

1 *Orenia metallireducens* sp. nov. strain Z6, a Novel Metal-reducing *Firmicute* from the Deep

2 Subsurface

3

4 Yiran Dong^{a,b,c#}, Robert A. Sanford^b, Maxim I. Boyanov^{d,e}, Kenneth M. Kemner^d, Theodore

5 M. Flynn^d, Edward J. O'Loughlin^d, Yun-juan Chang^{a,f}, Randall A. Locke II^g, Joseph R.

6 Weber^h, Sheila M. Eganⁱ, Roderick I. Mackie^{a,c,j}, Isaac Cann^{a,c,i,j}, Bruce W. Fouke^{a,b,c,h,j}

7

8

9 Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign^a;

10 Department of Geology, University of Illinois Urbana-Champaign^b; Energy Biosciences

11 Institute, University of Illinois Urbana-Champaign^c; Biosciences Division, Argonne National

12 Laboratory^d; Institute of Chemical Engineering, Bulgarian Academy of Sciences, Bulgaria^e;

13 High Performance and Research Computing, Office of Information Technology, Rutgers

14 University^f; Illinois State Geology Survey, University of Illinois Urbana-Champaign^g;

15 Department of Microbiology, University of Illinois Urbana-Champaign^h; Department of

16 Biochemistry, University of Illinois Urbana-Champaignⁱ; Department of Animal Sciences,

17 University of Illinois Urbana-Champaign^j

18

19 **Running head:** Deep subsurface iron-reducing *Orenia* strain

20

21 [#]Address correspondence to Yiran Dong: 1206 West Gregory Drive, Room 3407, Urbana, IL,

22 USA, 61801. Phone: +1-(217)300-1625. Fax: +1-(217)244-0877. Email:

23 dong5600@illinois.edu

24 **ABSTRACT**

25 A novel halophilic and metal-reducing bacterium, *Orenia metallireducens* strain Z6, was
26 isolated from briny groundwater extracted from a 2.02 km-deep borehole in the Illinois Basin,
27 IL. This organism shared 96% 16S rRNA gene similarity with *Orenia marismortui*, but
28 demonstrated physiological properties previously unknown for this genus. In addition to
29 exhibiting a fermentative metabolism typical of genus *Orenia*, strain Z6 reduces various
30 metal oxides [Fe(III), Mn(IV), Co(III), and Cr(VI)] using H₂ as the electron donor. Strain Z6
31 actively reduced ferrihydrite over broad ranges of pH (6-9.6), salinity (0.4-3.5 M NaCl) and
32 temperature (20-60 °C). At pH 6.5, strain Z6 also reduced more crystalline iron oxides such
33 as lepidocrocite (γ -FeOOH), goethite (α -FeOOH) and hematite (α -Fe₂O₃). Analysis of X-ray
34 absorption fine structure (XAFS) following Fe(III) reduction by strain Z6 revealed spectra
35 from ferrous secondary mineral phases consistent with the precipitation of vivianite
36 [Fe₃(PO₄)₂] and siderite (FeCO₃). The draft genome assembled for strain Z6 is 3.47 Mb in
37 size and contains 3,269 protein-coding genes. Unlike the well understood iron-reducing
38 *Shewanella* and *Geobacter* species, this organism lacks the c-type cytochromes for typical
39 Fe(III) reduction. Strain Z6 represents the first bacterial species in the genus *Orenia* (order
40 *Halanaerobiales*) reported to reduce ferric iron minerals and other metal oxides. This
41 microbe expands both the phylogenetic and physiological scope of iron-reducing
42 microorganisms known to inhabit the deep subsurface and suggests new mechanisms for
43 microbial iron reduction. These distinctions from other *Orenia* spp. support the designation
44 of strain Z6 as a new species, *Orenia metallireducens* sp. nov.

45

46

47 **IMPORTANCE**

48 A novel iron-reducing species, *Orenia metallireducens* sp. nov. strain Z6, was isolated from
49 groundwater collected from a geological formation located 2.02 kilometers below land
50 surface in the Illinois Basin, USA. Phylogenetic, physiologic and genomic analyses of strain
51 Z6 found it to have unique properties for iron reducers including: 1) active microbial iron-
52 reducing capacity under a broad range of temperature (20-60 °C), pH (6-9.6), and salinity
53 (0.4-3.5 M NaCl); 2) lack of *c*-type cytochromes typically affiliated with iron reduction in
54 *Geobacter* and *Shewanella* species; and 3) the only member of the *Halanaerobiales* capable
55 of reducing crystalline goethite and hematite. This study expands the scope of phylogenetic
56 affiliations, metabolic capacities, and catalytic mechanisms for iron-reducing microbes.

57 **INTRODUCTION**

58 The reduction of ferric (Fe(III)-bearing) minerals by microorganisms is widespread in both
59 terrestrial and marine environments (1, 2) and is potentially one of the earliest forms of
60 metabolism (3, 4). Due to the abundance of ferric minerals in the Earth's crust and the
61 ubiquity of dissimilatory metal-reducing bacteria (DMRB), Fe(III) reduction is of global
62 environmental significance, particularly in the subsurface. Phylogenetic variety of organisms
63 has been reported for the capacity to reduce iron with dissimilatory manner (1, 5).

64 Dissimilatory iron reduction can be classified into two major groups. Many of the iron-
65 reducing organisms (e.g., fermentative iron reducers) use Fe(III) as a minor side reaction in
66 their metabolism but do not appear to conserve energy to support growth from this electron
67 transfer. In comparison, the respiratory iron reducers conserve energy to support growth from
68 Fe(III) via an electron transfer chain (1, 5). DMRB strongly influence the biogeochemical
69 cycling of metals and mineralization of organic matter in aquatic and sedimentary
70 environments (1, 6-8). In addition, DMRB play a key role in the bioremediation of hazardous
71 contaminants such as heavy metals, radionuclides, and hydrocarbons (9).

72 DMRB capable of reducing ferric minerals have previously been isolated from gold
73 mines, petroleum reservoirs, and other deep geological formations (10-21). These subsurface
74 environments contain a significant amount of the Earth's total microbial biomass (22) and
75 exhibit unique physical and geochemical features (e.g., anoxia, high salinity, elevated
76 temperature and pressure) (12). Similar to those from many other natural environments, the
77 DMRB isolated from the deep subsurface have been found to conserve energy through two
78 primary ways: by directly respiring ferric iron, manganese, or other oxidized metals (e.g.
79 *Geobacter* spp.) (10, 21, 23) or by utilizing these metals as an electron sink for fermentative
80 pathways (e.g. *Fervidicella* and *Caloramator* spp.) (24, 25). The DMRB derived from deep
81 subsurface typically show optimal activity at the elevated temperature and salinity of the

82 environment from which they were isolated, suggesting that they are native to the deep
83 subsurface environments (12). In most previous studies, however, the ability of these DMRB
84 to reduce Fe(III) was primarily assayed using Fe(III)-citrate (10, 19, 21) or amorphous
85 ferrihydrite (23). More crystalline ferric oxides like goethite and hematite are more typical of
86 the iron oxide minerals found in subsurface sediments (26) and can also act as an electron
87 sink under both fermentative and respiratory conditions for DMRB (27), yet the extent to
88 which deep subsurface DMRB can reduce these minerals is largely unknown.

