light mixture” (LMX)
 - ★ Heavy (fuel) oxides entrained into metal to form a “heavy mixture” (HMX)
 - Mechanistic models for rates
 - ★ Balance between entrainment and separation under gravity determines degree of mixing
- ◆ **Density Stratification**
 - HOX>HMX>MET>LMX>LOX

Density Stratification
Note: some layers may not co-exist.
This graphic is intended just to show density variation

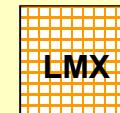


MELCOR/CORCON MCCI Models

Debris Layering and Mixing (3)

- ◆ Possible transport of metals
 - Entrain from MET or HMX into LMX
 - ★ Can have LMX or LOX, but not both
 - ★ Limit is complete mixing of metals into LMX
- ◆ Possible transport of dense oxides
 - Entrain from HOX into HMX or LMX
 - ★ Can have HMX or MET, but not both
 - ★ Limit is complete mixing of dense oxides into HMX
- ◆ Many possible debris layerings
 - Two possibilities for complete mixing
 - ★ Metal-in-light-oxide (LMX)
 - ★ Heavy-oxide-in-metal (HMX)
 - Eight 2- or 3-layer configurations

Density
Stratification
*Note: some layers may not co-exist.
This graphic is intended just to show density variation*


MELCOR/CORCON MCCl Models

Mixing Options

- ◆ MELCOR allows three options
 - Enforced Mixing (MELCOR default)
 - Enforced Stratification (as in CORCON-Mod2)
 - Mechanistic Mixing
 - ★ Eliminates “Layer Flip”
 - Calculation of mechanistic mixing rates

Enforced Mixing

Both Phases present: HMX or LMX depending on relative densities of metals and oxides

Metals Only: MET

Oxides Only: LOX

MELCOR/CORCON MCCI Models

Heat Transfer

- ◆ Three heat transfer mechanisms within debris
 - **Natural convection**, based on conventional correlations
 - Conduction
 - **Bubble-enhanced convection**, using Kutateladze and surface renewal models
- ◆ Other heat transfer models
 - Convection and radiation, or boiling at top surface
 - * Bubble-enhanced boiling uses Greene correlation
 - Added thermal resistance of film adjacent to concrete

Natural convection

Nusselt based on Rayleigh Number

Axial:

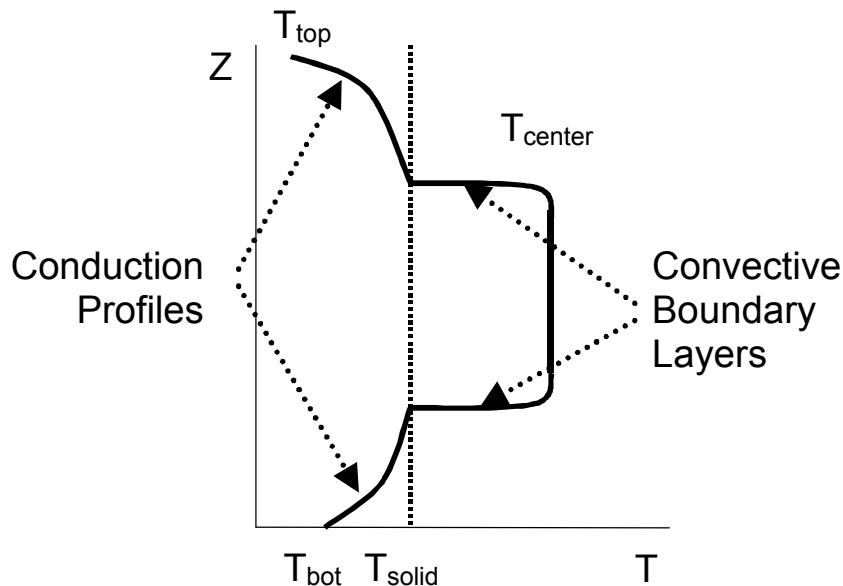
$$Nu = \max(0.54 Ra^{1/4}, 0.14 Ra^{1/3})$$

