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1 Introduction

The purpose of this report is to provide the reader with an understanding of how a Monte Carlo neutron transport code
was written, developed, and evolved to calculate the probability distribution functions (PDFs) and their moments
for the neutron number at a final time as well as the cumulative fission number, along with introducing several
basic Monte Carlo concepts. The primary motivation for writing an analog Monte Carlo neutron transport code
is to benchmark the recently implemented capabilities for calculating the moments of the neutron population and
the cumulative fission numbers using deterministic transport methods into LANL’s PARTISN code [1] (PARallel,
TIme-dependent Sy). The capstone version of the MC code is to simulate spherical multiplying systems that are
time-dependent with multigroup neutrons to calculate the neutron number PDF and the cumulative fission PDF and
the respective moments for those PDF's, addressing the concerns stated below and bringing to light the vast validity
of one of PARTISN’s newest capabilities.

Although MCATK would initially be the MC code of choice for calculating the moments of the neutron population
[2], it will prove to be an insufficient benchmarking tool as it treats the energy-dependent neutron cross-sections
continuously [3] while PARTISN solves the neutron transport equations for the moments using multigroup energy
discretization [4]; the difference in the handling of the continuous energy versus the multigroup data has, and will,
undoubtedly lead to discrepancies. The final section of this report describes the extension of the spherical time-
dependent MC code to account for, and utilize, multigroup neutron cross-sections as a means to more accurately
simulate the physics that PARTISN represents.

Also of concern is the validity of utilizing deterministic transport methods to characterize systems by their moments
in which the neutron population behaves unpredictably. In strongly stochastic systems where the neutron population
is small and can vary considerably depending on the persistence of any individual fission chain, the magnitude of
the population may fluctuate orders of magnitude from one instance to the next. The PDF's and their higher order
moments must be considered for such systems where the mean of the population is not truly representative of the
actual population. Several elements of the systems of interest that introduce stochasticity into the neutron population
include, but are not exhausted by, particle multiplicity emission from fission events (both induced and spontaneous);
weak, randomly emitting sources or cosmic radiation; low populations for which fission chains do not physically
overlap and are well-separated in time; the temporal propagation of any individual fission chain, which could be
short-lived or could ultimately lead to a criticality excursion.

The outline of the document is now disclosed. Section 2 is a verification of the most simple form the MC code takes
in generating the neutron number and cumulative fission number PDFs: a time-dependent lumped (PDFs are not
functions of space, angle, nor energy) system with monoenergetic neutrons. The temporal sampling techniques are
compared against several analytically derived solutions to the forward master equations for different initial conditions,
source strengths, final times, multiplicity models, and special neutron interaction scenarios. Section 3 is a further
extension of the time-dependent MC code into one-dimensional slab systems, of which we begin the benchmarking
trails on PARTISN. As PARTISN directly calculates the moments of the PDF's, this is the primary comparison made
with the MC, and as an extra, the actual PDFs from the MC are plotted. Next, Section 4 is similar to Section 3,
except it compares the spherical time-dependent one-group MC code to PARTISN. Finally, Section 5 further extends
the spherical time-dependent MC code to include multigroup capabilities.
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2 Time-Dependent Lumped Systems

This section is concerned with comparing the probability distribution functions (PDFSs) calculated by the Monte
Carlo code with analytical expressions for several scenarios.

Most time-dependent analytical expressions can only be obtained for lumped systems (probabilities are not functions
of space, energy, or angular variables) using a forward-in-time probability balance of all the mutually exclusive events
a neutron may experience that will contribute to a final state of the system. The reasoning for doing so is to ensure
that the MC program is simulating the temporal variable correctly before we may confidently incorporate spatial
and energy dependence.

All of the following analytical expressions (except for the Poisson Distribution) are obtained by enforcing a binary
induced fission model (BIF), where two and only two neutrons are emitted in every induced fission, along with
restricting singlet-emitting source events (SS) with the possibility of there existing zero (0) or one (1) neutron at
the initial time; the combination of these two emission distributions is called the Binary Fission Model (BFM).
The primary material and neutron properties are summarized in Table (1) and are constant throughout the ensuing
lumped model simulations unless otherwise stated.

| N v [ T [ e ]
’ 5.00-10"2 (em x b)~ ! ‘ 2.02-10% cm/s ‘ 7.608 - 10 s ‘ 4.4-10712 ‘

Table 1: Data set for the simulated material.

The three primary mutually exclusive interactions that influence the neutron population in a multiplying system are
source emission by spontaneous fission (SF), induced fission, and parasitic absorption. A balance of the probabilities
of possible interactions can be constructed utilizing the Markov property of nuclear reactions (i.e., particles possess
no memory of their origin). This probability balance can be algebraically manipulated and, taking the time limit,
is converted into a system of ordinary differential equations collectively known as the forward differential Chapman-
Kolmogorov equation or more commonly as the forward master equation of the neutron PDF

dP,(t
dt( ) =—(Aan+ S)P(t) + Ae(n+ 1) Pyy1(t)
Vo v, (1)
+ SquPn,,,(t) + As ZQZ(H —v+1)Pyyia(t),
v=0 v=0
where n = 0,1,2,.... The general initial condition is given by the Kronecker delta function as

1 f =n'
Pt =0) =6, = ornen 2)

' 0 form#n'.

In Eq. (1), Aa , Ac, and Ay are the absorption, capture, and fission reaction rates of the neutrons, S is the SF source

strength, i.e., the probability per unit time of a source event occurring, qf /£ are the neutron multiplicity distributions

for source and fission events, v,, are the maximum number of neutrons emitted in either the source or fission events
(note that the values are not equal to each other between the two summations and are dependent on the system’s
isotopic composition). Noting the the reaction rate for interaction x can be determined as A\, = p, /7 = 0, /(0,7), we
can readily determine the reaction rates from the material’s microscopic cross sections, o, and the neutron lifetime,
7=1/(v¥,), in a lumped system (v is the neutron speed and ¥, is the macroscopic absorption cross section).

For a given system mass m, the SF source, S, can be determined by summing the individual contributions of all
spontaneous fissioning isotopes, i:

, 3)

DSFiNiW;
S =mNgy Z —_—
i M;
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where N4 is Avogadro’s Constant, psr; is the probability that a radioactive decay of isotope 4 is a spontaneous fission
event, \; is the decay constant of ¢, w; is the weight fraction of ¢, and M; is the molar mass of i. Further assuming
the system is spherical in nature and the density, g, is known, the radius can be calculated as R = {/3m/4mp.

