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Executive	Summary:	Predictive	Modeling	of	multiscale	and	Multiphysics	systems	requires	
accurate	data	driven	characterization	of	the	input	uncertainties,	and	understanding	of	how	they	
propagate	across	scales	and	alter	the	final	solution.	This	project	develops	a	rigorous	
mathematical	framework	and	scalable	uncertainty	quantification	algorithms	to	efficiently	
construct	realistic	low	dimensional	input	models,	and	surrogate	low	complexity	systems	for	the	
analysis,	design,	and	control	of	physical	systems	represented	by	multiscale	stochastic	PDEs.	The	
work	can	be	applied	to	many	areas	including	physical	and	biological	processes,		from	climate	
modeling	to	systems	biology.		
	
Accomplishments	(compared	to	the	original	goals):	The	original	goals	of	the	project	included:	
1)	developing	data	driven	algorithms	to	construct	stochastic	input	models	of	low	
dimensionality;	2)	develop	uncertainty	quantification	algorithms	that	solve	high	dimensional	
SPDEs;	3)	develop	model	reduction	algorithms	with	quantifiable	error	that	solve	high	
dimensional	SPDEs;	4)	create	multiscale	algorithms	and	integrate	them	with	SPDE	solvers	and	
model	reduction	algorithms.		
	
The	Cornell	portion	of	this	project	focused	on	goals	1	and	4,	addressing	the	issues	of	
optimization	and	thermodynamic	characterization.	We	merged	information	theory	with	the	
cluster	expansion	to	obtain	a	thermodynamic	treatment	in	closer	agreement	with	experiments.	
We	addressed,	in	a	rigorous	way,	the	important	issue	of	how	much	accuracy	we	sacrifice	when	
replacing	the	expensive	computer	code	with	the	surrogate.	We	develop	an	approach	capable	of	
quantifying	the	uncertainties	in	properties	computing	using	the	surrogate.	The	framework	is	
general,	but	will	be	applied	to	the	cluster	expansion.	We	demonstrated	a	case	of	using	
surrogates	for	materials	design.	The	cluster	expansion	surrogate	model	is	employed	to	predict	a	
material	with	a	given	specified	property.	We	showed	how	the	cluster	expansion	is	useful	for	
materials	design	and	in	this	process	we	modify	the	traditional	cluster	expansion	applicable	to	
bulk	alloy	systems	to	now	handle	low-dimensional	systems	of	arbitrary	shapes.	
	
Summary	of	Project	Activities:		
	
One	of	the	biggest	achievements	of	computational	materials	science	would	be	to	produce	a	
full-fledged	virtual	materials	design	laboratory	thus	removing	any	need	for	costly	real	world	
experimental	testing.	We	imagine	inputing	a	set	of	desired	materials	properties	into	a	computer	



code,	wait	for	a	reasonable	amount	of	time,	and	receive	the	output	material	optimal	for	the	
application	at	hand.	Only	a	single	material,	the	optimal	one,	needs	to	be	produced	in	a	real	
world	laboratory	and	we	know	immediately	that	all	other	possible	representations	of	this	
material	are	inferior.	
	
We	still	have	a	long	way	to	go	to	reach	this	goal	successfully,	but	in	order	to	do	so,	we	must	be	
skillful	in	at	least	the	following	two	tasks:	We	must	be	able	to	optimize	materials	properties,	
such	as	the	energy,	the	band	gap,	the	thermal	conductivity,	etc.,	represented	in	silico,	and	
second,	we	should	be	able	to	accurately	characterize	materials.	An	essential	characterization	is	
of	thermodynamic	nature.	That	is,	we	need	to	know,	e.g.,	in	which	phases	the	material	will	exist	
at	various	external	conditions	and	also	how	stable	these	phases	are.	In	both	of	these	tasks,	we	
must	have	a	clear	understanding,	and	quantification,	of	the	uncertainties	associated	in	our	
work.	
	
