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1 Introduction

In this article, we consider to study direct discontinuous Galerkin finite element method [17]
and its variations [18,24,27] for 2nd order elliptic problem,

—V (KX)Vu) +c(xX)u = f, inQcCR? (1.1)

associated with Dirichlet boundary condition u = up on 9€2. To simplify the presentation,
we focus on model problem (1.1) under two-dimensional setting. We have x = (x1, x2) €
with € as a bounded and simply connected polygonal domain. Diffusion coefficient matrix
is denoted as K (x) and is assumed being uniformly positive definite. Here f is a given
function in L2(£2). We assume the data in Eq. (1.1) satisfy standard regularity assumptions.
The special case of (1.1) is the Poisson’s equation,

—Au=f, (1.2)

and Laplace’s equation of (1.2) with f = 0.

In literature we have enormous amount of articles discuss numerical methods solving
problem (1.1). We skip the long review list. Singular solutions may arise from elliptic prob-
lem (1.1) on none smooth domains, with combined boundary conditions or discontinuous
diffusion coefficients. These singularities impose challenges and various difficulties on the
development of accurate and efficient numerical methods solving (1.1). In this paper, we
study direct discontinuous Galerkin finite element method [17] and its variations [18,24,27]
on the model problem (1.1). Discontinuous Galerkin (DG) method is a class of finite element
method that use completely discontinuous piecewise functions as the numerical approxima-
tions. Basis functions are completely discontinuous across element edges, thus DG methods
have the flexibility that is not shared by standard finite element methods, such as the allowance
of arbitrary triangulations with hanging nodes, complete freedom of choosing polynomial
degrees in each element (p-adaptivity), and extremely local data structure. It is believed that
DG method is especially suitable to capture solutions with sharp transitions or discontinu-
ities, and solutions with complex structures. We refer to review articles [10,12,23] for the
successful developments of DG methods on convection diffusion problems and refer to recent
books [13,16,21] on DG methods.

There are several DG methods for solving elliptic and parabolic problems. One class is
the interior penalty (IP) methods, dates back to 1982 by Arnold in [1] (also by Baker in [3]
and Wheeler in [26]), the Baumann and Oden [5,19] and NIPG [22] methods. Another class
is closely related to mixed finite element methods [8,20], the local discontinuous Galerkin
method introduced in [11] by Cockburn and Shu (originally studied by Bassi and Rebay in
[4] for compressible Navier—Stokes equations). We refer to the unified analysis paper [2] in
2002 for the review of different diffusion DG solvers. Recent developments of DG methods
on elliptic problems include the over penalized DG method [6], the hybridized DG method
[9] and the weak Galerkin method [25], etc.

In [17] we developed a direct discontinuous Galerkin (DDG) method solving time depen-
dent diffusion equations. The key contribution of [17] is the introduction of numerical flux iy
that approximates the solution derivative u, at the discontinuous element edge. The numer-
ical flux formula i, designed in [17] involves the solution jump [u], solution derivative
average {{u, }} and higher order derivative jump values of u across element edge. The scheme
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ss  is directly based on the weak formulation of the diffusion equation, thus gains its name the
se  direct DG method. Due to accuracy loss with high order approximations, in [18] we further
eo developed DDG method with interface correction. Numerically we obtain optimal (k + 1)th
s order convergence in [18] with a small fixed penalty coefficient applied. As is well known,
e2 the penalty coefficient of symmetric interior penalty method (SIPG) method depends on the
63 approximation polynomial degree and needs to be large enough to stablize the scheme. We
e4 also have the symmetric version [24] and nonsymmetric version [27] of the DDG method.
es Compared to NIPG method [22], nonsymmetric DDG method [27] obtains optimal order
e convergence with any degree polynomial approximations.

67 In this article, we further develop DDG method [17] and its variations [18,24,27] to
es  solve elliptic model problem (1.1). Continuity and coercivity of the primal bilinear form are
e9 obtained. A priori error estimate under energy norm is established for all four DDG methods.
70 A priori optimal error estimate under L? norm is obtained for DDG method with interface
7 correction [18] and symmetric DDG method [24].

7 A series of numerical examples are carried out to illustrate the accuracy and capability
73 of the methods. With P; polynomial approximations we obtain optimal (k + 1)th order
74 convergence for DDG method with interface correction [18] and symmetric DDG method
75 [24] on nonuniform and unstructured triangular meshes. Then we focus on numerical studies
76 of these two DDG methods. An interface problem with discontinuous diffusion coefficients
77 is investigated and optimal (k + 1)th order accuracy is obtained even the solution itself is not
76 even C1(Q) across interface lines. For the interface problem we make no modification on
79 scheme formulations and the zero flux jump condition is simply applied weakly through the
so numerical flux defined on element edges. Peak solution with sharp transitions is captured well
st with these two DDG methods. Highly oscillatory wave solutions of Helmholz equation are
s2  wellresolved. Among the four DDG methods, symmetric DDG method [24] is shown to be the
s3  most suitable elliptic solver not only because the linear system is symmetric (for Laplace for
s+ example) such that faster solvers can be applied. Under same settings the symmetric DDG
ss method resolves the highly oscillatory wave better than the DDG method with interface
s correction. When comparing to SIPG method [1], symmetric DDG method roughly saves
87 7-10% on CPU time with high order and on refined mesh simulations.

88 The rest of the article is organized as follows. In Sect. 2, we present scheme formulations
g9 of DDG method and its variations applied to model problem (1.2) and problem (1.1) with
90 variable coefficient diffusion matrix. In Sect. 3 we present stability and a priori error estimate
ot under a standard energy norm and L? norm. Finally numerical examples are shown in Sect. 4.
92 Throughout this paper, we let | - |gs(k) and || - ||gs(k) denote the seminorm and norm
o3 of space H*(K), s > 0, respectively. Let H*(K) denote the space of H*(K) x H*(K) and
o L2(K) the space of L*(K) x L*(K).