89 The Mt. Simon formation within the Illinois Basin, IL, USA, is composed primarily
90 of highly porous and permeable quartz sandstones coated with crystalline ferric minerals,
91 including hematite and goethite (26). The presence of these iron minerals along with
92 millimolar concentrations of dissolved ferrous iron in the groundwater suggests microbially-
93 mediated iron reduction is active in this environment (28). This groundwater is thermal (50°
94 C), briny [19.1 % total dissolved salts (TDS)], anoxic, and under considerable pressure (210
95 bar) (28). Our previous work identified indigenous microbial communities within different
96 stratigraphic horizons in the Mt. Simon, and using this water we successfully developed
97 enrichment cultures capable of reducing ferric iron compounds (28, 29). In this paper we
98 describe a bacterium isolated from these enrichments that is capable of reducing a broad suite
99 of iron minerals. Phylogenetic, physiologic and genomic analyses showed that this isolate is a
100 member of the genus *Orenia* in the phylum *Firmicutes* and exhibits distinct physiological
101 properties not previously reported for this genus or other known DMRB.

102 **METHODS AND MATERIALS**

103 **Media.** If not mentioned otherwise, strain Z6 was grown in modified groundwater medium,
104 which consisted of anoxic basal medium (18) and filter-sterilized (0.2 μ m pore size, Thermo
105 Fisher Scientific, MA) formation water (see Table S1 in the supplemental material (SI)) at a
106 ratio of 9:1 (v:v). The basal medium was buffered with 3.3 mM piperazine-N,N'-bis(2-
107 ethanesulfonic acid (PIPES) and 30 mM NaHCO₃, sparged with N₂:CO₂ (80:20, v:v), and had
108 a final pH of 7.0-7.2 (18). Trace metals (18) and vitamins (ATCC® MD-VS™, ATCC, VA)
109 were supplemented from sterile stock solutions (1 mL/L). Anoxic conditions were maintained
110 by amending the media with Na₂S (100 μ M) and cysteine (250 μ M). The cultures were
111 prepared in 10 mL medium in 27 mL serum tubes or 80 mL medium in 160 mL serum bottles
112 (Wheaton Industries Inc., NJ). Under ferrihydrite-reducing conditions, the groundwater
113 medium was amended with 10 mmol/L Fe(III) of that mineral (100 μ moles/tube or 800
114 μ moles/bottle) as the electron acceptor. H₂ (202 μ moles/tube or 807 μ moles/bottle) and
115 acetate (5 mM) were used as the electron donor and carbon source, respectively (FeR
116 medium). FeR medium was used to test strain Z6 for temperature tolerance. Modifications to
117 the FeR medium were made to characterize specific physiological traits of strain Z6 such as
118 activity at different pH, salt concentrations and utilization of other electron donors and
119 acceptors. These changes are described below as well as in Table S2 of the SI. A synthetic
120 Orenia medium was also developed to culture strain Z6 without amendment of formation
121 groundwater. The synthetic Orenia medium contained: NaCl (342 mM), MgCl₂·2H₂O (7.4
122 mM), KCl (13.4 mM), NH₄Cl (9.3 mM), KH₂PO₄ (2.5 mM), CaCl₂ (10 mM), NaHCO₃ (23.8
123 mM), yeast extract (0.2 g/L), cysteine (200 μ M), resazurin (1 mg/L), trace metals (1 mL/L)
124 (30), and vitamins (ATCC® MD-VS™, 1 mL/L) at pH 7.0-7.2. To confirm the extent and
125 rates of iron reduction by strain Z6 in this synthetic Orenia medium, cultures were grown in

126 the presence of 10 mmol/L ferrihydrite, 202 μ moles/tube H₂ and 5 mM acetate. Iron-reducing
127 activity in this medium was then compared to that in the FeR medium.

128 **Isolation of strain Z6.** Strain Z6 was isolated from an iron-reducing enrichment
129 culture created using the groundwater taken at a depth of 2.02 km in the Illinois Basin as
130 inoculum (28). Unless otherwise specified, this isolate was cultivated anaerobically in 25 mL
131 anaerobic culture tubes or 120 mL serum bottles. All the amendments were added from
132 autoclaved and anoxic stock solutions using sterile N₂-flushed syringes. The culture
133 tubes/bottles were sealed with blue butyl rubber stoppers (Chemglass Life Sciences, NJ) and
134 aluminum crimp seals. The cultures were grown in the dark at 42 °C in a static incubator and
135 manually shaken once per day.

136 Isolates were obtained from the enrichment culture using the agar shake method (31).
137 Anoxic culture tubes were loaded with 6 mL of basal medium (18) and amended with low-
138 melting-point agarose (Thermo Fisher Scientific Inc., MA). After autoclaving, 4 mL of N₂-
139 bubbled and degassed filter-sterilized formation water (see Table S1 in the SI) (28) was
140 added to each tube, giving a final concentration of 1.5% agarose. Each anoxic culture tube
141 was then amended with 5 mM ferric citrate, H₂ (202 μ moles /tube) and 5 mM each of formate,
142 acetate, pyruvate, and lactate that had been used in the enrichment culture (28). The agarose-
143 containing medium was kept in a 45 °C water bath before inoculation to prevent
144 solidification. The parent enrichment was serially diluted 1:10 using sterilized basal medium
145 in anoxic culture tubes. One milliliter of each dilution (1:10 to 1:10⁵) was inoculated into
146 individual agar shake tubes, mixed well and promptly solidified on ice. Five milliliters of
147 filter sterilized H₂ was injected into the headspace. After 5-10 days of incubation at 42° C,
148 clearing zones formed around individual colonies, putatively indicating active Fe(III)
149 reduction. To isolate single colonies from the agar shake, a sterile syringe containing ~0.1
150 mL of liquid anoxic medium was fitted with a 23 gauge, 2 inch needle and used to remove a

151 single, well-separated colony from the culture tube. Anoxia was maintained during this
152 process by passing a continuous stream of sterile N₂ gas into the culture tube. The individual
153 colony was drawn into a syringe, and then promptly injected into sterile anoxic FeR medium.
154 The agar-shake isolation protocol was repeated twice more for the picked colonies to ensure a
155 pure culture had been obtained. Isolate purity was verified morphologically using an optical
156 microscope and phylogenetically by sequencing the 16S rRNA gene of the isolated culture.

157 **Phylogenetic characterization.** Genomic DNA was extracted from a pellet
158 centrifuged from 1 mL of liquid culture using the FastDNA[®] Spin Kit for Soil (MP
159 Biomedicals, CA). Full-length 16S rRNA genes for cloning were amplified using the
160 universal Bacterial primers 8F and 1492R (32). PCR was conducted using TaKaRa *Ex Taq*
161 polymerase (TaKaRa Bio USA, Madison) and an Eppendorf MasterCycler (Eppendorf,
162 Germany). PCR products were verified by using agarose gel electrophoresis and then purified
163 with QIAquick PCR Purification Kit (QIAGEN Inc., CA), after which a clone library was
164 generated using the pGEM[®]-T Easy kit (Promega U.S., Madison, WI). Cloned 16S rRNA
165 gene fragments were sequenced using M13 primers (ACGT Inc., Wheeling, IL), assembled
166 with Sequencher (v. 1.4.0) and classified using RDP10 (33). A phylogenetic tree based on the
167 16S rRNA genes for strain Z6, close phylogenetic relatives, and representative DMRB was
168 created using RAxML (34).

