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Keywords Discontinuous Galerkin method · Second order elliptic problem15

1 Introduction16

In this article, we consider to study direct discontinuous Galerkin finite element method [17]17

and its variations [18,24,27] for 2nd order elliptic problem,18

− ∇ · (K (x)∇u) + c(x)u = f, in � ⊂ R2, (1.1)19

associated with Dirichlet boundary condition u = u0 on ∂�. To simplify the presentation,20

we focus on model problem (1.1) under two-dimensional setting. We have x = (x1, x2) ∈ �21

with � as a bounded and simply connected polygonal domain. Diffusion coefficient matrix22

is denoted as K (x) and is assumed being uniformly positive definite. Here f is a given23

function in L2(�). We assume the data in Eq. (1.1) satisfy standard regularity assumptions.24

The special case of (1.1) is the Poisson’s equation,25

− △u = f, (1.2)26

and Laplace’s equation of (1.2) with f = 0.27

In literature we have enormous amount of articles discuss numerical methods solving28

problem (1.1). We skip the long review list. Singular solutions may arise from elliptic prob-29

lem (1.1) on none smooth domains, with combined boundary conditions or discontinuous30

diffusion coefficients. These singularities impose challenges and various difficulties on the31

development of accurate and efficient numerical methods solving (1.1). In this paper, we32

study direct discontinuous Galerkin finite element method [17] and its variations [18,24,27]33

on the model problem (1.1). Discontinuous Galerkin (DG) method is a class of finite element34

method that use completely discontinuous piecewise functions as the numerical approxima-35

tions. Basis functions are completely discontinuous across element edges, thus DG methods36

have the flexibility that is not shared by standard finite element methods, such as the allowance37

of arbitrary triangulations with hanging nodes, complete freedom of choosing polynomial38

degrees in each element (p-adaptivity), and extremely local data structure. It is believed that39

DG method is especially suitable to capture solutions with sharp transitions or discontinu-40

ities, and solutions with complex structures. We refer to review articles [10,12,23] for the41

successful developments of DG methods on convection diffusion problems and refer to recent42

books [13,16,21] on DG methods.43

There are several DG methods for solving elliptic and parabolic problems. One class is44

the interior penalty (IP) methods, dates back to 1982 by Arnold in [1] (also by Baker in [3]45

and Wheeler in [26]), the Baumann and Oden [5,19] and NIPG [22] methods. Another class46

is closely related to mixed finite element methods [8,20], the local discontinuous Galerkin47

method introduced in [11] by Cockburn and Shu (originally studied by Bassi and Rebay in48

[4] for compressible Navier–Stokes equations). We refer to the unified analysis paper [2] in49

2002 for the review of different diffusion DG solvers. Recent developments of DG methods50

on elliptic problems include the over penalized DG method [6], the hybridized DG method51

[9] and the weak Galerkin method [25], etc.52

In [17] we developed a direct discontinuous Galerkin (DDG) method solving time depen-53

dent diffusion equations. The key contribution of [17] is the introduction of numerical flux ûx54

that approximates the solution derivative ux at the discontinuous element edge. The numer-55

ical flux formula ûx designed in [17] involves the solution jump �u�, solution derivative56

average {{ux }} and higher order derivative jump values of u across element edge. The scheme57
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is directly based on the weak formulation of the diffusion equation, thus gains its name the58

direct DG method. Due to accuracy loss with high order approximations, in [18] we further59

developed DDG method with interface correction. Numerically we obtain optimal (k + 1)th60

order convergence in [18] with a small fixed penalty coefficient applied. As is well known,61

the penalty coefficient of symmetric interior penalty method (SIPG) method depends on the62

approximation polynomial degree and needs to be large enough to stablize the scheme. We63

also have the symmetric version [24] and nonsymmetric version [27] of the DDG method.64

Compared to NIPG method [22], nonsymmetric DDG method [27] obtains optimal order65

convergence with any degree polynomial approximations.66

In this article, we further develop DDG method [17] and its variations [18,24,27] to67

solve elliptic model problem (1.1). Continuity and coercivity of the primal bilinear form are68

obtained. A priori error estimate under energy norm is established for all four DDG methods.69

A priori optimal error estimate under L2 norm is obtained for DDG method with interface70

correction [18] and symmetric DDG method [24].71

A series of numerical examples are carried out to illustrate the accuracy and capability72

of the methods. With Pk polynomial approximations we obtain optimal (k + 1)th order73

convergence for DDG method with interface correction [18] and symmetric DDG method74

[24] on nonuniform and unstructured triangular meshes. Then we focus on numerical studies75

of these two DDG methods. An interface problem with discontinuous diffusion coefficients76

is investigated and optimal (k + 1)th order accuracy is obtained even the solution itself is not77

even C1(�) across interface lines. For the interface problem we make no modification on78

scheme formulations and the zero flux jump condition is simply applied weakly through the79

numerical flux defined on element edges. Peak solution with sharp transitions is captured well80

with these two DDG methods. Highly oscillatory wave solutions of Helmholz equation are81

well resolved. Among the four DDG methods, symmetric DDG method [24] is shown to be the82

most suitable elliptic solver not only because the linear system is symmetric (for Laplace for83

example) such that faster solvers can be applied. Under same settings the symmetric DDG84

method resolves the highly oscillatory wave better than the DDG method with interface85

correction. When comparing to SIPG method [1], symmetric DDG method roughly saves86

7–10 % on CPU time with high order and on refined mesh simulations.87

The rest of the article is organized as follows. In Sect. 2, we present scheme formulations88

of DDG method and its variations applied to model problem (1.2) and problem (1.1) with89

variable coefficient diffusion matrix. In Sect. 3 we present stability and a priori error estimate90

under a standard energy norm and L2 norm. Finally numerical examples are shown in Sect. 4.91

Throughout this paper, we let | · |H s (K ) and ‖ · ‖H s (K ) denote the seminorm and norm92

of space H s(K ), s ≥ 0, respectively. Let Hs(K ) denote the space of H s(K ) × H s(K ) and93

L2(K ) the space of L2(K ) × L2(K ).94

2 Discretization of Direct DG Method and Its Variations95

Let Th be a shape-regular partition of the domain � into disjoint elements {K }K∈Th
, for96

example triangles or quadrilaterals with �̄ = ∪K∈Th
K̄ . By hK = diam(K ), we denote the97

diameter of an element K ∈ Th . We set h = maxK∈Th
hK as the mesh size of the partition.98

We denote by E
I
h the set of all internal edges, and by E

D
h the set of all boundary edges of Th .99

And we have Eh = E
I
h ∪ E

D
h as the collection of all edges. The length of the edge e ∈ Eh is100

denoted by he.101

We have Pk(K ) representing the polynomials function space of degree at most k on102

element K . The DG solution space is defined as,103
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V k
h :={v ∈ L2(�) : v|K ∈ Pk(K ),∀K ∈ Th}.104

