
ST051-004 AGILOOGY Inc. _____________________

__
This page contains proprietary information

 1

DE-FOA-DE-SC0007551 SBIR Phase 2 Grants

A Client/Server Architecture for Supporting Science Data Using EPICS Version 4

 Submitted as a phase II grant follow on to:

DE-FOA-0000577 SBIR Phase 1 Grants

Topic 12 (a): Ancillary Technologies for Accelerator Facilities

(Accelerator Modeling and Control)

Technical Abstract

The Phase 1 grant that serves as a precursor to this proposal, prototyped complex storage

techniques for high speed structured data that is being produced in accelerator diagnostics and

beam line experiments. It demonstrates the technologies that can be used to archive and retrieve

complex data structures and provide the performance required by our new accelerators,

instrumentations, and detectors. Phase 2 is proposed to develop a high-performance platform for

data acquisition and analysis to provide physicists and operators a better understanding of the

beam dynamics. This proposal includes developing a platform for reading 109 MHz data at 10

KHz rates through a multicore front end processor, archiving the data to an archive repository

that is then indexed for fast retrieval. The data is then retrieved from this data archive, integrated

with the scalar data, to provide data sets to client applications for analysis, use in feedback, and

to aid in identifying problem with the instrumentation, plant, beam steering, or model.

This development is built on EPICS version 4 1 , which is being successfully deployed to

implement physics applications. Through prior SBIR grants, EPICS version 4 has a solid

communication protocol for middle layer services (PVAccess), structured data representation and

methods for efficient transportation and access (PVData), an operational hierarchical record

environment (JAVA IOC), and prototypes for standard structured data (Normative Types). This

work was further developed through project funding to successfully deploy the first service based

physics application environment with demonstrated services that provide arbitrary object views,

save sets, model, lattice, and unit conversion. Thin client physics applications have been

developed in Python that implement quad centering, orbit display, bump control, and slow orbit

feedback. This service based architecture has provided a very modular and robust environment

that enables commissioning teams to rapidly develop and deploy small scripts that build on

powerful services. These services are all built on relational database data stores and scalar data.

The work proposed herein, builds on these previous successes to provide data acquisition of high

speed data for online analysis clients.

All of EPICS V4 Core Code developed as part of this grant or developed in conjunction with this grant is open

source and available on Github along with EPICS base at https://github.com/epics-base?page=1. All reference to

Normative Types), NTTypes, PVAccess, PVData, Java IOC, PVServices or PVClients that are implemented in C++

Java are available there.11

ST051-004 AGILOOGY Inc. _____________________

__
This page contains proprietary information

 2

Key words

Control System, EPICS, PVAccess, PVData, Normative Types, Analytics

ST051-004 AGILOOGY Inc. _____________________

__
This page contains proprietary information

 3

Table of content

1 PHASE II TECHNICAL OBJECTIVE .. 3

2 PHASE II DELIVERABLES ... 3

2.1 TASK 1 INTEGRATE HIGH SPEED INSTRUMENTS INTO THE EPICS V4 IOC......................... 3

2.2 TASK 2. DEMONSTRATE THE ARCHIVING OF THIS LARGE DATA SETS INTO A EPICS V4

ARCHIVER .. 5

2.3 TASK 3. DEMONSTRATE THE INTEGRATION OF THE ARCHIVE SERVICE INTO THE SCIDB

ANALYTICS ENGINE ... 7

2.4 TASK 4. CREATE A DATA CATALOGUE SERVER FOR ALL DATA ARCHIVES. 10

3 PRESENTATIONS ON THIS WORK ... 11

4 SUMMARY ... 12

1 Phase II Technical Objective

The goal of this program is to extend the EPICS V4 architecture to demonstrate high speed data

acquisition and data analysis. This requires demonstration of the ability to integrate new FPGA

based devices that are taking data at the MHz rate with large GB on board memories, into a

distributed architecture that can efficiently read the devices and serve the data into processing

and storage components. As important, is the ability to access this data, in conjunction with other

facility data, to create comprehensive, flexible, and modular analysis environment. This work

provides the basis for supporting machine and science analysis.