169 **Physiological and Biochemical Characteristics.** A Gram stain of strain Z6 cells was
170 performed using the standard methods (35). Catalase activity of this organism was
171 determined using 15% H₂O₂ on centrifuged cell pellets (36). Oxidase activity was determined
172 using K520 oxidase test strips (Key Scientific Products Co., TX) following the
173 manufacturer's recommendation. To test the capacity to grow aerobically, strain Z6 was
174 cultured in aerobic basal medium (18) amended with 10 mM glucose. After inoculation,
175 growth was determined by measuring the optical density of cell suspensions at 600 nm

176 (OD₆₀₀) using a SPECTRONIC 20D+ UV-Vis spectrophotometer (Thermos Scientific, MA).

177 The morphology of strain Z6 was examined using both scanning electron microscopy (SEM)
178 and transmission electron microscopy (TEM) (28).

179 A suite of culture conditions was used to determine the metabolic capacity of strain
180 Z6. Fermentable substrates (5 mM unless stated otherwise) (i.e., betaine, cellobiose, fructose,
181 fumarate, galactose, glucosamine, glutamate, glucose, glycine, glycerol, lactose, maltose,
182 mannitol, mannose, peptone (1 g/L), starch (1 g/L), sucrose, trehalose, yeast extract (1 g/L))
183 were tested for their ability to support growth as indicated by an increase in OD₆₀₀ over
184 several days of incubation. To determine which electron donors would support iron-reducing
185 activity, cultures were incubated at 42 °C for 21 days in the FeR medium with one of the
186 following substrates (5 mM unless specified): acetate, benzoate, butyrate, citrate, ethanol,
187 formate, fumarate, glycerol, glycine, H₂ (202 µmoles/tube), lactate, methanol, propionate,
188 phenol (2.5 mM), succinate, yeast extract (1 g/L), starch (1 g/L), tryptone (1 g/L), peptone (1
189 g/L), glucose, fructose, cellobiose, lactose, galactose, sucrose and trimethylamine. An
190 increase in Fe(II) concentration was used as an indicator of iron-reducing activity. The
191 capacity to reduce other electron acceptors (5 mM unless mentioned otherwise) (i.e., nitrate,
192 nitrite (2.5 mM), fumarate, elemental sulfur [S(0)], thiosulfate and sulfate] was evaluated by
193 monitoring reduction activity in cultures amended with H₂ (202 µmoles /tube) and acetate (5
194 mM). The ability to reduce other metals (i.e., 5 mM one of Co(III)-EDTA, CrO₄²⁻ and MnO₂)
195 was also evaluated using the same conditions.

196 To determine if ferrihydrite reduction benefited the isolate energetically, we
197 compared cultures grown with glucose only (fermentation) to those grown with glucose and
198 10 mmol/L ferrihydrite (fermentative iron reduction). The medium for these cultures was the
199 same as the modified groundwater medium except that it was buffered solely with 10 mM
200 PIPES and no bicarbonate was amended. The fermentation and iron reduction products were

201 determined to develop stoichiometric equations and calculate thermodynamics (37) under
202 these two growth conditions.

203 Several control experiments were also performed to evaluate whether the observed
204 iron reduction activity was due to the abiotic reduction of Fe(III) by medium components or
205 fermentation byproducts. Specifically, the medium components (e.g., Na₂S, cysteine, organic
206 buffers), fermentation products, and proteinaceous products were evaluated for their ability to
207 reduce ferrihydrite at pH 7.2, 0.4 M NaCl and 42 °C. The controls included: 1) abiotic—
208 without cell inoculation; 2) inoculation only—no electron donors added; 3) autoclaved
209 cultures with both cells and electron donor; and 4) autoclaved cultures pre-grown with 5 mM
210 glucose—spent fermentation media.

211 To determine the range of the iron reduction activity, strain Z6 was evaluated with
212 different iron-oxide minerals, including more crystalline types found in subsurface
213 environments. Four ferric iron minerals (ferrihydrite, lepidocrocite, hematite, and goethite)
214 were synthesized as described by Schwertmann and Cornell (38). Strain Z6 was cultured in
215 modified groundwater medium amended with one of the above iron-oxide minerals
216 (~10 mmol/L) from the parental inoculant grown in FeR medium. Activity was monitored by
217 quantifying Fe(II) over time. At selected time points, 0.4 mL of well-mixed culture was
218 withdrawn inside an anaerobic chamber using a sterile syringe and split into two 0.2 mL
219 aliquots. One 0.2 mL aliquot was filtered through a 0.45 µm filter (GE Healthcare Life
220 Sciences, NJ) and each aliquot was combined with 0.2 mL of 1 M HCl. The filtered sample
221 was used for determination of aqueous ferrous iron; the unfiltered sample was used for
222 determination of acid-extractable ferrous iron and total iron.

223 To determine how iron reduction was impacted by environmental factors, the ability
224 of strain Z6 to reduce ferrihydrite was evaluated at different temperatures (4-80 °C), salinities
225 (0-5.98 M NaCl), and pH (4-11) in FeR medium (Table S2). Susceptibility to antibiotics was

226 tested by amending the iron-reducing cultures with one of the following antibiotics: 40 µg/ml
227 ampicillin, anisomycin, tetracycline, erythromycin and kanamycin plus 20 µg/mL
228 chloramphenicol (39).

229 Details about culture setup, chemical analyses of different ferric and ferrous iron
230 species (e.g., total iron and 0.5 M HCl extractable Fe(II)), fermentation substrate/products,
231 and calculation of kinetic constants for iron reduction by strain Z6 are described in detail in
232 the supplemental material.

233 **Mineralogical characterization.** The solid phases in the cultures were analyzed by
234 X-ray absorption fine structure spectroscopy (XAFS) (40) to determine the chemical
235 speciation of Fe. Solids were collected by filtering 2 mL of suspension through a 0.22 µm
236 nylon filter membrane. The hydrated solids retained on the membrane were sealed between
237 two layers of Kapton film in an anaerobic chamber. XAFS measurements at the Fe K-edge
238 (7,112 eV) were performed at the MRCAT/EnviroCAT 10-BM beamline (41) at the
239 Advanced Photon Source, Argonne National Laboratory. Anoxic conditions were maintained
240 during data collection by purging the sample chamber with N₂. These procedures have been
241 previously shown to maintain the anoxic integrity of the sample for the duration of the
242 measurement (42). The energy of the incident X-rays was scanned using a Si(111) water-
243 cooled double-crystal monochromator. Harmonic content was removed by detuning the
244 second crystal to 50% of the maximum intensity. Data were collected in transmission mode
245 using gas-filled ionization detectors. Monochromator energy calibration was maintained by
246 the simultaneous collection of spectra from a metallic Fe standard using X-rays transmitted
247 through the samples. The final spectrum for each sample was produced by averaging 3-5
248 consecutive scans. The extended XAFS (EXAFS) region of the spectrum was extracted using
249 the program Autobk (43). The contribution of spectroscopically-distinct Fe species in the k³-
250 weighted EXAFS data was quantified using linear combination (LC) analysis implemented in

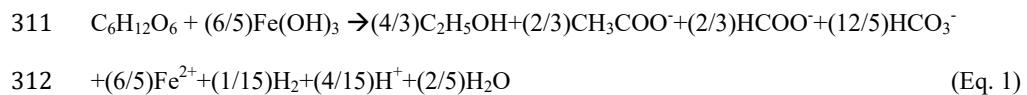
251 the program ATHENA (44). In addition to ferrihydrite, goethite, hematite, and lepidocrocite,
252 spectra from the following Fe(II)-bearing phases were considered as possible components in
253 the LC analysis: vivianite, magnetite, Fe(II) adsorbed to carboxyl-functionalized beads at pH
254 7 (45), siderite, green rust, and amorphous mackinawite. The best-fit combination was chosen
255 based on the quality of the fit as determined by the lowest reduced-chi-square value. Linear
256 combination analyses were also performed on the derivative of the X-ray absorption near
257 edge structure (XANES) data to corroborate the results of the EXAFS analysis.