S
o
o
il
[a W
-
o
=
+—
=
<

os 2 Discretization of Direct DG Method and Its Variations

o6 Let 7, be a shape-regular partition of the domain €2 into disjoint elements {K}g<7;,, for
o7 example triangles or quadrilaterals with Q= UkeT, K. By hx = diam(K), we denote the
o8 diameter of an element K € 7. We set h = maxge7;, hx as the mesh size of the partition.
99 We denote by 5;{ the set of all internal edges, and by ShD the set of all boundary edges of 7},.
10 And we have &, = 5}{ U S}? as the collection of all edges. The length of the edge e € & is
101 denoted by /..

102 We have P (K) representing the polynomials function space of degree at most k& on
103 element K. The DG solution space is defined as,
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Vii={v e L*(Q) : vl € P(K),VK € Tp}.

Suppose K and K’ are two adjacent elements and share one common edge e. There are two
traces of v along the edge e, where we add or subtract those values to obtain the average and
the jump. We denote by n = (n, n2)T the outward unit normal vector pointing from K into
its neighbor element K’. Now the average and the jump of v over edge e are defined and
denoted as follows,

1
vl = 3 (g +vlk). [v] =vig —vlxk, Ye=9dKNIK'

Let’s use Poisson Eq. (1.2) to illustrate Direct DG [17] and its variations [18,24,27]
schemes formulations. Multiply Eq. (1.2) with arbitrary smooth test function v, integrate
over element K € 7j, have the integration by parts and we obtain,

/Vu-Vvdx—/ Vu-nvds:/ fudx. 2.1)
K oK K

The idea of Direct DG method [17] is to design a formula to approximate the gradient
Vu across the discontinuous element edge and obtain a DG method that is based directly
on the weak formulation (2.1) of (1.2). With no ambiguity, for the rest of this article we use
same letter u instead of notation uy, to represent DG numerical solution. Now the Direct
DG method of (1.2) is defined as, we seek numerical solution u € V;{‘ such that for all test
function v € V,f we have,

/Vu~Vvdx—/ zfnvds:/ fvdx, VY K €T, (2.2)
K 9K K

The numerical flux iy, which approximates the normal derivative up = Vu - n involves the
solution jump [u], the normal derivative average {{uy}} and higher order normal derivative
jumps of u on the edge,

~ [u] 3

Up = 'BOfTe + {unl} + Bihe[unn] + Boh, [uan] + - - - .

In [17], we show it is hard to identify suitable coefficient 8, to obtain optimal convergence
for high order Py (k > 4) approximations. Thus we add extra interface terms and have the
DDG method with interface correction in [18] such that optimal convergence is obtained
for any order approximations. Furthermore, we introduce same format numerical flux for
the test function and obtain the symmetric [24] and nonsymmetric version [27] of the DDG
methods. Now we summarize scheme formulations of DDG variations for model equation
(1.2) as follows,

/Vu'Vvdx—/ ﬁ},vds—i—o/ ﬁﬂuﬂds:/ fudx, forallveV,, (2.3)
K 0K 0K K

with iy, and vy defined on the interior element edge dK € S}{ as,

[uﬁ, = Vu 0= B0, 53 + {un} + Bihe[emn]. 08

on = Vo0 = ool + onl + Biie[van]

We drop higher order terms and only keep the jump, normal derivative average {{uy}} and
second order normal derivative jump [upn] terms in the numerical flux formula. Notice that
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the test function v € V}f‘ is taken being zero outside the element K. In a word, only one side
contributes to the calculation of v on dK. Thus term v, essentially degenerates to,

~ — 1
Un = (,BOu(hiv) + Evn + ,Blhe(_vnn)) ‘BK.

To apply Dirichlet type boundary condition, i.e. 3K € ShD C 9%2, we have,

—~ u . ~ —v
iy = ,30“[[}[—] +up with [u] =up—u, and vy = ﬂovh— + vp. 2.5)
e e

ou

If a Neumann type boundary condition is given, i.e. un = 5

directly applies

= g is available on %2, we

imn=g, on 0K € 9.

In the numerical flux formula (2.4), k. is taken as the length of edge ¢ = K N K’ or the average
he = (hg +hgs)/2 with hg and h g being the diameters of element K and K’. Numerically
we observe no essential difference with either choice of /.. The coefficients By, , Bo, and B
are chosen to ensure the stability and convergence of these methods. Depending on the sign
of 0 = 41 oro = —1 in (2.3), correspondingly we have the symmetric and nonsymmetric
version of DDG methods. Now we list the three variations of DDG methods and discuss their
properties in details.

1. DDG method with interface correction [18]:
o = +1 in (2.3) with vy = {vp}} in (2.4) (2.6)

with 81 = 0 in the numerical flux ity of (2.4), the DDG method with interface correction
[18] degenerates to the symmetric Interior Penalty method. With §; # 0, optimal con-
vergence is observed with a small fixed penalty coefficient applied for all P, polynomial
approximations. For example, we choose fixed By, = 2 for all Px (k < 9) polynomials
in [18]. As is well known, the penalty coefficient (B, in this case) should be taken large
enough, roughly in the scale of k& for P, polynomials to stablize the symmetric Interior
Penalty method.
2. Symmetric DDG method [24]:

o = +11in (2.3) with (2.4) Q.7

In [24], we apply same format numerical flux for the test function and obtain a symmetric
DDG scheme. Optimal L? error estimate is proved. Analytically we show that any (8o, 1)
coefficients pair, with Bo = Bo, + Boy in (2.4), that satisfies a quadratic form inequality

L K2 (k* — 1)? _s K2 (k> — 1) k2)

1

ﬂo>4((ﬂ1) 3 3 + 1

leads to an admissible numerical flux, and guarantees the optimal convergence of the
symmetric DDG method.
3. Nonsymmetric DDG method [27]:

o = —11in (2.3) with (2.4) 2.8)

with 81 = 0in (2.4), the nonsymmetric DDG scheme [27] degenerates to the Baumann
and Oden [5] method (8o = Bou — Boy = 0) or the NIPG [22] method (8o = Bou — Bov >
0). With g1 # 0, we observe optimal (k + 1)th order convergence for any Pj polynomial
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approximations, see [27], which improves the sub-optimal kth order convergence of
Baumann—Oden and NIPG methods.

Next we consider DDG scheme formulation for the following variable coefficient linear
diffusion equation,

-V (K(x)Vu) = f.