Radial:

$$Nu = \max(0.59 Ra^{1/4}, 0.10 Ra^{1/3})$$

Nusselt number based on layer thickness:

$$Nu = \frac{hL}{k}$$


The Rayleigh number based on fluid to boundary temperature difference

$$Ra = \frac{g\beta\Delta T l^3}{\nu\alpha}$$

MELCOR/CORCON MCCI Models

Heat Transfer Within a Layer

- ◆ Code determines quasi-steady axial (shown) and radial temperature profiles
 - Known average temperature
 - Conduction below solidus temperature, thin boundary layers in liquid center
 - Constant divergence of heat flux
 - Superposition of 1-D axial and radial transfers
- ◆ Iterate to match boundary conditions

MELCOR/CORCON MCCI Models

Heat Transfer to Concrete (1)

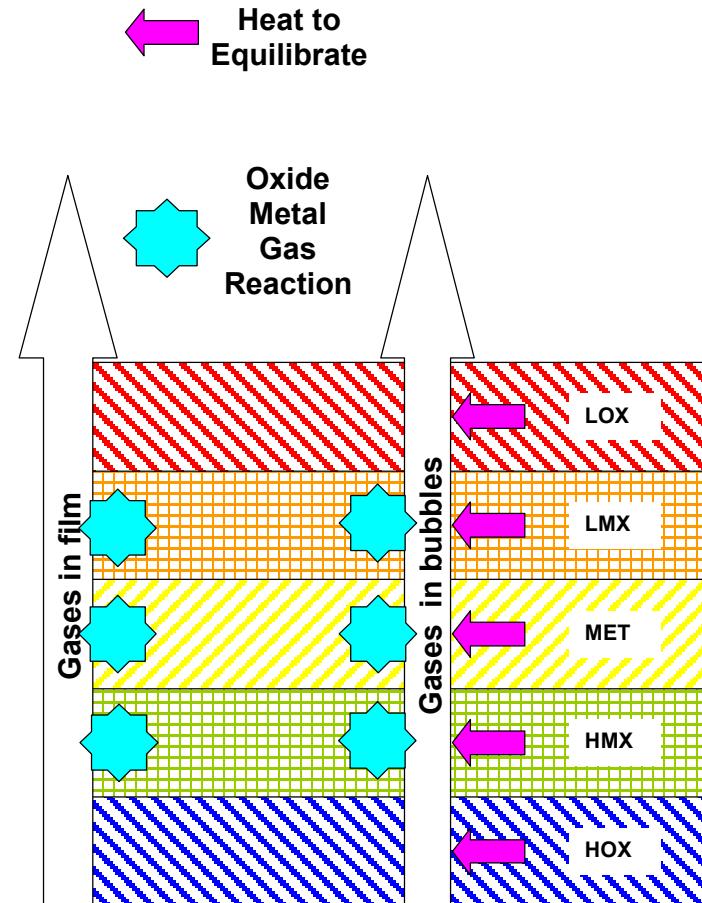
- ◆ Film of concrete decomposition products between debris and concrete adds resistance
 - CORCON-Mod2 assumed gas film (MELCOR default)
 - CORCON-Mod3 allows slag film

Gas film model

- ❖ Gases (from concrete ablation) enter debris at bottom
 - Heat transfer is analog of nucleate boiling
- ❖ Gases flow between debris and concrete at side
 - Heat transfer through laminar or turbulent flowing film
- ❖ Transition region for angles between 15° and 30°
 - Based on apportioning entering gases between bubbles and film flow

