ST051-004 AGILOOGY Inc.

[}

DE-FOA-DE-SC0007551 SBIR Phase 2 Grants
A Client/Server Architecture for Supporting Science Data Using EPICS Version 4

Submitted as a phase |1 grant follow on to:

DE-FOA-0000577 SBIR Phase 1 Grants
Topic 12 (a): Ancillary Technologies for Accelerator Facilities
(Accelerator Modeling and Control)

Technical Abstract

The Phase 1 grant that serves as a precursor to this proposal, prototyped complex storage
techniques for high speed structured data that is being produced in accelerator diagnostics and
beam line experiments. It demonstrates the technologies that can be used to archive and retrieve
complex data structures and provide the performance required by our new accelerators,
instrumentations, and detectors. Phase 2 is proposed to develop a high-performance platform for
data acquisition and analysis to provide physicists and operators a better understanding of the
beam dynamics. This proposal includes developing a platform for reading 109 MHz data at 10
KHz rates through a multicore front end processor, archiving the data to an archive repository
that is then indexed for fast retrieval. The data is then retrieved from this data archive, integrated
with the scalar data, to provide data sets to client applications for analysis, use in feedback, and
to aid in identifying problem with the instrumentation, plant, beam steering, or model.

This development is built on EPICS version 4!, which is being successfully deployed to
implement physics applications. Through prior SBIR grants, EPICS version 4 has a solid
communication protocol for middle layer services (PVAccess), structured data representation and
methods for efficient transportation and access (PVData), an operational hierarchical record
environment (JAVA 10C), and prototypes for standard structured data (Normative Types). This
work was further developed through project funding to successfully deploy the first service based
physics application environment with demonstrated services that provide arbitrary object views,
save sets, model, lattice, and unit conversion. Thin client physics applications have been
developed in Python that implement quad centering, orbit display, bump control, and slow orbit
feedback. This service based architecture has provided a very modular and robust environment
that enables commissioning teams to rapidly develop and deploy small scripts that build on
powerful services. These services are all built on relational database data stores and scalar data.
The work proposed herein, builds on these previous successes to provide data acquisition of high
speed data for online analysis clients.

All of EPICS V4 Core Code developed as part of this grant or developed in conjunction with this grant is open
source and available on Github along with EPICS base at https://github.com/epics-base?page=1. All reference to
Normative Types), NTTypes, PVAccess, PVData, Java I0OC, PVServices or PVClients that are implemented in C++
Java are available there.'*

This page contains proprietary information

ST051-004 AGILOOGY Inc.

)]

Key words

Control System, EPICS, PVAccess, PVData, Normative Types, Analytics

This page contains proprietary information

ST051-004 AGILOOGY Inc.

qo

Table of content

1 PHASE Il TECHNICAL OBJECTIVE......ccoii 3
2 PHASE I DELIVERABLES........ci o 3
2.1 TASK 1 INTEGRATE HIGH SPEED INSTRUMENTS INTO THE EPICS V4 IOC.........ccvevvivne 3
2.2 TASK 2. DEMONSTRATE THE ARCHIVING OF THIS LARGE DATA SETS INTO A EPICS V4
N1 T LY = TSR PPUPR 5
2.3 TASK 3. DEMONSTRATE THE INTEGRATION OF THE ARCHIVE SERVICE INTO THE SCIDB
ANALYTICS ENGINE ..ttt ettt sttt ta ekt s bt e st e e st e e nnb e e nnbe e e nnne e e nnnees 7
2.4 TAsK 4. CREATE A DATA CATALOGUE SERVER FOR ALL DATA ARCHIVES.cccccveenns 10
3 PRESENTATIONS ON THIS WORKcoiiiiiiiii s 11
4 SUMMARY o 12

1 Phase ll Technical Objective

The goal of this program is to extend the EPICS V4 architecture to demonstrate high speed data
acquisition and data analysis. This requires demonstration of the ability to integrate new FPGA
based devices that are taking data at the MHz rate with large GB on board memories, into a
distributed architecture that can efficiently read the devices and serve the data into processing
and storage components. As important, is the ability to access this data, in conjunction with other
facility data, to create comprehensive, flexible, and modular analysis environment. This work
provides the basis for supporting machine and science analysis.