258 **Genomic reconstruction.** Genomic DNA for strain Z6 was extracted using the
259 phenol:chloroform extraction method as described previously (29). The genome was
260 sequenced using the Roche 454 and Illumina HiSeq technologies with the average
261 sequencing coverage approximately 26 \times and 140 \times , respectively. The sequencing reads were
262 assembled using Newbler 2.7 (Roche Holding AG, Swiss). The draft assembly was then
263 error-corrected using iCORN 0.97 (46) and internal gaps closure was achieved using the
264 GapCloser package of SOAPdenovo (v.1.12) (47). CheckM (48) was used to evaluate the
265 completeness, quality and contamination of the assembled genome for strain Z6. The open
266 reading frames (ORFs) were predicted and annotated using the IMG/ER pipeline (49).

267 **Nucleotide sequence accession number.** The nucleotide sequences of the 16S rRNA
268 genes of strain Z6 determined in this study have been deposited in GenBank under accession
269 number KP898734. The whole-genome sequence of strain Z6 was deposited in NCBI
270 GeneBank under the accession no. LWDV00000000. The version described in this paper is
271 LWDV00000000. The IMG Genome ID for strain Z6 is 2687453649.

272

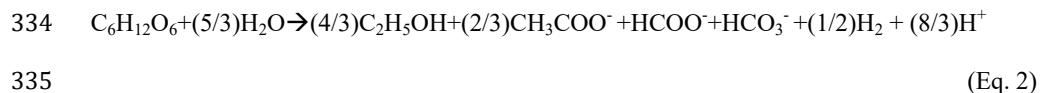
273 **RESULTS**


274 **Isolation of strain Z6.** A pure culture of an iron-reducing bacterium was obtained after
275 sequential colony transfers from agar-shake medium containing a mixture of volatile fatty

276 acids and ferric citrate and is designated as strain Z6. Electron micrographs showed that this
277 organism was rod-shaped with dimensions of $0.5 \times (2-20)$ μm . Depending on the growth
278 phase, filamentous cells were observed during exponential growth (Fig. 1 and Table 1 in SI).
279 In addition, numerous pili were observed on the surface of strain Z6 cells (Fig. 1). Analysis
280 of the 16S rRNA genes of strain Z6 indicated that it is a member of phylum *Firmicutes* with
281 96% sequence similarity to *Orenia marismortui*, a fermenter originally isolated from Dead
282 Sea sediment (50) (Fig. 2). Strain Z6 also stained Gram-negative and produced negative
283 results for oxidase and catalase tests (Table 1 in SI). Genomic DNA showed a G+C content
284 for this organism of 32.1%. The major membrane fatty acids for strain Z6 consisted of 16:0,
285 16:1 and 18:0 (Table 1).

286 **Physiological characteristics.** In addition to reducing dissolved ferric citrate, strain
287 Z6 also reduced solid phase ferrihydrite. Strain Z6 was able to survive a broad range of pH,
288 temperature and salinity conditions when using ferrihydrite as the electron acceptor, H_2 as the
289 electron donor and acetate as carbon source, respectively. Iron reduction occurred at pH
290 values from 6-9.6, with an optimal initial iron reduction rate at pH = 7. However, more iron
291 was reduced at lower pH (i.e. pH 6) (Fig. 3a), even though the corresponding initial rate of
292 iron reduction was slower. Iron reduction activity occurred at salinity ranging from 0.4 to 3.5
293 M NaCl (Fig. 3b). The highest initial iron reduction rate occurred with 1.2 M NaCl and
294 decreased correspondingly with increasing salt concentrations, while the amount of ferric
295 iron reduced was similar from 1.2-3.5 M NaCl (Fig. 3b). At pH 7 and with 0.4 M NaCl,
296 robust iron reduction occurred over a broad range of temperatures (20-60 $^{\circ}\text{C}$), with similar
297 amounts of iron reduced between 20 and 50 $^{\circ}\text{C}$ (Fig. 3c). Initial rates of reduction dropped
298 sharply at 60 $^{\circ}\text{C}$, but significant iron reduction was still observed.

299 Substrates that support iron reduction were evaluated in media with a ferrihydrite
300 suspension and one of several inorganic or organic compounds. Positive results were


301 indicated by ferrous iron generation above that observed in the abiotic and inoculation-only
302 controls (Fig. 4 and Fig. S1a in SI). Among the non-fermentable substrates, only H₂ and
303 trimethylamine supported reduction of ferrihydrite (Fig. 4), while short chain fatty acids,
304 alcohols, and aromatic compounds did not. In contrast, the selected fermentable substrates
305 (i.e., cellobiose, fructose, galactose, glucose, starch, sucrose and yeast extract) supported
306 fermentative ferrihydrite reduction (Fig. 4). In the presence of ferrihydrite, fermentation of
307 4.55 mM glucose produced 2.61 mM acetate, 5.53 mM ethanol, 2.65 mM formate, 6.07 mM
308 HCO₃⁻ (including HCO₃⁻ and CO₂), and 88.6 μmoles/bottle H₂ (see Table S4 in the
309 supplemental material). The stoichiometry of fermentative iron reduction with glucose and
310 ferrihydrite determined was:

311 Although no significant iron reduction was observed in the two controls, one with
312 substrate only and the other with cells only, it was not clear whether the fermentation
313 products generated were directly involved in the abiotic reduction of the ferrihydrite. In
314 order to exclude the possibility of these abiotic reactions, a series of strain Z6 cultures were
315 grown by fermenting glucose without iron. After growth leveled off, the cultures were
316 autoclaved before different iron oxides were amended. No reduction of ferrihydrite,
317 lepidocrocite, goethite or hematite occurred in any of these cultures (Fig. S1b in SI). This
318 indicated that the observed iron-reducing activity was due to biologically mediated enzymatic
319 reactions.

