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Introduction 

  Fossil fuels now dominate human energy consumption. However, the burning of 
fossil fuels brings serious environmental pollution and exacerbates the greenhouse effect. 
Clean, affordable, and renewable energy sources are urgently needed to satisfy the 10s of 
terawatts (TW) energy need of human beings. Solar cells are one promising choice to replace 
traditional energy sources. Each year, the sun deposits 120,000 TW of power onto the surface 
of the Earth, far more than the 13 TW of total power currently used by the planet’s 
population.1  Current solar cell technology is expensive to assemble, and often results in 
fragile products.  Additionally, the Fraunhofer Report has suggested that the average solar 
cell takes between 1 and 2.5 years to compensate for the energy that was used to build it. 
Assuming a three-fold reduction in manufacturing cost, it is unlikely that the cost will reduce 
to a truly marketable level. Current solar cells are required to be 100 µm thick and require 
high quality silicon wafers; these must be electrically connected in a batch process.  Direct 
band gap semi-conductors represent an alternative approach because of their relatively low 
cost of manufacturing (3-5 fold cheaper).  However, these materials require rare elements 
such as indium and tellurium. Ultimately, the scarcity of these metals will limit the ubiquity 
of their corresponding solar cells. 

 

Figure 1. The Earth’s energy budget – a graphical view on the various types of energy 
entering and leaving the Earth.2 
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A more attractive alternative is materials based upon carbon – organic photovoltaics 
(OPVs).  Organic photovoltaic cells (OPVs) are an emerging technology because of their 
many advantages: easy fabrication, low cost, lightweight, diverse produced materials, and 
device flexibility.3 The materials that make up OPVs are often crystalline small molecules or 
amorphous polymers.   These materials are comprised of some of the most abundant elements 
on the planet. Deposition typically occurs quickly at room temperature, and atmospheric 
pressure, there is the potential for manufacturing them roll to roll. Optimizations of 
manufacturing processes and device performance could result in OPVs with 15% PCEs at a 
cost of circa $30 m–2 in the next decade.  

The next decade of experimental and theoretical research will overcome the major 
challenges of relatively poor efficiencies and limited lifetimes of OPVs. Our computational 
approach has paved the way towards the exploration of vast areas of chemical space via an in 
silico screening technique. We have fine-tuned molecular structure and frequently navigate 
areas of chemical space where undesirable properties are minimised, while desirable 
properties are enhanced. We combine chemical intuition with powerful theoretical techniques 
to identify top materials. We have established theory-experiment feedback loops with the 
Briseno (University of Massachusetts, Amherst) and Bao (Stanford) groups. 

Achievement 1: Public Release of CEPDB 

In June 2013, the CEPDB3 – a database containing 2.3 million results – was released 
to the public as part of the White House Materials Genome Initiative.4 Since that time, the 
database has been expanded to include 4.3 million molecules and 65 million calculations. The 
CEPDB is hosted on www.molecularspace.org and is a user-friendly interface for exploring 
the dataset by ranking, filtering, and querying molecular properties.  The CEPDB can also 
accept new experimental results (i.e. crystal structures) to be queried by the user. Electronic 
structure calculations of CEPDB molecules can be benchmarked against the density 
functionals employed in the CEP. We have also evaluated the numerical stability of the 
algorithms underpinning their implementation can be undertaken.  We have coordinated our 
efforts with the developers of the quantum chemistry program Q-Chem,5 which allows us to 
have an influence upon the development of state of the art software. 

Achievement 2: Update of CEPDB website 

In 2015, the CEPDB website was updated to provide a better user experience and 
more capability.  The new website provides better integration with ChemDoodle to allow 
users to draw molecules without having to input smiles strings.  In addition, the site allows 
for similarity searches using cutting edge locality sensitive hashing to find similar molecules.  
Users can download optimized geometries to speed up higher-level calculations with the pre-
optimized geometry starting point. Figure 2 shows four screenshots from our website, 
www.molecularspace.org and searching capabilities, therein. 

