Europium mixed-valence, long-range magnetic order, and dynamic magnetic response
in EuCuy(Si,Ge;_,)s

K. S. Nemkovski,"» * D. P. Kozlenko,? P. A. Alekseev,>* J.-M. Mignot,®> A. P. Menushenkov,* A. A. Yaroslavtsev,* ©
E. S. Clementyev,”%3 A. S. Ivanov,” S. Rols,” B. Klobes,'” R. P. Hermann,!' and A. V. Gribanov'?

Y Jilich Centre for Neutron Science JCNS at Heinz Maier-Leibnitz Zentrum MLZ,
Forschungszentrum Jilich GmbH, Lichtenbergstrafie 1, 85747 Garching, Germany
2 Frank Laboratory of Neutron Physics, 141980 JINR, Joliot-Curie 6, Dubna, Moscow Region, Russia
3 National Research Centre “Kurchatov Institute”, Kurchatov sqr. 1, 123182 Moscow, Russia
4 National Research Nuclear University MEPRI, Kashirskoe shosse 81, 115409, Moscow, Russia
5 Laboratoire Léon Brillouin - UMR12 CNRS-CEA, CEA Saclay, 91191 Gif-sur-Yvette, France
8 European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
"REC “Functional Nanomaterial”, I. Kant Baltic Federal University,
Newvskogo Str., 14A , 286041 Kaliningrad, Russia
8 Institute for Nuclear Research RAS, 117312 Moscow, Russia
9 Institut Laue-Langevin, BP 156, 38042 Grenoble Cedex 9, France
10 Jiilich Centre for Neutron Science JCNS and Peter Griinberg Institute PGI,
JARA-FIT, Forschungszentrum Julich GmbH, 52425 Jilich, Germany
" Materials Science & Technology Division, Oak Ridge National Laboratory,
P.O. Boz 2008, TN 37831-6064, Oak Ridge, USA
12 Chemistry Department of the Moscow State University,
Leninskie Gory, GSP-1, 119991 Moscow, Russia
(Dated: October 6, 2016)

In mixed-valence or heavy-fermion systems, the hybridization between local f orbitals and con-
duction band states can cause the suppression of long-range magnetic order, which competes with
strong spin fluctuations. Ce- and Yb-based systems have been found to exhibit fascinating physical
properties (heavy-fermion superconductivity, non-Fermi-liquid states, etc.) when tuned to the vicin-
ity of magnetic quantum critical points by use of various external control parameters (temperature,
magnetic field, chemical composition). Recently, similar effects (mixed-valence, Kondo fluctuations,
heavy Fermi liquid) have been reported to exist in some Eu-based compounds. Unlike Ce (Yb),
Eu has a multiple electron (hole) occupancy of its 4f shell, and the magnetic Eu®T state (4f7) has
no orbital component in the usual LS coupling scheme, which can lead to a quite different and
interesting physics. In the EuCus(SizGei—z)2 series, where the valence can be tuned by varying
the Si/Ge ratio, it has been reported that a significant valence fluctuation can exist even in the
magnetic order regime. This paper presents a detailed study of the latter material using different
microscopic probes (XANES, Mossbauer spectroscopy, elastic and inelastic neutron scattering), in
which the composition dependence of the magnetic order and dynamics across the series is traced
back to the change in the Eu valence state. In particular, the results support the persistence of
valence fluctuations into the antiferromagnetic state over a sizable composition range below the
critical Si concentration z. ~ 0.65. The sequence of magnetic ground states in the series is shown

to reflect the evolution of the magnetic spectral response.

PACS numbers: 75.30.Mb, 75.25.-j, 78.70.Nx, 61.05.F-, 61.05.cj, 76.80.+y

I. INTRODUCTION

Rare-earth intermetallic compounds provide unique
opportunities for furthering our understanding of mag-
netism in solids. Systems containing rare-earth elements
(Ce, Sm, Eu, Tm, Yb) with unstable 4f-shells exhibit
challenging physical phenomena, such as Kondo effect,
electron mass enhancement, valence fluctuations, uncon-
ventional (magnetically driven) superconductivity, non-
Fermi liquid state, or critical fluctuations in the vicin-
ity of a quantum critical point.' '® The possibility for
lanthanide-ion magnetism to depart from the canonical
Russel-Saunders+spin-orbit+crystal-field ionic coupling
scheme has been extensively documented since the dis-
covery of so-called “unstable-valence” materials (SmBg,

SmS) back in the 1960s.11717 Considerable experimental
and theoretical effort has been devoted to those mate-
rials over the last decades. Our current understanding
of their properties is based, to a large extent, on the so-
called “periodic Anderson model”, consisting of a narrow
band of localized 4 f electrons subject to strong Coulomb
correlations, hybridized with a broad conduction band of
itinerant sd-electrons. Depending on the hybridization
strength, band structure, or electronic configuration, a
large variety of situations is predicted, which may ac-
count for some of the aforementioned experimental prop-
erties. Non-Fermi liquid behaviors usually occur in the
region of parameter space where magnetic long-range or-
der (LRO) becomes destabilized by spin fluctuations or
alternative “local quantum critical” phenomena,®10:18:19

Most studies in that field have focused on Ce- and Yb-



based heavy-fermion (HF) compounds. In particular the
RT> X5 type (T: 3d or 4d transition metal, X: Si, Ge),
and CeCug_,Au, families, provide numerous examples
of the interplay between long-range magnetic order and
Kondo fluctuations considered in Doniach’s seminal work
on Kondo lattices,?’ leading to the discovery of novel
quantum critical phenomena. In such systems, nearly
trivalent lanthanide ions have single-electron (or -hole)
occupancy of their 4f shells. As the hybridization be-
comes stronger, and the 4f level approaches the Fermi
energy, charge instability sets in and the average rare-
earth valence significantly deviates from +3. The elec-
tronic state can then be described as a quantum superpo-
sition of the 4f™ and 4"~ + [5d-65]' configurations.! In
that regime, long-range magnetic order at low tempera-
ture is normally hindered by short-lived fluctuations, and
a strongly damped dynamical magnetic response results
as seen, e.g., in CePds (Ref. 21) or YbAl3.22