2 Phase II Deliverables

The were two primary deliverables for this phase II grant: 1) improve the V4 base to provide high

speed, robust and reliable transport of structured data 2) Demonstrate this through the archiving

and retrieval of an archiver for the normative types of EPICS V4, particularly multi-dimensional

arrays. All of the code in this area is available at: https://github.com/epics-base and

https://slacmshankar.github.io/epicsarchiver_docs/.

2.1 Task 1 Integrate high speed instruments into the EPICS V4 IOC.

2.1.1 Services to Produce Matrices

Several developments occurred to provide high speed instrument integration in EPICS V4. As

part of the SBIR work, a PVAccess Service that demonstrated the throughput of the protocol was

written. We were able to transmit large data sets at 90% of the Ethernet line speed. This is a

significant improvement over the previous Channel Access implementation.

As part of this work, a normative type (NTNDArray) was completed that supports NDimensional

Arrays: vectors, 2D data, time series of 2D data, tiled images, and any N Dimensional Arrays.

https://github.com/epics-base
https://slacmshankar.github.io/epicsarchiver_docs/

ST051-004 AGILOOGY Inc. _____________________

__
This page contains proprietary information

 4

This NTNDArray represents a

narrow interface that is easily

handled by general purpose

clients. This was demonstrated

by a python client that can

receive NTNDArrays and print

them out in test. This

demonstration was used to

implement an NTNDArray in

Control System Studio (CS Studio), a Graphical User Interface that is developed as an operator

workflow application with a synoptic editor and high level applications in Java.

2.1.2 Data Passing Mechanisms

Demonstrated the integration of high speed data sources, such as modern Beam Position

Monitors electronics and area detectors..

2.1.2.1 A test service was developed that

pumps out matrices through a

PVAccess server that was used

to develop and demonstrate the

capability of PVAccess.

PVAccess was extended to

transmit large arrays. The

performance greatly surpassed

EPICS existing protocol,

Channel Access, which only

transmits arrays as a vector with

no metadata to describe more

than the number of datum and

the size of each datum.

2.1.2.2 The service above, was developed in C++ along with the implementation and helper

classes to support this mechanism and the NTNDArray. It was run under Linux on the

I/O Controller. Once this data passing mechanism, data type, and helper class was

developed in V4 and made available to the EPICS community, developers at the

National Synchrotron Light Source made an important improvement in areaDetector to

take advantage of this new capability. The first was an extension to the areaDetactor, an

XRay beam line development for processing detector data. Using the test service as a

guide, they added a plugin that directly serves NTNDArray over PVAccess from the

areaDetector processing pipeline. In addition, a CS Studio modification was made to the

PVAccess Client plugin for the PVManager to monitor the NTNDArrays. The client

application to view N-dimensional arrays was already available in CS-Studio. With

these modifications, the beam lines at NSLS II could configure detector visualization

ST051-004 AGILOOGY Inc. _____________________

__
This page contains proprietary information

 5

directly in the operator screens through simple configuration and monitor their data in

real time with demonstrated performance of up to 60 frames per second (fps).

2.1.2.3 The areaDetector work above immediately made all of the area detector drivers

available through PVAccess. In addition to these drivers, the array passing in the EPICS

Process Database was modified so that arrays would be passed by reference on the

EPICS data links. This made the passing of NDimensional Data through the EPICS

Process Database as fast as possible by managing and passing references on read. This

eliminated copies that are very expensive on large arrays. This made all of the existing

drivers for vector acquisition available through the EPICS process database to the

PVAccess server (PVASrv). Further development is needed to make the NTNDArray

data type available through the EPICS database.

