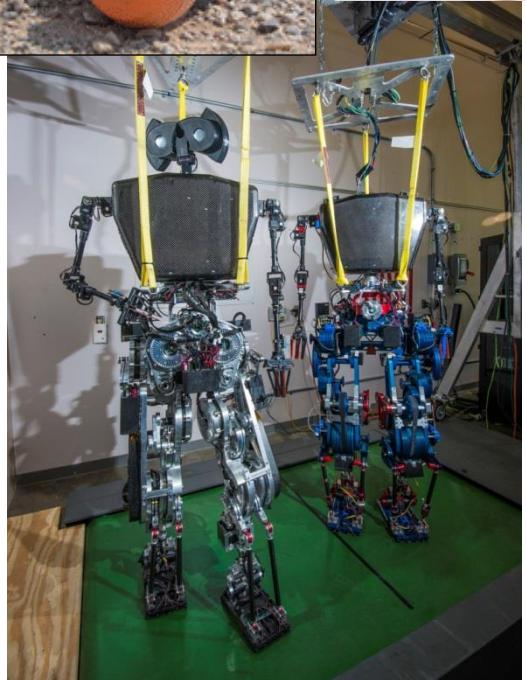


Exceptional service in the national interest



Unmanned Aerial Systems

Philip Heermann, Ph.D.
High Consequence Automation and Robotics
Sandia National Laboratories

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL850008129 C

Sandia Robotics

- Sandia Interest in Unmanned Aerial Systems
 - Testing and deployment of technology
 - National Security Challenges
 - Protection of government assets and facilities
 - Environmental research and sensing
 - Development of advanced robotic vehicles
 - Integrated simultaneous control of ground, maritime, aerial unmanned vehicles.

Challenges

- **Unmanned Aerial Systems (UAS) are the fastest growth sector within the US aviation industry!**
 - Estimated 1,000,000 sold in the U.S. in 2015 alone
 - Near misses happening regularly
 - Dozens > 9,000 ft. above ground level (hobbyist ceiling is 400 ft.)
 - First mid-air collision with manned aircraft reported
- **What is trespassing with small UAS?**
- **Delicate balancing act: public/privacy concerns vs. national security?**
- **Current UAS Technologies were not developed to comply with existing Federal Aviation Administration (FAA) airworthiness standards**
- **Technology revolution has moved development from graduate laboratories to high school student basements**
- **Current research is poised to continue transforming UAS capabilities (rapid evolution!)**
- **Detection and timely assessment of small UAS at range is a challenge**
- **Neutralization is problematic for technical and policy reasons**
 - Continental United States operations may limit use of some technologies