Valence instability has also been found to occur in rare-
earth elements with multiple 4 f-shell occupancies, such
as Sm, Eu, Tm, and possibly Pr. A limited number of ex-
amples are known, among which archetypal Kondo insu-
lators, such as SmBg or YbB15. Recently, the existence of
a HF state in Eu-based compounds has attracted renewed
interest.2372® This behavior has been clearly evidenced,
in particular for the MV compound EuNisPy (v = 2.45-
2.55), from thermodynamic and transport,?> as well as
spectroscopic measurements.?42” Hossain et al.?? have
also reported the observation of Kondo effect with a HF
behavior in the EuCus(Si, Ge;_, )2 series. Those experi-
mental results raise very interesting questions regarding
the applicability to Eu systems of interpretations origi-
nally devised for Ce or Yb. The materials studied belong
to the same structural class of so-called “1-2-2” rare-earth
intermetallics as the above-mentioned RT5Xs systems
(R: Ce, Yb). Eu-based 1-2-2 compounds have actually
been found to exhibit a variety of unconventional behav-
iors: hybridization gap formation in EuNigPs,?* reen-
trant superconductivity under pressure, competing with
long-range Eu magnetic order, in EuFepAsy,?? along with
a valence instability of Eu.3°

In the EuCus(Si;Gej_.)2 series, Eu occurs in a
composition-dependent mixed-valence (MV) state. The
ground-state multiplets of the two parent ionic configura-
tions are "Fyy (nonmagnetic, J = 0) for Eu**, and 257/,
(spin-only, J = 7/2) for Eu?**. In pure EuCuyGey and
the solid solutions with 0 < x < 0.6, transport and ther-
modynamics measurements?? evidence a phase transition
around 15 K, which is ascribed to magnetic ordering with
a magnetic moment estimated3! to approach the theoret-
ical value for Eu?*. Pure EuCusSis, on the other hand,
can be described as an intermediate-valence Van-Vleck
paramagnet. The suppression of magnetic order and the
transition to a Fermi-liquid, HF regime takes place in
a concentration range, near x. ~ 0.65, where the Eu
valence was reported?®3? to deviates strongly from an
integer value. In the Si-rich compounds (z = 0.9, 1.0),
inelastic neutron scattering (INS) spectra®® are charac-

terized by a renormalized Eu?T-like intermultiplet (spin-
orbit) transition, together with an extra magnetic peak
at lower energy, which has been interpreted as an exciton-
like “resonance”, related to the formation of a spin gap
of 20-30 meV below T ~ 100 K.

In this work, we address the question of how the
competing Kondo and magnetic ordering phenomena re-
ported in Ref. 23 compare to those studied previously in
Ce or Yb compounds. The key issue of a possible coex-
istence of long-range magnetic order with a MV state, as
suggested in previous work,?332 is addressed by means of
different microscopic probes (XANES, Mossbauer spec-
troscopy, neutron powder diffraction (NPD)). Evidence is
reported for an unconventional coexistence of long-range
magnetic order and a homogeneous MV state with spin
fluctuations in EuCus(Si,Ge;_; )2, occurring over a sig-
nificant range of Si concentrations x below the critical
value z. ~ 0.65. This behavior is at variance with the
general trend observed in other unstable-valence com-
pounds.

The evolution of the magnetic spectral response across
the EuCus(Si,Gej_.)2 series was studied in a wide
temperature range using INS experiments. In par-
ticular, high-resolution time-of-flight measurements on
the Ge-rich compounds reveal the existence of narrow,
concentration-dependent, quasielastic (QE) signal. On
decreasing the Si concentration, the gradual change in
the magnetic relaxation rate, indicated by the narrow-
ing of this spectral component, together with the strong
renormalization to lower energies of the Eut spectral
contribution, is found to play a key role in the forma-
tion of the unconventional magnetic and HF states in
the vicinity of z..

II. EXPERIMENTAL DETAILS
II.1. Sample preparation

The EuCusy(Si, Ge;_, )2 samples used in this work were
prepared by arc melting from high-purity materials, Si,
Ge, Cu (> 99.99%) and Eu (99.9%). All of them were
annealed at Typny, = 0.8T ¢ (melting temperature) dur-
ing ~ 200 hours. Further characterization by x-ray
powder diffraction showed that all samples crystallized
in the body-centered tetragonal ThCrsSis-type structure
(I4/mmm space group, #139) No impurity phase was
detected within the sensitivity of the method.

I1.2. X-ray absorption and Mossbauer spectroscopy

The valence state of the EuCuy(Si,Gej_.)2 com-
pounds (0 < z < 0.9) was determined by x-ray ab-
sorption near-edge structure (XANES) spectroscopy at
the Eu L3 edge, and by Mossbauer spectroscopy. These
methods are known to probe inter-configurational valence
fluctuations on very different time scales: about 1072 s



for Méssbauer spectroscopy, as compared to ~ 1071° s
for XANES. The XANES measurements were performed
on the A1 beamline of the DORIS-III storage ring (DESY
Photon Science, Hamburg) and at the mySpot beamline
of BESSY-II (HZB, Berlin) in transmission geometry. In
the data treatment, the f® and f7 components were de-
scribed by Lorentzian profiles at their respective centre
positions, whereas photoelectron excitations to the con-
tinuous spectrum could be represented by an arctangent
function. To simulate experimental broadening, the over-
all function was convoluted with a Gaussian distribution.
The experimental temperature range was 7 K < 7T < 300
K.

151Ey  Mossbauer spectra were collected at the
Forschungszentrum Jiilich on a constant-acceleration
spectrometer using a 30 mCi '®'SmF3 source. The ve-
locity calibration was performed with a-Fe at room tem-
perature (RT), using a 5"Co/Rh source. All Mdssbauer
spectra discussed here were obtained at RT on powder
samples, and the isomer shifts (IS) are derived with ref-
erence to EuF';.