2.1 The Poisson Distribution

A Poisson distribution can be obtained by considering a system with which there are zero (0) initial neutrons, there
are no neutron interactions (no capture nor induced fission) such that A. = Ay = 0, and there is a constant and
randomly emitting singlet emitting neutron source, S, such that ¢5 = d,,1. With these reductions, Eq. (1) becomes

dP,(t) B
e

with the initial condition P, (¢ = 0) = d,, 0. The solution to Eq. (4) is obtained by solving sequentially for P,(t) by
starting at n = 0. In doing so, the solution can be deduced as:

—SP,(t) + SP,_1(t), (4)

e (5)

In the MC code, by setting oy = 0 and 0. ~ 0 (a very small number so that the MC simulation can calculate
non-infinite interaction lengths; we used o, = 1073 ¢m?) we obtain a Poisson distribution of the neutron number,
as seen in Fig. (1), where S = 10.09799 1/sec, a = —1.01229 - 107268 1/sec, 7 = 9.87853 - 10257 5. As a matter
of fact, since the source is singlet emitting and no induced fissions occur in this case, the cumulative fission PDF
(which is only SF events) is exactly the neutron PDF. The results of Fig. (1) prove the MC simulation is sampling
the source emission properly in time, we may now move on to incorporate neutron interactions with confidence.

!
-
=]
[~

Probability

El

1] 2 4 (] 8 10 12 14 16 18
Population

Figure 1: A comparison between a Poisson Distribution and Monte Carlo simulations for a system without
fission or capture in the presence of a spontaneous fission source for two different final times.

2.2 The Binary Fission Model

For the binary fission model (BFM), we concern ourselves only with the possibility that two and only two neutrons
are emitted per induced fission while one and only one neutron is emitted per source event; thus the respective
multiplicity distributions of Eq. (1) become ¢/ = 0,2 and @ = dy,1. With these restrictions on the fission multiplicity
distributions, the master equation becomes

AP, (%)
at

=—(Nan+ S)Py(t) + Ae(n + 1) Pygr(t) + [Af(n — 1) + S| Pr_1(2). (6)
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In order to derive an analytical distribution from Eq. (6), we employ the generating function

G(z,t) =Y 2"Pu(t), (7)
n=0

where z € [0,1] is real, to transform said equation into a partial differential equation of G(z,t):

0G oG
== (Aff ezt )\C) S+ S(z = 1)G(=1), (8)
with an initial condition G(z,0) = 2", depending on how many neutrons, n’, are in the system at ¢ = 0. Equation
(8) can be solved with the method of characteristics, where we will now consider several special cases depending on
the initial condition.

First, we simulate a system with zero initial neutrons so that G(z,0) = 1, with a spontaneous fission source. For this
scenario, the solution to Eq. (8) can be determined with some work as

n -n
. « )\fb(t)
Gt =133 Afb(t)] [1 a+ Asb(t) Z] ’ ©)
where n = S/\; and
k-1
a=Ar == T’ (10)
b(t) = e — 1.

Here k is the effective multiplication factor of the system and 7 is the neutron lifetime. From here, to obtain the
neutron number PDF, we expand the second bracketed term of Eq. (9) in a Taylor Series about z = 0 to find

o ] &Twm+n)
a—l-)\fb(t)] ; nl(n)

G(z,t) =

(11)

Aty 17
at )|

and, by recalling the original definition of the generating function transform, Eq. (7), and comparing to Eq. (11) we
can readily extract the solution to Eq. (6) as

L(n+n)
n!l'(n)

where I'(2) is the gamma function. Note these expressions are valid for sub- and supercritical systems; in a subcritical
system, a < 0 and b(t) decays with time, the opposite is true in a supercritical system. Figure (2) shows the
comparison of Eq. (12) against the Monte Carlo for a subcritical stochastic system with a strong spontaneous fission
source strength of S = 5.048 E6 s~!, and some of the other system parameters are: of=01b,0.=100b, a=-9.111
E7 s7', and 7 = 8.981 - 1072 5. These parameters provide a system multiplication factor of k = a7 + 1 = 0.1817,
which is a highly subcritical system and, as one would expect, the probability of zero neutrons existing within the
system at a given time dominates.

P,(t) =

Asb(t) r (12)

a-l—)qb(t)] cH—)\fb(t)

Next, we consider a system without a spontaneous fission source containing a single initial neutron such that the
initial condition for the generating function is G(z,0) = z. The generating function PDE to solve is

0G(z,t) 9 oG
with an initial condition G(z,0) = z. From the Method of Characteristics, we see that the solution G(z,t) is

constant along it’s characteristic curve (i.e., dG(z,t)/dt = 0) and we may set the solution equal to the initial
condition G(z,t) = G(2(t = 0),t = 0) = z(¢t = 0). By solving the characteristic equation for z
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Figure 2: A comparison between Analytical and Monte Carlo simulations for a system with 0 initial
neutrons in the presence of a spontaneous fission source at t = Ins and t = 1us.

dz
dt

lAf% — Xz + Ae

with initial condition z(t = 0) = z,, we obtain the solution to Eq. (13), and Taylor expand about z = 0:

G(z,t) =

[)\c(l — )

Ae — )\feo‘t

1 ' lw

Ae — Arect)(1 — eo‘t)] Z

Comparing Eq. (15) to Eq. (7), we readily obtain the extinction probability and all higher n probabilities as

Ae(1 —e?)

Py) =2 — % )

O(t) )\c _ )\feat )
P, (t) = a?et

—(n+1)

T [ R

: (14)
Ap(1— eat)] "
iChuiarl s (15)
1 )\C — )\fe t
(16a)
n=123,... (16b)

where we have simplified the P, (¢) to avoid singularities when Ay = 0 and/or when ¢ = 0. Further analyzing Eqgs.
(16) when t = 0, we see that Py(0) = 0, P1(0) = 1 (by the identity 0° = 1), and all P,,(0) = 0 for n > 1. Another
extreme case to consider is that of a non-fissile system without a SF source and a single initiating neutron, for which
we expect the PDF to be binary (i.e., only the extinction probability Py(¢) and the singular probability P (¢) take
on non-zero values). This can be shown to be true by setting Ay = 0 in Egs. (16) to find

Po(f)|)\f:0 =1- 6_>‘Ct,

n—1
Pu(t)]a,—0 = AL et [0(1 - e_’\ct)} ., n=123,...

We see that Py(t) = e~ <! while all other n > 1 equal 0. Then Py(t)|x,—0 + P1()|x,—0 = 1, and the limiting value is
Po(t)[x;=0 = 1 as t — oo, suggesting definitive extinction for such a non-multiplying system. Using similar arguments
for a multiplying supercritical system, we see that P,(00) = 0, Py(00) = Ac/As; thus, we find that the remainder of
the probability is contained in the divergence probability P.(c0) =1 — Ao/Ay.



CCS-2:16-041 -6- LA-UR-15-77777?

It has been shown that the cumulative fission number PDF can be obtained for a lumped system for the special case
of 0. = 0 b, the PDF for such a system is

Pi(t) = e /7 [1 —~ e_t/"] f. (17)

Figure (3) shows a comparison between the MC simulations and Eqgs. (16) for the same system as before, but with
no source and an initial neutron; Figure (4) is for the same system with no capture, for which Eq. (17) is valid.
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Figure 3: A comparison between Analytical and Monte Carlo simulations for a system with 1 initial
neutron without a spontaneous fission source.
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Figure 4: A comparison between Analytical and Monte Carlo simulations for a system with 1 initial
neutron without a spontaneous fission source and no capture interactions.