320 The capacity to grow on different substrates in the absence of iron was also evaluated.
321 Similar to other species affiliated to genus *Orenia*, strain Z6 rapidly grew on many mono-
322 and poly-saccharides, including cellobiose, fructose, glucose, glycine, glycerol, mannose,
323 maltose, sucrose, and trehalose based on an increase in OD₆₀₀ (Table 1). Yeast extract and

326 starch alone also supported fermentative growth. However, strain Z6 did not grow on
327 fumarate, galactose, glutamate, glucosamine, lactose, mannitol and peptone. Fermentation of
328 glucose alone yielded similar primary products (i.e., acetate, ethanol, formate, CO₂, H₂) as
329 those observed in the fermentative iron-reducing cultures, except for observation of a trace
330 amount of lactate (0.15 mM) (see Table S4 in SI). In the absence of ferrihydrite, however,
331 about 30% of the initial glucose remained unfermented (Fig. S2), while H₂ produced under
332 this condition was about 1.6 times higher than in the fermentative iron-reducing cultures (see
333 Table S4 in SI). The stoichiometry of glucose fermentation alone was:

336 In addition to iron reduction and fermentation, strain Z6 also showed capacity to
337 reduce a number of other transition metal compounds, such as Co(III) [Co(III)-EDTA],
338 Cr(VI) [chromate] and Mn(IV) [MnO₂] based on changes in the media colors. The medium
339 changed from purple to clear, yellow to clear and brown to pink for Co^{III}, Cr^{VI} and Mn^{IV},
340 respectively. No assessment was made whether these reactions supported growth of strain
341 Z6. In contrast to ferric iron reduction, no significant reduction of substrate was observed
342 when strain Z6 was provided with nitrate, nitrite, S(0), thiosulfate, sulfate, or fumarate (Table
343 1).

344 Strain Z6 also exhibited different degrees of susceptibility to antibiotics. When
345 supplied with H₂ and ferrihydrite, the cultures amended with chloramphenicol, tetracycline,
346 kanamycin or erythromycin showed significant inhibition in iron-reducing capacity, while no
347 reduction in iron-reducing activity was seen with ampicillin or anisomycin compared to the
348 antibiotic-free controls (see Fig. S3 in SI).

349 **Reduction of iron oxides with different crystallinity.** Because hematite and goethite
350 are common iron minerals in the environment, we evaluated the capacity of strain Z6 to

351 reduce these naturally occurring ferric iron oxides. In most previous studies of iron-reducing
352 microorganisms, the more crystalline goethite and hematite resulted in significantly less
353 Fe(II) production than chelated Fe(III) compounds or ferrihydrite (2). Strain Z6, however,
354 was able to substantially reduce crystalline minerals such as lepidocrocite, goethite and
355 hematite (Fig. 5). At pH 6.5, strain Z6 reduced 23-43% of the total Fe(III) present in the
356 parent iron oxides within 17 days. Despite a significantly faster initial iron reduction rate for
357 ferrihydrite than the other minerals, similar extents of total iron reduction (40.1-43.2 %) were
358 determined for ferrihydrite and lepidocrocite. In comparison, 23.5 and 29.5 % of the Fe(III)
359 was reduced for goethite and hematite, respectively (Fig. 5 and Table 2). In addition to the
360 FeR medium containing 10% filter-sterilized groundwater, active ferrihydrite reduction by
361 strain Z6 can also be observed in the synthetic Orenia medium in the absence of groundwater
362 amendment when the same electron donor and carbon source were supplied (see Fig. S4 in
363 SI).

364 Fe K-edge XANES analyses of the solids confirmed the presence of reduced iron
365 species in the active cultures, as indicated by the shift in the edge position to lower energy
366 compared to the corresponding parent oxide and the control sample spectrum (see Fig. S5 in
367 the supplemental material). Linear combination (LC) analyses of the XANES data indicated
368 that the ferrous iron content in the solid phase ($\text{Fe(II)}_{\text{solid}}/\text{Fe(III)}_{\text{solid}}$) at the end of the
369 experiment ranged from 7.5 to 38.8% (Table 2). The EXAFS data also showed differences
370 between the un-inoculated controls and the active culture incubations, with larger differences
371 corresponding to greater extents of iron reduction as determined by XANES and the Fe(II)
372 measurements of the HCl extracts (Figs. 6 and S5 in the supplemental material). LC analysis
373 of the EXAFS data determined that ferrous iron was present as O-coordinated Fe(II) species
374 (inclusive of disordered Fe(II) precipitates or adsorbed Fe(II)), vivianite $[\text{Fe}_3(\text{PO}_4)_2]$, and/or
375 siderite (FeCO_3) (Table 2 and Fig. 6). The distribution of the Fe(II) products in the best fits of

376 the data varied depending on the starting ferric iron mineral and the extent of iron reduction,
377 but all showed the presence of siderite (Table 2). In contrast, magnetite (Fe_3O_4) and green
378 rust, two common Fe(II)-bearing minerals frequently observed as biomineralization products
379 by DMRB (51-55), were not detected under the culture conditions here.

380 **Genomic reconstruction.** The draft genome sequence of strain Z6 is 3,456,989 bp
381 (3.47 Mb). Evaluation of this assembled genome using CheckM (48) indicates that the
382 genome for strain Z6 is 99.1% in completeness, 0% in heterogeneity and <2.5% in
383 contamination. The assembled genome comprises 12 scaffolds, ranging from 2.2 to 903.3 kb
384 in size. N50 for this genome is 177.7 kb. Comparison of the genomes of strain Z6 and other
385 bacterial genomes showed that it shared no more than 90 % pairwise average nucleotide
386 identity (ANI) with any other organism and was 78.1% in ANI with *Orenia metuimatum*
387 DSM5156. A total of 3,269 protein-coding genes were predicted from the genome. The
388 reconstructed pathways from the ORFs (Fig. 7) are consistent with the phenotypic features of
389 this strain as described above. Strain Z6 harbors fermentation pathways, including glycolysis
390 and pentose phosphate pathway (Fig. 7). As expected for a fermentative organism, it does not
391 contain a complete TCA cycle and lacks the genetic capability to use short-chain fatty acids
392 and alcohols (e.g., acetate, formate, lactate and ethanol). This is consistent to the observation
393 that none of these compounds supported iron reduction by strain Z6 (Fig. 4). The genome
394 contains coded regions for 15 hydrogenases. Some of these appear to be homologous to
395 bifurcating hydrogenases that generate proton motive force for energy coupling (56) (Fig. 7).
396 Although not confirmed physiologically, a gene cluster containing nitrogenase (i.e., *nifD*,
397 *nifH*, *nifK*, *nifE*, *nifN*, *nifB*, *nifV*) and associated transporters and regulators are identified in
398 the genome. Despite the capacity of using trimethylamine as an electron donor for iron
399 reduction, no ORFs associated with the pathway(s) for trimethylamine metabolism were
400 identified in the genome of strain Z6. Sulfate adenylyltransferase, adenylylsulfate kinase,

401 adenylylsulfate reductase and sulfite reductase were predicted in the genome of strain Z6,
402 however, no active sulfate reduction was observed in culture test (Table S3). No annotated
403 sulfur reductase or observed sulfur-reducing activity by strain Z6 suggest cryptic sulfur cycle
404 that mediates electron shuttling during iron reduction by some iron reducers (e.g., *Shewanella*
405 *oneidensis* MR-1) (57) is not feasible for strain Z6. The genes for biosynthesis and assembly
406 of flagella and Type IV pili were also identified (Fig. 7). Based on the gene prediction and
407 annotation by IMG pipeline (49), in contrast to many other dissimilatory iron-reducing
408 bacteria (e.g., *Geobacter* and *Shewanella* spp.), strain Z6 lacks c-type cytochromes thought to
409 be critical for ferric iron reduction in these other organisms (2, 58, 59).