I1.3. Neutron powder diffraction

Three EuCus(Si,Ge;_,)2 powder samples with com-
positions = 0.0, 0.40, and 0.60, corresponding to the
part of magnetic phase diagram where magnetic order
is expected to occur, were measured on the hot-neutron
diffractometer 7C2 at LLB-Orphée in Saclay. The sam-
ple masses were 0.66, 0.52, and 0.69 g for the three above
compositions, respectively. Neutron scattering experi-
ments on compounds containing natural Eu are challeng-
ing because of the very large absorption cross section of
Eu (o4ps = 4530 b for 2200 m/s neutrons). However, this
problem can be circumvented by using incoming neutrons
with a relatively short wavelength, A = 1.121 A, from
a Ge(111) monochromator. The samples were prepared
in a slab geometry, with an area of 12 x 45 mm? and a
thickness of approximately 0.3 mm, corresponding to 0.15
mm of bulk material. Sample powder was packed in flat-
shaped thin-foil Al sachets, whose surface was oriented
perpendicular to the incoming monochromatic neutron
beam. The scattering angle range in which intense peaks
are observed was 3.3° < 20 < 40°, which corresponds to
a momentum transfer range 0.3 < Q < 3.8 A=, Under
those conditions, a nearly constant level of the transmis-
sion could be achieved, varying from 75% to 72% in the
entire scattering angle range of interest. For all samples,
diffraction patterns have been recorded at temperatures
comprised between 4 K and 50 K using an ILL-type Or-
ange cryostat. The data analysis was performed using
the Rietveld refinement program FULLPROF.34:3

A fourth sample, with x = 0.75, was not measured
on 7C2 for lack of experimental beam time, but the ab-
sence of magnetic Bragg peaks for this composition was
deduced from the analysis of the elastic signal in the time-
of-flight measurements on IN4C (see Section IIT).

I1.4. Neutron spectroscopy

INS experiments were carried out on the thermal-
neutron time-of-flight spectrometer IN4C at the ILL in
Grenoble, with a resolution of 1.65 meV (FWHM at zero
energy transfer, from the width of the vanadium elastic
line). The measurements were performed using incident
neutrons at energy E; = 36.3 meV (A = 1.5 A), from a
PG(004) monochromator. For that energy, a transmis-
sion factor of about 50% was achieved using thin samples
(~ 0.3 mm of powder). With about 0.8 g of material in
the beam, the typical measuring time for one spectrum
was about 10 hours.

III. RESULTS

IT1.1. XANES and Modssbauer spectra

XANES measurements at the Eu L3 edge between 7 K
and 300 K have been performed on EuCus(Si,Gei_z )2
for x = 0, 0.6, 0.75, 0.9, and 1.0. The spectra for the
three solid solutions are shown in Fig. 1(a). In the Si-
rich samples, the main peak from the Eu®t electronic
configuration exhibits a shoulder at lower energy indi-
cating a sizable Eu?T contribution. With decreasing Si
concentration, the contribution of this Eu?t component
gradually increases to the expense of the Eut compo-
nent, and becomes dominant for x < 0.6. The Eu va-
lence for each composition was derived from the rela-
tive spectral weights by fitting the spectra as explained
in Section II.2). This procedure is based on the as-
sumption that final-state (“shake-up”) effects can be ne-
glected, which has been questioned in previous studies
of Eu intermetallics.?%:37 This point is discussed in more
detail hereafter (Section IV). The obtained composition
dependence of the Eu valence at T' = 7 K and 300 K,
plotted in Fig. 1(c), is quite consistent with the previous
data of Fukuda et al..??

The '%'Eu Méssbauer spectra at RT are characterized,
for all studied concentrations (z = 0, 0.4, 0.6, 0.75, and
0.9) by a single absorption line, as illustrated in Fig. 1(b)
for = 0.4 and 0.9. The position of this line (Mossbauer
IS) is clearly intermediate between those expected for
pure Eu?* and Eu®* electronic configurations (denoted
by arrows in the plot). Its lineshape is well described
by a single Lorentzian function, which implies that the
Eu?t-Eut valence mixing state is homogeneous on the
characteristic time scale of the measurement (~ 1078 s).

From the composition dependence of the IS, it is clear
that the average valence at RT steadily increases with
increasing Si content. To get a quantitative estimate,
one needs to know precisely the positions expected for
pure Eu?t and Eu3T valence states, which actually de-
pend on the unit cell volume, and therefore vary slightly
from one family of compounds to another.?**? Here we
limited ourselves to checking the consistency of the com-
position dependence of the Eu valence derived from the
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FIG. 1. (Color online) (a) XANES transmission spectra in EuCuz(SizGe1—z)2 for = 0.6, 0.75, and 0.9 at T = 7 K. (b) '*'Eu
Maéssbauer absorption spectra for x = 0.6 and 0.9 at RT, fitted to a single Lorentzian profile; arrows indicate the positions
expected for the pure Eu?T and Eu3T electronic configurations, derived from measurements on the isostructural compounds
Eu®TPdsGes (—10.6 mm/s) and Eu*TRusSiz (+0.6 mm/s).?® (c) Bar chart showing the average Eu valence as a function of the
Si concentration derived from the present XANES data for 7' = 7 K (blue) and 300 K (cyan), as well as from the Méssbauer IS
at T = 300 K (pink).The dashed lines with symbols show the values determined by Fukuda et al.3? from XANES at T = 10K
(short-dashed dark-blue line with diamonds) and 300 K (red dashed line with circles).

IS, by normalizing the values obtained for z = 0.6 and 0.9
to those derived from XANES (2.28 and 2.52). The re-
sulting agreement between the two methods in the entire
composition range, shown in Fig. 1(c), is satisfactory.

IT1.2. Long-range magnetic order
For the three measured concentrations z = 0, 0.4,
0.6, the diffraction patterns collected at Tinin ~ 4 K

show clear evidence of magnetic superstructure reflec-
tions, which vanish in the paramagnetic phase (Fig. 2).
These satellites demonstrate that long-range magnetic
order occurs between EuCus;Gey and EuCusSiy 2Geg g.
For x = 0.75, on the other hand, careful analysis of the
elastic signal in our time-of-flight measurements on IN4C
(Section II.4) revealed no Bragg satellites indicative of
magnetic order, whereas such satellites are clearly seen
in EuCusSi; 2Geg g under the same experimental condi-
tions. The present results thus agree perfectly with those
obtained previously from thermodynamic and transport

measurements,?® where the critical concentration of the
long range magnetic order suppression was estimated to
be z. = 0.65.