Suppose K and K ′ are two adjacent elements and share one common edge e. There are two105

traces of v along the edge e, where we add or subtract those values to obtain the average and106

the jump. We denote by n = (n1, n2)
T the outward unit normal vector pointing from K into107

its neighbor element K ′. Now the average and the jump of v over edge e are defined and108

denoted as follows,109

{{v}} =
1

2
(v|K + v|K ′) , �v� = v|K ′ − v|K , ∀e = ∂K ∩ ∂K ′.110

Let’s use Poisson Eq. (1.2) to illustrate Direct DG [17] and its variations [18,24,27]111

schemes formulations. Multiply Eq. (1.2) with arbitrary smooth test function v, integrate112

over element K ∈ Th , have the integration by parts and we obtain,113

∫

K

∇u · ∇vdx −
∫

∂K

∇u · nvds =
∫

K

f vdx. (2.1)114

The idea of Direct DG method [17] is to design a formula to approximate the gradient115

∇u across the discontinuous element edge and obtain a DG method that is based directly116

on the weak formulation (2.1) of (1.2). With no ambiguity, for the rest of this article we use117

same letter u instead of notation uh to represent DG numerical solution. Now the Direct118

DG method of (1.2) is defined as, we seek numerical solution u ∈ V k
h such that for all test119

function v ∈ V k
h we have,120

∫

K

∇u · ∇vdx −
∫

∂K

ûnvds =
∫

K

f vdx, ∀ K ∈ Th . (2.2)121

The numerical flux ûn which approximates the normal derivative un = ∇u · n involves the122

solution jump �u�, the normal derivative average {{un}} and higher order normal derivative123

jumps of u on the edge,124

ûn = β0
�u�

he

+ {{un}} + β1he�unn� + β2h3
e�u4n� + · · · .125

In [17], we show it is hard to identify suitable coefficient β2 to obtain optimal convergence126

for high order Pk (k ≥ 4) approximations. Thus we add extra interface terms and have the127

DDG method with interface correction in [18] such that optimal convergence is obtained128

for any order approximations. Furthermore, we introduce same format numerical flux for129

the test function and obtain the symmetric [24] and nonsymmetric version [27] of the DDG130

methods. Now we summarize scheme formulations of DDG variations for model equation131

(1.2) as follows,132

∫

K

∇u · ∇vdx −
∫

∂K

ûnvds + σ

∫

∂K

ṽn�u�ds =
∫

K

f vdx, for all v ∈ Vh, (2.3)133

with ûn and ṽn defined on the interior element edge ∂K ∈ E
I
h as,134

{
ûn = ∇̂u · n = β0u

�u�
he

+ {{un}} + β1he�unn�,

ṽn = ∇̃v · n = β0v
�v�
he

+ {{vn}} + β1he�vnn�.
(2.4)135

136

We drop higher order terms and only keep the jump, normal derivative average {{un}} and137

second order normal derivative jump �unn� terms in the numerical flux formula. Notice that138
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J Sci Comput

the test function v ∈ V k
h is taken being zero outside the element K . In a word, only one side139

contributes to the calculation of ṽn on ∂K . Thus term ṽn essentially degenerates to,140

ṽn =
(

β0v

(−v)

he

+
1

2
vn + β1he(−vnn)

) ∣∣∣
∂K

.141

To apply Dirichlet type boundary condition, i.e. ∂K ∈ E
D
h ⊂ ∂�, we have,142

ûn = β0u

�u�

he

+ un with �u� = u0 − u, and ṽn = β0v

−v

he

+ vn. (2.5)143

If a Neumann type boundary condition is given, i.e. un = ∂u
∂n

= g is available on ∂�, we144

directly applies145

ûn = g, on ∂K ∈ ∂�.146

In the numerical flux formula (2.4), he is taken as the length of edge e = K ∩K ′ or the average147

he = (hK +hK ′)/2 with hK and hK ′ being the diameters of element K and K ′. Numerically148

we observe no essential difference with either choice of he. The coefficients β0u, β0v and β1149

are chosen to ensure the stability and convergence of these methods. Depending on the sign150

of σ = +1 or σ = −1 in (2.3), correspondingly we have the symmetric and nonsymmetric151

version of DDG methods. Now we list the three variations of DDG methods and discuss their152

properties in details.153

1. DDG method with interface correction [18]:154

σ = +1 in (2.3) with ṽn = {{vn}} in (2.4) (2.6)155

with β1 = 0 in the numerical flux ûn of (2.4), the DDG method with interface correction156

[18] degenerates to the symmetric Interior Penalty method. With β1 �= 0, optimal con-157

vergence is observed with a small fixed penalty coefficient applied for all Pk polynomial158

approximations. For example, we choose fixed β0u = 2 for all Pk (k ≤ 9) polynomials159

in [18]. As is well known, the penalty coefficient (β0u in this case) should be taken large160

enough, roughly in the scale of k2 for Pk polynomials to stablize the symmetric Interior161

Penalty method.162

2. Symmetric DDG method [24]:163

σ = +1 in (2.3) with (2.4) (2.7)164

In [24], we apply same format numerical flux for the test function and obtain a symmetric165

DDG scheme. Optimal L2 error estimate is proved. Analytically we show that any (β0, β1)166

coefficients pair, with β0 = β0u + β0v in (2.4), that satisfies a quadratic form inequality167

β0 > 4

(
(β1)

2 k2(k2 − 1)2

3
− β1

k2(k2 − 1)

2
+

k2

4

)
,168

leads to an admissible numerical flux, and guarantees the optimal convergence of the169

symmetric DDG method.170

3. Nonsymmetric DDG method [27]:171

σ = −1 in (2.3) with (2.4) (2.8)172

with β1 = 0 in (2.4), the nonsymmetric DDG scheme [27] degenerates to the Baumann173

and Oden [5] method (β0 = β0u −β0v = 0) or the NIPG [22] method (β0 = β0u −β0v >174

0). With β1 �= 0, we observe optimal (k + 1)th order convergence for any Pk polynomial175
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J Sci Comput

approximations, see [27], which improves the sub-optimal kth order convergence of176

Baumann–Oden and NIPG methods.177

Next we consider DDG scheme formulation for the following variable coefficient linear178

diffusion equation,179

−∇ · (K (x)∇u) = f.180

The symmetric DDG scheme formulation for above variable coefficient elliptic equation is181

to find DG solution u ∈ V k
h such that ∀v ∈ V k

h and on any element K ∈ Th , we have,182

∫

K

K (x)∇u · ∇v dx −
∫

∂K

̂K (x)∇u · nv ds +
∫

∂K

˜K (x)∇v · n�u� ds =
∫

K

f vdx.183

(2.9)184

Here the diffusion coefficient matrix is denoted as K (x) = (ki j (x)) with x ∈ �. With normal185

vector n = (n1, n2) and coefficient ki j (x) well defined on the edge ∂K , the numerical flux186

can be written out in detail as ̂K (x)∇u · n =
∑2

i, j=1 ki j (x)ûx j
ni . Similar to (2.4), we have187

ûx j
and ṽx j

defined on the edge as follows,188

{
ûx j

= β0u
�u�
he

n j + {{ux j
}} + β1he�ux j x1 n1 + ux j x2 n2�,

ṽx j
= β0v

�v�
he

n j + {{vx j
}} + β1he�vx j x1 n1 + vx j x2 n2�.