The symmetric DDG scheme formulation for above variable coefficient elliptic equation is
to find DG solution u € V,f such that Vv € V,f and on any element K € 7j,, we have,

/K@prwﬁ/wMgﬁmmhﬁ/K&W;ﬂﬂw=/fwx
K 0K K K
2.9)

Here the diffusion coefficient matrix is denoted as K (x) = (k;; (x)) with x € €. With normal
vector n = (n1, nz) and coefficient k;; (x) well defined on the edge 0K, the numerical flux
can be written out in detail as K(m -n = Zijzl kij (x)u’;j n;. Similar to (2.4), we have
ity; and vy; defined on the edge as follows,

u/x\j = ﬁOLt[[;tAnj + {{”x_,- B+ ,Blhe[[ux_,-xlnl + uxsznZ]]v
0, = Boutdnj + {ve, ) + Brhelve v m + vy ynal.

Remark 2.1 For poisson Eq. (1.2), symmetric DDG method is the only one giving symmetric
stiffness matrix such that fast solvers can be applied. The rest three DDG methods lead to
nonsymmetric linear system.

Remark 2.2 We take Taylor expansion polynomials around element center as basis functions
in our numerical tests. To simplify the comparisons among all four DDG methods (2.10),
we choose fixed coefficient §1 = 1/40 in all examples for P, (2 < k < 4) approximations
even there exists a large class of admissible (Bp, f1) coefficient pair (i.e. symmetric DDG
method).

To simplify the discussion and presentation, we focus on Poisson Eq. (1.2) associated with
zero Dirichlet boundary condition u|yq = ug = 0 for the following theoretical discussions
in this article. We can trivially extend the results to linear Eq. (1.1). Now summing up (2.3)
over all elements K € 7j,, we have the primal formulation of DDG method and its variations
of (1.2) as: find u € V/l‘ such that

By(u,v) = F(v), Yve V). (2.10)

The bilinear form By, (w, v) is listed below as,

By (w,v) := Z /KVw-Vvdx—i- Z/(@[{v}]ds—i—aﬁl[[w}])ds

Kelﬁl ee:‘,‘,{
Bo
+ Z h—wv—wnv—avnw ds, 2.11)
eES}? ¢ ¢

with the right hand side F (v) given as,

F(v):/fvdx.
Q
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Here we have By = Bo,+0Boy. Again, itdegenerates to the original DDG method when taking
o =0in(2.11). Coupled with (2.4) and taking ¢ = %1 in (2.11), we have the symmetric and
nonsymmetric version of the DDG methods. The DDG with interface correction is the case
with o = 41 in (2.11) and with test function numerical flux taken as the average vn = {{vn}}.

3 Boundedness, Stability and Error Estimate

In this section, we carry out a unified error estimate for the DDG method and its variations
(2.10). We first list approximation properties of the solution space V,f and discuss the bound-
edness and stability of the bilinear form By (-, -). Then we establish a suitable energy norm
error estimate for the four DDG methods (2.10). Toward the end of this section, we obtain
the optimal error estimate under L? norm for DDG with interface correction and symmetric
DDG methods.

First let’s define the energy norm for v € Vf:

1/2

Iollw= | > / Vv - de+2/[[ ﬂzd + Z/ —ds| . 3.1)

KeTy,

3.1 Approximation Properties and Stability

Below we list the trace inequality and inverse inequality of the solution space V}f. We refer
to finite element textbooks, i.e, [7] or [21] regarding these classical results.

Lemma 3.1 (Trace inequality) For any element K € Tj, and v € H*(K) with s > 1, there
exist positive constants Cq independent of K such that, Ve C 0K, we have,

—1/2
||U||L2(e) < Cghg / (||U||L2(1() + hK||VU||L2(1()) s
Ay
”Un“Lz(e) =|Vv- n||L2(e) < Cghg / (||VU||L2(1<) + hK||V2U||L2(K)) .

Lemma 3.2 (Inverse inequality) For any element K € Tj, andv € Py (K), there exist positive
constants Cy, C; independent of K such that, Ve C 0K andV 0 < j < k, we have,

ol 2y < Ct ||U||L2(1<),
lonlz2e) = IVV- n||L2(g) < Cihyg ||VU||L2(K)7

||V‘/U||L2(1<) = Cihk lvllz2k)-
Next we establish the continuity and coercivity of the bilinear form (2.11).

Theorem 3.1 There exist positive constants Cy, Cp, for DDG method and its variations (2.10)
such that for any w, v € V;{‘, we have,

[Br(w, v)| < Cpllvllnllwlla- (3.2)
By(v,v) > Clvllj, (33)
@ Springer
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Proof Plug in the numerical flux formula (2.4) in (2.11), we have the bilinear form laid out
in detail as,

Bi(w,v) = > / Vw - Vodx+ > / ( [w] + {wnl} + Bihe [[wnn]]) [v]ds
<]

KeT,

+o / {va} + Bihe[van]) [wlds + D / (%wv — WV — avnw) ds.
ecsP e e

eegl ¢
(3.4)

We first show the continuity (3.2) of the bilinear form. We consider f  Hwnv]ds
and [, Bihe[wnn][v]ds as example terms and treat other terms in the bilinear form of
(3.4) in a similar fashion. Using Cauchy—Schwarz inequality, we have,

Jtwnho1ds < Hwadlize [10]],5, and

| Brhelumlivlds < pibe [l 2 I101] 2,

Now let’s study these two terms in detail. We intensively apply inverse inequalities
(Lemma 3.2) to bound the polynomial integral on edge by its integrals over the elements
and essentially by its energy norm. Let’s assume edge e is a common edge shared by ele-
ments K| and K». With the definition of average {{-}} and jump [-], we have,

1 1
IwnBllz2e = 5 | wn) &, [ 2y + 5 | wn) & [ 12 -
and

” Hwnn]] ”LZ(E) S H (wnn)|K1 ” L2(e) + ” (wnll)le ”LZ(E) .