Privacy Concerns

Use the Capabilities/Manage the Challenges

Technology and Applications Exploding

Delivery

Policing

Safety/Monitoring

Farming

Security

Movie Production

Wildlife Management

Aerial Photography

Selfies

Disaster Response

Search and Rescue

Illicit Uses

-
-
-

Quadcopters are a popular type of UAS

Photo: Kevin Baird

Photo: Eddie Code

UAS of all types and sizes will be in New Mexico

UK Ministry of Defence
<https://creativecommons.org/licenses/by/2.0/legalcode>

UK Ministry of Defence
<https://creativecommons.org/licenses/by/2.0/legalcode>

US Air Force -<https://creativecommons.org/licenses/by/2.0/legalcode>

US Air Force Photo

Energy efficiency is a Key Driver to UAS development

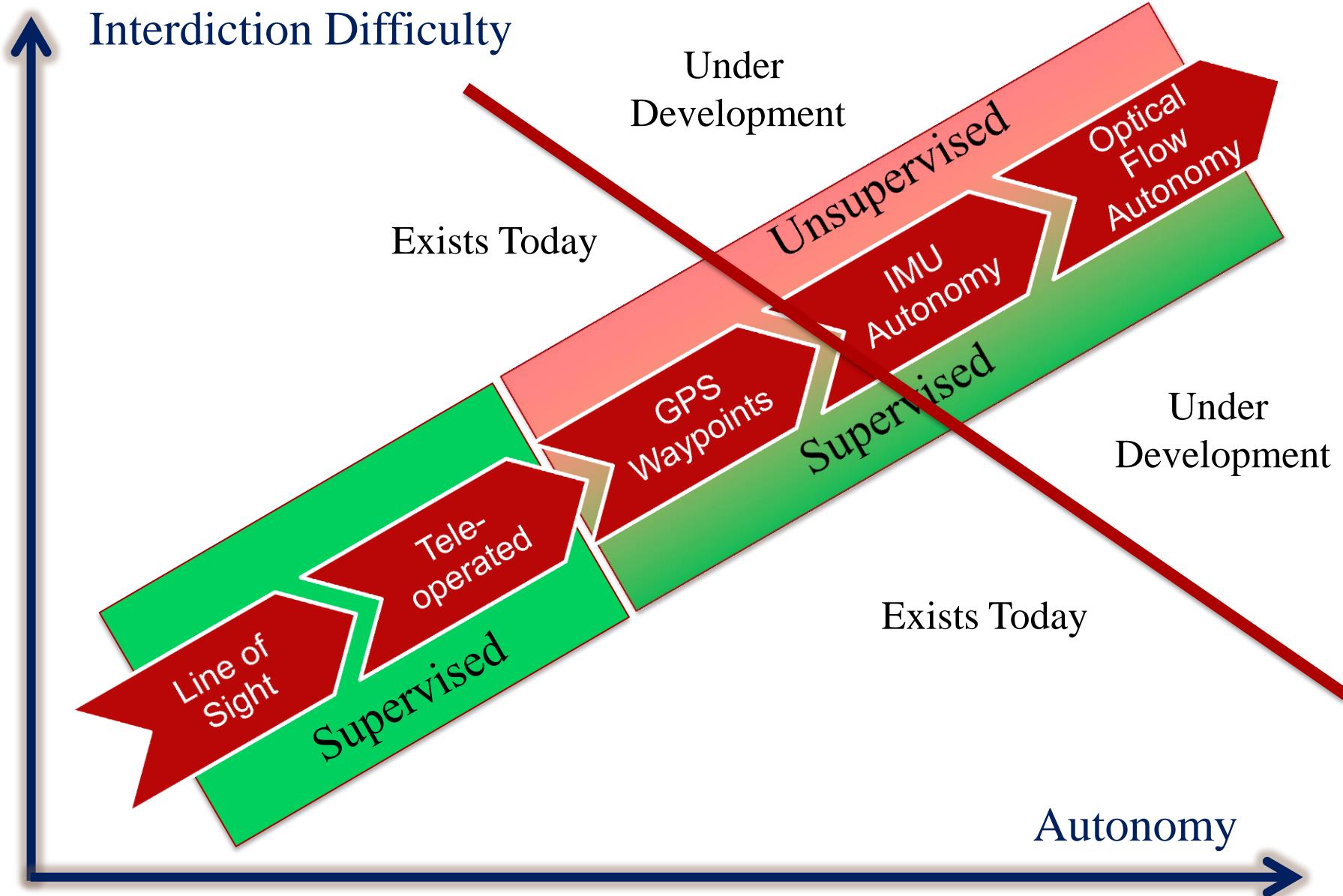
Google: Internet from the Sky

Impact to Telecommunications

Photo courtesy of Google, Inc.

Example UAS Capabilities

Hexacopter:


- 4lb payload
 - 10-12 minutes
- 10lb
 - 5 minutes

Octocopter:

- 12lb payload
 - 10-12 minutes
- 20lb
 - 5 minutes

Speeds of 60-80 MPH

Government Use of UAS

- **National security**
 - Military
 - Site protection
- **Homeland security**
 - Situational awareness
 - Pursuit/response
- **Infrastructure protection/inspection**
 - Critical infrastructure
 - Landmarks

- **Near-term development solutions**
 - Situational awareness
 - Determine intent
 - Attribution
- **Mid to long-term development solutions**
 - Alarm assessment
 - Tagging and tracking
 - Delay and denial tactics
 - Bird-on-bird neutralization

State Legislation to Date

28 States Have Passed Policies/Laws
as of Sept. 2015

Category	# States* with Legislation Passed
Privacy	12
Law Enforcement Restriction	12
State Operations	7
Hunting Restrictions	6
Critical Infrastructure / Use at Public Events	4
Weaponization	2
State Primacy of UAV Laws	1
Restrictions Over Prisons	1

* - Cities and municipalities have enacted most radical laws to date

ABQ Photo courtesy Bill Tondreau www.summerdene.com

Key Points for Small UAS

- UAS technology is rapidly evolving
- Care must be taken to not limit security and public service use
 - As policy is developed, it is important to consider all impacts of regulations that may affect local and national security and local/state economy
- Very Large Market Forces and Potential
 - Major corporations are sponsoring the advancement of UAS
 - Applications are still being identified

Questions?