189

190

Remark 2.1 For poisson Eq. (1.2), symmetric DDG method is the only one giving symmetric191

stiffness matrix such that fast solvers can be applied. The rest three DDG methods lead to192

nonsymmetric linear system.193

Remark 2.2 We take Taylor expansion polynomials around element center as basis functions194

in our numerical tests. To simplify the comparisons among all four DDG methods (2.10),195

we choose fixed coefficient β1 = 1/40 in all examples for Pk (2 ≤ k ≤ 4) approximations196

even there exists a large class of admissible (β0, β1) coefficient pair (i.e. symmetric DDG197

method).198

To simplify the discussion and presentation, we focus on Poisson Eq. (1.2) associated with199

zero Dirichlet boundary condition u|∂� = u0 = 0 for the following theoretical discussions200

in this article. We can trivially extend the results to linear Eq. (1.1). Now summing up (2.3)201

over all elements K ∈ Th , we have the primal formulation of DDG method and its variations202

of (1.2) as: find u ∈ V k
h such that203

Bh(u, v) = F(v), ∀v ∈ V k
h . (2.10)204

The bilinear form Bh(w, v) is listed below as,205

Bh(w, v) :=
∑

K∈Th

∫

K

∇w · ∇vdx +
∑

e∈E
I
h

∫

e

(
ŵn�v�ds + σ ṽn�w�

)
ds206

+
∑

e∈E
D
h

∫

e

(
β0

he

wv − wnv − σvnw

)
ds, (2.11)207

with the right hand side F(v) given as,208

F(v) =
∫

�

f vdx.209
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Here we haveβ0 = β0u+σβ0v . Again, it degenerates to the original DDG method when taking210

σ = 0 in (2.11). Coupled with (2.4) and taking σ = ±1 in (2.11), we have the symmetric and211

nonsymmetric version of the DDG methods. The DDG with interface correction is the case212

with σ = +1 in (2.11) and with test function numerical flux taken as the average ṽn = {{vn}}.213

3 Boundedness, Stability and Error Estimate214

In this section, we carry out a unified error estimate for the DDG method and its variations215

(2.10). We first list approximation properties of the solution space V k
h and discuss the bound-216

edness and stability of the bilinear form Bh(·, ·). Then we establish a suitable energy norm217

error estimate for the four DDG methods (2.10). Toward the end of this section, we obtain218

the optimal error estimate under L2 norm for DDG with interface correction and symmetric219

DDG methods.220

First let’s define the energy norm for v ∈ V k
h :221

|||v|||h :=

⎛
⎜⎝

∑

K∈Th

∫

K

∇v · ∇vdx +
∑

e∈E
I
h

∫

e

�v�2

he

ds +
∑

e∈E
D
h

∫

e

v2

he

ds

⎞
⎟⎠

1/2

. (3.1)222

3.1 Approximation Properties and Stability223

Below we list the trace inequality and inverse inequality of the solution space V k
h . We refer224

to finite element textbooks, i.e, [7] or [21] regarding these classical results.225

Lemma 3.1 (Trace inequality) For any element K ∈ Th and v ∈ H s(K ) with s ≥ 1, there226

exist positive constants Cg independent of K such that, ∀e ⊂ ∂K , we have,227

‖v‖L2(e) ≤ Cgh
−1/2
K

(
‖v‖L2(K ) + hK ‖∇v‖L2(K )

)
,228

‖vn‖L2(e) = ‖∇v · n‖L2(e) ≤ Cgh
−1/2
K

(
‖∇v‖L2(K ) + hK ‖∇2v‖L2(K )

)
.229

Lemma 3.2 (Inverse inequality) For any element K ∈ Th and v ∈ Pk(K ), there exist positive230

constants Ct , Ci independent of K such that, ∀ e ⊂ ∂K and ∀ 0 ≤ j ≤ k, we have,231

‖v‖L2(e) ≤ Ct h
−1/2
K ‖v‖L2(K ),232

‖vn‖L2(e) = ‖∇v · n‖L2(e) ≤ Ct h
−1/2
K ‖∇v‖L2(K ),233

‖∇ jv‖L2(K ) ≤ Ci h
− j
K ‖v‖L2(K ).234

Next we establish the continuity and coercivity of the bilinear form (2.11).235

Theorem 3.1 There exist positive constants Cs , Cb for DDG method and its variations (2.10)236

such that for any w, v ∈ V k
h , we have,237

|Bh(w, v)| ≤ Cb|||v|||h |||w|||h . (3.2)238

Bh(v, v) ≥ Cs |||v|||2h, (3.3)239
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Proof Plug in the numerical flux formula (2.4) in (2.11), we have the bilinear form laid out240

in detail as,241

Bh(w, v) =
∑

K∈Th

∫

K

∇w · ∇vdx +
∑

e∈E
I
h

∫

e

(
β0

he

�w� + {{wn}} + β1he�wnn�

)
�v�ds242

+ σ
∑

e∈E
I
h

∫

e

(
{{vn}} + β1he�vnn�

)
�w�ds +

∑

e∈E
D
h

∫

e

(
β0

he

wv − wnv − σvnw

)
ds.243

(3.4)244

We first show the continuity (3.2) of the bilinear form. We consider
∫

e
{{wn}}�v�ds245

and
∫

e
β1he�wnn��v�ds as example terms and treat other terms in the bilinear form of246

(3.4) in a similar fashion. Using Cauchy–Schwarz inequality, we have,247

∫

e

{{wn}}�v�ds ≤ ‖{{wn}}‖L2(e)

∥∥�v�
∥∥

L2(e)
and248

∫

e

β1he�wnn��v�ds ≤ β1he

∥∥�wnn�
∥∥

L2(e)

∥∥�v�
∥∥

L2(e)
.249

Now let’s study these two terms in detail. We intensively apply inverse inequalities250

(Lemma 3.2) to bound the polynomial integral on edge by its integrals over the elements251

and essentially by its energy norm. Let’s assume edge e is a common edge shared by ele-252

ments K1 and K2. With the definition of average {{·}} and jump �·�, we have,253

‖{{wn}}‖L2(e) ≤
1

2

∥∥(wn) |K1

∥∥
L2(e)

+
1

2

∥∥(wn) |K2

∥∥
L2(e)

,254

and255

∥∥�wnn�
∥∥

L2(e)
≤

∥∥(wnn)|K1

∥∥
L2(e)

+
∥∥(wnn)|K2

∥∥
L2(e)

.256

Applying inverse inequalities, we bound the line integral on edge by its integrals over the257

elements as,258

‖{{wn}}‖L2(e) ≤
Ct

2
h

−1/2
K1

‖∇w‖L2(K1)
+

Ct

2
h

−1/2
K2

‖∇w‖L2(K2) .259

Similarly the line integral ‖wnn|K1‖L2(e) restricted from the K1 side can be bounded as,260

∥∥wnn|K1

∥∥
L2(e)