        



	
   3	
  

 

Figure 2. A typical screen-shot showing the CEPDB website front page (top left), search 
screen (top right), a detailed view of a molecule and its properties (bottom right), and an 
example of a unique plot of results (bottom right).  

Achievement 3: Continued Expansion and Updating of the Harvard Clean Energy 
Project and Database 

The Harvard CEP is our vehicle for the high throughput virtual screening of materials 
to identify donor materials for high efficiency OPV devices.6 In addition to computed 
properties, output files from the calculation (in plain-text and binary formats) are stored and 
linked to the relevant entries in the database. This large database utilizes an extensive file 
store, featuring a capacity well over 800 Tb. The IBM World Community Grid powers our 
vast computational undertaking.7 It is a distributed computer framework, where volunteers 
donate computational resources via a screensaver mechanism. We processed 70,000 
conformations a day, which is equivalent to 25,000 CPU years. Figure 3 shows graphical 
representations of runtime (left) and number of results (right) as a daily rate, a 30-day rolling 
average, and a cumulative figure.   
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Figure 3. Performance of the World Community Grid with respect to runtime (left) and 
number of results returned (right) 

Figure 4 shows a graphical representation of our approach to this research. We depend 
on a tight feedback loop between our theoretical results and experimental collaborators.  Our 
calculated electronic structures are related to observable physical properties with the 
Shockley-Queisser model known as the Scharber model.9 To minimize systematic errors 
introduced by the functional and basis set chosen, we average over a range of calculations, 
and adjust these averaged results based upon a calibration scheme derived from 
experimentally reported data.   

 

Figure 4. A positive feedback loop describing the principles used in the design of novel OPV 
materials 

The Scharber model predicts power conversion efficiency (PCE) as a function of the 
frontier molecular orbital energies of electron donor and acceptor materials. As employed 
here, it is a metric by which the ability of a molecule to donate electrons can be assessed. 
Choosing which region of chemical space to navigate is clearly challenging due to the nearly 
infinite possible molecules. We seek to improve the infrastructure to facilitate this form of 
discovery.  
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The current SQL database is not conducive to highly structured queries, especially 
when moving between tables.  The return time to query the best performing molecule is ~40 
minutes.  Machine learning requires a greater diversity of information, and a means for fast 
querying of data structures.  In order for this to be made possible, a restructuring of the 
database backend to the CEP was necessary.  We are now in the final stages of implementing 
a much more sophisticated scheme based upon a noSQL framework, powered by MongoDB.  
This more flexible system allows a great deal more data to be stored and queried quickly, 
since it is easy to add additional fields when needed without a significant restructure.  This 
increased flexibility will also aid in the full utilization of our data, not just by us, but also by 
collaborations; our ability to alter the structure in an agile manner will allow easy facilitation 
of a range of queries and storage request.  Our new database will, in addition to an increase in 
the amount of information stored from calculations, allow the storing of a large number of 
molecular descriptors and fingerprints which will aid our development of pre-screening 
models to increase efficiency.   

In contrast to the relational database model (RDBM) of SQL solutions, MongoDB 
uses a document-orientated approach for storing data.  Documents are comprised of key-
value pairs, and can be thought of as similar to JSON objects.  The value returned from a key 
lookup can be another document; this is known as embedding.  This support for embedding 
greatly reduces I/O activity on a database since it reduces the need for JOIN calls, and hence 
can greatly increase performance.  It is clear that the choice of when to embed a document 
will play a large role in the overall performance of the solution; the overall structure of the 
database will be discussed in detail.  In determining when to embed, and how to embed, the 
nature and frequency of querying were examined, with preference given to high-performance 
solutions, with helper functions implemented to aid the user in cases when the solution seems 
counter intuitive. Figure 5 shows a view of a molecule stored within our MongoDB storage 
solution; each document has a related embedded metadata document, and this has two main 
uses.   
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Figure 5. A simplified view of a molecule, as held in the MongoDB structure.  Arrows 
represent bi-directional links between documents, and are embedded within the parent and 
child document. Additional MetaData is embedded within documents, which improves 
performance by reducing the number of steps required in a query. 

