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Executive Summary: Predictive Modeling of multiscale and Multiphysics systems requires
accurate data driven characterization of the input uncertainties, and understanding of how they
propagate across scales and alter the final solution. This project develops a rigorous
mathematical framework and scalable uncertainty quantification algorithms to efficiently
construct realistic low dimensional input models, and surrogate low complexity systems for the
analysis, design, and control of physical systems represented by multiscale stochastic PDEs. The
work can be applied to many areas including physical and biological processes, from climate
modeling to systems biology.

Accomplishments (compared to the original goals): The original goals of the project included:
1) developing data driven algorithms to construct stochastic input models of low
dimensionality; 2) develop uncertainty quantification algorithms that solve high dimensional
SPDEs; 3) develop model reduction algorithms with quantifiable error that solve high
dimensional SPDEs; 4) create multiscale algorithms and integrate them with SPDE solvers and
model reduction algorithms.

The Cornell portion of this project focused on goals 1 and 4, addressing the issues of
optimization and thermodynamic characterization. We merged information theory with the
cluster expansion to obtain a thermodynamic treatment in closer agreement with experiments.
We addressed, in a rigorous way, the important issue of how much accuracy we sacrifice when
replacing the expensive computer code with the surrogate. We develop an approach capable of
guantifying the uncertainties in properties computing using the surrogate. The framework is
general, but will be applied to the cluster expansion. We demonstrated a case of using
surrogates for materials design. The cluster expansion surrogate model is employed to predict a
material with a given specified property. We showed how the cluster expansion is useful for
materials design and in this process we modify the traditional cluster expansion applicable to
bulk alloy systems to now handle low-dimensional systems of arbitrary shapes.

Summary of Project Activities:
One of the biggest achievements of computational materials science would be to produce a

full-fledged virtual materials design laboratory thus removing any need for costly real world
experimental testing. We imagine inputing a set of desired materials properties into a computer



code, wait for a reasonable amount of time, and receive the output material optimal for the
application at hand. Only a single material, the optimal one, needs to be produced in a real
world laboratory and we know immediately that all other possible representations of this
material are inferior.

We still have a long way to go to reach this goal successfully, but in order to do so, we must be
skillful in at least the following two tasks: We must be able to optimize materials properties,
such as the energy, the band gap, the thermal conductivity, etc., represented in silico, and
second, we should be able to accurately characterize materials. An essential characterization is
of thermodynamic nature. That is, we need to know, e.g., in which phases the material will exist
at various external conditions and also how stable these phases are. In both of these tasks, we
must have a clear understanding, and quantification, of the uncertainties associated in our
work.

One of the main reasons why this virtual materials laboratory is not a reality at this time is the
fact that computing the property of a material requires running temporally expensive computer
codes. For example, if we want the accurate ab initio quantum mechanical energy of a single
representation of a material, we can run the Vienna ab initio simulation package VASP, which
currently takes hours even on a supercomputer. This introduces a serious problem since any
optimization task needs to search typically many hundreds of millions different representations
of the material in its way to the optimal answer. It seems that we are faced with an
insurmountable computational effort.

To make matters worse, for thermodynamic modeling of a material, we rely on statistical
thermodynamics which demands the evaluation of ensemble averages requiring the materials
property evaluated for the system found in the most likely (in principle all) states at a set of
external conditions such as temperature and pressure. Again, although not an optimization task
per se, we find ourselves facing the same problem of an infeasible computational task due to
the expensive computer code. By now it should be clear that, overcoming the computational
cost associated with obtaining materials properties is of central importance in computational
materials science and represents one of the most relevant research areas.

The above discussion motivates the development of so-called surrogate models. A surrogate
model, or simply, a surrogate, is a replacement for the accurate, expensive, computer code. In a
nutshell, the surrogate attempts to learn the output, also called the response, of the computer
code for any given input, in orders of magnitude less time than it takes to run the expensive
code. The outputs of the computer code for all possible inputs are collectively called the
response surface.

When employing a surrogate to learn the response surface, we necessarily introduce
uncertainty into computed materials properties. This generates essential questions such as,
how do these uncertainties affect our final predictions about which material is best for a given
application? We may tell the experimentalist to produce material A when in fact material B is
better because we relied too much on a single surrogate, this is the danger of using non-



Bayesian methods. Bayesian methods on the other hand, as we will see in this thesis, accounts
probabilistically for all possible surrogates consistent with a set of samples taken from the true
response surface. Rigorously accounting for uncertainties with a probabilistic approach will tell
us how much}we believe the best material is A over B, leaving us with a much more informed
approach to materials design. Furthermore, in the context of thermodynamic characterization,
how does the approximate surrogate affect our uncertainty about which phase a material is
most stable in for various temperatures and pressures? Disregarding this uncertainty can be
detrimental to future materials design.

Although the methods developed in this thesis are general, we have decided to focus our
attention on a subset of materials, namely alloys, i.e., materials composed of a set of different
chemical elements of which at least one element is metallic. Alloys are very commonplace in
society. Indeed, mercury mixed with silver, tin, copper, and zinc forms dental fillings, iron mixed
with aluminum, nickel, cobalt, and other elements, creates the magnets in loudspeakers,
copper mixed with zinc produces door locks and bolts, iron mixed with carbon and silicon is
used to build bridges and cookware, copper mixed with nickel and manganese is used to create
coins, aluminum mixed with copper, magnesium, and manganese forms materials used in
automobiles, for aircraft body parts, and for military equipment. The list goes on.