2.2 Task 2. Demonstrate the archiving of this large data sets into a EPICS V4

Archiver

Collect V4 data into a V4 archiver. (1) Demonstrate the storage of metadata for the V4 data

types. (2) Demonstrate the storage of the large data sets. (3) Demonstrate the ability to create the

index files to access the data.

2.2.1 Demonstrate the Storage of Metadata

The storage of metadata for the V4 data types has been demonstrated in two ways: the
areaDetector data acquisition code is able to write NTNDArrays directly to files and the
Archive Appliance is able to store all NTYTypes including NTND Arrays server from
PVAccess servers. The NTNDArray includes the description of the number of axis for
the array and the units, data type, and dimensions of each axis. In addition, the
NTNDArray supports optional metadata such as scalar values for independent
variables. These independent variables can include independent variables such as
position or energy, that are required to identify the significance of the NTNDArray. This
has also been demonstrated for neutron experiments where detectors are recording
counts and time of flight data in sparse arrays.

2.2.2 Demonstrate the Storage of Large Data Sets

In the case of both the Archive Appliance and files directly from the areaDetector data processing

pipeline, the large data set is part of the NTNDArray. The metadata and the independent

variables are part of the data payload. The multidimensional array is part of the NTNDArray.

2.2.3 Demonstrate the Ability to Create Index Files

The above mentioned large data sets are used for viewing and require analysis for
either understanding the operation of an accelerator or to analyze the results of the xray
data from some sample. In both cases, all of the data stored as part of these
NTNDArrays have metadata that is used to search for data. For experimental data,
beam line, user, and sample may either be metadata or part of a file descriptor. In every

ST051-004 AGILOOGY Inc. _____________________

__
This page contains proprietary information

 6

case, the independent variables are part of the NTNDArray. To search on data sets
from a given set of independent variables, one would need to open each file, find the
independent variable and compare it to the parameters being requested. This is very
time consuming. On an set of HDF5 experimental data chosen from a previous
experiment and scaled to current rates and data size, a search was measured to take
30 seconds. An index service was prototyped that used a relational database with 120
properties and one million samples. This test reduced the search time to 3.4 seconds. A
second prototype was made with MongoDB,using the same 120 properties and one
million samples and the search time was reduced to 40 msecs. A service was
developed, MetaDataStore was developed as a PVAccess Service that responded to
queries of independent variables and deployed as part of a suite of data acquisition and
analysis tools at NSLS II.

Figure 1 metadatastore and filestore for data acquisition

The PVAcccess Service can also be used to populate the MetaDataStore. Data
acquisition programs can directly populate the MDS while taking data. Applications
have also been written to populate the MetaDataStore with existing data stores. This
can greatly improve the search and access time of data that was collected prior to the
completion of the MetaDataStore

ST051-004 AGILOOGY Inc. _____________________

__
This page contains proprietary information

 7

2.3 Task 3. Demonstrate the integration of the Archive Service into the SciDB

Analytics Engine2

Integrate the V4 archiver into the SciDB analytics engine to demonstrate the ability to use

existing analytics. (1)Demonstrate the ability to query the data catalogue service. (2) Demonstrate

the ability to access archive data from the analytics engineers supported by the SciDB community.

2. EPICS V4 Data Access Service

The project addresses the above requirements and issues by providing a generic EPICS V4

middle layer framework for accessing composite data sources of accelerator and beamline

facilities. For example, Figure 1 shows the EPICS V4 data access service in the context of the

NSLS II data management and processing system. The bottom data layer represents a distributed

collection of heterogeneous data sources including multiple components, such as the meta-data

store and repositories of data files with time series of control data collected from accelerator

devices and beamlines, detector images and associated metadata, and post-processing results

from analysis and reconstruction applications. The heterogeneous structure of the data layer was

driven by multiple requirements, such as configurability, modularity, incremental development,

support of new extensions and multiple data formats tailored to detectors. The common client

interface, Data Broker, is implemented in Python and reused by different experimental control

and interactive analysis applications.