This metadata stores information relevant to the calculation or structure, (e.g. level of 
theory used, program version the calculation was performed with) which allows for easy 
reproduction and validation of results.  Furthermore, the metadata allows a query to relate 
different documents to each other, thus improving amalgamated querying. The parent 
fragments document represents a good example of tuning the structure of the database to the 
nature of the querying.  Initially these documents were embedded within the Molecule 
document, which represents an intuitive storage solution.  It is common to try and link these 
fragments, which are produced in the molecular generation, to their corresponding molecule 
documents.  Searching within documents embedded within a list represented a major 
performance hit, and so these fragments were promoted from embedded document to 
document, and links to these documents were stored within the original molecule documents.  
This solution has shown significant speedup, for all queries, which require the engine to 
return a full document, since the size of each of these is now reduced.  
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Achievement 4:  Improvement to SMARTS based molecular generation methods, and 
integration to new database structure. 

The ability to move from fragments to libraries of molecules is an essential part of the 
CEP workflow.6 We have implemented a python based solution based around the RDKIT 
module8 to allow the rapid combinatorial generation of molecules from fragment sets. 
Projected timings based upon generation of approximately half a million fragments suggest 
that our new implementation reduces the time for generation from approximately one month 
to just one day.  In addition to an improvement in speed of the solution previously employed, 
we have implemented a scheme that allows ‘protection’ of reactive sites.  This affords a much 
finer control over how the combinatorial molecule generator explores space – for instance we 
can now easily generate molecules, which are functionalized in a symmetric manner, which 
has lead to improved synthesizability of generated molecules. 

Our molecular generator is also capable of storing a wide range of meta-data 
associated with each stage of the generation.  This affords the potential for more sophisticated 
data analysis, leading to a greater understanding of factors that affect performance of the 
materials in OPV devices.   This data is integrated into our new database structure, 
demonstrating how the flexibility of our data model can improve understanding of the factors, 
which influence the performance of our candidate molecules.   We anticipate further 
improving the molecular generator with a Monte Carlo type routine with an acceptance 
criteria based upon statistics built from our current database.   

Achievement 5: Framework for linking and tracking calculation lifecycle 

Currently, the CEPDB provides a framework, which facilitates linking of calculations (i.e. 
using the geometry from one method/program and directly feeding it into another for 
additional calculations) and the automated parsing and storage of the results. This represents 
a great improvement to the semi-manual approach.  The framework has been developed 
within the group as a framework to automate a large proportion of the jobs (Figure 6). 
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Figure 6. An overview of the CEPDB framework for automation. 

This will also greatly increase the ease with which advances in implementation and analysis 
tools with the scientific community since we can now track and integrate new information 
and elements into our calculation pipeline. 
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The following section provides summaries of our publication record for DOE grant number 
DE-SC0008733. The publications fall into two classes of research: 1) Harvard Clean Energy 
project advances and 2) investigations of structure-device property relationships for organic 
semiconducting materials, and are presented in this order.  

Part I 

Achievement 6: What is High Throughput Virtual Screening? A Perspective from 
Organic Materials Discovery. 

Edward O. Pyzer-Knapp, Changwon Suh, Rafael Gómez-Bombarelli, Jorge Aguilera-
Iparraguirre, and Alán Aspuru-Guzik Annu. Rev. Mat. Res. 2015, 45, 195-216. 

This perspective described the concept of virtual screening (HTVS) to the community 
and how data-driven analyses can expand the scope of our libraries to identify the next 
generation of materials for organic electronic devices. This work dissects the process of 
HTVS into four philosophies that can be taken when attempting to screen millions of 
molecules: significant timescale, automated techniques, data-driven discovery, and 
computational funnels. 