Finally, the fission number distribution at ¢t = oo for a supercritical system (k.sy > 1) consists of two components -
a finite component corresponding to the cumulative number of fissions before the neutron number diverges, and an
infinite component corresponding to the diverged neutron number which occurs with probability equal to the POI,
the probabiltiy of initiation. The finite part of the distribution is given by

PF=0(OO) =1 — Py, (18&)
Pp(c0) = Cpp?(l —pf)F'H, (18b)
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where Cf are the Catalan numbers defined as Crp = (2F)!/[F!(F + 1)!]. Figure (5) shows a comparison between
Egs. (18) and the MC simulations.

102 R

Probability

1] 2 4 6 -] 10 12 14 16 18 20
Population

Figure 5: A comparison of the cumulative fission numbers calculated from Analytical and Monte Carlo
simulations for a system in steady-state with 1 initial neutron without a spontaneous fission source.

2.3 Other Multiplicity Models to Consider

We now describe a numerical method for solving the steady-state Master equation for several multiplicity distribution
models corresponding to a system composed of 20 wt% 24° Pu and 80 wt% 23° Pu [6] for which vf, = 8 and v} = 6.
We consider steady state only, in which case the Master equation for the equilibrium distribution for the BFM and
general multiplicity case reduces to:

0=—(n+ST)P,+p(n+1)Pry1 + [pf(n -1+ ST] P, 1, (19a)
0=—(n+S7)P,+pi(n+1)P,41
VS Vi
+8TY a5 Puu(t) +pr >l (n—v+ 1Py, (19b)
v=0 v=0
for n =0,1,2,.... As this is an open set of difference equations, it is necessary to truncate the neutron population

at some finite number N in order to obtain a numerical solution. For a subcritical system, this is feasible as the
neutron number distribution decays with increasing order and can be assumed to vanish at an appropriately large
N. Under this restriction, the population balance equations can be solved by writing Egs. (19) as a recurrence
relationship starting at n = 0. The first equation is not closed, but noting that the system of equations is linear and
homogeneous, we initially set Py = 1, solve for the higher order P, successively from Egs. (19) by forward recurrence
until the number distribution has decayed to a sufficiently small value, and then obtain the true Py by enforcing
normalization of the distribution.

Several multiplicity models can easily be investigated by changing the IF and/or SF multiplicity distributions,
q{,g/ f ; we consider three in particular, namely, the already well-defined BFM, the Full IF-Singlet Source emitting
(FISS) model, and the Full IF-Full Source emission (FIFS) model. Ultimately, the FIFS is the model to compare
any approximations to as it accounts for the entire neutron number emission spectrum for the given multiplicity

distributions.

As stated before, we may rewrite Egs. (19) in a forward recursion, thus, as an example for the FISS model, we are
able to determine P, ;1 as a function of all lower P, probabilities by restricting qf = §,,1 to obtain the formula:
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Poi1 =~ ! { [(pqu —Dn— ST} P,

(prad +p1)(n+1) (20)

8
+ pfqg(n -1)+ ST} P,_1+py Zq,{(n —-v+ 1)Pnl,+1}.
v=3

Once the N number probabilities have been calculated, we enforce the normalization condition to determine the
actual extinction probability Py as:

N -1
Py = (1 +> Pn> . (21)

From Eq. (21), the true PDF is determined by folding Py into all P, for n > 0. The forward recurrence is stable and
the method is computationally efficient, allowing the computation of number distributions of very high order.
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N T A R
[0.47488 ] 0.20681 | 0.2766 | 0.9583 |

Table 2: Macroscopic Cross Sections

3 One-Dimensional Time Dependent Slab with Monoenergetic Neutrons

For a 1.0 em thick slab composed of pure 233U metal with a density of p = 19.1 g/cm?, the k. ;s = 0.5686, the neutron
lifetime is 7 = 1.0748 sh, which provides a@ = —0.4014 sh~!. Several arbitrary final times and source strengths were
chosen to compare the one-dimensional time-dependent monoenergetic Monte Carlo code to PARTISN’s neutron
population moments and cumulative induced fission moments calculator, see Appendix for details. The neutrons
being modelled are monoenergetic with a constant velocity of v = 1.0473 ¢m/sh. Using PARTISN’s output file on
such a system, the macroscopic cross sections in Table (2) were used and, to match with the MC, the MC microscopic
cross sections were obtained by dividing these values by the number density: o, = X, /N.

The process of time emission is the same as in the previous section regarding the lumped model MC, with the
addition that the MC code was outfitted to allow for SF time-of-emission to be evenly distributed in time whereas
the previous section sampled event times as exponentially decaying according to the Universal Law of Radioactive
Decay. Further, we assume the source is evenly distributed in space and we can sample a SF event location = by
generating a random number & such that £ € [0, 1] using the equation

x=(xrp—2zr)é+ L, (22)

where x;, and xg are the left and right boundary coordinates of the slab. From this source event, we sample the
cosine of the angle of emission relative to the z-axis, u such that g € [—1, 1], by assuming isotropic emission and,
upon generating a new random number £, we have

=26~ 1. (23)

Note that PARTISN considers singlet particle emission per event, but the MC code has been outfitted to allow for
either singlet emitting or full multiplicity emission depending on the input data.

Now that we have a position of emission and a direction of travel, we must determine the distance travelled to the
next collision site, s. The probability of a neutron travelling a distance z’ in the material without undergoing a
collision is exp(—X;z’), while the probability of the same neutron travelling a short distance dz’ and colliding is
3 dz’. Thus, the appropriate cumulative distribution function for the probability of colliding a distance s, F'(s), to
sample from is

In(¢)
¥

S
F(s)=¢= / e T Ay s = — (24)
0
which provides the distance to the next collision site. The updated position within the slab, z’, relative to the z-axis
is then calculated as 2’ = x + su and the updated time ¢’ is t' = ¢ + s/v. We must now concern ourselves with four
possible scenarios before we proceed:

1.t/ >tg, 2’ € [wp,zr]: n® collision site is within the system and the n® is still in transit at ¢ 7, bin as persistent

nY and move onto the next particle.

2. t' < ty, 2’ ¢ [z, zR): n® collision site is out of the system and the n® arrives at site before t¢, bin as either
left- or right-leaked n° and move onto the next particle.

3.t > ty, 2’ ¢ [xr,wr]: n° has either leaked or persisted, we must determine the distance to the boundary and
the time to get to the boundary and compare to the final time. Discussed below.

4. t' < tg, 2’ € [xp,zpg): n° collision site is within the system and the n® arrives at site before ¢, we continue on
to sample which collision takes place. Discussed below.
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Table 3: Equations for the moments for an individual batch and for the total set of batched simulations.