MELCOR/CORCON MCCI Models

Concrete Ablation

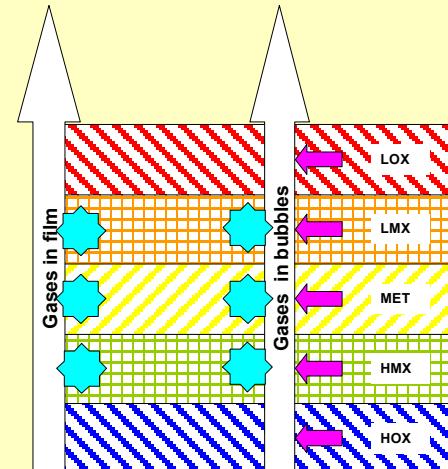

- ◆ CORCON considers only ablation of concrete
 - No precursor heating or decomposition
 - Valid for modest ablation rates
 - ★ Thermal penetration length $\ell \sim \alpha/v_{\text{ablation}}$
 - On the scale of the aggregate
 - Heat to concrete is determined by continuity of heat flux
 - ★ Concrete surface temperature is $T_{\text{surface}} \leq T_{\text{ablation}}$
 - Heat flux defines ablation rate
$$\dot{q}'' = \rho h_{\text{ablation}} \dot{S}$$
 - T_{ablation} and h_{ablation} are properties of the concrete
 - Heat flux is 0.0 if $T_{\text{surface}} < T_{\text{ablation}}$
 - Ablation rate determines gas generation rate
 - ★ Affects all heat transfer coefficients, requiring iteration

MELCOR/CORCON MCCI Models

Mass/Heat Transfer: Gases

- ◆ **Gases leave concrete as H_2O and CO_2**

- Some pass through the film between debris and concrete
 - ★ Assumed to enter at the average film temperature (which is essentially the ablation temperature)
 - ★ React with metals in the debris, at the average debris surface temperature
 - Some pass through the debris
 - ★ Enter at the average film temperature, thermally equilibrated with debris
 - ★ React with metals in the debris, at the average debris layer temperature

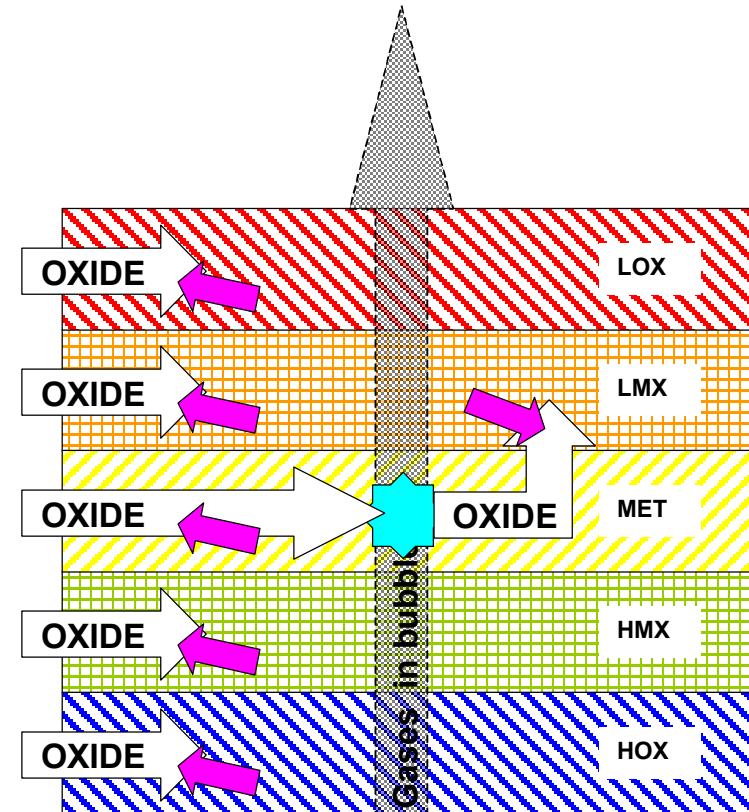

MELCOR/CORCON MCCI Models

Chemistry

- ◆ CORCON calculates chemical equilibrium
 - Algorithm
 - Two reaction Locations
- ◆ Two options
 - CORCON-Mod2
 - CORCON-Mod3
(MELCOR default)