For the three compositions showing magnetic order,
the superstructure peaks can be indexed using a sin-
gle, commensurate, magnetic wave vector k = (%, 0, 0).
The data refinement points to the formation of a spin
spiral antiferromagnetic (AFM) structure, in which the
Eu magnetic moments located at the 2a Wyckoff posi-
tions, (0, 0, 0) and (%, %, %), in the tetragonal unit cell
of the I4/mmm space group, are antiparallel. The re-
fined ordered magnetic moment is smaller in the two di-
luted systems (5.3 pp) than in pure EuCuzGey (6.7 pp).
In a recent NPD study of undoped EuCusGes, Rowan-
Weetaluktuk et al.*! have reported a magnetically inho-
mogeneous ground state consisting of two incommensu-
rate AFM phases. The reason for this discrepancy is
not known but it might be suggested that even a small
amount (below the limit of detection of NPD) of strongly
dispersed EuO impurity phase, with a very large Eu?*
magnetic moment, could significantly affect the ordered
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FIG. 2. (Color online) Neutron diffraction patterns of
EuCus(SizGei—z)2 (x = 0, 0.4, 0.6) measured at T = 20 K
and 4 K and refined using the Rietveld method. The ticks at
the top of the frame represent the calculated positions of the
nuclear reflections corresponding to the tetragonal I4/mmm
crystal structure (upper row) and the magnetic reflections
corresponding to the propagation vector k = (3, 0, 0) (lower
row).

magnetic state.

II1.3. Neutron scattering spectra

In this section, we present the results of the time-of-
flight INS experiments performed on IN4C. The magnetic
contribution to the inelastic scattering was obtained ex-
perimentally as the difference between the data measured
on the EuCusy(Si,;Gej_; )2 samples and on the nonmag-
netic reference compound LaCusSi; 2Gegg. An example
of the spectra for T'= 3 K is shown in Fig. 3. One sees
that the magnetic signal can be determined reliably even
for the composition EuCusSipsGei o (z = 0.4) at which
its intensity is the weakest.

The magnetic spectra of EuCusSi; 5Geg s (x = 0.75),
measured at T = 3 K, and of EuCusSi; 2Geg s (x = 0.6),
measured at 7' = 3 and 50 K, are shown in Fig. 4 in
combination with data previously collected on MARI at
ISIS33. With an incident neutron energy of Ey = 36.3
meV, the resolution at zero energy transfer was I' = 1.65
meV, FWHM), giving access to the low-energy part of
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FIG. 3. Time-of-flight INS spectra of EuCusz(SizGe1—z)2 at
T = 3 K, measured on IN4C with incident neutron energy
Ey = 36.3 meV (resolution at zero energy transfer I' = 1.65
meV, FWHM). Intensities have been averaged over the scat-
tering angle range 13°— 32°. Data for = 0.6 (red squares)
and 0.4 (blue triangles) are displayed, together with those
(black circles) obtained for LaCus2Sii.2Geo.s, which serve as
an estimate of the nuclear background contribution.

the magnetic response, which is the main focus of this
study and was not addressed in earlier experiments.?3
All spectra have been reduced to @ = 0 according to
the magnetic form factor for the "Fy —7 F, spin-orbit
transition of Eu3*.

The sample with the higher Si content (z = 0.75) is
located above the critical concentration x. = 0.65 in the
phase diagram,?® and thus does not order magnetically.
At the base temperature [Fig. 4(a)], its magnetic re-
sponse contains both inelastic and quasielastic (QE) com-
ponents. The former consists of two peaks, reminiscent
of those observed previously in pure EuCusSis (Ref. 42)
and EuCusySi; §Geg o (Ref. 33), but strongly damped, as
is commonly observed in the HF regime,*3 4% to which
this compound is thought to belong. The magnetic QE
signal has a Lorentzian lineshape with a full width at half
maximum (FWHM) T' of about 1.5 meV. Its existence
contrasts with the spin-gap response observed®342 below
100-150 K for compositions x > 0.75, and reflects a quali-
tative change in the energy spectrum of spin fluctuations.
With increasing temperature, the QE linewidth gradu-
ally increases to exceed 3 meV at 100 K. This broad-
ening, however, remains limited in comparison with the
linewidths of 10 meV or more observed above 150 K in
the Si-rich compounds®34? [Fig. 5(a)].

At lower Si concentrations (x = 0.6 < x.), one enters
the long-range magnetic order region of the phase dia-
gram. At T = 3 K [Fig. 4(b)], no evidence remains for the
two broad excitations previously observed above 10 meV,
and the main component of the magnetic response now
consists of a rather narrow QE signal (I" ~ 0.3 meV). The
asymmetry visible on the experimental spectrum is due
to the detailed-balance factor. On heating, the linewidth
increases to I' = 0.8 meV at 50 K and 1.3 meV at 100
K. An extra peak near 2.4 meV, observed only in the or-
dered magnetic state below T ~ 17 K, likely reflects the
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FIG. 4. (Color online) Magnetic neutron scattering spec-

tra of EuCusSi15Geos (z = 0.75) at T = 3 K (a), and of
EuCusSi; 2Gep.s (x = 0.6) at T'=3 K (b) and 50 K (c), com-
bined from those measured in present experiment on IN4C
at Fo = 36.3 meV (-10 < E < 20 meV) and previous study
on MARI at ISIS** at Ey = 100 meV (20 < E < 40 meV).
Black circles: experimental values after vanadium normaliza-
tion, background correction, and subtraction of the nuclear
(incoherent elastic and phonon) scattering, estimated from
measurements of nonmagnetic LaCu2Siy.2Geg.g. Lines: (solid
red) total magnetic signal; (dashed-dotted green) quasielas-
tic line fitted to a Lorentzian lineshape (temperature factor
included), convoluted with a Gaussian resolution function);®
(dashed blue and dark blue) inelastic response. Insets: same
data on a larger intensity scale, further showing the elas-
tic peak with a vanadium lineshape (in magenta, dashed).
This residual nuclear scattering signal results from the fact
that the large nuclear incoherent scattering cannot be deter-
mined with sufficient accuracy from the La reference com-
pound. Nonetheless, the value obtained is consistent between
the different samples.

a In frame (c), the red and green traces are superimposed.

existence of a magnon branch with a gap at the ordering
wave vector g4 . This signal is rather weak and narrow,
and merges into the magnetic excitation continuum for
T > Tn. For EuCusSipsGey.o (z = 0.4, not presented in
Fig. 4) the spectra are quite similar to those for x = 0.6,
apart from a further reduction of the QE linewidth at
low temperature, estimated to be less than 0.25 meV.