Concerning item 3, the collision site is out of the system and the time to get there is greater than the final time. To
determine if the neutron is classified as persistent or leaked, we calculate the distance to the boundary, s, as

5 {s—(x—xR)/u for u >0 (25)

s—(zx—zr)/u for u<O0.

Recall z is the original location of the neutron, not the collision site. We then determine the time to get to the
boundary, t;, as being

Sh
ty=t+ — 26
b + v’ ( )

where t is, again, the time that the neutron was at the original site. We can then determine whether the neutron
was in the system at the final time, if ¢, > ¢ (the time to get to the boundary was greater than the final time), or
if it had leaked, t, < ty.

Concerning item 4, we must then proceed to sample from the discrete CDF of the microscopic cross-sections, which
is similar to the lumped CDF but with the inclusion of scattering. Thus, a random number ¢ is chosen and first
compared to the ratio o./0; and if £ < o./0¢, the neutron is captured and we proceed to the next particle. If o./0y <
¢ < (0.4 05)/0+, we scatter the neutron and repeat the process starting at Eq. (23). Finally, if &€ > (0. + 05)/0,
the neutron has induced a fission and we proceed to follow the chain of particles until it has persisted past t¢, has
diverged to a population greater than a prescribed limit, or has died away.

The moments of the neutron number and cumulative induced fission number distributions were calculated by parti-
tioning a total set of simulations into batches, determining the first four moments for each batch to construct a sample
distribution of calculated moments, and finally deriving the reported results from the moments of the distributions
of the batch moments. To explain this in more detail, a batch may contain several thousands or even millions of
simulations (a.k.a. histories) with unique independent identically distributed (IID) outcomes. For a single batch,
the mean, variance, skewness, and kurtosis are calculated using the equations in the ”Set of Histories” column of
Table (3) and saved for post-processing, where h is the number of histories performed per batch. Once all of the
batches are completed, a distribution of the batch moments is obtained and is expected to approach the Gaussian
distribution in accordance with the Law of Large Numbers for IID random variables. It can be seen in Table (4)
that the skewness is near zero, indicating a symmetric distribution about the mean, and the kurtosis hovers around
three as does the Gaussian distribution. From this normal distribution, we use the equations in the ”Set of Batches”
column of Table (3) to find the moments of the entire set of histories for a total number of B batches. Note that the
minimal number of batches is four to avoid a singularity from the coefficient of the batch kurtosis.

Tables (5) and (6) summarize the moments of the neutron number PDF as well as the cumulative induced fission
number PDF as calculated by PARTISN and the MC code for several scenarios for the previously mentioned slab
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Batches | Histories/Batch | S, [em™3s71] tr, [s] SN N S KE
100 4 E7 25,057.4 5.69 E-6 0.117 2.89 0.488 3.47
500 4 E7 100,000 1.0 E-5 -3.46 E-2 | 3.14 | 712 E-2 | 2.82
500 4 E7 10.0 1.0 E-3 -0.145 2.87 | -2.58 E-2 | 3.02
50 1 E6 2,249.014 2.851 E-3 -0.186 3.14 0.159 2.96
500 4 E7 0.154 1.1 E-2 -1.1 E-2 | 3.11 | 5.63 E-2 | 2.76

Iable 4: Skewness and kurtosis for the mean neutron number N and the mean cumulative fission number
F for several sources and final times for a slab of L =1 ¢m with monoenergetic neutrons.

arrangement. The highlighted calculated percent error is relative to the PARTISN values and the median MC value
and is already displayed as a percentage. The large difference between the percentage errors for the neutron numbers
of Table (5) and the cumulative induced fission numbers of Table (6) for corresponding source strengths and final
times is most likely attributed to the low number of total fissions to occur for each individual history and, thus,
we obtain poorer statistical certainty on the PDF for these outcomes. For such systems with low cumulative fission
numbers where the fission PDF is dominated by the extinction probability, or rather the non-existence probability,
the required number of histories per batch is inversely proportional to the smallest probability one desires to obtain.
This makes the storage cumbersome when more than 107 histories per batch are required as an array of that size
is required to store the data for each counter (for both the neutron number and the fission number, as well as any
other moments one might be calculating, such as leaked neutron PDFs).

The confidence interval, C}, for the 4" moment was calculated using the 95% confidence coefficient of 1.96 multiplied
by the sample distribution standard deviation as:

5
VB’
where B is the total number of batches. These values are reported directly after the median values of the MC

simulation and show that the majority of the PARTISN results fall within the 1.96 standard deviations or are very
close to either the upper or lower bounds.

C; =1.96 (27)

Also of interest are the actual probability distribution functions of the neutron number and cumulative induced fission
number for which the moments of have been the focus in this section. The Monte Carlo code has the capability to
reproduce the PDFs by constructing a histogram with size and bin widths based on the greatest valued outcome
from the first batch of histories. After the first batch, a subroutine is called and builds the necessary histograms and
corresponding grids with the bin mesh points. If any histories have an outcome greater than the greatest of the first
batch, they are placed into the last bin. The PDFs for the neutron number at a final time are surmised in Figure
6(a) and the cumulative induced fission number within the time interval are shown in Figure 6(b).
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Code Histories | S, [em™3s7!] tr, [s] N oN SN KN
PARTISN - 25,057.4 5.69 E-5 1.4258 1.1941 8.3756 E-1 3.7017
MC 4 E9 25,057.4 5.69 E-5 1.4258 + 4.1E-5 1.1941 4+ 3.1E-5 8.3751 E-1 4+ 9.8E-5 | 3.7014 4+ 4.5E-4
% Error - - - 0.00000 0.00000 0.00597 0.00811
PARTISN - 100,000 1.0 E-5 1.0000 1.0000 1.0000 4.0001
MC 2 E10 100,000 1.0 E-5 1.0000 + 1.4E-5 1.0000 + 1.1E-5 1.0000 + 4.3E-5 4.0001 £+ 2.3E-4
% Error - - - 0.00000 0.00000 0.00000 0.00000
PARTISN - 10.0 1.0 E-3 9.9976 E-3 1.0002 E-1 10.016 103.8
MC 2 E10 10.0 1.0 E-3 9.9963 E-3 + 1.4E-6 | 9.9998 E-2 £+ 7.2E-6 10.011 + 8.2E-4 103.5 £ 2.4E-2
% Error - - - 0.0130 0.0220 0.0499 0.2890
PARTISN - 2,249.014 2.851 E-3 6.4087 2.5335 3.9676 E-1 3.1597
MC 5 E7 2,249.014 2.851 E-3 6.4076 £+ 2.3E-3 2.5330 £+ 1.8E-3 3.9598 E-1 4+ 2.3E-3 | 3.1557 4+ 6.8E-3
% Error - - - -0.07552 0.3927 -0.6931 -0.3982
PARTISN - 0.154 1.1 E-2 1.6912 E-3 4.1244 E-2 24.733 647.1
MC 2 E10 0.154 1.1 E-2 1.6894 E-3 + 5.8E-7 | 4.1174 E-2 + 7.2E-6 24.579 £ 6.7E-3 626.2 + 0.8
% Error - - - 0.1064 0.1697 0.6226 3.2297