Reaction Locations

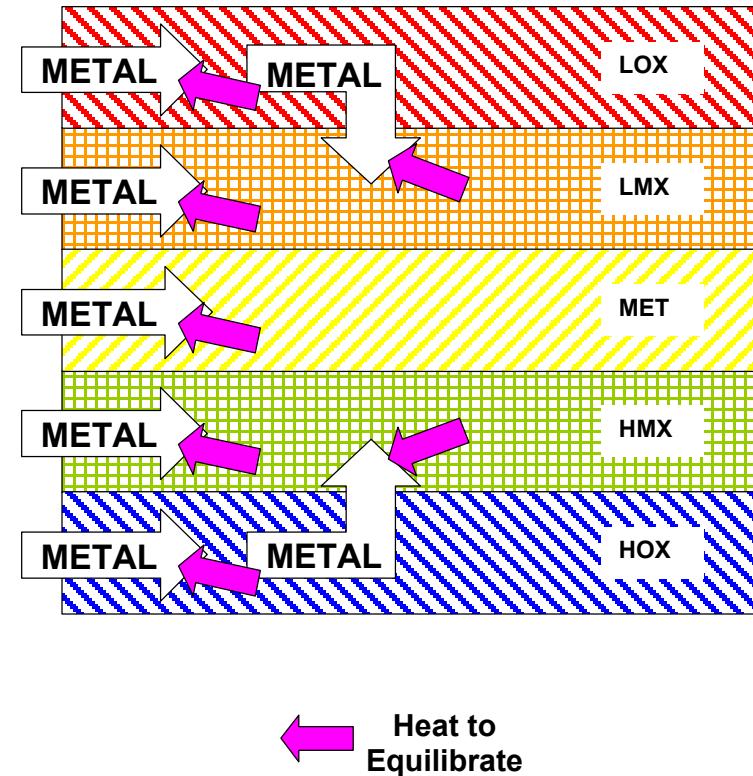
- ❖ Gases passing through melt as bubbles
 - Reaction at average temperature
- ❖ Gases bypassing melt in film
 - Reaction at surface temperature



MELCOR/CORCON MCCI Models

Mass/Heat Transfer: Metals & Oxides (1)

Condensed oxides from ablated concrete


- Enter debris at concrete ablation temperature, brought to temperature of ablating layer
- If entering HOX, HMX, LMX, or LOX, added to layer
- If entering MET, rise to become part of LMX or LOX
 - ★ Additional heat transfer

MELCOR/CORCON MCCl Models

Mass/Heat Transfer: Metals & Oxides (2)

- ◆ Condensed metals (rebar) from ablated concrete
 - Enter debris at concrete ablation temperature, brought to temperature of ablating layer
 - If entering HMX, MET, or LMX, added to layer
 - If entering LOX, sink to become part of MET or HMX
 - ★ Additional heat transfer
 - If entering HOX, rise to become part of MET or LMX
 - ★ Additional heat transfer

MELCOR/CORCON MCCI Models

Mass/Heat Transfer: Metals & Oxides (3)

- ◆ **Core debris (from COR, FDI, or input file)**
 - Sinks to become part of first suitable layer
 - Equilibrated with every layer encountered
 - Definition of initial temperature is subtle
 - ★ CORCON has independent thermal equations of state, phase diagrams
 - ★ Enthalpy may differ from that in source package
 - ★ Can match source temperature or enthalpy, not both
 - Attempt to match sensible heat and latent heat
 - ★ Liquid and solid materials added separately
 - ★ Each assigned enthalpy from (possibly extrapolated) CORCON equation of state for same state

MELCOR Debris Spreading Model

- ◆ **By default, corium relocated to the cavity will spread instantaneously**
- ◆ **Current model (r7483) adds an internally calculated spreading radius.**
 - ★ Balance between gravitational and viscous forces
- ◆ **Optionally, users are able to specify a spreading radius through a CF or TF**

CAV_SP – Definition of Parametric Debris Spreading Optional

This record may be used to model the spreading of debris in the cavity. Users can define a maximum debris radius as a function of time through a tabular function, control function, channel of an external data file, or an internal model.

(1) SOURCE

Source of data for maximum debris radius as a function of time

1 or 'TF'

Use data from tabular function.

-1 or 'CF'

Use data from control function.

2 or 'CHANNELEDF',

Use data from channel of external data file NameCF_TF_EDF.

0 or 'MODEL',

This option allows the code to internally calculate the debris radius as a function of time. However, this option requires the initial debris radius (RADTINI).