The first aspect of HTVS that will be addressed is molecular diversity of libraries. We 
lack absolute axes to survey molecular space and we do not have universal metrics to assess 
similarity. The similarity metric that is most useful – ultimately how diverse the library is– 
depends on chemical intuition. The generation of molecular libraries requires the 
consideration of: 1) all possible combinations of a given set of fragments in a combinatorial 
way according to a set of rules and 2) a size limit for the molecules (maximum atom and 
electron count and/or molecular mass), where the growth of the molecule will cease. The 
computational efficiency can be improved by hard coding some constraints into the library 
generation software, such as the presence of specific functional groups, moieties that are 
fundamentally unstable and/or limit device performance. Figure 7 shows how fragments are 
linked and fused to form molecules that comprise our libraries. These libraries have been 
generated for organic photovoltaics, organic-based flow batteries, and blue organic light-
emitting materials. 
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Figure 7. Reactions and combinations in virtual library enumeration. (a) The linking proce-
dure used in the blue organic light-emitting diode (OLED) project. (b) The fusion procedure 
additionally utilized in the Clean Energy Project. (c) The enumeration of the different substi-
tution positions considered in the organic-based flow battery project. (d) Combination of a 
donor molecule, a bridge molecule, and an acceptor molecule to give a potential blue OLED 
material.  

The selection of simulation techniques must be guided by clearly defined objectives in 
terms of the desired physical and chemical properties. It is extremely important to select 
computational techniques that have the desired accuracy, but do not become computationally 
prohibitive when applied a library containing millions of molecules. This article describes 
how the method and computed properties are chosen for our three major screening projects: 
The Materials Project, Harvard Clean Energy Project, and Organic-Based Flow Batter-
ies. The types of databases that are typically used for data volume of this size fall into two 
categories: Structured Query Language (SQL) and nonrelational database (NoSQL). The da-
tabases ultimately should be selected with care for the nature of the data being handled. Fig-
ure 8 demonstrates the basic differences between SQL and NoSQL databases. 

 

Figure 8. A comparison between SQL and NoSQL architectures.  

Although SQL databases allow for transactional integrity, we believe that the en-
hanced flexibility of NoSQL databases makes them the ideal choice for high-throughput vir-
tual screening because they can be easily modified to adapt to changing data and require-
ments. Clearly, the substantial volume of data generated in a screening requires innovative 
approach to identify trends and target materials. Calibrating results to experimental data can 
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overcome deficiencies in specific methods. Exploratory, as well as exploitative, experimental 
results are crucial for the continued success of high-throughput virtual screening. This will 
allow for screening methods to be brought to many more communities beyond the current 
group of scientists that use them. Achievements 8 and 9 describe our successful efforts in ap-
plying exciting machine learning techniques to the CEP. 

Achievement 7: Lead candidates for high-performance organic photovoltaics from high-
throughput quantum chemistry – the Harvard Clean Energy Project. 

Johannes Hachmann, Roberto Olivares-Amaya, Adrian Jinich, Anthony L. Appleton, Martin 
A. Blood-Forsythe, László R. Seress, Carolina Román-Salgado, Kai Trepte, Sule Atahan-
Evrenk, Süleyman Er, Supriya Shrestha, Rajib Mondal, Anatoliy Sokolov, Zhenan Bao, and 
Alán Aspuru-Guzik Energy Environ. Sci. 2014, 7, 698-704.  

We utilized the intrastructure of the Harvard CEP (described above) to explore the 
chemical space of 2.3 million molecules using 150 million DFT calculations. The 2.3 million 
molecules are electron-donor materials for OPV devices and were combinatorially generated 
from an initial 26 fragments, identified by the Bao group. The PCE values, computed using 
the Scharber model were used to rank the donor ability of each material. The PCE values 
reported in this work correspond to a standard phenyl-C61-butyric acid methyl ester (PCBM) 
acceptor counterpart. The theoretical maximum of PCE based on the Scharber model is 
11.1%. Of the 2.3 million molecules, 0.04% show a PCE of 11% or higher, and 1.5% over 
10%; most are predicted to have a value below 4%. Three of the top candidates are shown in 
Figure 9. 