Future Direction for UAS R&D

- Investigating the future for use of UAS
 - Autonomy
 - Push button swarms – one person controlling platforms
 - COTS integration
 - Payloads
 - Multi-purpose platforms (additive mfg.)
- Rapid technology evolution
 - No comm link
 - No signal to sense or defeat
 - Attribution?
 - Rapid, reactive control
 - Low and fast
 - Randomizes behavior from blue perspective
 - No attribution...!!

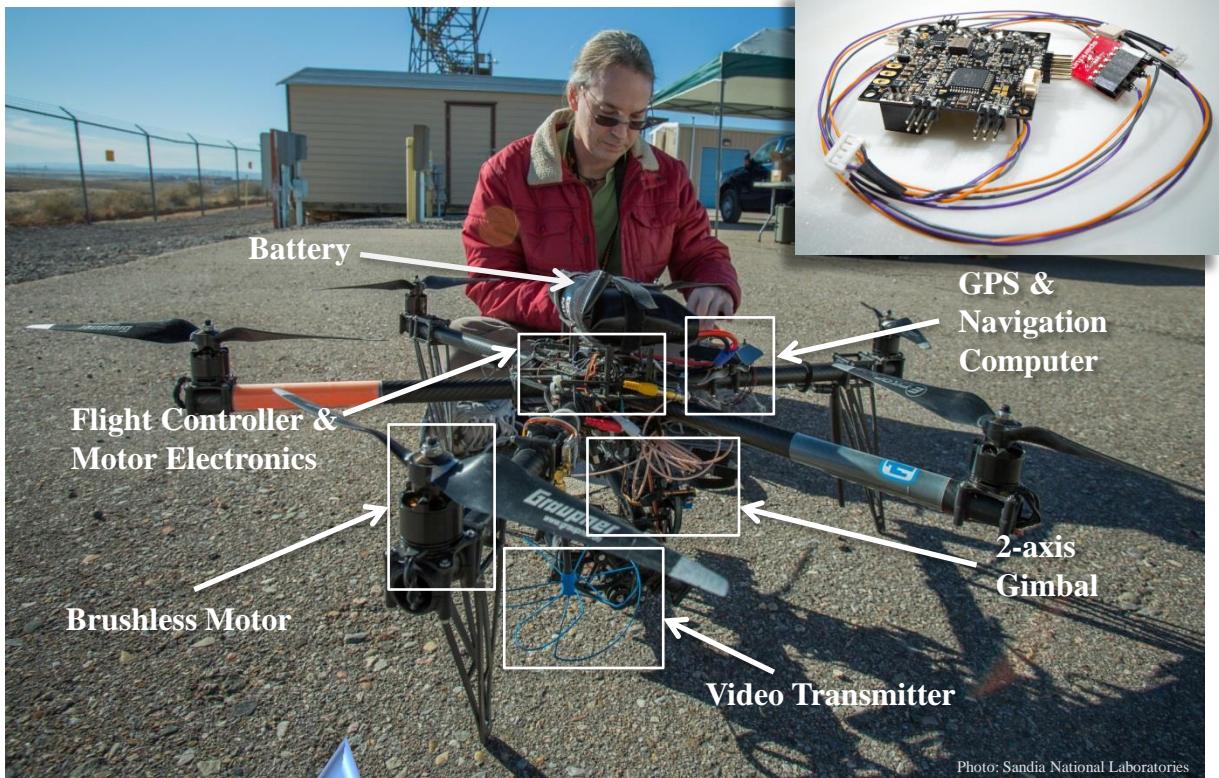

Photo: Sandia National Laboratories

Photo courtesy of Google, Inc.

Notional Aircraft Separation

		Visual	Radio	Transponder	Ground Radar	Air Traffic Control	Altitude Separation Regulations
Airport Airspace							
Class Bravo							
Class Charlie							
Class Delta							
Class Echo/Golf							
Inflight							
Class A (+18,000 ft)							
VFR (3000 AGL - 17,999 MSL)							
IFR (3000 AGL - 17,999 MSL)							
Equipment Availability							
Airliner							
Helicopter							
Light Aircraft							
Glider							
Hot Air Balloon							
Advertising Balloon							
Hang Glider							
Kite							
Crane							

Mandatory

Optional

This is a simplification of airspace separation - See FAA regulations for details