Table 5: Neutron population results for several different source strengths and different final times for a slab of L = 1 ¢m with monoenergetic

neutrons.
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Code Histories | S, [em™3s7!] tr, [s] F oF Sp Kp
PARTISN - 25,057.4 5.69 E-5 8.7852 E-6 2.9640 E-3 3.3739 E2 1.1384 Eb5
MC 4 E9 25,057.4 5.69 E-5 | 8.7797 E-6 + 1.1E-7 | 2.9614 E-3 £+ 1.9E-5 | 3.3802 E2 + 2.2 | 1.1438 E5 + 1.5E3
% Error - - - 0.0626 0.0877 -0.1867 -0.4743
PARTISN - 100,000 1.0 E-5 1.0829 E-6 1.0406 E-3 960.96 9.2346 E5
MC 2 E10 100,000 1.0 E-5 1.0676 E-6 + 1.5E-8 | 1.0301 E-3 + 7.1E-6 977.02 £ 6.9 9.6083 E5 + 1.4E4
% Error - - - 1.4129 1.0090 -1.6712 -4.0467
PARTISN - 10.0 1.0 E-3 1.0827 E-6 1.0407 E-3 961.52 9.2518 E5
MC 2 E10 10.0 1.0 E-3 1.0823 E-6 £ 1.4E-8 | 1.0375 E-3 £ 6.8E-6 969.57 £ 6.6 9.4582 E5 + 1.3E4
% Error - - - 0.0369 0.3075 -0.8372 -2.2309
PARTISN - 2,249.014 2.851 E-3 1.9790 E-3 4.4509 E-2 22.5127 510.8
MC 5 E7 2,249.014 2.851 E-3 | 1.9688 E-3 4+ 4.4E-5 | 4.4355 E-2 + 5.0E-4 | 22.6176 £ 0.26 516.1 =+ 12.0
% Error - - - -0.3527 -0.1267 0.3220 0.8332
PARTISN - 0.154 1.1 E-2 2.0157 E-6 1.4225 E-3 708.44 5.0574 E5
MC 2 E10 0.154 1.1 E-2 2.0166 E-6 £ 1.9E-8 | 1.4201 E-3 £+ 6.8E-6 710.41 £ 3.5 5.0897 E5 &+ 5.2E3
% Error - - - 0.0446 0.1687 -0.2781 -0.6387

Table 6: Cumulative induced fission number results for several different source strengths and different final times for a slab of L = 1 ¢m
with monoenergetic neutrons.
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Figure 6: PDFs for the neutron number and the cumulative induced fission number for a given final time
and source strength (S has units of cm™3s71).

4 A Time Dependent Sphere with Monoenergetic Neutrons

The next stage in the development of the MC code is to convert from a one-dimensional slab into a one-dimensional
sphere with monoenergetic neutrons. We maintain the assumptions that source emission as well as scattering events
are isotropic and that the source is evenly distributed in space. In order to sample locations of spontaneous fission
events within our sphere, the spatial probability density function at a radial position, f(r), must depend on the
mass associated with that position. The mass of a sphere is proportional to the volume V and and incremental
mass is proportional to the volume of an incremental shell, dV, and we can say the appropriate spatial probability
distribution is [5]

v 3r?
f('l") dr = 7 = ﬁ d'r, (28)

and the cumulative distribution function F'(r) for which to sample a radial position of emission is then

F(ry=¢= /0 frdr = r=¢"3R, (29)

where R is the radius of the system, » < R, and per usual, £ € [0, 1] is a randomly generated number. Once the radial
position is known, we sample an angle of emission, assumed to be isotropic, and use Eq. (23). Note that p € [—1,1]
is now the cosine of the angle made between the radial coordinate vector and the direction of neutron travel, which
is different from some prescribed Cartesian axis. Next, the distance to collision is sampled using Eq. (24) and the
new radial position r’ is updated using

= /12 4 52 + 2rspu, (30)

and the updated time of collision ¢’ is t’ = t+s/v. We use the same logical outline that is enumerated in the previous
section to determine the next operation to perform on the neutron with the new exception that we only need to
compare r’ to the system radius R. Thus, if ¢’ >ty and 7 < R, the neutron is a persistent neutron and move onto
the next particle; if ¢’ < ¢y and ' > R, the neutron has leaked; if ¢’ < t; and r’ < R, we sample which interaction
occurs just as before; and if ¢ > ty and ' > R, we must determine whether the neutron was still in the system or
outside the system at t¢. For this last case, we calculate the distance to the boundary s; using

sp =V R?—1r2(1—p?) —rp. (31)
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Batches | Histories/Batch | S, [em™3s71] tr, [s] SN N SE K
50 1E7 25,057.4 5.69 E-5 0.209 2.344 | -0.470 | 3.897
50 1 E7 100,000 1.0 E-5 0.316 3.48 | 0.231 | 3.083
50 1 E7 10.0 1.0 E-3 -5.765 E-2 | 3.106 | 0.275 | 3.224

1E3 1 E3 2,249.014 2.851 E-3 | -4.109 E-2 | 3.017 | 0.103 | 3.009
1E3 1 E6 0.154 1.1 E-2 -4.609 E-2 | 3.034 | 0.156 | 2.759

Iable 7: Skewness and kurtosis for the mean neutron number N and the mean cumulative fission number
F for several sources and final times for a sphere of R = 2 ¢m with monoenergetic neutrons.

From which, the time at which the neutron intersects the spherical surface, ¢, is calculated using Eq. (26) which
will inform us whether the neutron had leaked or was still in the system at the final time.