 

Figure 9. Example structures from the top candidates list (each with potential modifications 
marked in red).  

Molecule A is ranked #77 and has multiple inter-monomer nitrogen-sulfur interac-
tions. These tend to feature highly planarized solid-state structures and can enhance the elec-
tronic coupling between monomers. Molecule B is ranked #5. It has a five-ring fused hetero-
cyclic co-monomer structure, which may reduce reorganization and relaxation energies. Mol-
ecule C is the top ranked molecule; minor modifications marked in red, results in Yu’s highly 
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efficient thienothiophene co-monomer.9 This co-monomer has been utilized in organic photo- 
voltaic materials that have consistently surpassed 7.0% power conversion efficiency.  

A statistical analysis with respect to the occurrence of the molecular building blocks 
used in the library generation was performed using a hypergeometric distribution analysis to 
assess the prevalence of the 26 fragments in the top candidates. Figure 10 shows the 
fragments that appear more often in top candidates (green) and those fragments that appear 
more often in poor candidates (red). 

  

Figure 10. Moieties with the most amplified occurrence in the top candidates (relative to the 
statistical expectation) are highlighted in green, and red indicates the ones with the most de-
creased occurrence  

The insights will aid in the transition from a brute-force searching approach towards the 
active design and engineering of new materials. 

Achievement 8. Learning from the Harvard Clean Energy Project: The Use of Neural 
Networks to Accelerate Materials Discovery 

Edward O. Pyzer-Knapp, Kewei Li, and Alan Aspuru-Guzik Adv. Funct. Mater. 2015, 25, 
6495-6502. 

The Harvard Clean Energy Project is a rich resource containing the electronic struc-
ture of many donor materials for OPVs. In this study, we applied the machine learning tech-
nique of neural nets to calibrate our data to predictably replicate experimental data. Neural 
nets have been used extensively in medicinal chemistry.10 Artificial neural networks are com-
prised of interconnected layers of neurons, which are connected to each other along paths 
(See Figure 11).  
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Figure 11. a) In a neural network, features typically enter through a linear input layer (blue) 
pass through a nonlinear hidden layer (red) before being combined by a linear output layer 
(green), which produces the target estimation. b) The operation of a single neuron, where in-
puts are combined with weights, pass through an activation function and produce an output 
that can be connected with further neurons.  

We have further optimized his process by implementing a parallelized training of the 
neural net using the Hogwild algorithm11 as implemented by Microsoft’s Project Adam.12 
This lead to a reduction of training time from nearly two weeks to approximately four hours. 
This led to a significant reduction of the mean absolute error and fewer epochs. We selected a 
set of 200,000 molecules from the CEP to train with and tested on 50,000 CEP molecules. 
The resulting mean average errors for the HOMO, LUMO, and PCE are shown in Figure 12.  

 

Figure 12. The MAE of the network as the data size is increased from 20,000 as a function of 
dataset proportion.  

Figure 12 shows that reasonable performance can be obtained with relatively small 
sets, and that relative improvements decrease as 100% of the library size is approached. We 
have demonstrated that within this restriction in the context of focused HTVS efforts, multi-
layer perceptrons can be trained to predict frontier molecular orbital energies and PCEs to a 
very good accuracy. Additionally, nonthread locking techniques significantly reduce the 
training time of the MLP, allowing the training of significantly larger data sets, which further 
increase the accuracy. 
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Achievement 9: A Bayesian Approach to Calibrating High-Throughput Virtual 
Screening Results and Application to Organic Photovoltaic Materials. 

Edward O. Pyzer-Knapp, Gregor N. Simm, and Alán Aspuru-Guzik. arXiv:1510.00388 

In this work, we present an advance upon this calibration technique, which takes into 
account both quantum chemical information, and information about the molecular graph. In 
addition, this technique reports an uncertainty alongside each calibration – providing a confi-
dence that the method is being used appropriately. We recently reported the Harvard Organic 
Photovoltaic Dataset (HOPV15), which contains experimental results for 266 donor materials 
from bulk heterojunction devices, alongside corresponding quantum-chemical calculations 
performed using various functionals and basis sets. 