Applying inverse inequalities, we bound the line integral on edge by its integrals over the
elements as,

Cr —1p Cr _1p2
Hwnd 2 < 5 ki IVl + 5 1Y@l

Similarly the line integral ||wnn |k, I72() restricted from the K side can be bounded as,
Hwnn|K1 ”Lz(e) = [[Vwn - n”LZ(e) = Ct ||an||L2(K,)
< ctcih,(1 2 lwall 2k, < \/Ec,c,-h,(1 Vw2 (k,)-

Notice that hx denotes the diameter or the longest edge of element K, thus we have
he < hg, and h, < hg, with e = 0K N dK,. Now combine the previous arguments and
we obtain,

C
/e fwn}v]ds < 7’( 0 IVl + i 21Vl ) 1112,

IA

C

5 (erme) ' P1vwlz, + (e /th) 219wl ) i 0]
G
2

IA

(9wl + 1V0l2i) he (1] 2, -
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and

/ﬁlhe[[wnn]][[vﬂds < Bihe || [[wnn]]“LZ(e) ITv1 ||L2(e)

—3/2 —3,2
< V2B1h.C:C; (hKl/ Vw2 k) +h1<2/ ||Vw||L2(1<2)) |Te] ”Lz(e)

< V2B1C,C; (IVwllpa ;) + V0l k) he P IT0D L2 -

Sum up the estimates over all interior edges e € S,f and we have,

g
S [ twadvlds < 5 3 (19 wlhzoe, + 190hzoc) he 10T

e

eeé'/{ eeé',f

V2 2 2 12 _1p

= 520 D (1V0la,, + 1Y@ ) B I
ece]
12 1/2

NG y

< 5G| 20 IVwliiag, > Il
KeT), ecEf

V6

< - Cillwllilivlia, (3.5)

and

Z Brhe[wan][v]ds < v2C:Cip Z (IVwlir2k,) + IVwliteky) ke II[[U]]HLZ(e)

cegl "¢ ecs]
2 2 12 _ip

=286 Y (Vo) + IVl ) he 21T 2o
265,{

12 172

< 2V3BCCi [ D IVwila g, > hDI
KeT, eeg/;
< 2V3B1C,Cillwl vl (3.6)

For edges falling on domain boundary, we use similar method to bound the terms and we
have,

172

> [ Cwavyds <G| D IVwlifag, D [ ([P

el ¢ KeTy cegp
IKNIQAD

< Cillwllrlivilz-

172

Back to the bilinear form By, (w, v) of (3.4), we apply estimates (3.5)—(3.6) to the example
terms and treat other terms in the bilinear form similarly and finally we have,
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1Bh(w, v)| < D IVwllpag IVolliaky + O Bk ITwlll 2 1022
KeTy, ee&y

V6 V6
+5 Gliwlalivlia + 2V3B1C,Cillwllallvlln + = Cellvllaliwlln

+2V3B1C, Cillvllallwlla + 2wl llvlln
= Cpllwlinllvilz,

where C, = 1 + fo + 4/3B1C;C; + (\/6 + 2) C;. We are finished with the continuity
discussion of (3.2).

To obtain the coercivity of the bilinear form (3.3), again we consider example terms
(3.5)—(3.6) and we apply Young’s inequality. For any § > 0 and ¢ > 0, we have,

1 2 3 2 -1 2
S [Uwaiolds < 5 3 190l + 3667 3 I
ecs] KeT, ecs]
and
1 _
> / Bihe[wan][V]ds < o= > IVwliga g, +68BTCICT 37 hg M IIv]IZ2q,)-
ec&] ¢ KeT, ece]
Handle other terms in the bilinear form similarly and we have,

11 )
Bi(v,v) = (1 - g) > IVollfa g,

KeTy

5 _
+2 (ﬂo — 12887C2C? — 5acf) e NI]03 2,
ee&y
We can choose ¢, § and By such that 1 — % - é > 0 and By > 128,812C,2Ci2 + %ecf. Now
take Cs = min{l — 1 — £, By — 12687C2C? — 32C?} and we obtain the stability of the
bilinear form (3.3). O

3.2 Energy Norm and L? Norm Error Estimates

According to Theorem 3.1, it is easy to obtain the following theorem.

Theorem 3.2 There exists a unique solution u € V,f for problem (2.10).

Proof Since (2.10) is a linear problem in finite dimensional space, existence is equivalent to
uniqueness. We assume that there are two numerical solutions u! and u?. Then we have the
difference w = u' — u? satisfying

By (w, w) = 0.
By the coercivity result (3.3), we have ||w||;, = 0 which directly implies that w' =u? O

Theorem 3.3 Let u,, € H*1(Q) N C2(Q) be the exact solution of Poisson Eq. (1.2) with
zero Dirichlet boundary and we have u € V}f denote one of the four DDG schemes (2.10)
solutions, we have,

By (ttex —u,v) =0, Yve VL. (3.7)

@ Springer

:é: Journal: 10915 Article No.: 0264 [ ] TYPESET [__]DISK [_JLE [_]CP Disp.:2016/8/17 Pages: 22 Layout: Small



G
]
]
S
(=W}
-
o
=
+—
=
<

319

320

321

322
323
324
325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340
341
342
343

344

3

X
&

346

347

348

349

;-,-‘: Journal: 10915 Article No.: 0264 [ TYPESET [_]DISK [_]LE [_]CP Disp.:2016/8/17 Pages: 22 Layout: Small

J Sci Comput

Proof We denote by u,, the exact solution, thus we have (2.1) holding true for any v € V}f.
Summing (2.1) over all elements K € 7, and formally we have,

Z / Viey - Vvodx — Z/ Vuex-nvds:/fvdx.
K oK Q

KeT, KeTy

With u.x € C2(2), we have [ttex] = 0, {Vuex - n}} = Ve, - nand [(tex)nn] = O across
over any interelement edge d K. We also have u.,|3q = 0 with the zero Dirichlet boundary
condition. With boundary condition (2.5) applied, the definition of numerical flux (2.4) and
the bilinear form (2.11), for any v € Vﬁ, we have the exact solution satisfying the bilinear
form as below,

By (ttex,v) = Z / Ve, - Vvdx + Z /VZX\'n[[v]] + o Up[[tex]ds
K

KeT, ecs] ¢
+ Z / (@u”v — Viey - N — avnuex) ds = / fvdx = F(v).
pJe he Q
ec&y
This directly implies that (3.7) holds true. O