If SOURCE = 0, the following record is required:

(2) RADTINI - Initial time-dependent debris radius for the internal model

MELCOR/CORCON MCCI Models

Debris Spreading

- ◆ Parametric model
- ◆ User-defined maximum radius of debris bed
 - Specified as function of time by tabular function, control function, or external data file
 - If current radius is less than cavity radius, radial surface is considered adiabatic
 - ★ Standalone CORCON-Mod3 allows heat transfer to water
- ◆ Internal calculation
 - Simple analytic form
$$[R(t)]^8 = [R(t_0)]^8 + C \frac{\rho g}{\mu \pi^3} (\pi R^2 H)^3 (t - t_0)$$
 - ★ Gives reasonable fit to RAS results for C=0.4

MELCOR/CORCON MCCI Models

Thermochemical Properties

- ◆ CORCON needs chemical potential (Gibbs function) as well as thermal equation of state

- Does not use MELCOR material properties
 - Internal properties based on fits to specific heat

$$c_P(T) = A + 10^{-3} \frac{B}{T} + 10^{-6} CT^2 + 10^5 \frac{D}{T^2}$$

- Integrals (in analytic form) provide enthalpy and Gibbs function

$$h(T) = h(T_0) + \int_{T_0}^T dT' c_P(T')$$

$$g(T) = h(T) - Ts(T) \quad , \quad s(T) = s(T_0) + \int_{T_0}^T dT' c_P(T')/T'$$

- Tables of coefficients and integration constants
 - ★ More than one temperature range for some materials
 - ★ Discontinuities define phase changes

MELCOR/CORCON MCCl Models

Other Materials Properties

- ◆ **Density**
 - Constant expansion coefficient for condensed materials
 $v(T) = v(T_0)[1 + c(T - T_0)]$
 - Ideal gas law for gases
- ◆ **Viscosity**
 - Andrade form
 $\mu = \mu^0 e^{\alpha/T}$
- ◆ **Thermal conductivity and surface tension**
 - Tabulated constants
- ◆ **Emissivity**
 - User input

MELCOR/CORCON MCCl Models

Mixture Properties

- ◆ **Density**
 - Mass-weighted specific volume
- ◆ **Thermal conductivity, surface tension**
 - Mole-weighted average
- ◆ **Viscosity**
 - Iron viscosity used for all metals
 - $\text{FeO}, \text{Al}_2\text{O}_3, \text{UO}_2, \text{CaO}, \text{ZrO}_2, \text{Cr}_2\text{O}_3$ implemented for oxides
 - ★ ZrO_2 and Cr_2O_3 by analogy with UO_2 and FeO
 - Kendell-Monroe expression used for low- SiO_2 oxides

$$\mu = \left(\sum_i x_i \mu_i^{1/3} \right)^3$$

MELCOR/CORCON MCCI Models

Mixture Properties (2)

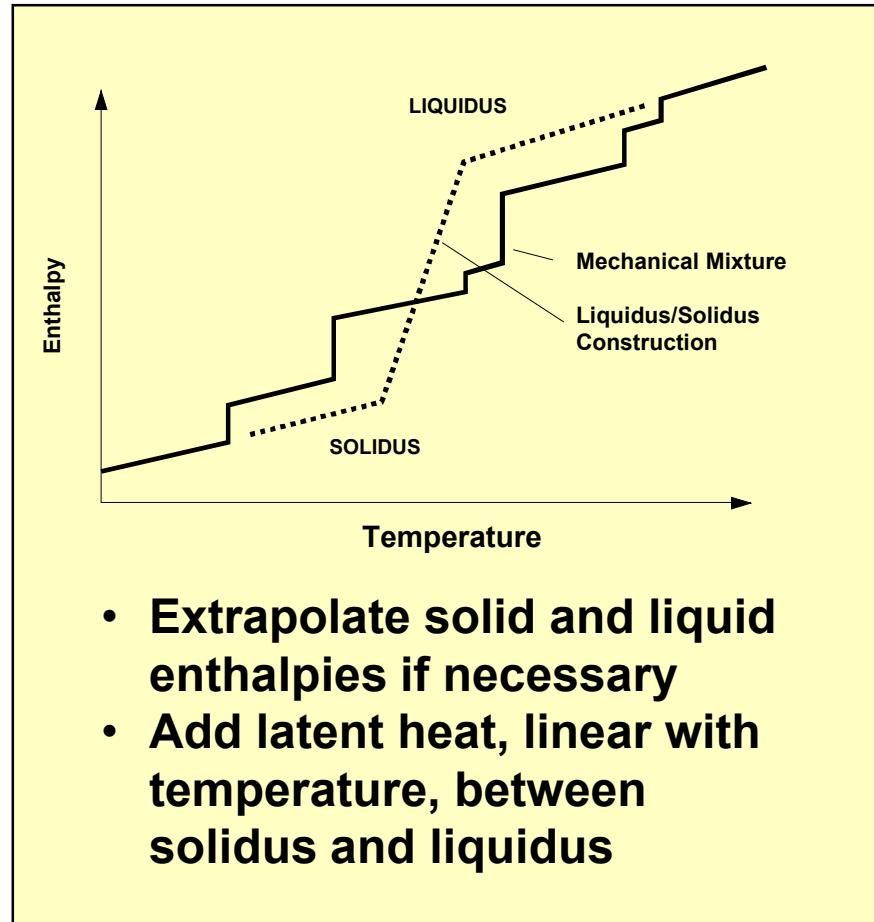
- Shaw correlation used for high-SiO₂ oxides