One	of	the	main	reasons	why	this	virtual	materials	laboratory	is	not	a	reality	at	this	time	is	the	
fact	that	computing	the	property	of	a	material	requires	running	temporally	expensive	computer	
codes.	For	example,	if	we	want	the	accurate	ab	initio	quantum	mechanical	energy	of	a	single	
representation	of	a	material,	we	can	run	the	Vienna	ab	initio	simulation	package	VASP,	which	
currently	takes	hours	even	on	a	supercomputer.	This	introduces	a	serious	problem	since	any	
optimization	task	needs	to	search	typically	many	hundreds	of	millions	different	representations	
of	the	material	in	its	way	to	the	optimal	answer.	It	seems	that	we	are	faced	with	an	
insurmountable	computational	effort.	
	
To	make	matters	worse,	for	thermodynamic	modeling	of	a	material,	we	rely	on	statistical	
thermodynamics	which	demands	the	evaluation	of	ensemble	averages	requiring	the	materials	
property	evaluated	for	the	system	found	in	the	most	likely	(in	principle	all)	states	at	a	set	of	
external	conditions	such	as	temperature	and	pressure.	Again,	although	not	an	optimization	task	
per	se,	we	find	ourselves	facing	the	same	problem	of	an	infeasible	computational	task	due	to	
the	expensive	computer	code.	By	now	it	should	be	clear	that,	overcoming	the	computational	
cost	associated	with	obtaining	materials	properties	is	of	central	importance	in	computational	
materials	science	and	represents	one	of	the	most	relevant	research	areas.	
	
The	above	discussion	motivates	the	development	of	so-called	surrogate	models.	A	surrogate	
model,	or	simply,	a	surrogate,	is	a	replacement	for	the	accurate,	expensive,	computer	code.	In	a	
nutshell,	the	surrogate	attempts	to	learn	the	output,	also	called	the	response,	of	the	computer	
code	for	any	given	input,	in	orders	of	magnitude	less	time	than	it	takes	to	run	the	expensive	
code.	The	outputs	of	the	computer	code	for	all	possible	inputs	are	collectively	called	the	
response	surface.	
	
When	employing	a	surrogate	to	learn	the	response	surface,	we	necessarily	introduce	
uncertainty	into	computed	materials	properties.	This	generates	essential	questions	such	as,	
how	do	these	uncertainties	affect	our	final	predictions	about	which	material	is	best	for	a	given	
application?	We	may	tell	the	experimentalist	to	produce	material	A	when	in	fact	material	B	is	
better	because	we	relied	too	much	on	a	single	surrogate,	this	is	the	danger	of	using	non-



Bayesian	methods.	Bayesian	methods	on	the	other	hand,	as	we	will	see	in	this	thesis,	accounts	
probabilistically	for	all	possible	surrogates	consistent	with	a	set	of	samples	taken	from	the	true	
response	surface.	Rigorously	accounting	for	uncertainties	with	a	probabilistic	approach	will	tell	
us	how	much}we	believe	the	best	material	is	A	over	B,	leaving	us	with	a	much	more	informed	
approach	to	materials	design.	Furthermore,	in	the	context	of	thermodynamic	characterization,	
how	does	the	approximate	surrogate	affect	our	uncertainty	about	which	phase	a	material	is	
most	stable	in	for	various	temperatures	and	pressures?	Disregarding	this	uncertainty	can	be	
detrimental	to	future	materials	design.	
	
Although	the	methods	developed	in	this	thesis	are	general,	we	have	decided	to	focus	our	
attention	on	a	subset	of	materials,	namely	alloys,	i.e.,	materials	composed	of	a	set	of	different	
chemical	elements	of	which	at	least	one	element	is	metallic.	Alloys	are	very	commonplace	in	
society.	Indeed,	mercury	mixed	with	silver,	tin,	copper,	and	zinc	forms	dental	fillings,	iron	mixed	
with	aluminum,	nickel,	cobalt,	and	other	elements,	creates	the	magnets	in	loudspeakers,	
copper	mixed	with	zinc	produces	door	locks	and	bolts,	iron	mixed	with	carbon	and	silicon	is	
used	to	build	bridges	and	cookware,	copper	mixed	with	nickel	and	manganese	is	used	to	create	
coins,	aluminum	mixed	with	copper,	magnesium,	and	manganese	forms	materials	used	in	
automobiles,	for	aircraft	body	parts,	and	for	military	equipment.	The	list	goes	on.	
	