We sought to determine if systematic failings were related to the chemical structures 
of the casting this problem into molecular space could afford a method for applying appropri-
ate corrections, which take into account the chemical makeup of the molecules in question. 
Gaussian processes were used to learn the deviations of computational results from their ex-
perimental analogues. Figure 13 shows a plot of experimental vs. theoretical HOMO and 
LUMO energies before and after calibration.  

 

Figure 13. The results of calibrating B3YP/def2-SVP quantum-chemical results for the HO-
MO, LUMO energies and optical gap to the experimental HOPV15 data set. The uncertainty 
in the calibrated values is represented in the fill color. Lighter colors represent more uncertain 
values.  

Figure 14 shows the HOMO energies for the molecules within the HOPV15 data set, as com-
puted by various density functionals before (top) and after (bottom) calibration. 
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Figure 14. HOMO energies Boltzmann averaged over conformers, as calculated by BP86, 
B3LYP18 PBE013 and M06-2X14 with the def2-SVP basis calculated for 100,000 molecules 
from the Clean Energy Project Database (top) and the values for the same set of molecules 
after calibration (bottom).  

The plots in Figure 14 shows that Bayesian calibration eliminates the functional 
choice variable compute the HOMO energy. The calibrated energies are much more congru-
ent with experiment, and afford a greater confidence that the calculated property. Gaussian 
process with a prior based upon relevant experimental observations, is a robust method for 
relating the results of quantum chemical calculations to experiment. The Bayesian nature of 
our proposed calibration results in a confidence in each calibration point being returned. This 
is an invaluable tool, since it can inform the user that the scheme is being used for systems 
for which it is not designed, or for which the prior is not informative. 

Part II 

In this final part of the report, we describe results obtained outside of the CEP. The theme is 
on the relationship between molecular structure and morphological effects and device per-
formance.  

Achievement 10: Hydrogen-bonded diketopyrrolopyrrole (DPP) pigments as organic 
semiconductors. 

Eric Glowacki, Halime Coskun, Martin A. Blood-Forsythe, Uwe Monkowius, Lucia Leonat, 
Marek Grzybowski, Daniel Gryko, Matthew S. White, Alán Aspuru-Guzik, and Niyazi S 
Sariciftci. Organic Electronics 2014, 15, 3521–3528. 

A key challenge in the search for new high performance organic electronic 
semiconducting materials, involves understanding the relationship between molecular 
structure and solid-state packing. The crystal structure has a significant impact on the charge 
carrier transport.  Hydrogen bond mediated crystal engineering has gained attention as a 
possible route to explore of a chemical space while maintaining some confidence in the likely 
topology of the crystal environment. Recent examples have shown that H-bond forming 
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pigments such as perylene bisimides,11,1215 indigos,13,1416 and quinacridone1517 are air-stable and 
are high-mobility ambipolar transistor materials.  We have focused a small library of H-bond 
forming pigment materials built around the “H-chromophore” motif.  We predicted the 
charge carrier mobilities of a family of three diketopyrrolopyrrole (DPPs): diphenyl-DPP 
(DPP), di(p-chlorophenyl)-DPP (p-Cl DPP), and di(p-bromophenyl)-DPP (p-Br DPP). Many 
properties of DPPs originate from the interplay of intermolecular hydrogen bonding and π-π 
stacking. 

 

Table 1. Comparison of experimental and theoretical values of hole and electron mobilities 
of DPP derivatives. Band gaps and mobilities were calculated with density functional theory 
using the B3LYP18-D3BJ/ def2-svp. 