In the case of alloys represented in silico, a particular surrogate model called the cluster
expansion has been employed for many decades to represent alloy configurational properties,
i.e., properties that depend on exactly where the atoms in the alloy are placed, called a
configuration, on the lattice (for example a face-centered cubic (fcc) lattice with a basis)
defining the geometry of the alloy. The cluster expansion is useful because of its computational
speed and can, in principle, be made arbitrarily accurate to the point where the true computer
code is exactly represented. In practice, however, it is made approximate.

In this research, we addressed both the issue of optimization and that of thermodynamic
characterization. We merged information theory with the cluster expansion to obtain a
thermodynamic treatment in closer agreement with experiments. We addressed, in a rigorous
way, the important issue of how much accuracy we sacrifice when replacing the expensive
computer code with the surrogate. We develop an approach capable of quantifying the
uncertainties in properties computing using the surrogate. The framework is general, but will
be applied to the cluster expansion. We demonstrated a case of using surrogates for materials
design. The cluster expansion surrogate model is employed to predict a material with a given
specified property. We showed how the cluster expansion is useful for materials design and in
this process we modify the traditional cluster expansion applicable to bulk alloy systems to now
handle low-dimensional systems of arbitrary shapes.

Relative entropy

In this section, we seek to emphasize our successful approach in using information theory to
improve computational alloy modeling.



Construction of binary alloy phase diagrams generally relies on a computationally tractable
parametrized surrogate model for the quantum mechanical energy surface. The cluster
expansion is a commonly used model which has been very successful in describing
configurational properties of alloys. The model parameters are referred to as effective cluster
interactions (ECI) and, for a typical system, range in number from 20 to 80. The ECI are often
fitted to 50-100 observed energies, e.g., using least squares with cross validation, potentially
coupled with genetic algorithms, or compressive sensing. These observations are made at a
high computational cost, involving ab initio software, e.g., the Vienna ab initio simulation
package VASP. Given the ECI, the energy of any configuration can be computed, and
subsequently used for thermodynamic simulations.

In this work, we provided an intuitive argument as to why fitting the ECI to equally weighted
observed energies does not necessarily lead to an optimal description of the thermodynamics
of the system. Consider the case of a canonical ensemble. The Boltzmann factor, in equilibrium,
dictates that more energetic states are exponentially less likely to be observed. So, at low
temperatures, the partition function is mostly influenced by the few low energy states. The
Boltzmann factor for all other states is essentially zero.

Therefore, the thermodynamic importance of a state is quantified by its Boltzmann factor. We
conclude that, as the temperature is increased, so is the importance of any state. Furthermore,
at infinite temperature all states are equally important.

Motivated by the previous discussion it is desirable to investigate techniques which obtain the
ECI based on thermodynamic arguments. All the necessary information is encapsulated in the
probability distribution over states (PDS). The idea is to bring the PDS induced by the cluster
expansion (candidate PDS) as close as possible to the true one. We propose to measure this
distance in terms of relative entropy (also known as the Kullback--Leibler divergence). Thus, we
obtain a variational problem, namely, the minimization of the relative entropy functional with
respect to the candidate PDS. Though theoretically sound this problem is computationally
intractable. To cope with this, we show that the relative entropy functional can be
approximated by the variance (with respect to the true PDS) of the difference between the true
and the candidate cluster expansion energy. Restricting this approximation on the observed
data leads to a weighted least squares problem making the proposed approach computationally
attractive.

In this work, we tested the performance of our method in a study of canonical phase
transformations in Si-Ge (two-phase coexistence to disorder) and Mg-Li (order to disorder)
alloys at various compositions. We compare the relative entropy results to least squares with
leave-one-out-cross-validation (least squares LOOCV) where we, for Mg-Li, observe noticeable
differences in the transition temperatures. Our results are found to be in better agreement
with guiding experimental data.

Bayesian global optimization in computational alloy modeling



This section emphasizes the exciting work on an approach to adaptively select simulations for
the discovery of the ground state line of binary alloys with a limited computational budget.

First principles calculations are computationally expensive. This information acquisition cost,
combined with exponentially high number of possible material configurations, constitutes an
important roadblock towards the ultimate goal of materials by design. To overcome this barrier,
one must devise schemes for the automatic and maximally informative selection of simulations.
Such information acquisition decisions are task-dependent, in the sense that an optimal
information acquisition policy for learning about a specific material property will not necessarily
be optimal for learning about another. In this work, we develop an information acquisition
policy for learning the ground state line (GSL) of binary alloys. Our approach is based on a
Bayesian interpretation of the cluster expanded energy. This probabilistic surrogate of the
energy enables us to quantify the epistemic uncertainty induced by the limited number of
simulations which, in turn, is the key to defining a function of the configuration space that
guantifies the expected improvement to the GSL resulting from a hypothetical simulation. We
show that optimal information acquisition policies should balance the maximization of the
expected improvement of the GSL and the minimization of the size of the simulated structure.
We validate our approach by learning the GSLs of NiAl and TiAl binary alloys, where to establish
the ground truth GSL we use the embedded-atom method (EAM) for the calculation of the
energy of a given alloy configuration. Note that the proposed policies are directly applicable to
the discovery of generic phase diagrams, if one can construct a probabilistic surrogate of the
relevant thermodynamic potential.
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