$$\mu = \exp \left[s \left(\frac{10^4}{T} - 1.50 \right) - 6.40 \right]$$

- ◆ Viscosity enhancement multiplier for presence of solids

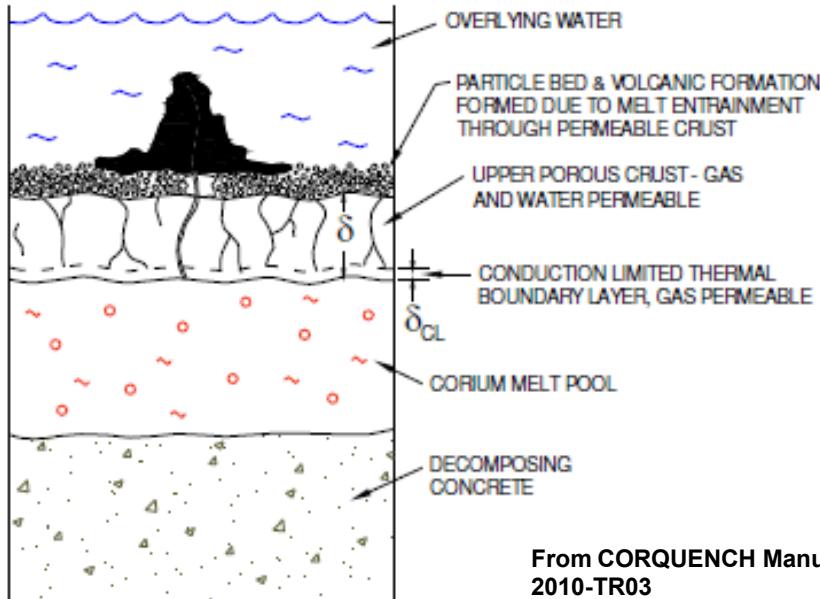
- Kunitz correlation (default)

$$\mu = \mu_m \left[\frac{1 + \phi / 2}{(1 - \phi)^4} \right]$$


- Ramacciotti (new)

$$\mu = \mu_m e^{2.5C\phi}$$

MELCOR/CORCON MCCI Models


Phase Diagrams

- ◆ CORCON has very simple phase diagrams
 - See CORCON-Mod3 Manual for details
- ◆ Neglects many species and interactions
- ◆ Only effect considered is on melt range

New Models from CORQUENCH

- ◆ MCCI results indicate two new effects
 - Water ingress into top crust
 - Melt eruption through top crust forming debris layer