 
Material 

Computed 
HOMO-
LUMO 

Gap (eV) 
 

Measured 
Optical 
Band 

Gap (eV) 
 

Reorganization 
Energy (meV) 

 

Computed 
Mobility 

(cm2/V·s) 
 

Measured 
Mobility 

(cm2/V·s) 
 

DPP 1.6 (1.6) 2.1 λe= 184 (241) 
λh= 317 (353) 

me = 0.09 
mh = 0.08 

me = 0.01 
mh = 0.01 

p-Cl-
DPP 

1.4 (1.5) 2.1 λe= 182 (192) 
λh= 328 (354) 

me = 0.09  
mh = 0.17 

me = 0.03   
mh = 0.006 

p-Br-
DPP 

1.6 (1.6) 2.1 λe= 175 (186) 
λh= 316 (344) 

me = 0.14 
mh = 0.05 

me = 0.06 
mh = 0.02 

 

Using the semi-classical Marcus theory19 of electron transfer, we predicted the electron and 
hole carrier mobilities. Table 1 shows that our computed hole and electron mobilities are 
within an order of magnitude of those measured experimentally. 

Achievement 11: Effects of Odd-Even Side Chain Length of Alkyl-Substituted 
Diphenyl-bithiophenes on First Monolayer Thin Film Packing Structure. 

Hylke B. Akkerman, Stefan Mannsfeld, Ananth Kaushik, Eric Verploegen, Luc Burnier, 
Arjan Zoombelt, Jonathan Saathoff, Sanghyun Hong, Sule Atahan-Evrenk, Xueliang Liu, 
Alán Aspuru-Guzik, Michael Toney, Paulette Clancy, and Zhenan Bao J. Am. Chem. Soc. 
2013, 135, 11006-11014. 

We undertook a collaborative approach to explore the dependence of morphology on 
the length of the alkyl (solubilizing) side chains for a series of diphenylbithiophenes. The Bao 
group observed a substantial difference in the molecular tilt angle in a monolayer of 
5,5’bis(4-alkylphenyl)-2,2’-bithiophenes (P2TPs), depending on whether the alkyl chain was 
of odd or even length (Figure 15). We utilized a multiscale computational approach including 
Molecular Dynamics simulations (TINKER20 package), semi-empirical (PM321) and density 
functional theory (B3LYP18) calculations to identify the origin of this effect. Figure 15 shows 
the equilibrated MD structure of P2TP deposited on a self-assembled monolayer (SAM). 
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Figure 15. Lowest energy position of P2TP on top of ODTS: (A) C3− P2TP−C3 molecules 
with a tilt angle of 5°; (B) C4−P2TP−C4 under a tilt angle of 19°.  

Figure 15 shows that P2TP with a propyl sidechain is nearly linear, while P2TP with a butyl 
sidechain is tilted by 19°. These simulations were extended for side chains of length 3-8; 
crystal parameters and the title angles are summarized in Table 2. 

Table 2. Unit cell geometries and P2TP off-normal title angle by simulations on SAMs. 

 

To isolate the origin of the odd-even effect, it was necessary to remove the P2TP-
SAM interaction. Therefore, 2D crystals of the P2TP derivatives with alkyl side chains of 
length 3-8 were simulated. We found that despite the additional freedom of the P2TP 
molecules, the crystals continued to pack in a herringbone fashion for both odd and even 
length chains. This suggests an inherent odd-even effect that is enhanced in the presence of a 
SAM.We then estimated the impact of the odd-even effect on the intrinsic coupling between 
the molecules in the P2TP layer by computing transfer integrals for the neighboring dimers at 

Side chain length N a (Å) b ( Å) Tilt angle (deg) 
3 5.77 ± 0.3 7.90 ± 0.3 3.5 ± 1.5 
4 6.12 ± 0.3 8.07 ± 0.3 19 ± 1.5 
5 5.85 ± 0.3 7.60 ± 0.3 4.2 ± 1.5 
6 5.61 ± 0.3 9.37 ± 0.3 19 ± 1.5 
7 5.85 ± 0.3 7.65 ± 0.3 4.5 ± 2 
8 5.63 ± 0.3 9.64 ± 0.3 22 ± 0.3 
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the B3LYP18/6-31G(d) level of theory for the obtained packing pattern. Table 3 summarizes 
the results of these calculations. 