Once again, this process is carried out many times in order to gain the desired level of confidence in the final calculated
tallies. The batching statistics method has been employed, as described in the previous section, and the third and
fourth moments of the batched distributions for the mean number of neutrons at ¢y and the mean cumulative number
of induced fissions is shown in Table 7.
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Code Histories | S, [em™3s7!] tr, [s] N oN SN KN
PARTISN - 25,057.4 5.69 E-5 47.7779 6.9123 0.1447 3.0209
MC 5 E8 25,057.4 5.69 E-5 | 47.7781 + 6.0E-4 | 6.9124 + 4.2E-4 | 0.1446 4+ 2.3E-4 | 3.0207 £+ 5.3E-4
% Error - - - -0.0004 -0.0014 0.0691 0.0066
PARTISN - 100,000 1.0 E-5 33.5103 5.7888 0.1728 3.0298
MC 5 ES8 100,000 1.0 E-5 33.5106 = 4.6E-4 | 5.7890 £+ 4.2E-4 | 0.1729 £ 2.4E-4 | 3.0298 &+ 5.0E-4
% Error - - - -0.0009 -0.0035 -0.0579 0.0000
PARTISN - 10.0 1.0 E-3 0.3350 0.5790 1.7303 6.0087
MC 5 E8 10.0 1.0 E-3 0.3351 £ 3.7E-5 0.5789 £ 4.1E-5 | 1.7292 + 3.0E-4 | 5.9988 £ 2.2E-3
% Error - - - -0.0299 0.0000 0.0694 0.1731
PARTISN - 2,249.014 2.851 E-3 214.797 14.6676 6.8533 E-2 3.0048
MC 1 E6 2,249.014 2.851 E-3 | 214.859 4+ 2.7E-2 | 14.6416 £+ 1.9E-2 | 6.8119 &+ 5.0E-3 | 2.9975 + 9.8E-3
% Error - - - -0.0288 0.1773 0.6041 0.2429
PARTISN - 0.154 1.1 E-2 5.6664 E-2 0.2388 4.2710 22.2053
MC 1 E9 0.154 1.1 E-2 5.6734 £ 1.5E-5 0.2386 £+ 3.4E-5 | 4.2419 £ 1.1E-3 | 21.5781 £+ 2.3E-2
% Error - - - -0.1235 0.0838 0.6813 2.8246

Table 8: Neutron population results for several different source strengths and different final times for a sphere of R = 2 ¢m with monoen-

ergetic neutrons.
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Code Histories | S, [em™3s71] tr, [s] F oF Sp Kp
PARTISN - 25,057.4 5.69 E-5 2.9440 E-4 1.7158 E-2 58.2837 3.4001 E3
MC 5 E8 25,057.4 5.69 E-5 | 2.9468 E-4 + 1.6E-6 | 1.7166 E-2 + 4.6E-5 | 58.2687 4+ 0.16 3.3991 E3 £+ 19.2
% Error - - - -0.0951 -0.0466 0.0257 0.0294
PARTISN - 100,000 1.0 E-5 3.6289 E-5 6.0240 E-3 166.00 2.7560 E4
MC 5 E8 100,000 1.0 E-5 3.6282 E-5 £ 6.1E-7 | 6.0209 E-3 £ 5.1E-5 166.25 + 1.4 2.7672 E4 4+ 460.4
% Error - - - 0.01929 0.0515 -0.1506 -0.4064
PARTISN - 10.0 1.0 E-3 3.6285 E-5 6.0249 E-3 166.10 2.7611 E4
MC 5 E8 10.0 1.0 E-3 | 3.6112 E-5 £ 3.6E-7 | 5.9903 E-3 + 3.0E-5 168.09 £+ 0.86 2.8453 E4 £+ 295
% FError - - - -0.4437 -0.1743 -0.1987 0.4237
PARTISN - 2,249.014 2.851 E-3 6.6326 E-2 0.2577 3.8888 18.1528
MC 1 E6 2,249.014 2.851 E-3 | 6.6294 E-2 £+ 5.2E-4 0.2567 £+ 1.1E-3 3.8764 £ 2.2E-2 | 17.8493 £+ 2.4E-1
% Error - - - 0.0482 0.3880 0.3189 1.6719
PARTISN - 0.154 1.1 E-2 6.7582 E-5 8.2368 E-3 122.354 1.5089 E4
MC 1 E9 0.154 1.1 E-2 6.7370 E-5 £+ 5.0E-7 | 8.2093 E-3 £+ 3.1E-5 123.17 + 0.47 1.5331 E4 £ 121.6
% Error - - - 0.3137 0.3339 -0.6669 -1.6038

Table 9: Cumulative induced fission number results for several different source strengths and different final times for a sphere of R = 2 ¢m
with monoenergetic neutrons.
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2
M|

ON SN KN oF SF Rp

PARTISN | 0.3350 | 0.5790 | 1.7303 | 6.0087 | 3.6285 E-5 | 6.0249 E-3 | 166.10 | 2.7611 E4

MEMC 0.3351 | 0.5789 | 1.7292 | 5.9988 | 3.6112 E-5 | 5.9903 E-3 | 168.09 | 2.8453 E4

% -0.0299 | 0.0173 | 0.0694 | 0.1731 -0.4437 -0.1743 -0.1987 0.4237

MGMC 0.3350 | 0.5789 | 1.7293 | 5.9996 | 3.6580E-5 | 6.0465E-3 | 165.66 | 2.7492 E4

% 0.0000 | 0.0173 | 0.0578 | 0.1514 -0.8130 -0.3585 0.2649 0.4310

Table 10: Comparison between PARTISN, the monoenergetic Monte Carlo (MEMC), and the multigroup
one-group Monte Carlo for a spherical system (MGMC).

5 A Time Dependent Sphere with Multigroup Energy Binning

The final step in the development of the MC code for the summer project involves the incorporation of multigroup
energy binning of the neutrons. This is pivotal in benchmarking PARTISN’s moment calculators as it uses multigroup
data to solve the adjoint transport equations of the respective moments that have been under investigation throughout
this report. Extending the MC to account for multigroup neutrons is accomplished by converting the cross-sections,
multiplicity distributions, and sources into arrays (with max dimension equal to the number of energy groups) that
are then used to sample a neutron’s energy, i.e. energy bin. As an example, if a neutron appears as a result of
a spontaneous fission, the discrete cumulative distribution function of the group-dependent source strengths are
sampled to determine the energy, whereas a neutron born from an induced fission will have it’s energy sampled
from the chi spectrum. The data is extracted from the PARTISN output file and this allows one to construct the
necessary CDF's for energy bin sampling as a means of replicating the exact same system that the multigroup adjoint
deterministic transport code is solving.

Perhaps the most important difference between the monoenergetic and the multigroup calculations is found in the
scattering interactions. As it turns out, PARTISN has absorption-emission events, such as (n,2n), included /embedded
in the scattering matrix produced in the output file. Thus, it has proven necessary to include these events in the
simulation process by calculating an effective 7, s for scattering events as a function of the incident neutron energy
and sampling the number of neutrons created in every scatter event. This sampling is done by selecting a random
number ¢ € [0,1] and comparing it to the difference d = 7, 5 — |74, 5], so that if £ < d, the number of neutrons born
in the scatter event is [T, g], and if £ > d, the number of neutrons born in the scatter event is |74 ¢]. Note that the
notation |a| and [a] refers to the floor of a (the next smallest integer) and the ceiling of a (the next highest integer),
respectively. Ideally it would be most desirable to sample the number of neutrons created in an (n,xn) reaction from
a multiplicity distribution, just as with any other stochastic neutron source, rather than sampling only two possible
outcomes about the average number emitted per scatter event.

The first test to ensure the code is performing correctly is to compare a one-group simulation of the multigroup code
with that of the monoenergetic sphere and with PARTISN. Seen in Table (10), the one-group multigroup agrees with
monoenergetic and PARTISN calculations for a sphere of radius R = 2 ecm, S = 10.0 em™3s™! and t; = 1.0 ms.
These results provide confidence in our ability to produce the same results as a one-group calculation upon collapsing
to a single energy group.