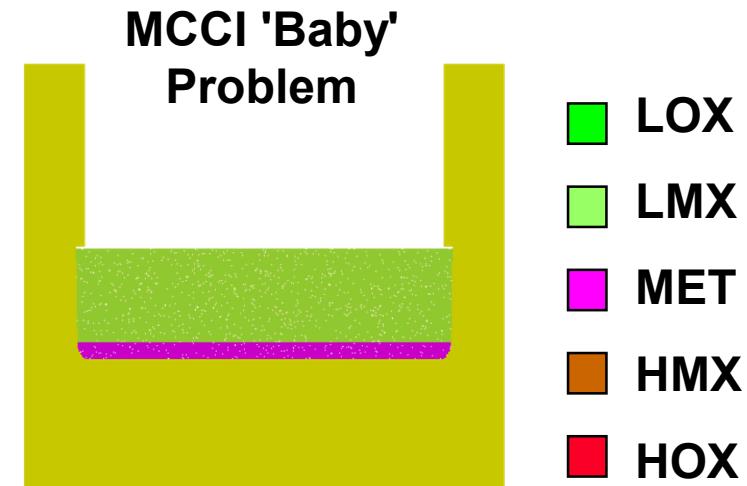
From CORQUENCH Manual OECD/MCCI-2010-TR03

New Models (2)

- ◆ Implemented as new layers in CAV
- ◆ Water-permeable top crust layer
 - Rate of growth, conduction zone thickness from Epstein, “Dryout Heat Flux During Penetration of Water Into Solidifying Rock” (2006)
- ◆ Debris layer
 - Formed with user-input debris size, void fraction
 - Entrainment rate from Ricou-Spalding correlation
- ◆ Models still being tested

MELCOR/CORCON MCCI Models

Demonstration 'Baby' Problem

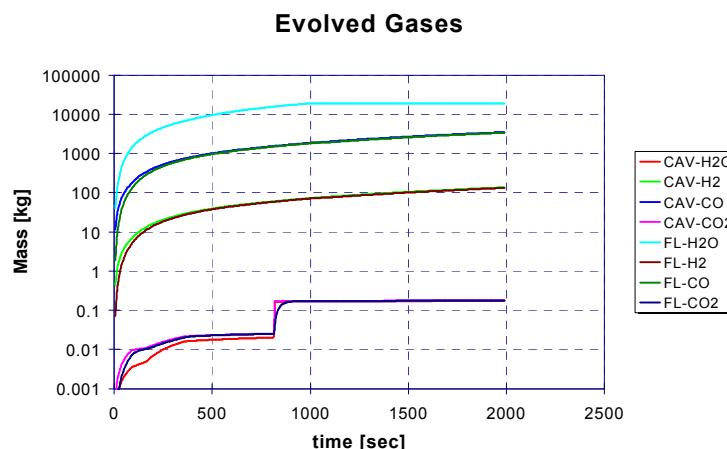
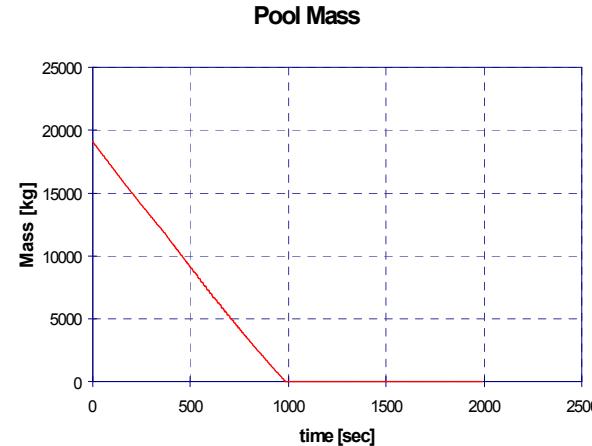
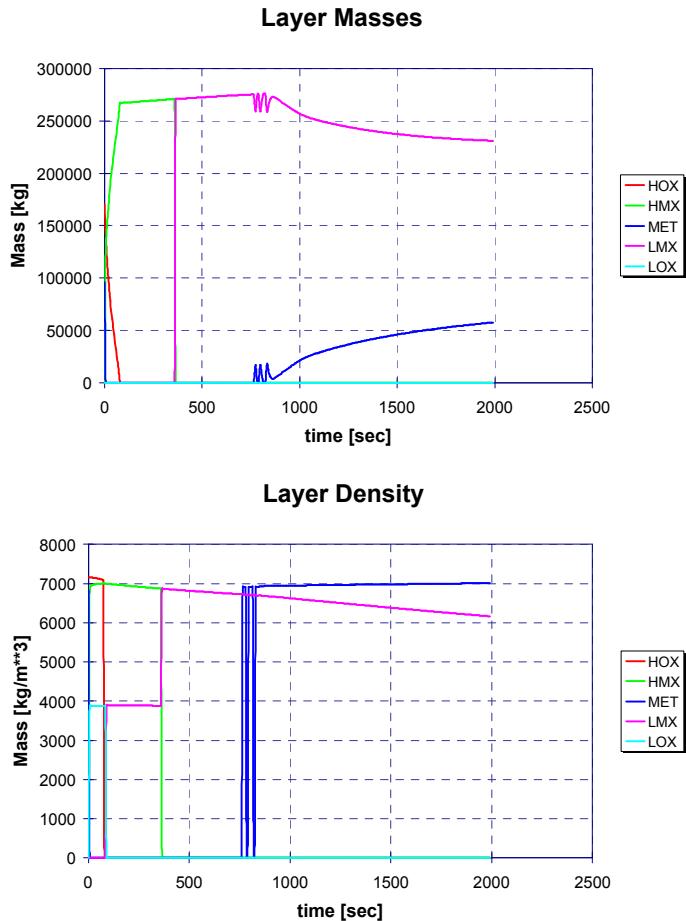