 Table 3. Transfer Integral Values for Chain Lengths 3−7, Calculated at the B3LYP/6-
31G(d,p) Level 

 

 

 

 

Table 3 shows a clear odd-even effect in all three dimer transitions, most pronounced in the 
diagonal transfer elements T1 and T2.  

This work demonstrates that the tilting of molecules occurs as a composite of inter and 
intramolecular interactions. The difference is increased by SAMs whose close interactions 
with P2TP alter lattice parameters and tilting magnitude. The use of molecular dynamics 
simulations could be useful to study similar problems in the future. 

Achievement 12: Understanding Polymorphism in Organic Semiconductor Thin Films 
Through Nanoconfinement.  

Ying Diao, Kristina M. Lenn, Wenya Lee, Martin A. Blood-Forsythe, Jie Xu, Yisha Mao, 
Yeongin Kim, Julia A. Reinspach, Steve Park, Alán Aspuru-Guzik, Gi Yue, Paulette Clancy, 
Zhenan Bao, and Stefan C.B. Mansfield. J. Am. Chem. Soc. 2014, 136, 17046-17057 

In line with our general interest to understand the relationship between morphology 
and device performance, we undertook a highly collaborative approach to understand the 
known polymorphism of 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene).  
Controlling polymorphism of organic semiconductors in thin films is particularly important 
because of their ubiquity in organic electronics.22 Our collaborators first mapped the 
structural phase space of TIPS-pentacene using in situ Grazing Incidence X-ray Diffraction 
(GIXD) and molecular simulation. A new polymorph of the extensively studied TIPS-
pentacene was found, which is metastable at room temperature and featured a different side 
chain conformation. This polymorph was shown to exhibit very close π-π stacking. We used 
Molecular Dynamics simulations to predict the energy of the system as a function of the unit 
cell parameters [a, b, γ] to locate the lowest energy arrangements. We then computed the 
charge transport properties of these polymorphs using quantum mechanical calculations. 
Figure 16 shows the three major polymorph families of TIPS-pentacene. 

 N P (meV) T1 (meV) T2 (meV) 
3 1.64 4.23 4.20 
4 2.32 7.25 7.25 
5 1.21 0.62 1.02 
6 2.76 4.23 4.34 
7 1.23 2.90 2.76 
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Figure 16. Comparison of the three major polymorphs of TIPS-pentacene in their π−π stack-
ing (A) and molecular offset along the conjugated backbone (B,C) as obtained from the crys-
tallographic refinement calculations.  

We modelled the TIPS-pentacene using Avogadro23 and TINKER using the MM324 
semiempirical potential to minimize the unit cell containing four TIPS-pentacene molecules. 
Many more ‘metabasins’ emerged than the five polymorphs observed experimentally, but our 
results allowed us to distinguish them into the same three families of polymorphs. This 
presented the opportunity to study the impact of molecular packing on charge transport 
properties. The differences in electronic coupling are substantial, likely due to the sensitivity 
of charge transport to molecular packing.  

This study shows that the structural diversity of TIPS-pentacene offers an intriguing 
example for studying structure-property relationships in organic semiconductors. We find 
that even with the same packing motif, small changes in molecular packing can have a large 
impact on the electronic coupling and charge mobilities for these materials. The room 
temperature equilibrium molecular packing is not necessarily the one with the best charge 
transport properties. In this case, the highest hole mobility belonged to Form II, which is a 
metastable form at ambient conditions. 
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Conclusion 

The DOE grant number DE-SC0008733 has allowed for major advances in the 
intrastructure of the Harvard Clean Energy Project and substantial applications of exciting 
neural nets and Bayesian approaches have blazed the trail of calibration results for future 
screening of non-fullerene acceptor molecules. Our studies of structure-morphology 
relationships have allowed us to computationally explore well-known organic 
semiconducting materials, where experimental data is available. The insightful computational 
results are encouraging. In the future, novel materials identified by the CEP can be explored 
in an ad hoc fashion.  
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