It is interesting to follow the evolution of the QE
linewidth as the Eu valence increases with increasing
Si content. To avoid complications due to the spin-
gap formation in the Si-rich compounds at low tem-
perature, we focus on the QE response in the temper-
ature region 100 < T < 200 K. The values of T' de-
rived from the present data are plotted in Fig. 5(a),
together with those obtained previously®® for EuCusSis
and EuCusSiy gGeg.2, as a function of the Si concentra-
tion z. For x = 0.4, the linewidth is too small to be
measured precisely within instrumental resolution. It re-
mains low, of the order of 1.5 meV, in the concentration
range 0.4 < x < 0.6, then increases to 5 meV on entering
the Kondo/HF regime (z = 0.75). Finally a dramatic
rise, by a factor of five, takes place in the narrow inter-
val 0.9 < z < 1, leading to a value of about 22 meV
in EuCusySiy . This highly nonlinear dependence reflects
the dependence of the average Fu valence on the Si con-
centration plotted in Fig. 1(c), supporting the idea that
the parameter controlling the evolution of the spin dy-
namics across the series is the Eu valence state. At low
temperature, where the QE signal exists, its width never
exceeds 2-3 meV but, in the HF regime (z = 0.75), this
relatively narrow signal coexists with quite broad inelas-
tic peaks (linewidths of the order of 10 meV) at energies
comprised between 10 and 20 meV.

The integrated intensity of the QE signal for all mea-
sured Si concentrations and temperatures is summarized
in Fig. 5(b) as a function of the Eu valence. As implied
by Fig. 1(c), lower valence values for a given composition
correspond to higher temperatures. For the Si-rich com-
pounds (z = 0.9 and 1.0), data points (shown as shaded
symbols) corresponding to spectra measured in, or close
to, the spin-gap regime are affected by the transfer of
spectral weight from the QE to the inelastic component
and therefore irrelevant to the present argument. In the
spin-fluctuation regime, the general trend is tentatively
represented by the pink trace. It appears that, on both
ends of the plot, the measured intensity is close to that
expected from the cross section calculated for the Eu?™
fraction, whereas some reduction seems to occur in the
intermediate region, where the valence strongly mixed
(HF regime).

IV. DISCUSSION

IV.1. Eu mixed valence

The results presented in Section III.1 confirm the pro-
nounced composition and temperature variation of the
Eu valence in this series of compounds, as was em-
phasized in previous studies.?332 However, quantitative
determinations using different experimental techniques
have remained controversial. Therefore, before discussing
the dependence of the magnetic properties on the de-
gree of valence mixing, one needs to consider possible
problems in the interpretation of XANES and Mossbauer
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FIG. 5. (Color online) (a) Concentration dependence of the magnetic quasielastic linewidth (FWHM) at 7' = 100-200 K (see
text) in the EuCusz(SizGe1_z )2 series. An approximate valence scale, derived from the XANES and Mossbauer results (see
Fig. 1 and Ref. 33), as discussed in Section IV.1 below, is indicated on the upper horizontal axis. (b) Integrated intensity of
the quasielastic signal as a function of the average Eu valence derived from XANES; the values have been normalized, for each
temperature and composition, to the scattering intensity expected from the estimated Eu®" fraction. The pink shaded trace
emphasizes the general trend in the high-temperature limit (see text for details). In (a) and (b) the colored regions represent
the different regimes occurring at low temperature; from right to left: (i) spin-gap, (ii) HF, (iii) long-range magnetic order
(with a high-temperature paramagnetic regime characterized by normal Korringa-type thermal relaxation).

data.

One striking point in the XANES spectra is the ex-
istence of a sizable Eu?t-like component for all compo-
sitions, including pure EuCusGes, in which the implied
deviation from divalency is far beyond the uncertainty of
the method. This result, however, seems to contradict
the overall “Eu®*-like” behavior observed in bulk prop-
erties (entropy, magnetization). This discrepancy was al-
ready noted in the paper by Fukuda et al.,32 but no expla-
nation was proposed. It has been argued, in earlier x-ray
absorption studies of other Eu intermetallics such as
EuPdsP; (Ref. 36) or Eu 1-1-1 noble-metal pnictides®?,
that final-state effects can produce an artifact peak, sim-
ulating a Eu?T contribution, in the XANES spectra of
purely divalent compounds. In such a process, one elec-
tron from the 4f7 shell is partially promoted (“shake-
up”) into one of the ligand orbitals, following the cre-
ation of a 2p core hole by the incoming photon. This is
more likely to occur in systems with a higher degree of
covalency, as may be the case close to a valence insta-
bility, where 4f states hybridize with ligand orbitals.*6
However, there is no consensus so far on the possible mag-
nitude of such effects in one given material. On the other
hand, it is known that some divalent 1-2-2 Eu compounds
(EuFepAsa, Refs. 30 and 47, or EuCogAsy, Ref. 48) ex-
hibit a single Eu?* peak under normal conditions, while
they develop a two-peak XANES structure when a MV
state is produced by means of hydrostatic or chemical
pressure. The role of final-state effects in that class of
systems has been questioned by Réohler’® and remains

partly unsettled.