Theorem 3.4 Let u,, € H*1(Q) N C%(Q) be the exact solution of (1.2) with zero Dirichlet
boundary and u € V]f be one of the four DDG schemes (2.10) solutions, then we have,

Netex — ulln < Ch*|ex| grri(q- (3.8)

Proof Letluey € V}f denote the continuous interpolation polynomial of u,, over the element
edges, then we have standard approximation error as,

VO<s<k+1, |uex— I“ele‘(K) =< Clh];(+17x|uex|Hk+1(K)a VK €T,. (3.9)

Since both u,, and lu,, are continuous thus we have zero jumps [u.y — luey] = O across
interelement edges. From (3.1) and with zero Dirichlet boundary condition applied we have,

Nitex = Tuelln = > / V(tex — Ttter) - V(tex — Tte)dX < CrhFluex|grst (g
KeT, K
(3.10)

Coupled with above interpolation error (3.10), we see the estimate of ||u.y — u||s can be
easily obtained once we have estimate on ||u — [u,||;,. For convenience, let’s denote the
error between DDG numerical solution and exact solution interpolation as x = u — lu,,. We
have u and lTu,, € V,f and Juex — lu,.x] = 0 across interelement edges. With Theorem 3.1
and Theorem 3.3 we have,

Cyllu — Tuexll7 < Bu(u — Tugx, x) = By (u — iy + ttex — Tttey, X)
= By (uex — Tuey, X)

> / V(tex — Ttey) - Vxdx
K

KeT,

30 [ (U090r = Tte) )+ i [Gtes — Tt T ds
ecE] ¢

- /V(u” — Tuey) - ny ds. (3.11)
ecsP ¢
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To obtain the estimate on [|u — lu, ||, we need to further estimate the right hand side terms
of the above equality (3.11). Using Cauchy—Schwarz inequality, we obtain bounds on the
last three items as,

> / (Ve — Tuter) -0 [xds < D he> IV ter — Tuex) - 0Bl 2 he 2 16D 2o, -

ecE] ¢ ecE]
Z /,Blhe[[(uex - Iuex)nn]] [[X]]ds =< Z ,Blhe ” [[(uex - Iuex)nn]] ||L2(€) ” [XM|LZ(€) s
ecgl ¢ eeg;
and
1/2 —1/2
> / V(tter — Ttex) -nyxds < D he/> [V (ex = Tex) -0l 20 he 21X L200)-
665,? ¢ EES,?

Again we assume edge e is a generic interior edge shared by elements K and K>, thus we
have,

1
IV (ex — Tuex)}} - n||L2(e) = 5 ”V(uex — luey) -k, ||L2(e)

1
+§ ||V(uex —lu,y) -nlg, ||L2(e) ’
and

” [(ttex — Ittex)nn] HLz(e) = H (ttex — Tutex)nnlk, ||L2(e) + H (ttex — Tttex)nnlk, ||L2(e) .

Furthermore, with trace inequality of Lemma 3.1 and interpolation error (3.9) we have,

1/2
V2RV ey = Tute) 2y
+ g IV (e — Tued) g2 k)

k—1/2
< 6C8C1hK| / |uex|Hk+1(K1)’

”V(uex —Tuey) - l’l|1(1 ”Lz(e) = Cgh]_(

and
I < Coh'? I
“ (Uex — Tex)nnlk, H 12e) = Lok, (”(uex - Mex)nn”LZ(K,)
+h, V(e — Iuex)nn”LZ(Kl))
<3c,Crnt3?)
= 3CCrhg, " luex| s k-
Collect all estimates of the right hand side terms of (3.11) and we have,
Collxlli; < (9Cg +9CB1 + DCrh* Juex| st @ lx s
or
M = Tuexlln < Ch¥luex| i gy-
Applying triangle inequality and with (3.10), we directly obtain,
Nex — ulln < Nutex — Tutexlln + M utex — ulln < Chk|uex|[-1k+1(g)o
O

To carry out the error estimate under L2 norm, we follow standard duality argument. For
convenience, we consider continuous linear finite element space Vj,:={v € H L) vk €
P1(K),VK € T, v|aq = 0} to solve the auxiliary problem.

@ Springer

:é: Journal: 10915 Article No.: 0264 [ ] TYPESET [__]DISK [_JLE [_]CP Disp.:2016/8/17 Pages: 22 Layout: Small



G
]
]
S
(=W}
-
o
=
+—
=
<

381
382

383

384

385

386

387

388

389
390

391

392

393

394

395

396

397

398

399

400

401

402
403
404
405

406

4

<}
<

408

;-,-‘: Journal: 10915 Article No.: 0264 [ TYPESET [_]DISK [_]LE [_]CP Disp.:2016/8/17 Pages: 22 Layout: Small

J Sci Comput

Theorem 3.5 Let u., € H*'(Q) N C%(Q) solve the boundary value problem (1.2) with
zero Dirichlet boundary and we have u denote the DDG method with interface correction
(2.6) or symmetric DDG method (2.7) solution of problem (2.10), we have,

lutex = ull 20y < CHH luexll e g - (3.12)
Proof We start with the following auxiliary problem:
— AY = upox —u, on 2, with Dirichlet boundary ¥ |3 = 0. (3.13)
Standard regularity result gives,
1Vl g2 < Cllttex — ull2(g)- (3.14)

We solve auxiliary problem (3.13) and denote ¥, € Vh as the solution of conforming finite
element method,

/ Vi, - Vopdx = / (Uex — u)vpdx, forall vy, € \7;,. (3.15)
Q Q
Recall that we have following error estimate with linear polynomial approximations,

IV = Ynlni @) = ChlY g2 g)- (3.16)
With regularity result (3.14) we have ¢ € H?(), thus we have {{y}} = v, [v] = 0,
{Vy -n}} = V¢ -nand [Vy - n] = 0 across interelement edges. Multiply (3.13) with

(uex — u) and integrate over the domain, have integrating by parts over each element and
formally we obtain,

lttex — g = — / AY (e — w)dx
Q

VY - V(they — u)dx — Vi -n(uey —u)d
Z(/K Y- V(u u)dx /31( v -n(u u) s)

KeT,
= 3 [ V0 Ve —wax+ 3 [ (79 nues — ulds
KeT, K eeé‘,{ ¢
-> /vw~n(uex — u)ds. (3.17)
ecEP ¢

Notice the numerical solution [u] # 0 over d K even the exact solution is continuous across
interelement edges. Now we have u denoting the DDGIC (2.6) or symmetric DDG (2.7)
solution with bilinear form (2.11). And we have u,, as the exact solution of (1.2) and we
have Theorem 3.3 holding true. With ¢, € Vj, as the continuous linear finite element solution
of (3.15), we have [¢,] = 0 and [(¥,)nn]] = O across interelement edges. Thus we have,

0= Bp(uex —u, Yp) = z /K V(ttex —u) - Vippdx + Z /{{leh : n}}ﬂuex - u]]ds

K€771 EEEI{ ¢

— Z /Vl/fh (U — u)ds.