2 Phase Il Deliverables

The were two primary deliverables for this phase Il grant: 1) improve the V4 base to provide high
speed, robust and reliable transport of structured data 2) Demonstrate this through the archiving
and retrieval of an archiver for the normative types of EPICS V4, particularly multi-dimensional
arrays. All of the code in this area is available at: https://github.com/epics-base and
https://slacmshankar.github.io/epicsarchiver_docs/.

2.1 Task 1 Integrate high speed instruments into the EPICS V4 |IOC.

2.1.1 Services to Produce Matrices

Several developments occurred to provide high speed instrument integration in EPICS V4. As
part of the SBIR work, a PVAccess Service that demonstrated the throughput of the protocol was
written. We were able to transmit large data sets at 90% of the Ethernet line speed. This is a
significant improvement over the previous Channel Access implementation.

As part of this work, a normative type (NTNDArray) was completed that supports NDimensional
Arrays: vectors, 2D data, time series of 2D data, tiled images, and any N Dimensional Arrays.

This page contains proprietary information

https://github.com/epics-base
https://slacmshankar.github.io/epicsarchiver_docs/

ST051-004

AGILOOGY Inc.

I

This NTNDArray represents a
narrow interface that is easily
handled by general purpose
clients. This was demonstrated
by a python client that can Bl -
receive NTNDArrays and print o, o
them out in test. This = =

demonstration was used to = . emmmmm————

implement an NTNDArray in L

Control System Studio (CS Studio), a Graphical User Interface that is developed as an operator
workflow application with a synoptic editor and high level applications in Java.

2.1.2 Data Passing Mechanisms

Demonstrated the integration of high speed data sources, such as modern Beam Position
Monitors electronics and area detectors..

2121

2122

A test service was developed that

. Get performance on double array, one channel
pumps out matrices through a
PVAccess server that was used |
to develop and demonstrate the
capability of PVAccess.
PVAccess was extended to
transmit large arrays. The °
performance greatly surpassed
EPICS existing protocol,
Channel Access, which only
transmits arrays as a vector with G L R R
No metadata to describe more = e o oy
than the number of datum and
the size of each datum.

0.800

2500

0.800

0.700

0600

+ 0500

0.400

0300

0.200

500

L 0100

The service above, was developed in C++ along with the implementation and helper
classes to support this mechanism and the NTNDArray. It was run under Linux on the
I/O Controller. Once this data passing mechanism, data type, and helper class was
developed in V4 and made available to the EPICS community, developers at the
National Synchrotron Light Source made an important improvement in areaDetector to
take advantage of this new capability. The first was an extension to the areaDetactor, an
XRay beam line development for processing detector data. Using the test service as a
guide, they added a plugin that directly serves NTNDArray over PVAccess from the
areaDetector processing pipeline. In addition, a CS Studio modification was made to the
PVAccess Client plugin for the PVManager to monitor the NTNDArrays. The client
application to view N-dimensional arrays was already available in CS-Studio. With
these modifications, the beam lines at NSLS Il could configure detector visualization

This page contains proprietary information

Ghitls

ST051-004 AGILOOGY Inc.

an

directly in the operator screens through simple configuration and monitor their data in
real time with demonstrated performance of up to 60 frames per second (fps).

2.1.2.3 The areaDetector work above immediately made all of the area detector drivers
available through PVAccess. In addition to these drivers, the array passing in the EPICS
Process Database was modified so that arrays would be passed by reference on the
EPICS data links. This made the passing of NDimensional Data through the EPICS
Process Database as fast as possible by managing and passing references on read. This
eliminated copies that are very expensive on large arrays. This made all of the existing
drivers for vector acquisition available through the EPICS process database to the
PVAccess server (PVASrv). Further development is needed to make the NTNDArray
data type available through the EPICS database.