In	the	case	of	alloys	represented	in	silico,	a	particular	surrogate	model	called	the	cluster	
expansion	has	been	employed	for	many	decades	to	represent	alloy	configurational	properties,	
i.e.,	properties	that	depend	on	exactly	where	the	atoms	in	the	alloy	are	placed,	called	a	
configuration,	on	the	lattice	(for	example	a	face-centered	cubic	(fcc)	lattice	with	a	basis)	
defining	the	geometry	of	the	alloy.	The	cluster	expansion	is	useful	because	of	its	computational	
speed	and	can,	in	principle,	be	made	arbitrarily	accurate	to	the	point	where	the	true	computer	
code	is	exactly	represented.	In	practice,	however,	it	is	made	approximate.	
	
In	this	research,	we	addressed	both	the	issue	of	optimization	and	that	of	thermodynamic	
characterization.	We	merged	information	theory	with	the	cluster	expansion	to	obtain	a	
thermodynamic	treatment	in	closer	agreement	with	experiments.	We	addressed,	in	a	rigorous	
way,	the	important	issue	of	how	much	accuracy	we	sacrifice	when	replacing	the	expensive	
computer	code	with	the	surrogate.	We	develop	an	approach	capable	of	quantifying	the	
uncertainties	in	properties	computing	using	the	surrogate.	The	framework	is	general,	but	will	
be	applied	to	the	cluster	expansion.	We	demonstrated	a	case	of	using	surrogates	for	materials	
design.	The	cluster	expansion	surrogate	model	is	employed	to	predict	a	material	with	a	given	
specified	property.	We	showed	how	the	cluster	expansion	is	useful	for	materials	design	and	in	
this	process	we	modify	the	traditional	cluster	expansion	applicable	to	bulk	alloy	systems	to	now	
handle	low-dimensional	systems	of	arbitrary	shapes.	
	
Relative	entropy	
	
In	this	section,	we	seek	to	emphasize	our	successful	approach	in	using	information	theory	to	
improve	computational	alloy	modeling.	
	



Construction	of	binary	alloy	phase	diagrams	generally	relies	on	a	computationally	tractable	
parametrized	surrogate	model	for	the	quantum	mechanical	energy	surface.	The	cluster	
expansion	is	a	commonly	used	model	which	has	been	very	successful	in	describing	
configurational	properties	of	alloys.	The	model	parameters	are	referred	to	as	effective	cluster	
interactions	(ECI)	and,	for	a	typical	system,	range		in	number	from	20	to	80.	The	ECI	are	often	
fitted	to	50-100	observed	energies,	e.g.,	using	least	squares	with	cross	validation,	potentially	
coupled	with	genetic	algorithms,	or	compressive	sensing.	These	observations	are	made	at	a	
high	computational	cost,	involving	ab	initio	software,	e.g.,	the	Vienna	ab	initio	simulation	
package	VASP.	Given	the	ECI,	the	energy	of	any	configuration	can	be	computed,	and	
subsequently	used	for	thermodynamic	simulations.	
	
In	this	work,	we	provided	an	intuitive	argument	as	to	why	fitting	the	ECI	to	equally	weighted	
observed	energies	does	not	necessarily	lead	to	an	optimal	description	of	the	thermodynamics	
of	the	system.	Consider	the	case	of	a	canonical	ensemble.	The	Boltzmann	factor,	in	equilibrium,	
dictates	that	more	energetic	states	are	exponentially	less	likely	to	be	observed.	So,	at	low	
temperatures,	the	partition	function	is	mostly	influenced	by	the	few	low	energy	states.	The	
Boltzmann	factor	for	all	other	states	is	essentially	zero.		
Therefore,	the	thermodynamic	importance	of	a	state	is	quantified	by	its	Boltzmann	factor.	We	
conclude	that,	as	the	temperature	is	increased,	so	is	the	importance	of	any	state.	Furthermore,	
at	infinite	temperature	all	states	are	equally	important.	
	