D
ee&y
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Finally we subtract the right hand side of (3.17) from above equality, combine the results of
(3.16) and (3.14) and apply Cauchy—Schwarz inequality as in Theorem 3.4, we have,

ltex — oy = S /wa—wh)-wex—u)dx

KeT,
+ 3 [(9@ = v s — ulds
ecg] ¢
- /w/f — i) Mgy — u)ds
ecEP ¢
=< Ch|W|H2(Q)|||Mex —ullp < Chlluex — M||L2(Q)|||uex — ulp.
Applying the energy norm error estimates (3.8), we complete the proof. O

4 Numerical Examples

In this section we provide a sequence of numerical examples to illustrate the accuracy and
capability of DDG method and its variations (2.10). For the linear system, we use a restarted
GMRES method solving a nonsymmetric system and conjugate gradient method solving
the symmetric ones. To obtain machine level precision, we set the stopping criterion as the
relative residual norm less than 10~ !2. Notice that for most problems presented in this section
we have analytical or exact solution available such that the right hand side function f can be
calculated from the available function. Dirichlet boundary condition is given with the exact
solution’s restriction on the domain boundary.

We use following notations to denote the errors between exact solution and numerical
solution:

lenlloo:=lluex —ullLoq@), lenllp2:=ltex —ull2).  Nenlln:=lttex — ulln.

Furthermore, we have e;, and e,/ representing the error at two consecutive triangulations
with mesh size 4 and /2, respectively. The order is calculated with,

1
order = —— In ( lenll ) ,
In(2) llen2 |l

where || - || represents the L° norm, the L? norm or the energy norm (3.1).

Example 4.1 Convex domain with structured and unstructured triangular meshes.

We start with the accuracy check of the four DDG methods (2.10) on Poisson Eq. (1.2)
on convex domain 2 = [0, 1] x [0, 1]. Right hand side function is given with

Pt =4 (1 =53 — ) exp (=2 = 3).

Exact solution is available with u,, = exp (—)cl2 — x%) We consider implementations of

the four DDG methods on three different meshes: structured uniform mesh and nonuniform
mesh (Fig. 1) and unstructured mesh (Fig. 2).

The structured nonuniform mesh is setup by dividing a uniform mesh interval into three
sub-intervals in each axis direction. More precisely, let’s denote a uniform mesh with x; = ik
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Fig. 1 Uniform mesh (/eft) and nonuniform mesh (right)

Fig. 2 Unstructured mesh with
312 triangles
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fori =0,..., M, where h = 1/M and xp = 1. The nonuniform mesh nodes are generated
and denoted as follows,

X3 =X,
X3i41 = X3; + y1h,
X3i42 = X3i+1 + y2h.

Here y; and y, are positive numbers with y; + y» < 1.

On uniform mesh, DDG method (2.2) loses order with even order P> polynomial approx-
imations. This is similar to the DDG method for time dependent problem [17] in which it
shows it is hard to identify suitable coefficient §; to obtain optimal convergence. For DDGIC
(2.6) and symmetric (2.7) and nonsymmetric (2.8) DDG methods, optimal (k + 1)th order
convergence is obtained under both L and L> norms. To save space, we only list the error
table for symmetric DDG method, see Table 1.

For implementations on the dramatic nonuniform mesh (right one in Fig. 1), we observe
order loss for DDG method (2.2) and nonsymmetric DDG method (2.8) with even order
polynomial approximations, see Table 2 for nonsymmetric DDG method. Notice that NIPG
method obtains sub-optimal order convergence for all Py polynomial approximations, see
[15] on nonuniform mesh accuracy check. Both DDGIC and symmetric DDG methods obtain
(k4 1)th optimal order convergence on nonuniform mesh, see Table 3 for DDGIC and Table 4
for symmetric DDG method. Accuracy check on unstructured mesh (Fig. 2) is carried out
also and similar results are obtained. To save space, again we only list the accuracy table for
symmetric DDG method, see Table 5.
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Table 1 Symmetric DDG method (2.7) on uniform mesh

k, Bo, B1 h llenll oo Order  lexll 2 Order — lepllin Order
— 2 0.0441  2.9436e—6 3.3292¢—7 1.2203¢e—4
§ Bo =45 0.0221  3.7064e—7 2.99 4.1431e—8 3.01 3.0299¢—5 2.01
~ 1 =1/40 00111  4.6493¢—8 2.9 5.1683e—9 3.00 7.5483e—6 2.01
S 3 0.0883  4.2937¢—7 3.8198¢—8 9.1896¢—6
= Bo =10 0.0441  2.7352¢—8 3.97 2.4180e—9 3.98 1.1260e—6 3.03
2 BL=1/40 00221  1.7177e=9 3.99 1.5205e—10  3.99 1.3934e—7 3.01
4 0.0883  5.9843e—9 7.0176e—10 6.8940c—8

Bo =175 0.0441 1.8814e—10 4.99 2.2270e—11 4.98 4.2068e—9 4.03
B1 =1/40 0.0221 5.9658e—12 4.98 7.0296e—13 4.98 2.5808e—10 4.03

Table 2 Nonsymmetric DDG (2.8) on nonuniform mesh with y; = 1/7, 5 = 1/3

k. Bo, B1 h llen oo Order flepll 2 Order — leplln Order
2 0.1767  2.4247e—5 7.7742¢—6 3.7785¢—4