Quantitatively, one can note that all deviations from
divalency ascribed to final-state effects in Ref. 36 (frac-
tional Eu3™ intensity of approximately 15% in EuPd,Ps),
Ref. 37 (apparent valence comprised between 2.12 and
2.22 in 1-1-1 compounds), and Ref. 46 (deviation of 0.09
to 0.12 in the EuPds_,Au,Siy series) are weak in com-
parison with those observed in the EuCus(Si,Gej_z )2
compounds, especially for z > 0.4. Furthermore, for
x = 0.75 and, notably, for z = 0.6 < z., the temperature
dependence of the valence determined from XANES (also
observed by Fukuda et al.3? for the same composition,
and even faintly for z = 0.5) supports a true valence-
mixing effect.

In Section III.1, the Md&ssbauer results were used pri-
marily to demonstrate the homogeneous character of the
MYV state. Valence determination based on the IS, on
the other hand, is problematic. The main problem comes
from the lack of reliable di- or trivalent reference system.
In the present work, for x < 0.75 we found IS comprised
between —9.8 and —7.5 mm/s, with IS = —8.6 mm/s for
x = 0.6. Michels et al.3", have reported isomer shifts
near —10.7 mm/s or below for divalent EuAuP and Eu-
CuPt, although they mention relative velocities covering
a wide range between —12 and —8 mm/s for Eu?* in
other metallic compounds. The values found here are
systematically larger than the average estimate for diva-
lent Eu, though still in a range compatible with a pure
Eu?* state.

Based on the literature data for the compressibility



of EuCusSis,?° the expansion of the lattice due to the
substitution of Ge for Si,?® and the typical pressure de-
pendence of the Eu isomer shift of 10~ ?mm-s~!-kbar~!
(Ref. 51), we have estimated the possible change in the
Eu isomer shift due to the difference in lattice param-
eters within the EuCus(Si,Gej_,)s series. We have
found that the expected change in the isomer shift for
EuCusSip gGer o and EuCusSiy 2Gegg with respect to
EuCuyGey is about 0.35 and 0.45 mm/s, respectively,
whereas the values obtained experimentally are 0.7 and
1.2 mm/s, respectively, are at least twice higher. There-
fore even if EuCusGesy is assumed to be divalent, this
suggests that other compositions are mixed-valent. Al-
though this difference cannot be regarded as a conclusive
proof, it lends support to our assumptions, at least for
x > 0.6.

In summary, we believe that the present XANES and
IS data consistently point to the existence of a MV state
of Eu in EuCus(Si,Ge;_,)2 for £ = 0.6 and above, in
particular in the region of interest, near x = x., where
competing Kondo, HF, and long-range-order phenomena
have been reported to occur.?? The large trivalent con-
tribution in the XANES spectra, as well as its signifi-
cant temperature dependence, are unlikely to result from
shake-up effects. This regime probably extends to the
Ge-rich range up to 1 —x = 0.6. For even higher Ge con-
tents, as well as in pure EuCusGes, it is difficult to decide
whether the residual (but significant) trivalent character
indicated by the present, as well as Fukuda’s3? earlier
XANES results, is entirely due to experimental artifacts.
This point is not critical to our discussion of magnetic
properties, and remains open for future studies. In the
following, we will not attempt to correct the valence val-
ues obtained in Section ITI.1 and use the correspondence
between valence and composition as displayed in Fig. 1.

IV.2. Dynamic magnetic response

Starting from pure EuCusGes, the substitution of Si
causes a reduction of the ordered Eu magnetic moment,
as shown by the neutron diffraction results. This mo-
ment reduction can be ascribed to the approach of the
strong spin fluctuation regime (z > 0.6), which gradually
suppresses Eu long-range magnetism and correlates with
the increase in the average Eu valence evidenced from
XANES experiments.

Key features of the spin fluctuations dynamics devel-
oping in the MV state are revealed by neutron spec-
troscopy. In a wide composition range (0.4 < z < 0.75),
a pronounced QE peak is observed in the magnetic spec-
tral function, in contrast with the spin-gap behavior
(A =~ 20-30 meV) developing at low temperature in pure
EuCusSis (z = 1) and EuCusSi; sGego (z = 0.9). In
Refs. 33 and 42, the latter compounds were shown to
exhibit an inelastic response at 7' = 5 K consisting of
two excitations, which were ascribed to a renormalized
Eu?t spin-orbit excitation “Fy — “F; and a resonance-
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FIG. 6. (Color online) Magnetic phase diagram for
EuCus(SizGe1—z )2 based on the original data of Ref. 23 (solid
brown line showing the phase boundary between the AFM
and paramagnetic states) and those obtained in the present
work. Triangles indicate values obtained from our NPD ex-
periments and correspond to samples composition used in the
present work. The yellow-colored area, extending to z = 0.4
and encroaching upon the AFM region, corresponds to the
spin-fluctuation regime in which a QE response is observed,
and the green-colored area to the spin-gap regime. The va-
lence values indicated on the upper scale are those derived
from the XANES data at T'= 7 K of the present work and of
Ref. 33.

like magnetic mode, respectively.

Above the temperature of the spin-gap suppression (on
the order of 100 K), a very high spin-fluctuation rate was
observed, as already noted above. With increasing Ge
content (z decreasing from 1 to 0.75), the inelastic signal
broadens and shifts to lower energies. In the region of
maximum valence mixing (average Eu valence v ~ 2.5
at T = 10 K near x = 0.65), a QE signal coexists, at
low temperature, with overdamped inelastic peaks [see
Fig. 4(a) for x = 0.75]. For = 0.6 and below, only the
QE response exists (apart from a magnon-like component
below Ty seen in Fig. 4(b) for x = 0.6). We stress that
no (Eut)-type inelastic peak was observed here in the
spectra for x = 0.6 (near 45 meV), and = = 0.4 (up to
30 meV).

From these results and the discussion given in the pre-
vious Section, one is led to the important conclusion that
the long-range order developing below z., e.g. for x = 0.6
in EuCusSi; 2Geg g, cannot be based on the magnetism
of the Eu?T ionic component alone, but represents a gen-
uine property of the MV state, whose character gradually
changes, with decreasing x, from a nonmagnetic singlet
to a degenerate spin-fluctuation state. In view of gradual
evolution observed, as a function of composition, in the
AFM region, the same possibly applies to lower Si con-
centrations as well. Obviously, the MV state does not
preclude the occurrence of long-range order, and might
even provide additional coupling channels whereby this
order can develop.