Motivated	by	the	previous	discussion	it	is	desirable	to	investigate	techniques	which	obtain	the	
ECI	based	on	thermodynamic	arguments.	All	the	necessary	information	is	encapsulated	in	the	
probability	distribution	over	states	(PDS).	The	idea	is	to	bring	the	PDS	induced	by	the	cluster	
expansion	(candidate	PDS)	as	close	as	possible	to	the	true	one.	We	propose	to	measure	this	
distance	in	terms	of	relative	entropy	(also	known	as	the	Kullback--Leibler	divergence).	Thus,	we	
obtain	a	variational	problem,	namely,	the	minimization	of	the	relative	entropy	functional	with	
respect	to	the	candidate	PDS.	Though	theoretically	sound	this	problem	is	computationally	
intractable.	To	cope	with	this,	we	show	that	the	relative	entropy	functional	can	be	
approximated	by	the	variance	(with	respect	to	the	true	PDS)	of	the	difference	between	the	true	
and	the	candidate	cluster	expansion	energy.	Restricting	this	approximation	on	the	observed	
data	leads	to	a	weighted	least	squares	problem	making	the	proposed	approach	computationally	
attractive.	
	
In	this	work,	we	tested	the	performance	of	our	method	in	a	study	of	canonical	phase	
transformations	in	Si-Ge	(two-phase	coexistence	to	disorder)	and	Mg-Li	(order	to	disorder)	
alloys	at	various	compositions.	We	compare	the	relative	entropy	results	to	least	squares	with	
leave-one-out-cross-validation	(least	squares	LOOCV)	where	we,	for	Mg-Li,	observe	noticeable	
differences	in	the	transition	temperatures.	Our	results	are	found	to	be	in	better	agreement	
with	guiding	experimental	data.	
	
Bayesian	global	optimization	in	computational	alloy	modeling	
	



This	section	emphasizes	the	exciting	work	on	an	approach	to	adaptively	select	simulations	for	
the	discovery	of	the	ground	state	line	of	binary	alloys	with	a	limited	computational	budget.	
	
First	principles	calculations	are	computationally	expensive.	This	information	acquisition	cost,	
combined	with	exponentially	high	number	of	possible	material	configurations,	constitutes	an	
important	roadblock	towards	the	ultimate	goal	of	materials	by	design.	To	overcome	this	barrier,	
one	must	devise	schemes	for	the	automatic	and	maximally	informative	selection	of	simulations.	
Such	information	acquisition	decisions	are	task-dependent,	in	the	sense	that	an	optimal	
information	acquisition	policy	for	learning	about	a	specific	material	property	will	not	necessarily	
be	optimal	for	learning	about	another.	In	this	work,	we	develop	an	information	acquisition	
policy	for	learning	the	ground	state	line	(GSL)	of	binary	alloys.	Our	approach	is	based	on	a	
Bayesian	interpretation	of	the	cluster	expanded	energy.	This	probabilistic	surrogate	of	the	
energy	enables	us	to	quantify	the	epistemic	uncertainty	induced	by	the	limited	number	of	
simulations	which,	in	turn,	is	the	key	to	defining	a	function	of	the	configuration	space	that	
quantifies	the	expected	improvement	to	the	GSL	resulting	from	a	hypothetical	simulation.	We	
show	that	optimal	information	acquisition	policies	should	balance	the	maximization	of	the	
expected	improvement	of	the	GSL	and	the	minimization	of	the	size	of	the	simulated	structure.	
We	validate	our	approach	by	learning	the	GSLs	of	NiAl	and	TiAl	binary	alloys,	where	to	establish	
the	ground	truth	GSL	we	use	the	embedded-atom	method	(EAM)	for	the	calculation	of	the	
energy	of	a	given	alloy	configuration.	Note	that	the	proposed	policies	are	directly	applicable	to	
the	discovery	of	generic	phase	diagrams,	if	one	can	construct	a	probabilistic	surrogate	of	the	
relevant	thermodynamic	potential.	
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