410

411 **DISCUSSION**

412 Strain Z6 is a thermophilic and halophilic metal-reducing bacterium of the genus *Orenia* that
413 was enriched and isolated from formation water taken from a depth of at 2.02 km in the
414 Illinois Basin, USA (28). This organism possesses 92-96% 16S rRNA gene sequence
415 identity related to the previously isolated *Orenia* species (*O. marismortui*, *O. salinaria*, *O.*
416 *sivashensis* and *O. chitinitropha*) (Fig. 2) (39, 50, 60, 61). A screen of the NCBI and RDP
417 reference databases (33) also shows that closely related sequences or phylotypes are not
418 abundant. The only phylotypes with a similarity >96 % are from the parental enrichment
419 culture (28) and four sequences from a high-temperature North Sea oil field (62).

420 Strain Z6 represents the first *Orenia* species isolated from terrestrial deep subsurface.
421 All previous *Orenia* species (*O. marismortui*, *O. salinaria*, *O. sivashensis* and *O.*
422 *chitinitropha*) (Fig. 2) were isolated from saline or hypersaline salterns or lakes (39, 50, 60,
423 61). The natural habitats for these known *Orenia* populations reflect their capacity to tolerate
424 a broad range of temperature and salt concentrations. Previous physiological characterization
425 of these *Orenia* species, however, has focused on the fermentation of saccharides or

426 polysaccharides (e.g., chitin) (39, 50, 60, 61). As with other *Orenia* populations, strain Z6
427 exhibits rod-shaped morphology, low G+C content, tolerance of comparable ranges of pH,
428 temperature, salinity, as well as active fermentation of sugars (Table 1). However, strain Z6
429 shows distinct physiological characteristics compared to other *Orenia* isolates. For example,
430 in contrast to *O. salinaria* and *O. chitinitropha* but similar to *O. marismortui*, strain Z6
431 ferments starch. In contrast, glycerol supports growth of strain Z6, but not for other *Orenia*
432 species (Table 1) (39, 50, 60, 61). The findings of dissimilatory reduction of iron (Figs. 3-5)
433 and other metal compounds (e.g., Co(III)-EDTA, MnO₂ and CrO₄²⁻) (Table S3) by strain Z6
434 have not been previously tested for genus *Orenia*. Overall, the phylogenetic and
435 physiological data suggest that this strain represents a new species of the genus *Orenia*.

436 In contrast to previously studied deep subsurface iron-reducing bacteria, strain Z6 is
437 distinct in both phylogenetic and physiological features. In comparison, other deep
438 subsurface iron reducers belong to many phylogenetic lineages, such as other classes of
439 *Firmicutes*, and populations associated with phyla *Thermotogae*, *Thermodesulfobacteriia*,
440 *Deferribacteres*, *Deinococcus-Thermus*, and *Proteobacteria* (Fig. 2). All of these organisms
441 are only distantly related to strain Z6, sharing $\leq 81\%$ 16S rRNA gene sequence identity (10-
442 21). Physiologically, strain Z6 tolerates a broader range of temperature than those reported
443 for other iron reducers derived from deep subsurface environments, which are typically
444 characterized as either mesophilic or thermophilic organisms (10-21). In terms of salt
445 tolerance, these previously characterized deep subsurface iron reducers are also capable of
446 surviving or growing at elevated salt concentrations, but typically no higher than 1.7 M or
447 10 % NaCl. Their ability to reduce iron over this broad range of salinities and temperatures,
448 especially for the crystalline iron oxides, however, has not been confirmed for all of these
449 bacteria as we have shown for strain Z6 (10-21).

450 The ability of strain Z6 to reduce both amorphous and crystalline ferric iron oxides is
451 found in only a few other iron-reducing organisms (e.g., *Geobacter* and *Shewanella* species)
452 (27, 63-65). This feature is also distinct from most previously studied deep-subsurface iron
453 reducers, which have typically been shown to reduce chelated Fe(III) or amorphous
454 ferrihydrite but not more crystalline forms of Fe(III) (10-21). For example, one *Thermus*
455 species isolated from the 3.2-km depth of a South African gold mine actively reduces
456 dissolved Fe(III)-NTA but performs poorly when reducing ferrihydrite in the absence of a
457 soluble electron shuttle (21). Although ferrihydrite is comparatively bioavailable and is
458 found in a wide range of environments, it is metastable and often undergoes phase transitions
459 to more crystalline ferric iron oxides (e.g., hematite and goethite). Studies have shown
460 accelerated transformation of ferrihydrite to hematite and/or goethite occurs at the conditions
461 of elevated temperature and salt concentration, typical of a kilometer deep subsurface
462 environment (66, 67). Therefore, these more crystalline ferric iron minerals may be more
463 representative of the Fe(III) oxide minerals found in deep subsurface environments and are
464 likely to be available to sustain survival and growth of the DMRB.

465 Intensive studies of iron-reducing *Geobacter* and *Shewanella* spp. have revealed that
466 transmembrane electron-transfer complexes are involved in iron reduction, either directly by
467 assemblies of *c*-type cytochromes and nanowires or indirectly by means of electron shuttles
468 or reduced sulfide complexes (2, 57, 59). Moreover, the availability of specific Fe(III)
469 phases may have important implications for the energetics of microbial iron reduction. A
470 recent study shows that *G. sulfurreducens* operates multiple iron-related respiratory
471 pathways depending on the redox potential of substrate being reduced (68). In this case, as
472 the crystallinity of the ferric substrates increases, the amount of energy generated by their
473 reduction decreases. In contrast to *Geobacter* or *Shewanella* species, strain Z6 does not
474 contain any multi-heme cytochromes. It is therefore unlikely to share similar respiratory

475 pathways with these well-understood iron-reducing organisms for this metabolism. Due to
476 its capacity to reduce multiple ferric iron compounds with differing crystallinity, electrical
477 potential, solubility, and reducibility, it is possible that strain Z6 uses multiple iron reduction
478 pathways.

479 Although microbial iron oxide reduction becomes thermodynamically less favorable
480 as pH increases (69), alkaliphilic DMRB have likely evolved distinct metabolic strategies to
481 adapt to these conditions (57). The capacity of strain Z6 to reduce ferric iron at up to pH 9.6
482 (Fig. 3a) is similar to other Gram-positive alkaliphilic iron reducers (e.g., *Bacillus*
483 *pseudofirmus* and *Alkaliphilus metallireducens* (70-72)). However, the capacity of Z6 to
484 reduce iron under weakly acidic condition has not been observed for these other alkaliphilic
485 organisms. *B. pseudofirmus* MC02 has been hypothesized to have functional groups on the
486 outer cell wall that strongly sorb Fe(III) or secrete Fe(III) chelating agents to enhance Fe(III)
487 reduction (70). A community of Gram-positive alkaliphilic bacteria was also reported to
488 synthesize and use flavins as electron shuttles for ferric iron reduction at pH up to 9.2 (57,
489 72). The ability of strain Z6 to reduce ferric iron under alkaline conditions suggests that it
490 may also synthesize or utilize chelating compounds or electron shuttles to facilitate iron
491 reduction. In the present study, some medium components (e.g., riboflavin from yeast extract
492 and vitamins, resazurin, or cysteine) may act as electron shuttles and facilitate iron reduction
493 by strain Z6. Comparison shows that the redox potential for these electron-shuttling
494 compounds (e.g., resazurin (-0.05~0.11V) (73), cysteine (-0.34V) (74), riboflavin (-0.18~
495 0.25V) (72)) is between that for H₂ (-0.42V) and the investigated ferric iron minerals (i.e.,
496 ferrihydrite (0.014V), lepidocrocite (-0.088V), goethite (-0.274V) and hematite (-0.287V))
497 (2, 75). These redox potential values also suggest that the contribution of the electron
498 shuttles on reduction of crystalline hematite and goethite may not be as significant as that for
499 lepidocrocite and amorphous ferrihydrite. Active reduction of crystalline hematite and

500 goethite by strain Z6 also suggests that other mechanisms than electron shuttles may also be
501 responsible for iron reduction by this organism.