We next consider the famous Lady Godiva critical assembly experiment with three energy groups with a slightly
larger radius to simulate a supercritical system. With a radius of R = 7.70 ¢m, a uniform density of p = 18.74 g/cc,
20 ordinates, along with using mendf6 library and 93.71 wt% 23°U oralloy (Oak Ridge alloy), PARTISN calculates
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2
M|

ON SN KN oF SF Rp

PARTISN | 0.2685 | 0.5183 | 1.9329 | 6.7617 | 7.5834 E-6 | 2.7539 E-3 | 363.16 | 1.3191 E5

MGMC | 0.2685 | 0.5183 | 1.9318 | 6.7497 | 7.6480 E-6 | 2.8161 E-3 | 355.90 | 1.2995 E5

% Error | 0.0000 | 0.0000 | 0.0569 | 0.1775 -0.8519 -2.2586 1.9991 1.4859

Table 11: Lady Godiva results as simulated by PARTISN as well as the multigroup MC code.

N ON SN RN F o SF KRE

PARTISN | 39.5616 | 6.5336 | 0.2092 | 3.0785 | 0.2002 | 0.4515 | 2.2957 | 8.4514

MGMC | 39.1466 | 6.3886 | 0.2052 | 3.0374 | 0.2021 | 0.4507 | 2.2412 | 8.0537

% Error 1.0490 | 2.2193 | 1.9120 | 1.3351 | -0.9491 | 0.1772 | 2.3740 | 4.7057

Table 12: Jezebel results as simulated by PARTISN as well as the multigroup MC code.

k = 1.0152345 for t; = 3.120 ps. It is seen in Table (11) that we have excellent agreement between the two codes
for the neutron number, but the cumulative induced fission number is showing as much as several percentage error.
This difference can be attributed to the oscillatory nature of the results of the MC as a function of the number of
histories and batches performed. If we were to increase the total number of histories towards infinity, we should see
a convergence to the statistically true answer, which seems to be close to the values produced by PARTISN. This
has yet to be tested in this report.

Finally, we consider a 12-group supercritical simulation of Jezebel with a radius of R = 6.385 ¢m, a uniform density
of p = 15.61 g/cc, 20 ordinates, and using mendf6 library and 95.5 at% 23° Pu, PARTISN calculates k = 1.1267305
for t; = 5.0 sh. Due to stringent time, the simulation could not be performed to produce optimally agreeable results,
but it can be seen that for a quick calculation, the multigroup MC produces results very close to PARTISN’s, which
is very promising.

6 Conclusion

It has been shown that a spherical coordinate, multigroup, time-dependent, neutron transport analog Monte Carlo
code designed to calculate the moments of the neutron number probability distribution as well as the cumulative
induced fission probability distribution agrees well with LANL’s deterministic transport code, PARTISN. This was
done by continual benchmarking of the Monte Carlo code during the development from a strictly time-dependent code
into the capstone version just mentioned. This agreement not only provides confidence that the Monte Carlo code
can be extended to include multiregion geometries, include anisotropic neutron scattering, but also allows PARTISN
to consider multiplet source emission and, more importantly, verifies the deterministic transport methods utilized by
PARTISN.
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7 Appendix
7.1 Neutron Moments Using Deterministic Transport

The moments of the neutron population have been derived [1] using equations of stochastic neutronics which were
first formulated by Bell [7] and Pal [8]. The derivation requires us to first consider a single initial neutron and all the
progeny resulting from its introduction into the system. Following Bell’s derivation, one arrives at the probability
of there existing n neutrons in a region R at a final time ¢¢ due to a neutron being born at 7 with velocity ¥, at an
earlier time t <ty is

cO(F+sQ,ﬁ,t+f)5no
v

)

Po(R,ty;7,0,t) = A—i—/dsZt (F+sf2,17,t—|— f)e—de’Et(ﬂS’W%) x
’ v

Vm n J
)

L I S L s
_|_Z;/dvl.../dvjcj(r+s§2,v—>{vl...vj},t—kv) Z
]:

M;=0i=1

P, <F+ s, Tt + f)
v

(32)

where 3J; is the macroscopic total cross-section, c; is the probability of j neutrons being emitted in an induced
fission, v = |0] is the speed of the incident neutron, A is a correction factor that accounts for the possibility that the
neutron did not interact either before leaking or before the final time, and M; = >~ _, my, such that the M, take
on all possible combinations of neutron chain numbers that add to n; each my corresponds to a summation from 0
to n such that it contributes to the current value of M;. This non-linear system of fully-coupled equations cannot
be solved directly without knowing the maximum number of neutrons in the system, 7,4, for which an equation
corresponds to each possible population number, which cannot be inferred in general and is frequently a very large
number.

Thus, we introduce the probability density generating function (PDGF) transformation, G, which condenses Eq. (32)
from a set of 1,4, equations into a single adjoint transport-like equation. The PDGF is defined as

(oo}
G2 7,0,1) = 1= Y 2" Po(R, t5;7,7,t), (33)

n=0

where we will neglect to write G to be a function of R,t; for brevity; also, z is a real variable restricted to z € [0, 1]
to ensure convergence of the summation of Eq. (33). We then multiply Eq. (32) by 2", sum over all n, and subtract
from unity to obtain:

1—2z for7,¥€eR
0 for ", ¢ R

G(z;7g,7,t) =0, FedR, ép-Q>0,

where OR is the surface of R and €p is the surface normal of OR. By taking successive derivatives of Eq. (34) with
respect to z, solving for n* at each step and evaluating at z = 1, we arrive at a general equation for the k" moment:
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2A5(m)?
6(m)[A2(n?) + As(n)?]
6A2(n?)? + (1) [8A(n?) + 36A3(n?) (M) + 24A4(7)°]

=W N =

Table 13: Neutron moment dependent source terms up to the fourth order moment.

1 R — —
(— f% —Q~V+Et(ﬁz7’7t)>nk(?, 7,t) :/dﬁ’zs(ﬁﬁ—> 7, t)nk (7,07, t)

_ (35)

with the final and boundary conditions given by

— 1 for7, 7€ R
nk(T,’U,tf) == oo
0 for7,v¢ R
nk(ip, ¥,t) =0, FEOR, ép-Q>0.