= ‖∇wn · n‖L2(e) ≤ Ct h
−1/2
K1

‖∇wn‖L2(K1)
261

≤ Ct Ci h
−3/2
K1

‖wn‖L2(K1)
≤

√
2Ct Ci h

−3/2
K1

‖∇w‖L2(K1)
.262

Notice that hK denotes the diameter or the longest edge of element K , thus we have263

he ≤ hK1 and he ≤ hK2 with e = ∂K1 ∩ ∂K2. Now combine the previous arguments and264

we obtain,265

∫

e

{{wn}}�v�ds ≤
Ct

2

(
h

−1/2
K1

‖∇w‖L2(K1) + h
−1/2
K2

‖∇w‖L2(K2)

) ∥∥�v�
∥∥

L2(e)
266

≤
Ct

2

(
(he/hK1)

1/2‖∇w‖L2(K1)
+

(
he/hK2

)1/2 ‖∇w‖L2(K2)

)
h

−1/2
e

∥∥�v�
∥∥

L2(e)
267

≤
Ct

2

(
‖∇w‖L2(K1)

+ ‖∇w‖L2(K2)

)
h

−1/2
e

∥∥�v�
∥∥

L2(e)
,268
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and269

∫

e

β1he�wnn��v�ds ≤ β1he

∥∥�wnn�
∥∥

L2(e)

∥∥�v�
∥∥

L2(e)
270

≤
√

2β1heCt Ci

(
h

−3/2
K1

‖∇w‖L2(K1)
+ h

−3/2
K2

‖∇w‖L2(K2)

) ∥∥�v�
∥∥

L2(e)
271

≤
√

2β1Ct Ci

(
‖∇w‖L2(K1)

+ ‖∇w‖L2(K2)

)
h

−1/2
e ‖�v�‖L2(e).272

273

Sum up the estimates over all interior edges e ∈ E
I
h and we have,274

∑

e∈E
I
h

∫

e

{{wn}}�v�ds ≤
Ct

2

∑

e∈E
I
h

(
‖∇w‖L2(K1)

+ ‖∇w‖L2(K2)

)
h

−1/2
e ‖�v�‖L2(e)275

≤
√

2

2
Ct

∑

e∈E
I
h

(
‖∇w‖2

L2(K1)
+ ‖∇w‖2

L2(K2)

)1/2
h

−1/2
e ‖�v�‖L2(e)276

≤
√

6

2
Ct

⎛
⎝ ∑

K∈Th

‖∇w‖2
L2(K )

⎞
⎠

1/2
⎛
⎜⎝

∑

e∈E
I
h

h−1
e ‖�v�‖2

L2(e)

⎞
⎟⎠

1/2

277

≤
√

6

2
Ct |||w|||h |||v|||h, (3.5)278

and279

∑

e∈E I
h

∫

e

β1he�wnn��v�ds ≤
√

2Ct Ciβ1

∑

e∈E I
h

(
‖∇w‖L2(K1)

+ ‖∇w‖L2(K2)

)
h

−1/2
e ‖�v�‖L2(e)280

≤ 2β1Ct Ci

∑

e∈E I
h

(
‖∇w‖2

L2(K1)
+ ‖∇w‖2

L2(K2)

)1/2
h

−1/2
e ‖�v�‖L2(e)281

≤ 2
√

3β1Ct Ci

⎛
⎝ ∑

K∈Th

‖∇w‖2
L2(K )

⎞
⎠

1/2
⎛
⎜⎝

∑

e∈E I
h

h−1
e ‖�v�‖2

L2(e)

⎞
⎟⎠

1/2

282

≤ 2
√

3β1Ct Ci |||w|||h |||v|||h . (3.6)283

For edges falling on domain boundary, we use similar method to bound the terms and we284

have,285

∑

e∈E
D
h

∫

e

(−wnv) ds ≤ Ct

⎛
⎜⎜⎜⎝

∑

K∈Th

∂K∩∂� �=∅

‖∇w‖2
L2(K )

⎞
⎟⎟⎟⎠

1/2 ⎛
⎜⎝

∑

e∈E
D
h

h−1
e ‖�v�‖2

L2(e)

⎞
⎟⎠

1/2

286

≤ Ct |||w|||h |||v|||h .287

Back to the bilinear form Bh(w, v) of (3.4), we apply estimates (3.5)–(3.6) to the example288

terms and treat other terms in the bilinear form similarly and finally we have,289

123

Journal: 10915 Article No.: 0264 TYPESET DISK LE CP Disp.:2016/8/17 Pages: 22 Layout: Small

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

J Sci Comput

|Bh(w, v)| ≤
∑

K∈Th

‖∇w‖L2(K )‖∇v‖L2(K ) +
∑

e∈Eh

β0h−1
e ‖�w�‖L2(e)‖�v�‖L2(e)290

+
√

6

2
Ct |||w|||h |||v|||h + 2

√
3β1Ct Ci |||w|||h |||v|||h +

√
6

2
Ct |||v|||h |||w|||h291

+ 2
√

3β1Ct Ci |||v|||h |||w|||h + 2Ct |||w|||h |||v|||h292

≤ Cb|||w|||h |||v|||h,293

where Cb = 1 + β0 + 4
√

3β1Ct Ci +
(√

6 + 2
)

Ct . We are finished with the continuity294

discussion of (3.2).295

To obtain the coercivity of the bilinear form (3.3), again we consider example terms296

(3.5)–(3.6) and we apply Young’s inequality. For any δ > 0 and ε > 0, we have,297

∑

e∈E
I
h

∫

e

{{wn}}�v�ds ≤
1

2ε

∑

K∈Th

‖∇w‖2
L2(K )

+
3

4
εC2

t

∑

e∈E
I
h

h−1
e ‖�v�‖2

L2(e)
,298

and299

∑

e∈E
I
h

∫

e

β1he�wnn��v�ds ≤
1

2δ

∑

K∈Th

‖∇w‖2
L2(K )

+ 6δβ2
1 C2

t C2
i

∑

e∈E
I
h

h−1
e ‖�v�‖2

L2(e)
.300

Handle other terms in the bilinear form similarly and we have,301

Bh(v, v) ≥
(

1 −
1

ε
−

1

δ

) ∑

K∈Th

‖∇v‖2
L2(K )

302

+
∑

e∈Eh

(
β0 − 12δβ2

1 C2
t C2

i −
5

2
εC2

t

)
h−1

e ‖�v�‖2
L2(e)

.303

We can choose ε, δ and β0 such that 1 − 1
ε

− 1
δ

> 0 and β0 > 12δβ2
1 C2

t C2
i + 5

2
εC2

t . Now304

take CS = min{1 − 1
ε

− 1
δ
, β0 − 12δβ2

1 C2
t C2

i − 5
2
εC2

t } and we obtain the stability of the305

bilinear form (3.3). ⊓⊔306

3.2 Energy Norm and L
2 Norm Error Estimates307

According to Theorem 3.1, it is easy to obtain the following theorem.308

Theorem 3.2 There exists a unique solution u ∈ V k
h for problem (2.10).309

Proof Since (2.10) is a linear problem in finite dimensional space, existence is equivalent to310

uniqueness. We assume that there are two numerical solutions u1 and u2. Then we have the311

difference w = u1 − u2 satisfying312

Bh(w,w) = 0.313

By the coercivity result (3.3), we have |||w|||h = 0 which directly implies that u1 = u2. ⊓⊔314