◆ Initial Inventory

— Oxides (TEMP = 2300.)

- ★ UO₂ 1.0E5
- ★ ZRO₂ 2.0E4
- ★ FEO 5.0E4

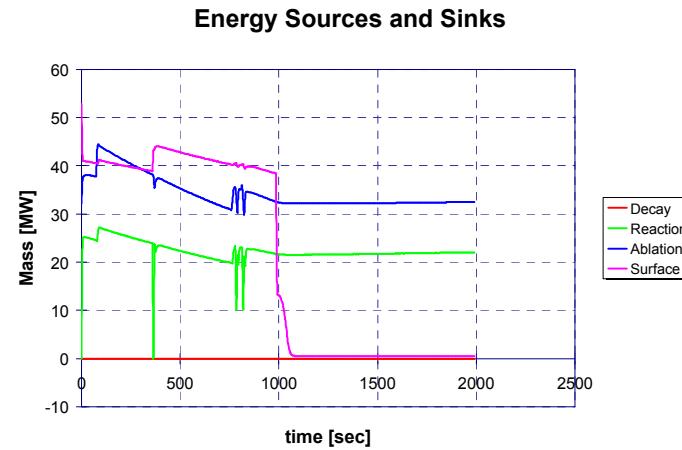
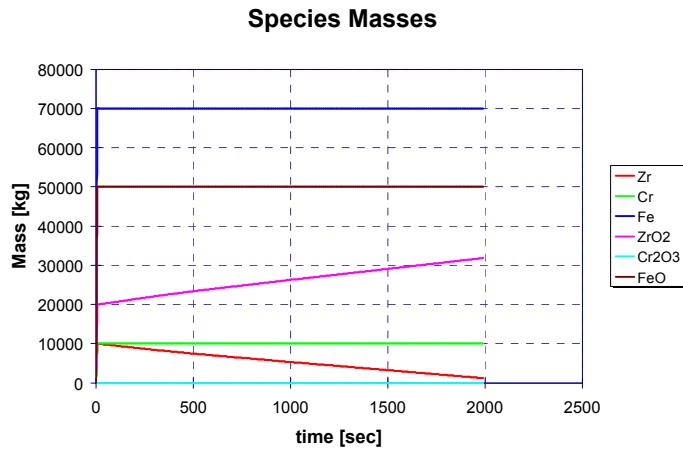
— Metals (TEMP = 2300.)

- ★ ZR 1.0E4
- ★ FE 7.0E4
- ★ CR 1.0E4
- ★ NI 6.0E3

◆ Model Assumptions

1592 (sec)



- Limestone/common sand concrete
- No reinforcing bar
- Calculated mixing (not MELCOR default)
- CORCON-Mod2 chemistry (not MELCOR default)

MELCOR/CORCON MCCI Models Examples: Base Case

MELCOR/CORCON MCCl Models

Examples: Base Case (2)

The End