2.2 Task 2. Demonstrate the archiving of this large data sets into a EPICS V4
Archiver

Collect V4 data into a V4 archiver. (1) Demonstrate the storage of metadata for the V4 data
types. (2) Demonstrate the storage of the large data sets. (3) Demonstrate the ability to create the
index files to access the data.

2.2.1 Demonstrate the Storage of Metadata

The storage of metadata for the V4 data types has been demonstrated in two ways: the
areaDetector data acquisition code is able to write NTNDArrays directly to files and the
Archive Appliance is able to store all NTYTypes including NTND Arrays server from
PVAccess servers. The NTNDArray includes the description of the number of axis for
the array and the units, data type, and dimensions of each axis. In addition, the
NTNDArray supports optional metadata such as scalar values for independent
variables. These independent variables can include independent variables such as
position or energy, that are required to identify the significance of the NTNDArray. This
has also been demonstrated for neutron experiments where detectors are recording
counts and time of flight data in sparse arrays.

2.2.2 Demonstrate the Storage of Large Data Sets

In the case of both the Archive Appliance and files directly from the areaDetector data processing
pipeline, the large data set is part of the NTNDArray. The metadata and the independent
variables are part of the data payload. The multidimensional array is part of the NTNDArray.

2.2.3 Demonstrate the Ability to Create Index Files

The above mentioned large data sets are used for viewing and require analysis for
either understanding the operation of an accelerator or to analyze the results of the xray
data from some sample. In both cases, all of the data stored as part of these
NTNDArrays have metadata that is used to search for data. For experimental data,
beam line, user, and sample may either be metadata or part of a file descriptor. In every

This page contains proprietary information

ST051-004 AGILOOGY Inc.

(0]

case, the independent variables are part of the NTNDArray. To search on data sets
from a given set of independent variables, one would need to open each file, find the
independent variable and compare it to the parameters being requested. This is very
time consuming. On an set of HDF5 experimental data chosen from a previous
experiment and scaled to current rates and data size, a search was measured to take
30 seconds. An index service was prototyped that used a relational database with 120
properties and one million samples. This test reduced the search time to 3.4 seconds. A
second prototype was made with MongoDB,using the same 120 properties and one
million samples and the search time was reduced to 40 msecs. A service was
developed, MetaDataStore was developed as a PVAccess Service that responded to
gueries of independent variables and deployed as part of a suite of data acquisition and
analysis tools at NSLS II.

Overview of Data Collection

’ N\

I . : bIUESkV Capies of each document are

| lerar‘y of Scan LGgIC I L;:\LJ:HLh;d to various

1 ! CONSUMers. ...
generates step-by-step l 1

! instructions for... I . .

I live data processing

I Run Engine > —+ with scientific logic

emits “Documents” 1
|

interacts with objects through a

-) (key-value pairs organized in a
high-level abstraction) .
specified but flexible way)
T e S o S B B O B S B B S O S B S S S O . .

- ! a live-updating
table and/or plot

\

Python abstractions of hardware (ophyd)
reads from and I

writes to PVs

EPICS (via pyepics)
some detectors t
write files directly
todisk Hardware (motors, detectors)

(e.g., large images)
f f

a record of any files
written by detectors

- e e e e e e

\ |

| Database of |
Large File Storage . Database of Documents

I file paths & formats (metadatastore) I

| databroker (filestore) /

Figure1 metadatastore and filestore for data acquisition

The PVAcccess Service can also be used to populate the MetaDataStore. Data
acquisition programs can directly populate the MDS while taking data. Applications
have also been written to populate the MetaDataStore with existing data stores. This
can greatly improve the search and access time of data that was collected prior to the
completion of the MetaDataStore

This page contains proprietary information

ST051-004 AGILOOGY Inc. 7

2.3 Task 3. Demonstrate the integration of the Archive Service into the SciDB
Analytics Engine?

Integrate the V4 archiver into the SciDB analytics engine to demonstrate the ability to use

existing analytics. (1)Demonstrate the ability to query the data catalogue service. (2) Demonstrate

the ability to access archive data from the analytics engineers supported by the SciDB community.