Theorem 3.3 Let uex ∈ H k+1(�) ∩ C2(�) be the exact solution of Poisson Eq. (1.2) with315

zero Dirichlet boundary and we have u ∈ V k
h denote one of the four DDG schemes (2.10)316

solutions, we have,317

Bh(uex − u, v) = 0, ∀v ∈ V k
h . (3.7)318
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Proof We denote by uex the exact solution, thus we have (2.1) holding true for any v ∈ V k
h .319

Summing (2.1) over all elements K ∈ Th and formally we have,320

∑

K∈Th

∫

K

∇uex · ∇vdx −
∑

K∈Th

∫

∂K

∇uex · nvds =
∫

�

f vdx.321

With uex ∈ C2(�), we have �uex � = 0, {{∇uex · n}} = ∇uex · n and �(uex )nn� = 0 across322

over any interelement edge ∂K . We also have uex |∂� = 0 with the zero Dirichlet boundary323

condition. With boundary condition (2.5) applied, the definition of numerical flux (2.4) and324

the bilinear form (2.11), for any v ∈ Vk
h , we have the exact solution satisfying the bilinear325

form as below,326

Bh(uex , v) =
∑

K∈Th

∫

K

∇uex · ∇vdx +
∑

e∈E
I
h

∫

e

∇̂uex · n�v� + σ ṽn�uex �ds327

+
∑

e∈E
D
h

∫

e

(
β0

he

uexv − ∇uex · nv − σvnuex

)
ds =

∫

�

f vdx = F(v).328

This directly implies that (3.7) holds true. ⊓⊔329

Theorem 3.4 Let uex ∈ H k+1(�)∩C2(�) be the exact solution of (1.2) with zero Dirichlet330

boundary and u ∈ V k
h be one of the four DDG schemes (2.10) solutions, then we have,331

|||uex − u|||h ≤ Chk |uex |H k+1(�). (3.8)332

Proof Let I uex ∈ V k
h denote the continuous interpolation polynomial of uex over the element333

edges, then we have standard approximation error as,334

∀ 0 ≤ s ≤ k + 1, |uex − I uex |H s (K ) ≤ C I hk+1−s
K |uex |H k+1(K ), ∀K ∈ Th . (3.9)335

Since both uex and I uex are continuous thus we have zero jumps �uex − I uex � = 0 across336

interelement edges. From (3.1) and with zero Dirichlet boundary condition applied we have,337

|||uex − I uex |||h =
∑

K∈Th

∫

K

∇(uex − I uex ) · ∇(uex − I uex )dx ≤ C I hk |uex |H k+1(�).338

(3.10)339

Coupled with above interpolation error (3.10), we see the estimate of |||uex − u|||h can be340

easily obtained once we have estimate on |||u − I uex |||h . For convenience, let’s denote the341

error between DDG numerical solution and exact solution interpolation as χ = u − I uex . We342

have u and I uex ∈ V k
h and �uex − I uex � = 0 across interelement edges. With Theorem 3.1343

and Theorem 3.3 we have,344

Cs |||u − I uex |||2h ≤ Bh(u − I uex , χ) = Bh (u − uex + uex − I uex , χ)345

= Bh (uex − I uex , χ)346

=
∑

K∈Th

∫

K

∇(uex − I uex ) · ∇χdx347

+
∑

e∈E
I
h

∫

e

(
{{∇(uex − I uex ) · n}} + β1he�(uex − I uex )nn�

)
�χ� ds348

−
∑

e∈E
D
h

∫

e

∇(uex − I uex ) · nχ ds. (3.11)349
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To obtain the estimate on |||u − I uex |||h , we need to further estimate the right hand side terms350

of the above equality (3.11). Using Cauchy–Schwarz inequality, we obtain bounds on the351

last three items as,352

∑

e∈E I
h

∫

e

{{∇(uex − I uex ) · n}}�χ�ds ≤
∑

e∈E I
h

h
1/2
e ‖{{∇(uex − I uex ) · n}}‖L2(e) h

−1/2
e

∥∥�χ�
∥∥

L2(e)
,353

∑

e∈E I
h

∫

e

β1he�(uex − I uex )nn��χ�ds ≤
∑

e∈E I
h

β1he

∥∥�(uex − I uex )nn�
∥∥

L2(e)

∥∥�χ�
∥∥

L2(e)
,354

and355

∑

e∈E
D
h

∫

e

∇(uex − I uex ) · nχds ≤
∑

e∈E
D
h

h
1/2
e ‖∇(uex − I uex ) · n‖L2(e) h

−1/2
e ‖χ‖L2(e).356

Again we assume edge e is a generic interior edge shared by elements K1 and K2, thus we357

have,358

‖{{∇(uex − I uex )}} · n‖L2(e) ≤
1

2

∥∥∇(uex − I uex ) · n|K1

∥∥
L2(e)

359

+
1

2

∥∥∇(uex − I uex ) · n|K2

∥∥
L2(e)

,360

and361

∥∥�(uex − I uex )nn�
∥∥

L2(e)
≤

∥∥(uex − I uex )nn|K1

∥∥
L2(e)

+
∥∥(uex − I uex )nn|K2

∥∥
L2(e)

.362

Furthermore, with trace inequality of Lemma 3.1 and interpolation error (3.9) we have,363

∥∥∇(uex − I uex ) · n|K1

∥∥
L2(e)

≤ Cgh
−1/2
K1

(
h‖∇(uex − I uex )‖L2(K1)

364

+ hK1‖∇2(uex − I uex )‖L2(K1)

)
365

≤ 6CgC I h
k−1/2
K1

|uex |H k+1(K1)
,366

and367

∥∥(uex − I uex )nn|K1

∥∥
L2(e)

≤ Cgh
−1/2
K1

(
‖(uex − I uex )nn‖L2(K1)

368

+ hK1‖∇(uex − I uex )nn‖L2(K1)

)
369

≤ 3CgC I h
k−3/2
K1

|uex |H k+1(K1)
.370

Collect all estimates of the right hand side terms of (3.11) and we have,371

Cs |||χ |||2h ≤ (9Cg + 9Cgβ1 + 1)C I hk |uex |H k+1(�)|||χ |||h,372

or373

|||u − I uex |||h ≤ Chk |uex |H k+1(�).374

Applying triangle inequality and with (3.10), we directly obtain,375

|||uex − u|||h ≤ |||uex − I uex |||h + |||I uex − u|||h ≤ Chk |uex |H k+1(�).376

⊓⊔377

To carry out the error estimate under L2 norm, we follow standard duality argument. For378

convenience, we consider continuous linear finite element space Ṽh :={v ∈ H1(�) : v|K ∈379

P1(K ),∀K ∈ Th, v|∂� = 0} to solve the auxiliary problem.380

123

Journal: 10915 Article No.: 0264 TYPESET DISK LE CP Disp.:2016/8/17 Pages: 22 Layout: Small

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

J Sci Comput

Theorem 3.5 Let uex ∈ H k+1(�) ∩ C2(�) solve the boundary value problem (1.2) with381

zero Dirichlet boundary and we have u denote the DDG method with interface correction382