Figure 1: EPICS V4 three-tier data management and processing system

The EPICS V4 middle layer services extend the scope and scale of this infrastructure by

providing an efficient interface between distributed data sources and client applications. The

corresponding interface originated from the Phase I prototype and consistently developed within

the Phase II project by adhering to the Spark conceptual model. In contrast with other scientific-

oriented data management and processing systems (e.g., SciDB), Spark has explicitly defined an

in-situ processing approach that can be connected with different data sources. As a result, the

2 Ode is available at: https://github.com/epics-extensions/ea-cpp

https://github.com/epics-extensions/ea-cpp

ST051-004 AGILOOGY Inc. _____________________

__
This page contains proprietary information

 8

Spark approach advocated the Phase I conceptual solution of the SciDB-oriented driver

framework and facilitated its further development towards a much larger ecosystem. The

existing version of the Spark approach, however, introduced several constraints. First, it was

implemented in the Java language that was mismatched with the C/C++ I/O libraries and the

Python data analysis applications of the conventional scientific-oriented environment. Second, it

did not support access to heterogeneous data sources of large-scale experimental facilities.

Therefore, the Phase II project addressed these issues by implementing an original compositor

connector based on the EPICS V4 middleware. Figure 2 and Figure 3 show the class and

sequence diagrams of the corresponding client interface.

Figure 2: Class diagram of the client composite interface

ST051-004 AGILOOGY Inc. _____________________

__
This page contains proprietary information

 9

Figure 3: Sequence diagram of the client composite connector interface

The interface of the compositor connector followed the Spark approach and defined the data

access as a combination of the Query requests accumulated via a sequence of the Collection

transformations, filter and read. The structure of these requests is flexible and initialized via the

Python dictionary that is subsequently converted into the PVStructure payload container of the

EPICS V4 communication protocol. The filter request accommodates queries of the data catalog,

for example, the aggregation pipeline of the MongoDB database. And the read method augments

this request for reading datasets distributed in multiple data files of the hybrid data store. As a

result, these requests are combined and shipped together with the load action to the EPICS V4

data access server. The server implementation is illustrated by the class and sequence diagrams

shown in Figure 4 and Figure 5.

Figure 4: Class diagram of the compositor connector

The data access server is based on the composite connector framework that can be specialized for

different types of hybrid data sources. Specifically, Figure 5 illustrates a sequence of steps for

accessing the new EPICS Archiver data layer consisting of a MongoDB data catalog and a

repository of data files. This sequence starts with accepting a composite request and breaking it

ST051-004 AGILOOGY Inc. _____________________

__
This page contains proprietary information

 10

down into the filter and read queries. Then, the filter request is converted into the BSON

container and shipped to the MongoDB engine for fetching locations of requested datasets

distributed in a repository of data files. Next, the read request is updated with the MongoDB

results and processed by the corresponding file reader. The same approach was implemented for

accessing the original archiver data using proprietary indexing files. As a result, the EPICS V4

data access framework provides a seamless transition to new versions of data catalogs and file

formats. Moreover, the same framework was applied for accessing the MongoDB metadata

catalog of the experimental data. Finally, it brought an efficient EPICS V4 middleware for

connecting distributed data sources and the Python data analysis and processing environment.

Figure 5: Sequence diagram of the compositor connector

In comparison with existing data management systems, the EPICS V4 compositor connector

resolved several important issues. First, it provided a configurable framework for accessing

hybrid data stores of experimental facilities. Second, the composite interface facilitated the

integration of several data models. For example, the current application combined the MongoDB

document-oriented and SciDB array-oriented models. Third, the composite connector approach

extends the scale of conventional databases with a repository of data files. This topic

encompasses multiple aspects including communication protocols. For example, EPICS V4

extends the MongoDB interface with the PVData payload container allowing to accommodate

the MongoDB semi-structured data and large-scale datasets of experimental facilities. Finally,

the composite data access framework extends the scope of the Spark connector mechanism and

establishes a consistent route for its integration with the Spark-based parallel processing

environment.