502 The subsurface biosphere that inhabits sedimentary basins is sustained by organic
503 carbon buried during deposition or transported there by flowing groundwater as well as
504 reduced gases such as H₂ that are generated in situ by geochemical processes (15, 17, 76).
505 Previous studies have revealed that iron-reducing organisms derived from deep terrestrial
506 environments are able to utilize a diverse array of substrates. For example, *Fervidicella*
507 *metallireducens* and *Caloramator australicus* only use fermentable sugars as the energy and
508 carbon source for iron reduction (24, 25), while others (e.g., *Bacillus infernus*,
509 *Thermoanaerobacter ethanolicus* and some *Thermus* species) utilize a broader range of
510 fermentable substrates, organic acids, alcohols and/or H₂ (10, 21, 23). The broad nutrient
511 source for some iron reducers is in contrast to strain Z6 in that only H₂, trimethylamine, and a
512 few fermentable sugars support its iron reduction. Indeed, acetate, an important electron
513 donor for iron reducers in many sedimentary environments (1) does not support iron
514 reduction by this organism (Fig. 4). This is consistent to the lack of complete TCA cycle and
515 other metabolic pathways involved in further metabolizing these organic compounds in the
516 genome of strain Z6 (Fig. 7).

517 Physiological characterization suggests that H₂ provides electron equivalents to
518 support iron reduction by strain Z6. This is based on the observations: 1) strain Z6 reduces
519 iron when H₂ is added but does not when H₂ is replaced by one of the fermentation products
520 (formate, ethanol, lactate, acetate and CO₂) (Fig. 4); 2) a much lower amount of H₂
521 accumulate during glucose fermentation in the presence of ferric iron oxide compared to
522 glucose fermentation alone (see Table S4 in the supplemental material); and 3) hydrogenases
523 were annotated in the genome of strain Z6 (Fig. 7). Alignment shows that one gene cluster in
524 the genome of strain Z6 contains 4 protein-coding genes that share 46-65% identity in amino

525 acids with four subunits of the electron bifurcating dehydrogenases of *Acetobacterium woodii*,
526 which catalyze NAD⁺ dependent reduction of ferredoxin with H₂(2H₂+NAD⁺+Fd_{ox} ⇌
527 3H⁺+NADH+Fd_{red}²⁻) and build-up an electrochemical proton ion potential for this exergonic
528 reaction (77). Hydrogenase has been reported to be directly associated with dissimilatory
529 reduction of metalloids (e.g., Tc (VII)) (78). Therefore, without the electron transfer conduit
530 comprising cytochromes typically used by many iron-reducing organisms (e.g., *Shewanella*
531 and *Geobacter*) (2), ferric compounds may couple with H₂ for the hydrogenase-facilitated
532 redox reaction by strain Z6. These observations also suggest that during glucose
533 fermentation, H₂ is the only source of electron equivalents that sustain iron reduction by
534 strain Z6. Among the predicted hydrogenases, there exist both [Ni-Fe] hydrogenase enzymes
535 and Fe-only hydrogenase enzymes including the bifurcating hydrogenases homologous to
536 those for *Alkaliphilus metallireducens* (70-72), which suggest catalysis of the reactions of
537 production and consumption of molecular H₂ (79, 80). This type of electron transfer process
538 has been identified in phylogenetically diverse fermentative iron reducers (e.g., *Bacillus*,
539 *Clostridium*, *Thermoterrabacterium*, *Thermotoga*, *Thermoanae*, *Thermoanaerobacter*, and
540 *Thermococcus* spp.) (1, 10, 81-83). In all these cases, iron reduction itself does not
541 significantly contribute to growth because only a small fraction (typically less than 5 %) of
542 the electron equivalents from fermentation is transferred to ferric iron (10, 83). This is
543 consistent to the calculated 2.4-4.7 % of the electron equivalents transferred to ferrihydrite
544 during fermentative iron reduction by strain Z6 in the presence of different mono- and di-
545 saccharides (Eq. 1 and Fig. 4). However, consumption of fermentation products such as H₂,
546 by means of their use as electron donor(s) for iron reduction, creates more
547 thermodynamically favorable conditions that result in better carbohydrate decomposition and
548 elevated biomass production (5, 83-85). This may be important in natural habitats where
549 available organic matter and other electron donors are limited.

550 The kinetics of microbial iron oxide reduction are influenced by many factors,
551 including mineral surface area, the extent of particle aggregation, crystal structure, solubility,
552 and the amount of usable energy available for microbial metabolism (27, 63, 69, 86). In the
553 present study, strain Z6 follows the general trend that less crystalline ferric iron minerals are
554 more rapidly reduced and to a greater extent compared to the more crystalline iron oxides
555 (Fig. 5). Further analyses indicate a generally linear relationship between total initial surface
556 area for the different ferric oxides under investigation and iron reduction rates for strain Z6
557 (Fig. 5b). This observation is similar to that reported for *Shewanella alga* strain BrY (64). It
558 was suggested that surface area positively correlates with concentration of surface sites
559 present for enzymatic contact and/or solubility of iron oxides (64). The relationship between
560 surface area and solubility has been shown for different ferric iron minerals whereby smaller
561 size minerals exhibited higher solubility due to greater structural disorder and surface tension
562 effects (87). Thus, the available active sites associated with ferric iron oxide surface area
563 might be the most significant factor for iron reduction by strain Z6.

564 **Conclusions.** In this study, strain Z6 was isolated from groundwater sampled from
565 the Cambrian-aged Mt. Simon sandstone, 2.02 km beneath the Earth's surface in the Illinois
566 Basin, USA (28). The capacity of this species to reduce a diverse array of ferric iron
567 minerals expands our understanding of the metabolic capabilities of members of the genus
568 *Orenia*, which have typically been characterized solely as fermenters (39, 60). It underscores
569 the significance of understanding environmental backgrounds of the habitats and
570 comprehensive physiological characterizations of novel organisms beyond the characteristics
571 for their known phylogenetic relatives (e.g., iron reduction by strain Z6). The capacity of
572 strain Z6 to tolerate a broad range of physical and geochemical conditions in terms of
573 temperature, pH, salinity and its capacity to reduce both amorphous and crystalline ferric
574 iron oxides suggest that this organism is indeed indigenous to the deep subsurface of Illinois

575 Basin. Moreover, strain Z6 also broadens the phylogenetic affiliation and iron reduction
576 mechanisms that have been demonstrated for the previously known iron reducers (2, 57).
577 The observations of phylogenetically and physiologically diversified iron-reducing
578 organisms from the geographically distant deep subsurface environments support the claim
579 that metal reduction may be a widespread characteristic in the domain *Bacteria* (1). In
580 addition, it also suggests adaptive evolution of these iron-reducing organisms in response to
581 a broad range of physical and geochemical conditions that enable them to survive and carry
582 out biogeochemical processes in extreme environments that control the states, forms and
583 conversion of iron minerals.