The results are mapped out on the magnetic phase di-



agram for the entire EuCuy(Si,Gej_, )2 series (Fig. 6).
The Néel temperatures obtained from neutron diffrac-
tion, represented by triangles, agree perfectly with those
reported in the previous work,?? and the observation of
magnetic superstructure peaks further confirms the long-
range character of the order. In particular, we note the
unexpected robustness of the AFM ordered state, char-
acterized by an initial increase in the Néel temperature
from 15 to 19 K between z = 0 and ~ 0.4, followed by
a moderate decrease to 17 K at = = 0.6, despite the re-
duction of the Eu magnetic moment likely due to the
enhancement of spin fluctuations [Fig. 5(a)]. The order
observed at the composition z = 0.6 is of particular inter-
est because it corresponds to a regime in which a Kondo
behavior has been clearly established??, with a Kondo
temperature (Tx ~ 10 K) comparable to the Néel tem-
perature. The absence of long-range order in the IN4C
data for z = 0.75 agrees with the value of z. = 0.65
reported in Ref. 23, and confirms that the drop of Ty
to zero occurs precipitously in a narrow concentration
interval, just above = = 0.6.

The green-colored area shown in Fig. 6 for Si concen-
trations above z ~ 0.8 corresponds to the formation of
the spin-gap in the excitation spectra at low tempera-
ture. The yellow-colored area denotes the existence of a
detectable QE magnetic signal in the INS spectra. The
gradual evolution of the dynamic response as x decreases
provides further insight into the formation of the spin-
fluctuations state near x.. Above x = 0.8, the low-
temperature behavior is dominated by the suppression
of the low-energy spectral weight in the spin-gap range
(E < 30 meV) below ~ 150 K, associated with the forma-
tion of a Eu singlet ground state.?? As = decreases, the in-
elastic components renormalize to low energies, as shown
in Ref. 33, eventually leading to a pure QE response at
T =50 K > Ty for x < 0.6. The gradual appearance
of the QE signal around x = 0.6-0.75 reflects the recov-
ery of magnetic moments in the ground state (instead of
the singlet ground state with a spin gap for z > 0.8).
This can be viewed as the necessary condition for both
the enhancement of spin fluctuations and the tendency
to form the long-range ordered magnetic state. Around
x = 0.75, the decrease (in comparison with higher x) of
the spin-fluctuation energy to the range of a few milli-
electronvolts allows the HF state to be formed, leading
to the first known case of a HF behavior occurring in a
strongly MV material (around v ~ 2.5-2.6, according to
XANES).

The competition between, and/or coexistence of, long-
range magnetic order and strong spin fluctuations has
been extensively studied in Ce or Yb-based intermetallic
compounds, a number of which** 4% belong to the same
1-2-2 family as EuCus(Si;Gej_z)2. In such compounds,
the lanthanide ion occurs in a nearly trivalent HF state,
with a magnetic (degenerate) ground state defined by the
crystal field splitting, and the properties are well under-
stood in terms of the competition between the Kondo
effect and RKKY exchange interactions, as suggested in

Doniach’s?? and subsequent models. Strongly MV Ce
compounds, on the other hand, do not exhibit magnetic
order. The latter scenario is in strong contrast with the
present situation, where the AFM order extends far into
the MV regime, and its suppression occurs close to one-
to-one mixing of the Eu?* and Eu?* states.

A clue to clarifying the similarities and differ-
ences between “classical” CeTb X, systems and MV
EuCusy(Si;Gej—;)2 may be given by the magnetic spec-
tral response observed in the present INS study. It is
important to note that, both in the case of Ce and Yb,
one of the electronic configurations involved in the va-
lence fluctuation is nonmagnetic not just as a result of
Russel-Saunders and /or spin-orbit coupling, but because
its 4f shell is either empty (Ce) or full (Yb). In Eu®*,
on the other hand, the ionic ground-state multiplet is in-
deed a singlet ("Fp) but, as revealed by the INS spectra,
magnetic (spin-orbit) excited states exist at relatively low
energies, less than 40 meV in pure EuCusSiy. As Ge is
substituted for Si, this energy further decreases, while
spectral weight is gradually transferred to the QE re-
gion. Meanwhile, the spin fluctuation rate, evidenced
by the linewidth of the QE signal at high temperature,
decreases considerably. The emergence of a degenerate
ground state due to the renormalization to low energies
of the inelastic part of the Eu spectrum, as well as the
slowing down of spin fluctuations, may restore the con-
ditions for Kondo-type (s-f exchange) spin dynamics in
competition with long-range magnetic order. This may
also explain why, contrary to the Ce case, the strongly
MYV character does not preclude the emergence of the
magnetic state.

That magnetic order can develop in the presence of
strong valence fluctuations, provided magnetic degrees
of freedom exist in both valence states, was well doc-
umented, back in the 1980s, for the rock-salt structure
chalcogenide compound TmSe. Despite the Tm valence
being strongly noninteger (v ~ 2.58, almost tempera-
ture independent), type-I AFM order was found to set
in below Ty = 3.45 K for stoichiometric samples®?54.
Thulium shares with europium the multiple electron oc-
cupancy of its 4f shell, unlike cerium and ytterbium,
which have only one 4f electron (Ce) or hole (Yb) in
their trivalent ionic states. On the other hand, the pe-
culiar MV behavior of TmSe is generally ascribed to
the fact that the ground state multiplets of both Tm?2*
(4f137 2}7"7/27 Deft = 45MB> and Tm** (4f12a 3H6a
Pett = 7.5up) configurations are magnetic (neglecting
crystal-field effects®®, which are likely wiped out by the
valence fluctuations). This ingredient is central to sev-
eral of the models®®™%° proposed to explain the prop-
erties of TmSe and, obviously, cannot be carried over
to EuCuy(Si,Gei_, )2 where, as already noted, valence
mixing involves one magnetic Eu** (J = 7/2) and one
non-magnetic Eu®* (J = 0) ionic configurations.