2.4 Task 4. Create a Data Catalogue Server for All Data Archives.

Build on the memory resident data catalogue demonstrated in phase 1, to provide the data

catalogue as an EPICS V4 service. (1) Dynamically populate the Data Catalogue Service with

data for the V4 PV Archive. (2) Dynamically populate the Catalogue Service with data for the V3

Channel Archiver. A FileStore Service that uses PVAccess, has been developed and deployed at

NSLS II that gives analysis codes a single call to search the MetaDataStore, find the file and

return the data as NTNDArrays. These services are available on Github at http://nsls-

ii.github.io/databroker/searching.html. The scripting environment that uses this architecture to

provide python client access to scientific data is found on the bluesky github repository

http://nsls-ii.github.io/databroker/searching.html
http://nsls-ii.github.io/databroker/searching.html

ST051-004 AGILOOGY Inc. _____________________

__
This page contains proprietary information

 11

https://nsls-ii.github.io/bluesky/documents.html. This environment and the scripting is released

and in use at the NSLS II beamlines.

3 Presentations on this work

Presentations were held at EPICS meetings throughout the development and deployment of this

software.

Spring 2013 meeting at Diamond Light Source, Abingdon, UK

http://www.aps.anl.gov/epics/meetings/2013-05/EPICS2013/Programme.html

“Core Development” Bob Dalesio

“EPICS V4 Overview and Status” Greg White

“Interoperability and migration from V3 to V4” Andrew Johnson

pvaSrv, the IOC side bridge from PVaccess to IOC Ralph Lange

Core Status Marty Kraimer, Matej Sekoranja

Performance and micro benchmarking EPICS V4 Matej Sekoranja

areaDetector Image Processing Pipeline David Hickin

Archive Service Timo Korhonen

NSLS II V4 Services Guobao Shen

EPICS V4 Integration into CSStudio Matej Sekoranja

Archiving with Large Buffers / Data Type Catelog Nikolay Malitsky

EPICS for Neutron Scattering Beamlines Steve Hartman

Fall 2013 meeting prior to the ICALEPCS in San Francisco, USA.

http://www.aps.anl.gov/epics/meetings/2013-10/

https://nsls-ii.github.io/bluesky/documents.html
http://www.aps.anl.gov/epics/meetings/2013-05/EPICS2013/Programme.html
http://www.aps.anl.gov/epics/meetings/2013-10/

ST051-004 AGILOOGY Inc. _____________________

__
This page contains proprietary information

 12

V4 Status and Workshop Report Bob Dalesio

PVAccess Client APIs Marty Kraimer

Archive Engine for Large Data Sets Nikolay Malitsky

New Archive Appliance Murali Shankar

Archive Service Timo Korhonen

V3 Database Throughput (Large Data) Michael Davidsaver

Fall 2014 EPICS Meeting Saclay, France

http://irfu.cea.fr/Meetings/epics/program.php

EPICS V4 for SNS Neutron Data Collection Kay Kasemir

PVData / PVAccess/ Normative Types Marty Kraimer / Matej Sekoranja

EPICS V4 for Diamond Detector Data David Hickin

AreaDetector, What’s New Mark Rivers

Bealine Control and Data Acquisition at NSLS II Bob Dalesio

Tools and Services at NSLS II Kunal Shroff

Writing Accelerator Physics Apps with EPICS V4 Greg White

Dirt/data integration in CSStudio Gabriele Carcasi

NSLS II Physics Apps in an Open Architecture Guobao Shen

4 Summary

The code that was developed to demonstrate the use of EPICS V4 protocol and data types has

been completed, placed into the community as open source, and is in use at several facilities that

include: NSLS II, SNS, and APS. The work has been demonstrated and is in active use. We

provide training and services to support others in the community that want to adopt this

approach.

http://irfu.cea.fr/Meetings/epics/program.php