(2.6) or symmetric DDG method (2.7) solution of problem (2.10), we have,383

‖uex − u‖L2(�) ≤ Chk+1 ‖uex‖H k+1(�) . (3.12)384

Proof We start with the following auxiliary problem:385

− 	ψ = uex − u, on �, with Dirichlet boundary ψ |∂� = 0. (3.13)386

Standard regularity result gives,387

‖ψ‖H2(�) ≤ C‖uex − u‖L2(�). (3.14)388

We solve auxiliary problem (3.13) and denote ψh ∈ Ṽh as the solution of conforming finite389

element method,390

∫

�

∇ψh · ∇vhdx =
∫

�

(uex − u)vhdx, for all vh ∈ Ṽh . (3.15)391

Recall that we have following error estimate with linear polynomial approximations,392

|ψ − ψh |H1(�) ≤ Ch|ψ |H2(�). (3.16)393

With regularity result (3.14) we have ψ ∈ H2(�), thus we have {{ψ}} = ψ , �ψ� = 0,394

{{∇ψ · n}} = ∇ψ · n and �∇ψ · n� = 0 across interelement edges. Multiply (3.13) with395

(uex − u) and integrate over the domain, have integrating by parts over each element and396

formally we obtain,397

‖uex − u‖2
L2(�)

= −
∫

�

	ψ(uex − u)dx398

=
∑

K∈Th

(∫

K

∇ψ · ∇(uex − u)dx −
∫

∂K

∇ψ · n(uex − u)ds

)
399

=
∑

K∈Th

∫

K

∇ψ · ∇(uex − u)dx +
∑

e∈E
I
h

∫

e

{{∇ψ · n}}�uex − u�ds400

−
∑

e∈E
D
h

∫

e

∇ψ · n(uex − u)ds. (3.17)401

Notice the numerical solution �u� �= 0 over ∂K even the exact solution is continuous across402

interelement edges. Now we have u denoting the DDGIC (2.6) or symmetric DDG (2.7)403

solution with bilinear form (2.11). And we have uex as the exact solution of (1.2) and we404

have Theorem 3.3 holding true. With ψh ∈ Ṽh as the continuous linear finite element solution405

of (3.15), we have �ψh� = 0 and �(ψh)nn� = 0 across interelement edges. Thus we have,406

0 = Bh(uex − u, ψh) =
∑

K∈Th

∫

K

∇(uex − u) · ∇ψhdx +
∑

e∈E
I
h

∫

e

{{∇ψh · n}}�uex − u�ds407

−
∑

e∈E
D
h

∫

e

∇ψh · n(uex − u)ds.408
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Finally we subtract the right hand side of (3.17) from above equality, combine the results of409

(3.16) and (3.14) and apply Cauchy–Schwarz inequality as in Theorem 3.4, we have,410

‖uex − u‖2
L2(�)

=
∑

K∈Th

∫

K

∇(ψ − ψh) · ∇(uex − u)dx411

+
∑

e∈E
I
h

∫

e

{{∇(ψ − ψh) · n}}�uex − u�ds412

−
∑

e∈E
D
h

∫

e

∇(ψ − ψh) · n(uex − u)ds413

≤ Ch|ψ |H2(�)|||uex − u|||h ≤ Ch‖uex − u‖L2(�)|||uex − u|||h .414

Applying the energy norm error estimates (3.8), we complete the proof. ⊓⊔415

4 Numerical Examples416

In this section we provide a sequence of numerical examples to illustrate the accuracy and417

capability of DDG method and its variations (2.10). For the linear system, we use a restarted418

GMRES method solving a nonsymmetric system and conjugate gradient method solving419

the symmetric ones. To obtain machine level precision, we set the stopping criterion as the420

relative residual norm less than 10−12. Notice that for most problems presented in this section421

we have analytical or exact solution available such that the right hand side function f can be422

calculated from the available function. Dirichlet boundary condition is given with the exact423

solution’s restriction on the domain boundary.424

We use following notations to denote the errors between exact solution and numerical425

solution:426

‖eh‖L∞ :=‖uex − u‖L∞(�), ‖eh‖L2 :=‖uex − u‖L2(�), |||eh |||h :=|||uex − u|||h .427

Furthermore, we have eh and eh/2 representing the error at two consecutive triangulations428

with mesh size h and h/2, respectively. The order is calculated with,429

order =
1

ln(2)
ln

(
‖eh‖

‖eh/2‖

)
,430

where ‖ · ‖ represents the L∞ norm, the L2 norm or the energy norm (3.1).431

Example 4.1 Convex domain with structured and unstructured triangular meshes.432

We start with the accuracy check of the four DDG methods (2.10) on Poisson Eq. (1.2)433

on convex domain � = [0, 1] × [0, 1]. Right hand side function is given with434

f (x1, x2) = 4
(
1 − x2

1 − x2
2

)
exp

(
−x2

1 − x2
2

)
.435

Exact solution is available with uex = exp
(
−x2

1 − x2
2

)
. We consider implementations of436

the four DDG methods on three different meshes: structured uniform mesh and nonuniform437

mesh (Fig. 1) and unstructured mesh (Fig. 2).438

The structured nonuniform mesh is setup by dividing a uniform mesh interval into three439

sub-intervals in each axis direction. More precisely, let’s denote a uniform mesh with x̃i = ih440
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Fig. 1 Uniform mesh (left) and nonuniform mesh (right)

Fig. 2 Unstructured mesh with

312 triangles

for i = 0, . . . , M , where h = 1/M and x̃M = 1. The nonuniform mesh nodes are generated441

and denoted as follows,442

x3i = x̃i ,443

x3i+1 = x3i + γ1h,444

x3i+2 = x3i+1 + γ2h.445

Here γ1 and γ2 are positive numbers with γ1 + γ2 < 1.446

On uniform mesh, DDG method (2.2) loses order with even order P2 polynomial approx-447

imations. This is similar to the DDG method for time dependent problem [17] in which it448

shows it is hard to identify suitable coefficient β1 to obtain optimal convergence. For DDGIC449

(2.6) and symmetric (2.7) and nonsymmetric (2.8) DDG methods, optimal (k + 1)th order450

convergence is obtained under both L2 and L∞ norms. To save space, we only list the error451

table for symmetric DDG method, see Table 1.452

For implementations on the dramatic nonuniform mesh (right one in Fig. 1), we observe453

order loss for DDG method (2.2) and nonsymmetric DDG method (2.8) with even order454

polynomial approximations, see Table 2 for nonsymmetric DDG method. Notice that NIPG455

method obtains sub-optimal order convergence for all Pk polynomial approximations, see456

[15] on nonuniform mesh accuracy check. Both DDGIC and symmetric DDG methods obtain457