Where this is a standard adjoint transport equation for the k' moment of the neutron number with a source term,
Sk, that is dependent on all the lower order moments of the population distribution. The first few moments are
surmised in Table (13), where

l/f
S N
A (7, 0,t) = X4 (7, 0,) ]z:; G- (36)
and
() = (WF)(7, 7,1) = / AT\ (T — 7V (7, 7, 1). (37)

It is clear that Eq. (35) must be solved for all lower order moments in an ascending manner to obtain the k"
moment of the distribution. These moments that are obtained are the moments of a single chain induced by a single
neutron described by Eq. (32). To describe the population as a whole for an entire system, we must conduct another
balance of probabilities for a system containing a random, constant singlet-emitting spontaneous fission source, S,
and relate each source event to the chain moments derived above. This will provide a methodology for determining
the moments of the entire neutron population in a system. In performing said probability balance to find another
Master equation, transforming that equation and taking successive derivatives, we can determine the moments of
the distribution. The first four moments are:

e Mean:

/ aF / v / N AtS(7, 7, t)A(F, 7,1) (38)
VN_/dr/dv/ AtS(7, 7, t)n2(7, 7, 1) (39)

e Variance:
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o Skewness: .
1 R Y Y N—E o
SN = W/dr/dv/ dtS(7, 0, t)n3 (7, v, t) (40)
N 0

o Excess Kurtosis:

KN = V2 /dr/dv/ dtS(7, v, t)n(7, v, ). (41)

7.2 Cumulative Fission Moments Using Deterministic Transport

The moments of the cumulative fission number are derived in a similar fashion as those for the neutron number.
Previous work has provided the first few moments of the cumulative fission numbers for supercritical media in a
limited lumped model description [10], where it is desired to derive the moments as functions of time as well as phase
space [11]. This is done by conducting a balance of probabilities in the first collision interval and, by taking a limiting
case of the balance, we find a Master equation describing the temporal behavior of a fission chain produced by a
single neutron arbitrarily introduced into the system. This will eventually lead to an adjoint transport-like equation
for the k' moment of the cumulative fission number, f*(7, ,t), of a single fission chain. We then incorporate a
source and can find the moments of the fission number for an entire system.

Thus, we begin by stating the adjoint transport Master equations, as derived by Prinja [11], describing the cumulative
fission PDF, Py(R,ty; p,t), for there having occurred f fissions within the system due to the introduction of a neutron
into a region R at a time ¢ that is earlier than the time of observation, t¢, such that ¢t < ¢y, with phase space coordinate
ﬁ = (Fv E, Q)

9 .
[vaVHt

Pi(R,tf;5,t) = AeBp0 4+ As /dE'/dQ’f(E — B, Q-Q)Pr(R, 57, t)

Vm

Wi+ Y a Y H/dE /dQle, (B, Q= {E1, 0, .., By, Q) Py (R, s Py 1) |

v=1 f1+f2+
+fuo=f—

+ Ay

(42)

with final and boundary conditions

1 for f=0
Pe(R,te;pts) =050 =
r(Rtrip,tr) =60 {0 for f 0,

Pi(R,ts;p,t) =050, TEOIR, ép-Q>0.

Here p' = (¥, F’, X ) and p; = (7, Ej, QZ) Note the difference in notation from the previous section of this appendix;
we are using the combination of €2 and E instead of the velocity ¢’ as well as reaction rates, A\,, where x is a particular
reaction. We now introduce the generating function transform for the cumulative fission PDF:

o0
G titr.2) = Y 2 Pr(Rtyi 1), (43)
f=0
where we are omitting the R dependence for brevity in the ensuing equations. Also worth noting z is a real variable
restricted to the interval [0,1] to ensure convergence of the series of Eq. (43). By multiplying Eq. (42) by 2/
and summing over all f, we condense the infinite set of master equations into a single equation of G(p,t;ty, z),
consequentially producing an adjoint transport-like equation:

dqQy -
f(E—=E Q- )G, t;ty, 2)

/ / dsy —
[aenE) [ e sz

0
l—at—vQ V+ M

Gt 2) = Ao + A /dE’/

—|—)\sz(1,,

(44)

v
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k Sk(p s[t))

1 Ao

2 Ao +2(f) (A1 + 2A(f))

3 Ao+ (3A1 + 6A2(f)) ((F) + (%)) +6A5(f)* -

o | Ao+ AA(F) +6(72) +407)) + Aa (4(N)[2(f%) + 6(f?) +3(f)] + 6(f*))
+12A3(F)*(3(/2) + 2(f)) + 24A4(f)*

Table 14: Cumulative fission moment dependent source terms up to the fourth moment.

Equation (44) has the final condition for t — t;: G(p,ty;ts,2) = 1, and the boundary condition G(p,t|ts, z) = 1,
7€ dV, eg -2 > 0. As was done in the previous section regarding the neutron numbers, we may take successive
derivatives of G with respect to z, evaluating at z = 1, we obtain the factorial moments of Py,

okG

x| =T0-D (-k+D. (45)

z=1

Upon expanding and simplifying the k" derivative evaluated at unity of Eq. (ﬁ) applied to Eq. (44), we obtain an
adjoint transport equation for the £ moment of the cumulative fission PDF, f*(p,t;t ), for a fission chain induced
by a single initiating neutron:

FE@p tty) = /dE’/
+ A\ / dEx(E) / Cif;

where S}, is a source term that is a function of all lower order fission moments and the first few are defined in Table
(14). Due to this dependence on all of the lower order moments, one must solve for every lower order moment in an
increasing unidirectional manner. Note that A is defined by Eq. (36) and (-) denotes integration over all out-scatter
energies, such that

F(E— B Q- Q) tity)

0
[—at—vﬂ V+ A

(46)

7(ﬁ"t;tf) + S’f(ﬁ t???ﬁ? A 'ka_1)7

(%) = (FF)(7.1) = / AE'Y(E — B R (i, 1). (47)

Thus far, we have not considered systems with a spontaneous fission source, rather we were not able to incorporate
SF into the initial formulation, S(p,t) = S(t)w(p), assumed to be separable in phase space and time. The source

magnitude is carried by S(t) and, therefore, [ dpw(p) = 1. We formulate an adjoint master equation for P}S)(R, t;s),
the probability of a fission occurring in R at time ¢ due to a source event at time s, such that s <t < ty. The fission
source PDF satisfies the following partial differential equation:

(S)
oP; _
s

()P (R, ;) + S(5) Z /dpw (5P, (R, 157, 5) P (R, 155), (48)
fi+fo=

where it is clear that P}S) is implicitly a function of Py,, the probability of the it" fission chain propagating to the
point in space-time s. As has been done for all previously encountered Master equations within this document, we
apply the source generating function, G(S)(R,t;s,z) and solve ascertained ODE by separation of variables. The
solution of generating function transport equation with a source,

t
G(S)(R,t; S0,%) = exp [—/ dsS(s)/dﬁw(ﬁ)G(R,t;@&z) , (49)

S0
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can be differentiated with respect to z and evaluated at unity to obtain the factorial moments of the fission chains
induced by source events. Finally, we may arrive at the moments of the entire system; the first four moments are
defined as:

e Mean:

F%aéfwswy/wm@ﬁ@m> (50)

e Variance:

»%:Afm&@/ﬁmwﬁmg (51)

e Skewness:
[y L
=gy [ dsS(s) [ g ) (52
Ve~ Jo
e Excess Kurtosis:
I I
ke =g [ dsS() [ ape@Tis) (53)
FJo
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