The magnetic spectral response of TmSed6:60
also differs significantly from that observed in
EuCus(SiGer_5)2 below the critical concentration.



Above T = 100 K, a rather broad (I' ~ 10 meV,?6:69
comparable to I' = 22 meV in EuCuySis in the same
temperature range), temperature-independent QE
response is observed, reflecting the existence of fast
spin fluctuations but, upon cooling, the QE linewidth
decreases with a crossover to a linear temperature
dependence, I'/2 ~ 0.7kgT, for T — 0. Simultaneously
an inelastic response appears, whose energy increases
on cooling to reach about 10 meV at T' = 10 K. The
intensity of the latter mode exhibits a strong periodic @
dependence, with a maximum at the fcc zone-boundary
X point. Below Ty, the QE scattering is suppressed.

In 1-2-2 intermetallics, electron states of different sym-
metries (s, d) can occur at the Fermi level®:62. In
TmSe, on the other hand, the only electrons populat-
ing the conduction band are those provided by the hy-
bridization with the 4f orbitals. As a result, TmSe is
known to exhibit unique Kondo-insulator properties at
low temperature,®® whereas the present compounds re-
main metallic. Accordingly, the suppression of the QE
signal due to spin fluctuations in the AFM state be-
low T8 is at variance with the behavior observed here
in EuCus(Si;Ge1—_z)2, as well as in Ce-based HF com-
pounds.

Theoretical attempts to specifically address the multi-
ple occupancy of the 4f shell in MV systems are rather
scarce. Apart from those applicable to TmSe, which rely
on the existence of two magnetic valence states, and are
therefore not directly relevant to the case of Eu, one can
mention the work of Bulk and Nolting®*, developed in
connection with early experimental results on Eu sys-
tems (elemental Eu, Eu[Pd,Aul3Siz). Their extended
“s—f model” considers, in addition to the hybridization,
V', between the 4 f and the conduction band states, an in-
dependent, non-Kondo, s—f exchange interaction J, as-
sumed to be positive (i.e. ferromagnetic) in the case of Eu
compounds. The AFM order is then ascribed to a direct
exchange coupling J{*? between 4f magnetic moment at
neighboring Eu sites. This model accounts for the pos-
sibility of developing AFM order inside the MV regime.
It also predicts, for some parameter range, that the Néel
temperature can increase with increasing V', as observed
in the low-z region of the EuCus(Si,Ge;_,)2 phase di-
agram. However, the clear observation of a Kondo-type
behavior in the electrical transport coefficients,? seems
to rule out the predominantly FM s-f coupling assumed
in that model.

In a recent paper,?® Hotta has proposed an interest-
ing theoretical basis to explain how the 4f7 state of
Eu?* can give rise to a Kondo phenomenology (includ-
ing quantum criticality controlled by an external param-
eter) very similar to that found in nearly trivalent (4f%)
Ce compounds. The key argument is that, for realistic
values of the spin-orbit coupling, a correct description
of atomic 4f states cannot be achieved in terms of the
standard Russel-Saunders scheme. The real situation is
intermediate between LS and j—j couplings and, even
for a relatively weak spin-orbit interaction, Aso/U ~ 0.1

10

(U: Hunds rule interaction), i.e. far from the pure j—
j regime, this has to be taken into account. The main
result reported for this regime is the observation of a
“single- f-electron”-like behavior, due to 6 electrons be-
ing accommodated in a fully occupied j = 5/2 sextet
(j = 1—s), while one single electron occupies the j = 7/2
octet (j = 1+ s). The latter state can account for a
RIn2 step in the entropy, a (Yb-like) I'v—I'7—I's crystal-
field scheme, as well as for Kondo effect. The model
has been applied?®>?6 to the HF behavior reported in
EuNiyPs. The EuCus(Si,Gei_, )2 series could provide
a second useful benchmark for these ideas. To this end,
Hotta’s approach should be extended to take proper ac-
count of the degenerate conduction bands (multi-channel
Kondo?), and the consideration of valence fluctuations
affecting the Kondo regime. It has also been suggested
that the treatment of MV in Eu should consider “inter-
site” Coulomb repulsion (& la Falicov-Kimball®®) between
local and conduction electrons, which is not included in
the Anderson model.

The evolution of the spin dynamics observed in the
present study on approaching the critical concentration
provides guidelines along which further theoretical work
should be undertaken. A possible starting point is the
previous description®? of the magnetic response for pure
EuCusSis and the Si-rich solid solutions in terms of a
renormalized spin-orbit excitation associated with the
parent Eu®t configuration, with an extra magnetic exci-
ton mode below the spin-gap edge, as proposed in Ref. 66.

V. CONCLUSION

In summary, the EuCus(Si,Ge1_;)2 MV system ex-
hibits an unusual ground state involving a coexistence of
long-range antiferromagnetic order and spin fluctuations,
observed over a significant concentration range. The crit-
ical value z. = 0.65 corresponds to the suppression of the
magnetic order and the appearance of a HF behavior.
This observation is at variance with the typical behavior
found in Ce- and Yb- based 1-2-2 HF systems, and re-
quires further theoretical understanding. The analysis of
the inelastic and QE magnetic contributions to the Eu
magnetic spectral function provides clues as to the phys-
ical mechanism of the crossover from spin fluctuations to
magnetic order, and the origin of the HF state in this un-
conventional situation. In particular, we emphasize the
evolution of the magnetic response of MV Eu, as the Ge
content increases, from the spin-gap spectrum found in
pure EuCusSis to a degenerate ground state with moder-
ate spin fluctuations. This evolution takes place through
a renormalization of the magnetic excitations to lower en-
ergies and the transfer of spectral weight to the quasielas-
tic component. This spectral rearrangement favors the
formation of a HF ground state in the corresponding in-
termediate region of the phase diagram. Below T, spin
fluctuations extend into the long-range order state. An
important open question, in analogy with the Ce- and



Yh-based 1-2-2 HF systems, is the possible existence of
quantum criticality near the AFM onset. Addressing this
question by means of neutron scattering would require a
detailed single-crystals study of the Q dependence of the
fluctuations.
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