2. EPICS V4 Data Access Service

The project addresses the above requirements and issues by providing a generic EPICS V4
middle layer framework for accessing composite data sources of accelerator and beamline
facilities. For example, Figure 1 shows the EPICS V4 data access service in the context of the
NSLS Il data management and processing system. The bottom data layer represents a distributed
collection of heterogeneous data sources including multiple components, such as the meta-data
store and repositories of data files with time series of control data collected from accelerator
devices and beamlines, detector images and associated metadata, and post-processing results
from analysis and reconstruction applications. The heterogeneous structure of the data layer was
driven by multiple requirements, such as configurability, modularity, incremental development,
support of new extensions and multiple data formats tailored to detectors. The common client
interface, Data Broker, is implemented in Python and reused by different experimental control
and interactive analysis applications.

Experimental Control Data Analysis
= =
Data Broker API Data Broker API
EPICS V4 { 7 2
Middle Layer |
il iy = iy I,
B B & =
Accelerator Beamline Meta Data .\‘_4
Control Data Control Data Store

Detector Scientific
Data Data

Figure 1: EPICS V4 three-tier data management and processing system

The EPICS V4 middle layer services extend the scope and scale of this infrastructure by
providing an efficient interface between distributed data sources and client applications. The
corresponding interface originated from the Phase | prototype and consistently developed within
the Phase Il project by adhering to the Spark conceptual model. In contrast with other scientific-
oriented data management and processing systems (e.g., SciDB), Spark has explicitly defined an
in-situ processing approach that can be connected with different data sources. As a result, the

2 Ode is available at: https://github.com/epics-extensions/ea-cpp

This page contains proprietary information

https://github.com/epics-extensions/ea-cpp

ST051-004 AGILOOGY Inc.

(0]

Spark approach advocated the Phase | conceptual solution of the SciDB-oriented driver
framework and facilitated its further development towards a much larger ecosystem. The
existing version of the Spark approach, however, introduced several constraints. First, it was
implemented in the Java language that was mismatched with the C/C++ 1/O libraries and the
Python data analysis applications of the conventional scientific-oriented environment. Second, it
did not support access to heterogeneous data sources of large-scale experimental facilities.
Therefore, the Phase Il project addressed these issues by implementing an original compositor
connector based on the EPICS V4 middleware. Figure 2 and Figure 3 show the class and
sequence diagrams of the corresponding client interface.

class Client ~
r-————2" P | |- T
| epics. pyAcoess | i £8.pVE |
| |

|] : |] +proxies e :
| RPCClient | I Session ollection |

| : —
i + request() : : + open) + filter) :
| | | |+ reguest]) + read() |
I | | + load() |
L b — J I I
| | |
——————— Fr———— | |
I— epicg.pvlata | : |
| "‘1"{ : | Query::Request :
: +guesies | | |
| PV Structure i 4 |
I I
: command : | |
| args | | |
| I | I
| | ' [
Lo ____ _ L ___ I

Figure 2: Class diagram of the client composite interface

session:Session

‘ filterProxy:Collection readProxy:Collection

pusProxy:Collection client:RPCClient pusCollection:PVStructure

open(chName) << create >>
request(“openSession”, ...)

createProxy() << create >>
>
request:QueryRequest
filter(query) << create >>
o > L
update
poate
request:QueryRequest
read(query) << create >>
update
load()
. |

t(“load”,)|
« request(“loa)

request(“load”, ...)

‘]

This page contains proprietary information

ST051-004 AGILOOGY Inc.