(k+1)th optimal order convergence on nonuniform mesh, see Table 3 for DDGIC and Table 4458

for symmetric DDG method. Accuracy check on unstructured mesh (Fig. 2) is carried out459

also and similar results are obtained. To save space, again we only list the accuracy table for460

symmetric DDG method, see Table 5.461
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Table 1 Symmetric DDG method (2.7) on uniform mesh

k, β0, β1 h ‖eh‖L∞ Order ‖eh‖L2 Order |||eh |||h Order

2 0.0441 2.9436e−6 3.3292e−7 1.2203e−4

β0 = 4.5 0.0221 3.7064e−7 2.99 4.1431e−8 3.01 3.0299e−5 2.01

β1 = 1/40 0.0111 4.6493e−8 2.99 5.1683e−9 3.00 7.5483e−6 2.01

3 0.0883 4.2937e−7 3.8198e−8 9.1896e−6

β0 = 10 0.0441 2.7352e−8 3.97 2.4180e−9 3.98 1.1260e−6 3.03

β1 = 1/40 0.0221 1.7177e−9 3.99 1.5205e−10 3.99 1.3934e−7 3.01

4 0.0883 5.9843e−9 7.0176e−10 6.8940e−8

β0 = 17.5 0.0441 1.8814e−10 4.99 2.2270e−11 4.98 4.2068e−9 4.03

β1 = 1/40 0.0221 5.9658e−12 4.98 7.0296e−13 4.98 2.5808e−10 4.03

Table 2 Nonsymmetric DDG (2.8) on nonuniform mesh with γ1 = 1/7, γ2 = 1/3

k, β0, β1 h ‖eh‖L∞ Order ‖eh‖L2 Order |||eh |||h Order

2 0.1767 2.4247e−5 7.7742e−6 3.7785e−4

β0 = 9 0.0883 4.6354e−6 2.39 1.7602e−6 2.14 9.4698e−5 2.00

β1 = 1/40 0.0441 1.0069e−6 2.20 4.2384e−7 2.05 2.3701e−5 2.00

3 0.1767 3.1900e−7 3.7846e−8 6.8443e−6

β0 = 20 0.0883 2.0142e−8 3.99 2.4086e−9 3.97 8.6424e−7 2.99

β1 = 1/40 0.0441 1.2723e−9 3.98 1.5403e−10 3.97 1.0857e−7 2.99

Table 3 DDGIC (2.6) on nonuniform mesh with γ1 = 1/7, γ2 = 1/3

k, β0, β1 h ‖eh‖L∞ Order ‖eh‖L2 Order |||eh |||h Order

2 0.1767 2.5595e−5 3.1923e−6 7.4743e−4

β0 = 9 0.0883 3.4943e−6 2.87 4.1920e−7 2.93 2.0669e−4 1.85

β1 = 1/40 0.0441 4.4934e−7 2.96 5.3843e−8 2.96 5.4425e−5 1.93

3 0.1767 2.7517e−7 3.2693e−8 7.2357e−6

β0 = 20 0.0883 1.7467e−8 3.98 2.0766e−9 3.98 9.1033e−7 2.99

β1 = 1/40 0.0441 1.0958e−9 3.99 1.3113e−10 3.99 1.1413e−7 3.00

Table 4 Symmetric DDG (2.7) on nonuniform mesh with γ1 = 1/7, γ2 = 1/3

k, β0, β1 h ‖eh‖L∞ Order ‖eh‖L2 Order |||eh |||h Order

2 0.1767 8.3208e−5 6.3453e−6 1.5841e−3

β0 = 9 0.0883 1.0209e−5 3.03 8.0069e−7 2.99 3.9949e−4 1.99

β1 = 1/40 0.0441 1.2655e−6 3.01 1.0048e−7 2.99 1.0024e−4 1.99

3 0.1767 2.8447e−7 3.2200e−8 7.0980e−6

β0 = 10 0.0883 1.8050e−8 3.99 2.0449e−9 3.98 8.9171e−7 2.99

β1 = 1/40 0.0441 1.1325e−9 3.99 1.2891e−10 3.99 1.1172e−7 3.00
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Table 5 Symmetric DDG (2.7) on unstructured mesh with 312, 1248 and 4992 triangle elements

k, β0, β1 h ‖eh‖L∞ Order ‖eh‖L2 Order |||eh |||h Order

2 0.1040 3.7275e−5 7.7305e−6 7.7561e−4

β0 = 9 0.0520 4.6531e−6 3.19 9.7652e−7 2.98 1.9526e−4 1.99

β1 = 1/40 0.0260 5.7993e−7 3.42 1.2274e−7 2.99 4.9014e−5 1.99

3 0.1040 1.3490e−6 9.5439e−8 1.7929e−5

β0 = 10 0.0520 9.1784e−8 3.88 5.8792e−9 4.02 2.0540e−6 3.13

β1 = 1/40 0.0260 5.5303e−9 4.05 3.6396e−10 4.01 2.4350e−7 3.08

Table 6 CPU time comparison

between symmetric DDG and

SIPG methods

h k = 3 k = 4

Symmetric DDG 0.0883 1.0936e+1 9.0262e+1

β0 = 9 0.0441 2.4983e+1 4.8143e+2

β1 = 1/40 0.0221 9.8452e+1 1.6275e+3

SIPG 0.0883 1.0015e+1 8.6636e+1

β0 = 9 0.0441 2.8033e+1 3.6640e+2

0.0221 1.0500e+2 1.7717e+3

We also consider efficiency issues of the DDG methods. Among the four DDG methods,462

symmetric DDG method (2.7) is the most suitable elliptic solver. The linear system of sym-463

metric DDG method has symmetric structure and is easy to apply fast solvers. We calculate464

the mass matrix condition numbers of DDGIC and symmetric DDG methods, which are on465

the order of O(h−1.97). When comparing with SIPG method, symmetric DDG method gains466

roughly 7–10 % on CPU time for high order approximations, see Table 6.467

Example 4.2 Accuracy check on L-shaped domain.468

In this example, we solve Laplace equation on the L-shaped nonconvex domain � =469

[−1, 1] × [−1, 1]\([0, 1] × [−1, 0]. Dirichlet boundary condition is applied. Exact solution470

is available (in polar coordinates) with uex (r, θ) = r2/3
(
sin

(
2
3
θ
)
+ cos

(
2
3
θ
))

. Notice that471

the regularity of the solution is that uex ∈ H
5
3 −ǫ for any ǫ > 0. The partial derivatives of the472

solution are singular at the origin.473

We use uniform mesh (Fig. 3) to carry out convergence studies for the DDG method and474

its variations (2.10). For all four schemes, we obtain close to 5
3

th order convergence under L2
475

norm. In Table 7 we list the errors and orders of nonsymmetric DDG method (2.8). Slightly476

better convergence is observed with DDGIC and symmetric DDG methods, see Table 8 for477

symmetric DDG method.478

Example 4.3 Interface problem with discontinuous diffusion coefficients.479

We solve the following variable coefficient elliptic problem,480

−∇(K (x)∇u) = f (x), x ∈ � = [0, 1] × [0, 1],481

with Dirichlet boundary condition. The diffusion coefficient matrix K (x) is diagonal K (x) =482

diag(k) with k = {10, 10−1, 103, 1} that is piecewise defined in four subregions, see Fig. 4483
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Fig. 3 Uniform mesh on