Bo=9 0.0883  4.6354e—6 239 1.7602e—6 2.14 9.4698¢—5  2.00
B1=1/40 00441  1.0069e—6 220 4.2384e—7 2.05 2.370le—=5  2.00
3 0.1767  3.1900e—7 3.7846e—8 6.8443e—6

Bo =20 0.0883  2.0142e—8  3.99 2.4086e—9 3.97 8.6424e—7 2.9
B1=1/40  0.0441 1.2723e—9  3.98 1.5403e—10  3.97 1.0857e—=7 299

Table 3 DDGIC (2.6) on nonuniform mesh with y; = 1/7,y, = 1/3

k, Bo. B1 h llenllLoe Order lepllz2 Order  lleplln Order
2 0.1767 2.5595e—5 3.1923e—6 7.4743e—4

Bo=9 0.0883 3.4943e—6 2.87 4.1920e—7 293 2.0669¢—4 1.85
B1 =1/40 0.0441 4.4934e—7 2.96 5.3843e—8 2.96 5.4425e—5 1.93
3 0.1767 2.7517e—17 3.2693e—8 7.2357e—6

Bo =20 0.0883 1.7467e—8 3.98 2.0766e—9 3.98 9.1033e—7 2.99
B1 =1/40 0.0441 1.0958e—9 3.99 1.3113e—10 3.99 1.1413e—7 3.00

Table 4 Symmetric DDG (2.7) on nonuniform mesh with y; = 1/7, > = 1/3

k, Bo, P1 h llenllzoo Order lepll 2 Order  leplln Order
2 0.1767 8.3208e—5 6.3453e—6 1.5841e—3

Bo=9 0.0883 1.0209e—5 3.03 8.0069e—7 2.99 3.9949e—4 1.99
B1 = 1/40 0.0441 1.2655e—6 3.01 1.0048e—7 2.99 1.0024e—4 1.99
3 0.1767 2.8447e—7 3.2200e—8 7.0980e—6

Bo =10 0.0883 1.8050e—8 3.99 2.0449e—9 3.98 8.9171e—7 2.99
B1 =1/40 0.0441 1.1325e—9 3.99 1.2891e—10 3.99 1.1172e—7 3.00
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Table 5 Symmetric DDG (2.7) on unstructured mesh with 312, 1248 and 4992 triangle elements

k. Bo. B h llenlloe Order lenll 2 Order llen Nl Order
o 2 0.1040 3.7275e—5 7.7305¢—6 7.7561e—4
§ Bo=9 0.0520 4.6531e—6 3.19 9.7652e—7 2.98 1.9526e—4 1.99
= p1 =1/40 0.0260 5.7993e—7 3.42 1.2274e—7 2.99 4.9014e—5 1.99
S 3 0.1040 1.3490e—6 9.5439¢—8 1.7929e—5
k= Bo =10 0.0520 9.1784e—8 3.88 5.8792e—9 4.02 2.0540e—6 3.13
2 B1 =1/40 0.0260 5.5303e—9 4.05 3.6396e—10 4.01 2.4350e—7 3.08
Table 6 CPU time comparison i k=3 k=4
between symmetric DDG and
SIPG methods Symmetric DDG 0.0883 1.0936¢+1 9.0262¢+1
Po=9 0.0441 2.4983e+1 4.8143e+2
B1 = 1/40 0.0221 9.8452e+1 1.6275e+3
SIPG 0.0883 1.0015e+1 8.6636e+1
Bo=9 0.0441 2.8033e+1 3.6640e+2
0.0221 1.0500e+2 1.7717e+3

462 We also consider efficiency issues of the DDG methods. Among the four DDG methods,
463 symmetric DDG method (2.7) is the most suitable elliptic solver. The linear system of sym-
464 metric DDG method has symmetric structure and is easy to apply fast solvers. We calculate
465 the mass matrix condition numbers of DDGIC and symmetric DDG methods, which are on
ss  the order of O (h~197). When comparing with SIPG method, symmetric DDG method gains
467 roughly 7-10 % on CPU time for high order approximations, see Table 6.

48 Example 4.2 Accuracy check on L-shaped domain.

469 In this example, we solve Laplace equation on the L-shaped nonconvex domain Q =
a0 [—1,1] x [—1, 1]\([0, 1] x [—1, O]. Dirichlet boundary condition is applied. Exact solution
2

471 1is available (in polar coordinates) with u.y (1, 0) = r2/3 (sin (%9) + cos (§6')). Notice that

472 the regularity of the solution is that u,x € H 37¢ for any € > 0. The partial derivatives of the
473 solution are singular at the origin.

474 We use uniform mesh (Fig. 3) to carry out convergence studies for the DDG method and
475 its variations (2.10). For all four schemes, we obtain close to %th order convergence under L?
476 norm. In Table 7 we list the errors and orders of nonsymmetric DDG method (2.8). Slightly
477 better convergence is observed with DDGIC and symmetric DDG methods, see Table 8 for
478 symmetric DDG method.

479 Example 4.3 Interface problem with discontinuous diffusion coefficients.

480 We solve the following variable coefficient elliptic problem,
481 —V(KXx)Vu) = f(x), xeQ=10,1] x [0, 1],
42 with Dirichlet boundary condition. The diffusion coefficient matrix K (x) is diagonal K (x) =

43 diag(k) with k = {10, 1071, 103, 1} that is piecewise defined in four subregions, see Fig. 4
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Fig. 3 Uniform mesh on
L-shaped domain

Table 7 L-shaped domain with nonsymmetric DDG method (2.8), uniform mesh

k. Bo. B1 h llenll oo Order llenll 2 Order llenlln Order
2 0.0883 2.7717e-2 3.1753e—4 3.1585e—2

Bo=9 0.0441 1.7463e—2 0.67 1.2407e—4 1.36 1.9898e—2 0.67
B1 =1/40 0.0221 1.1001e—2 0.67 4.8731e—5 1.35 1.2535e—2 0.67
3 0.1767 2.6474e—2 3.8978e—4 2.618%—2

Bo =20 0.0883 1.6679¢—2 0.67 1.4724e—4 1.40 1.6499¢—2 0.67
p1 =1/40 0.0441 1.0508e—2 0.67 5.6427e—5 1.38 1.0393e—2 0.67
Table 8 L-shaped domain with symmetric DDG method (2.7), uniform mesh

k, o, B1 h llenll oo Order llenllz2 Order llen lln Order
2 0.0441 1.9342e—-2 6.7832e—5 2.1932e—2