¢

Figure 3: Sequence diagram of the client composite connector interface

The interface of the compositor connector followed the Spark approach and defined the data
access as a combination of the Query requests accumulated via a sequence of the Collection
transformations, filter and read. The structure of these requests is flexible and initialized via the
Python dictionary that is subsequently converted into the PVStructure payload container of the
EPICS V4 communication protocol. The filter request accommodates queries of the data catalog,
for example, the aggregation pipeline of the MongoDB database. And the read method augments
this request for reading datasets distributed in multiple data files of the hybrid data store. As a
result, these requests are combined and shipped together with the load action to the EPICS V4
data access server. The server implementation is illustrated by the class and sequence diagrams
shown in Figure 4 and Figure 5.

+ filter)
+ read()

I[epics.pvAcoess —l
l |
|
| ServerContext ChannelProvider reate Channel |
______ ChannelRPC
| > -3 |
| |
| |
| |
e e K S 1
e R
| ea.pva |
|
| Archive Server) ArchiveChannelProvider ArchiveRPCChannel ArchiveRPCRequest :
[e |
[|
[|
[|
[|
: I
| ArchiveRPC Service ArchiveRPCCommand l
I -
| + process() l
! I
! I
! I
! I
: e
|
: I
— e | LoadC d O SessionC d |
: QLIEF\L.REE]LIEEt { oa omman pen ssionLomman I
|
! I
: I

LoadCommandCLS LoadCommandMONGO

v

IndexFile

Figure 4: Class diagram of the compositor connector

The data access server is based on the composite connector framework that can be specialized for
different types of hybrid data sources. Specifically, Figure 5 illustrates a sequence of steps for
accessing the new EPICS Archiver data layer consisting of a MongoDB data catalog and a
repository of data files. This sequence starts with accepting a composite request and breaking it

This page contains proprietary information

ST051-004 AGILOOGY Inc. 10

down into the filter and read queries. Then, the filter request is converted into the BSON
container and shipped to the MongoDB engine for fetching locations of requested datasets
distributed in a repository of data files. Next, the read request is updated with the MongoDB
results and processed by the corresponding file reader. The same approach was implemented for
accessing the original archiver data using proprietary indexing files. As a result, the EPICS V4
data access framework provides a seamless transition to new versions of data catalogs and file
formats. Moreover, the same framework was applied for accessing the MongoDB metadata
catalog of the experimental data. Finally, it brought an efficient EPICS V4 middleware for
connecting distributed data sources and the Python data analysis and processing environment.

: ArchiveRPCService result:PVStructure

‘ : ArchiveRPCChannel : LoadCommandMONGO ‘ ‘ : DBClientConnection ‘ : DataReader ‘

: ArchiveRPCRequest

createChannelRPC — << create >> h L

request(“load”, ...)

> getRPCCommand()
R

process()

query()

read()

<< create >>

Figure 5: Sequence diagram of the compositor connector

In comparison with existing data management systems, the EPICS V4 compositor connector
resolved several important issues. First, it provided a configurable framework for accessing
hybrid data stores of experimental facilities. Second, the composite interface facilitated the
integration of several data models. For example, the current application combined the MongoDB
document-oriented and SciDB array-oriented models. Third, the composite connector approach
extends the scale of conventional databases with a repository of data files. This topic
encompasses multiple aspects including communication protocols. For example, EPICS V4
extends the MongoDB interface with the PVData payload container allowing to accommodate
the MongoDB semi-structured data and large-scale datasets of experimental facilities. Finally,
the composite data access framework extends the scope of the Spark connector mechanism and
establishes a consistent route for its integration with the Spark-based parallel processing
environment.

2.4 Task 4. Create a Data Catalogue Server for All Data Archives.

Build on the memory resident data catalogue demonstrated in phase 1, to provide the data
catalogue as an EPICS V4 service. (1) Dynamically populate the Data Catalogue Service with
data for the V4 PV Archive. (2) Dynamically populate the Catalogue Service with data for the V3
Channel Archiver. A FileStore Service that uses PVAccess, has been developed and deployed at
NSLS Il that gives analysis codes a single call to search the MetaDataStore, find the file and
return the data as NTNDArrays. These services are available on Github at http://nsls-
ii.github.io/databroker/searching.html. The scripting environment that uses this architecture to
provide python client access to scientific data is found on the bluesky github repository

This page contains proprietary information

http://nsls-ii.github.io/databroker/searching.html
http://nsls-ii.github.io/databroker/searching.html

ST051-004 AGILOOGY Inc.