L-shaped domain

Table 7 L-shaped domain with nonsymmetric DDG method (2.8), uniform mesh

k, β0, β1 h ‖eh‖L∞ Order ‖eh‖L2 Order |||eh |||h Order

2 0.0883 2.7717e−2 3.1753e−4 3.1585e−2

β0 = 9 0.0441 1.7463e−2 0.67 1.2407e−4 1.36 1.9898e−2 0.67

β1 = 1/40 0.0221 1.1001e−2 0.67 4.8731e−5 1.35 1.2535e−2 0.67

3 0.1767 2.6474e−2 3.8978e−4 2.6189e−2

β0 = 20 0.0883 1.6679e−2 0.67 1.4724e−4 1.40 1.6499e−2 0.67

β1 = 1/40 0.0441 1.0508e−2 0.67 5.6427e−5 1.38 1.0393e−2 0.67

Table 8 L-shaped domain with symmetric DDG method (2.7), uniform mesh

k, β0, β1 h ‖eh‖L∞ Order ‖eh‖L2 Order |||eh |||h Order

2 0.0441 1.9342e−2 6.7832e−5 2.1932e−2

β0 = 4.5 0.0221 1.2185e−2 0.67 2.4089e−5 1.49 1.3816e−2 0.67

β1 = 1/40 0.0111 7.6760e−3 0.67 8.7786e−6 1.46 8.7037e−3 0.67

3 0.0883 1.8182e−2 5.2013e−5 1.7658e−2

β0 = 10 0.0441 1.1454e−2 0.67 1.7115e−5 1.60 1.1124e−2 0.67

β1 = 1/40 0.0221 7.2157e−3 0.67 5.7378e−6 1.58 7.0077e−3 0.67

(also in [14]). Correspondingly the two interface lines are x1 = xc = 0.5 and x2 = yc = 0.5.484

Uniform triangular mesh partitioned along interface lines is considered. Exact solution is485

available with,486

uex =
1

k
sin

(πx1

2

)
(x1 − xc)(x2 − yc)

(
1 + x2

1 + x2
2

)
.487

The solution itself is continuous but the gradient is discontinuous across interfaces lines.488

For the given interface jump conditions �u� = 0 and �−K (x)∇u · n� = 0, we make no489

modification on our scheme formulations to explicitly enforce the jump conditions. With490

zero flux jump across the interface, we see the flux K (x)∇u · n itself is continuous and well491
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Fig. 4 Piecewise constant diffusion coefficients k = {10, 10−1, 103, 1}

Table 9 Interface problem with DDGIC method

k, β0, β1 h ‖eh‖L∞ Order ‖eh‖L2 Order |||eh |||h Order

2 0.0883 4.4576e−4 2.9017e−5 5.5796e−3

β0 = 9 0.0441 5.6738e−5 2.97 3.6032e−6 3.01 1.3841e−3 2.01

β1 = 1/40 0.0221 7.1481e−6 2.99 4.4852e−7 3.01 3.4439e−4 2.01

3 0.1767 1.4570e−4 6.0110e−6 8.2941e−4

β0 = 20 0.0883 1.0756e−5 3.76 3.9296e−7 3.94 9.8683e−5 3.07

β1 = 1/40 0.0441 7.5058e−7 3.84 2.5112e−8 3.97 1.1792e−5 3.07

defined on the interface lines. For element edge ∂K that falls on the interface, we incorporate492

the discontinuous diffusion coefficients K (x) into the numerical flux ̂K (x)∇u · n definition.493

For example, suppose the element edge ∂K falls on interface line x2 = yc = 0.5 with494

outward normal n = (0, 1), the numerical flux degenerates to ̂K (x)∇u · n = (̂ku)x2 and we495

have,496

k̂ux2 = β0
k+u+ − k−u−

he

+
k−u−

x2
+ k+u+

x2

2
+ β1he

(
k+u+

x2x2
− k−u−

x2x2

)
.497

Here we have diffusion coefficient k = k+ for x2 > 0.5 and k = k− for x2 < 0.5 and u+ and498

u− correspondingly denote the value of u on edge ∂K evaluated from its neighbor element499

and from its own element. Thus the zero flux interface jump condition is applied WEAKLY500

in our implementations.501

We carry out P2 and P3 polynomial approximations and list the errors and orders in Tables 9502

and 10 for DDGIC and symmetric DDG methods. We obtain (k + 1)th order convergence503

under both L2 and L∞ norms. Solution simulations with P2 polynomials and mesh size504

h = 0.0441 are shown in Fig. 5.505

Example 4.4 Peak solution.506

In this example, we solve Poisson equation with a peak solution. The domain is set as507

� = [0, 1]×[0, 1] and Dirichlet boundary condition is applied. The exact solution is available508

with expression,509
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Table 10 Interface problem with Symmetric DDG method

k, β0, β1 h ‖eh‖L∞ Order ‖eh‖L2 Order |||eh |||h Order

2 0.0883 4.5410e−4 2.8896e−5 5.5306e−3

β0 = 4.5 0.0441 5.7782e−5 2.97 3.5862e−6 3.01 1.3716e−3 2.01

β1 = 1/40 0.0221 7.2784e−6 2.99 4.4619e−7 3.01 3.4122e−4 2.01

3 0.1767 1.4534e−4 6.0525e−6 8.3195e−4

β0 = 10 0.0883 1.0669e−5 3.77 3.9484e−7 3.94 9.8893e−5 3.07

β1 = 1/40 0.0441 7.4418e−7 3.84 2.5218e−8 3.97 1.1816e−5 3.07

Fig. 5 Interface problem with DDGIC (left) and symmetric DDG (right) methods

Fig. 6 Peak solution simulations by DDGIC (left) and symmetric DDG (right) methods

uex = exp
(
−α

(
(x1 − xc)

2 + (x2 − yc)
2
))

,510

where (xc, yc) = (0.5, 0, 5) is the location of the peak and α = 1000 determines the strength511

of the peak. Approximations with DDGIC (2.6) and symmetric DDG (2.7) methods are carried512

out and shown in Fig. 6 with uniform triangulation mesh h = 0.0441 and P2 polynomial513

approximations. The sharp peak is resolved very well with these two schemes.514

Example 4.5 Highly oscillatory wave solution for Helmholtz equation.515

In this example we solve Helmholtz equation with variable coefficients as follows,516

−	u −
1

(α + r)4
u = f, with r =

√
(x1)2 + (x2)2.517
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Fig. 7 Oscillatory solution by DDGIC (left) and symmetric DDG (right) methods

The square domain is set as � = [0, 1] × [0, 1] and Dirichlet boundary condition is applied.518

We have α = 1
Nπ

where the integer N determines the number of oscillatory waves near the519

origin. Exact solution is given with uex = sin
(

1
α+r

)
.520

We apply uniform triangular mesh with h = 0.0110 and quadratic P2 approximations in521

this example. The number of oscillations is taken with N = 4 in α. The solution is supposed522

to be highly oscillatory near the origin. As shown in Fig. 7, with same mesh and polynomial523

approximations applied, symmetric DDG method (2.7) resolves the highly oscillatory wave524

better than the DDGIC method (2.6).525
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