Bo=4.5 0.0221 1.2185e—2 0.67 2.4089%e—5 1.49 1.3816e—2 0.67
p1 =1/40 0.0111 7.6760e—3 0.67 8.7786e—6 1.46 8.7037e—3 0.67
3 0.0883 1.8182e—2 5.2013e—5 1.7658e—2

Bo =10 0.0441 1.1454e—2 0.67 1.7115e—5 1.60 1.1124e—2 0.67
B1 = 1/40 0.0221 7.2157e—3 0.67 5.7378e—6 1.58 7.0077e—3 0.67

(also in [14]). Correspondingly the two interface lines are x; = x, = 0.5 and xo = y. = 0.5.
Uniform triangular mesh partitioned along interface lines is considered. Exact solution is

available with,

Uex =

1
k

. omx
—sin (Tl) (x1 —xe)(x2 — ye) (1 +xf + x%) .

The solution itself is continuous but the gradient is discontinuous across interfaces lines.
For the given interface jump conditions [u] = 0 and [—K (x)Vu - n] = 0, we make no
modification on our scheme formulations to explicitly enforce the jump conditions. With
zero flux jump across the interface, we see the flux K (x)Vu - n itself is continuous and well
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Fig. 4 Piecewise constant diffusion coefficients k = {10, 1071, 103, 1}

Table 9 Interface problem with DDGIC method

1t |
0.8 1
. k=1000 k=1
o
= 0.6 |
Ay (x_,v.)
S
= 0.4r 1
+—
= k=10
< 0.2} k=0 :
of |
0 0.2 0.4 0.6

k, Bo, B1 h llenll oo Order llenli,2 Order llen Order
2 0.0883 4.4576e—4 2.9017e-5 5.5796e—3

Bo=9 0.0441 5.6738e—5 2.97 3.6032e—6 3.01 1.3841e—3 2.01
p1 =1/40 0.0221 7.1481e—6 2.99 4.4852e—7 3.01 3.4439¢—4 2.01
3 0.1767 1.4570e—4 6.0110e—6 8.2941e—4

Bo =20 0.0883 1.0756e—5 3.76 3.9296e—7 3.94 9.8683e—5 3.07
B1 =1/40 0.0441 7.5058e—7 3.84 2.5112e—8 3.97 1.1792e—-5 3.07

492 defined on the interface lines. For element edge d K that falls on the interface, we incorporate
493 the discontinuous diffusion coefficients K (x) into the numerical flux K (m - n definition.
4« For example, suppose the element edge dK falls on interface line x, = y. = 0.5 with
495 outward normal n = (0, 1), the numerical flux degenerates to K (g-V\u ‘n= (ku/)\x2 and we
46 have,

k~ug, +ktut,

Tut —kTu™ _
he 2 = + Bihe (k+uj2x2 —ku

_— k —
497 ku,(2 = ,30 xzxz) .
48 Here we have diffusion coefficientk = kT forx, > 0.5and k = k~ forxo < 0.5 and u™ and
a9 u~ correspondingly denote the value of u on edge 0K evaluated from its neighbor element
soo and from its own element. Thus the zero flux interface jump condition is applied WEAKLY
so1  in our implementations.
502 We carry out P> and P3 polynomial approximations and list the errors and orders in Tables 9
s3  and 10 for DDGIC and symmetric DDG methods. We obtain (k + 1)th order convergence
sos under both L2 and L* norms. Solution simulations with P> polynomials and mesh size
sos  h = 0.0441 are shown in Fig. 5.

sos Example 4.4 Peak solution.

507 In this example, we solve Poisson equation with a peak solution. The domain is set as
sos 2 = [0, 1]x[0, 1] and Dirichlet boundary condition is applied. The exact solution is available
so9  with expression,
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Table 10 Interface problem with Symmetric DDG method

k, o, B1 h llen Il oo Order llenll; 2 Order llen Nl Order
2 0.0883 4.5410e—4 2.8896e—5 5.5306e—3

Bo =4.5 0.0441 5.7782e—5 2.97 3.5862¢—6 3.01 1.3716e—3 2.01
B1 =1/40 0.0221 7.2784e—6 2.99 4.4619¢e—7 3.01 3.4122e—4 2.01
3 0.1767 1.4534e—4 6.0525¢e—6 8.3195¢e—4

Bo =10 0.0883 1.0669¢—5 3.77 3.9484e—7 3.94 9.8893e—5 3.07
B1 =1/40 0.0441 7.4418e—7 3.84 2.5218¢—8 3.97 1.1816e—5 3.07

Fig. 6 Peak solution simulations by DDGIC (left) and symmetric DDG (right) methods

Uer = exp (—a ((x1 — X2+ (o — yc)z)) ,

where (x., y.) = (0.5, 0, 5) is the location of the peak and @« = 1000 determines the strength
of the peak. Approximations with DDGIC (2.6) and symmetric DDG (2.7) methods are carried
out and shown in Fig. 6 with uniform triangulation mesh 2 = 0.0441 and P, polynomial
approximations. The sharp peak is resolved very well with these two schemes.

Example 4.5 Highly oscillatory wave solution for Helmholtz equation.

In this example we solve Helmholtz equation with variable coefficients as follows,

—Au ! = f, with r=+v(x1)?+ (x2)2.

T
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Fig. 7 Oscillatory solution by DDGIC (leff) and symmetric DDG (right) methods

The square domain is set as 2 = [0, 1] x [0, 1] and Dirichlet boundary condition is applied.
We have o = ﬁ where the integer N determines the number of oscillatory waves near the
(Hl»r :

We apply uniform triangular mesh with 2z = 0.0110 and quadratic P, approximations in
this example. The number of oscillations is taken with N = 4 in «.. The solution is supposed
to be highly oscillatory near the origin. As shown in Fig. 7, with same mesh and polynomial
approximations applied, symmetric DDG method (2.7) resolves the highly oscillatory wave
better than the DDGIC method (2.6).

origin. Exact solution is given with u,, = sin (
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