[}
-

https://nsls-ii.github.io/bluesky/documents.html. This environment and the scripting is released
and in use at the NSLS Il beamlines.

Python Clients EEI e Control System Studio Archive
Data Broker Data Broker PVManager Browser
NFS | CAC | PVAC [[NFS | CAC [PVAC CAC | PVAC PVAC
Ethernet I I
|
REST PVAS | [PvAsT nes1[PVAS PVAS PVAS
Experiment Experiment Archive Channel Archive
Information. Information. Retrieval Finder Server Retrieval
SQL MongoDB FilelO MongoDB FilelO
1
- —
, Data Science Beamline Machine
Planning a Data
Manager Data Data
CAS | PVAS Per beam line cAas | Pvas
N-I
Process Database. o Process Database.
Device S i Existing
evice Support Detector Device Support Under Development
Driver Area Detector
R i
Driver

3 Presentations on this work

Presentations were held at EPICS meetings throughout the development and deployment of this
software.

Spring 2013 meeting at Diamond Light Source, Abingdon, UK
http://www.aps.anl.gov/epics/meetings/2013-05/EP1CS2013/Programme.html

“Core Development” Bob Dalesio
“EPICS V4 Overview and Status” Greg White
“Interoperability and migration from V3 to V4” Andrew Johnson
pvaSrv, the IOC side bridge from PVaccess to IOC Ralph Lange

Core Status
Performance and micro benchmarking EPICS V4

Marty Kraimer, Matej Sekoranja
Matej Sekoranja

areaDetector Image Processing Pipeline David Hickin
Archive Service Timo Korhonen
NSLS Il V4 Services Guobao Shen

EPICS V4 Integration into CSStudio

Archiving with Large Buffers / Data Type Catelog

EPICS for Neutron Scattering Beamlines

Matej Sekoranja
Nikolay Malitsky
Steve Hartman

Fall 2013 meeting prior to the ICALEPCS in San Francisco, USA.

http://www.aps.anl.gov/epics/meetings/2013-10/

This page contains proprietary information

https://nsls-ii.github.io/bluesky/documents.html
http://www.aps.anl.gov/epics/meetings/2013-05/EPICS2013/Programme.html
http://www.aps.anl.gov/epics/meetings/2013-10/

ST051-004

AGILOOGY Inc.

[IEN
N

V4 Status and Workshop Report
PVAccess Client APIs

Archive Engine for Large Data Sets
New Archive Appliance

Archive Service

V3 Database Throughput (Large Data)

Fall 2014 EPICS Meeting Saclay, France
http://irfu.cea.fr/Meetings/epics/program.php

EPICS V4 for SNS Neutron Data Collection
PVData / PVAccess/ Normative Types
EPICS V4 for Diamond Detector Data
AreaDetector, What’s New

Bealine Control and Data Acquisition at NSLS 11

Tools and Services at NSLS Il

Writing Accelerator Physics Apps with EPICS V4

Dirt/data integration in CSStudio

NSLS Il Physics Apps in an Open Architecture

4 Summary

Bob Dalesio

Marty Kraimer
Nikolay Malitsky
Murali Shankar
Timo Korhonen
Michael Davidsaver

Kay Kasemir

Marty Kraimer / Matej Sekoranja
David Hickin

Mark Rivers

Bob Dalesio

Kunal Shroff

Greg White

Gabriele Carcasi

Guobao Shen

The code that was developed to demonstrate the use of EPICS V4 protocol and data types has
been completed, placed into the community as open source, and is in use at several facilities that
include: NSLS I1, SNS, and APS. The work has been demonstrated and is in active use. We
provide training and services to support others in the community that want to adopt this

approach.

This page contains proprietary information

http://irfu.cea.fr/Meetings/epics/program.php