584

585 **Description of *Orenia metallireducens* sp. nov.**

586 *Orenia metallireducens* (me.tal'li.re.du'cens. L. n. *metallum* metal; L. part. Adj. *reducens*, in
587 chemistry, converting to a different oxidation state; N. L. part. Adj. *metallireducens* reducing
588 metal).

589 Cells are rod shaped, ca. 0.5 μ m wide by 2-20 μ m long. They contain pili and are
590 motile in liquid media. Colonies are formed in agar shake amended with Fe(III)-citrate.
591 Growth is obligately anaerobic. Cellobiose, fructose, glucose, glycine, glycerol, maltose,
592 mannose, starch, sucrose, trehalose and yeast extract support fermentation by strain Z6, but it
593 is unable to ferment fumarate, galactose, glutamate, glucosamine, mannitol, lactose, or
594 peptone. Only H₂, trimethylamine and some fermentable substrates (e.g., yeast extract,
595 glucose, fructose, cellobiose, galactose, glycerol, starch and sucrose) act as the electron donor
596 or supply electron equivalents (e.g., H₂) for iron reduction. Ferric iron oxides with different
597 crystallinity, including ferrihydrite, lepidocrocite, goethite, and hematite can be actively
598 reduced by this organism. Other electron acceptors include Co(III) [Co(III)-EDTA], Cr(VI)
599 [chromate] and Mn(IV) [MnO₂]. The isolate tolerates a broad range of pH 6-9.6, salinity of

600 0.4-3.5 M NaCl, and temperature 20-60 °C. 16S rRNA gene analysis indicates that this
601 isolate is affiliated with the *Orenia* cluster in the *Halobacteroidaceae* of *Firmicutes*. Its
602 habitat is anoxic deep subsurface environments. Phenotypic characteristics and the 16S rRNA
603 gene sequence distinguish this new isolate from previously described members of the genus
604 *Orenia*. Strain Z6 is the type strain of the new species *Orenia metallireducens*. Strain Z6 has
605 been deposited at the American Type Culture Collection (ATCC, BAA-2645) and Japan
606 Collection of Microorganisms (JCM, JCM 31419).

607

608

609 REFERENCES

- 610 1. **Lovley DR, Holmes DE, Nevin KP.** 2004. Dissimilatory Fe(III) and Mn(IV)
611 reduction. *Adv Microb Physiol* **49**:219-286.
- 612 2. **Weber KA, Achenbach LA, Coates JD.** 2006. Microorganisms pumping iron:
613 anaerobic microbial iron oxidation and reduction. *Nat Rev Microbiol* **4**:752-764.
- 614 3. **Heimann A, Johnson CM, Beard BL, Valley JW, Roden EE, Spicuzza MJ,
615 Beukes NJ.** 2010. Fe, C, and O isotope compositions of banded iron formation
616 carbonates demonstrate a major role for dissimilatory iron reduction in similar to 2.5
617 Ga marine environments. *Earth Planet Sci Lett* **294**:8-18.
- 618 4. **Vargas M, Kashefi K, Blunt-Harris EL, Lovley DR.** 1998. Microbiological
619 evidence for Fe(III) reduction on early Earth. *Nature* **395**:65-67.
- 620 5. **Lovley DR.** 1991. Dissimilatory Fe(III) and Mn(IV) reduction. *Microbiol Rev*
621 **55**:259-287.
- 622 6. **Nealson KH, Belz A, McKee B.** 2002. Breathing metals as a way of life: geobiology
623 in action. *Antonie Van Leeuwenhoek* **81**:215-222.
- 624 7. **Williams KH, Long PE, Davis JA, Wilkins MJ, N'Guessan AL, Steefel CI, Yang
625 L, Newcomer D, Spane FA, Kerkhof LJ, McGuinness L, Dayvault R, Lovley DR.**
626 2011. Acetate Availability and its Influence on Sustainable Bioremediation of
627 Uranium-Contaminated Groundwater. *Geomicrobiol J* **28**:519-539.
- 628 8. **Roden EE, McBeth JM, Blothe M, Percak-Dennett EM, Fleming EJ, Holyoke
629 RR, Luther GW, Emerson D, Schieber J.** 2012. The microbial ferrous wheel in a
630 neutral pH groundwater seep. *Frontiers in Microbiology* **3**:doi:
631 10.3389/fmicb.2012.00172.
- 632 9. **Lloyd JR.** 2003. Microbial reduction of metals and radionuclides. *FEMS Microbiol
633 Rev* **27**:411-425.

- 634 10. **Boone DR, Liu Y, Zhao ZJ, Balkwill DL, Drake GR, Stevens TO, Aldrich HC.**
635 1995. *Bacillus infernus* sp. nov., an Fe(III)- and Mn(IV)-reducing anaerobe from the
636 deep terrestrial subsurface. *Int J Sys Bacteriol* **45**:441-448.
- 637 11. **Greene AC, Patel BK, Sheehy AJ.** 1997. *Deferrribacter thermophilus* gen. nov., sp.
638 nov., a novel thermophilic manganese- and iron-reducing bacterium isolated from a
639 petroleum reservoir. *International journal of systematic bacteriology* **47**:505-509.
- 640 12. **Pedersen K.** 2000. Exploration of deep intraterrestrial microbial life: current
641 perspectives. *FEMS Microbiol Lett* **185**:9-16.
- 642 13. **Takai K, Hirayama H, Sakihamma Y, Inagaki F, Yamato Y, Horikoshi K.** 2002.
643 Isolation and metabolic characteristics of previously uncultured members of the order
644 aquificales in a subsurface gold mine. *Appl Environ Microbiol* **68**:3046-3054.
- 645 14. **Liu YT, Karnauchow TM, Jarrell KF, Balkwill DL, Drake GR, Ringelberg D,
646 Clarno R, Boone DR.** 1997. Description of two new thermophilic *Desulfotomaculum*
647 spp., *Desulfotomaculum putei* sp. nov, from a deep terrestrial subsurface, and
648 *Desulfotomaculum luciae* sp. nov, from a hot spring. *Int J Syst Evol Microbiol*
649 **47**:615-621.
- 650 15. **Liu SV, Zhou J, Zhang C, Cole DR, Gajdarziska-Josifovska M, Phelps TJ.** 1997.
651 Thermophilic Fe(III)-reducing bacteria from the deep subsurface: the evolutionary
652 implications. *Science* **277**:1106–1109.
- 653 16. **Slobodkin AI, Jeanthon C, L'Haridon S, Nazina T, Miroshnichenko M, Bonch-
654 Osmolovskaya E.** 1999. Dissimilatory reduction of Fe(III) by thermophilic bacteria
655 and archaea in deep subsurface petroleum reservoirs of western siberia. *Curr
656 Microbiol* **39**:99-102.
- 657 17. **Lovley DR, Chapelle FH.** 1995. Deep subsurface microbial processes. *Rev Geophy*
658 **33**:365-381.

- 659 18. **Roh Y, Liu SV, Li G, Huang H, Phelps TJ, Zhou J.** 2002. Isolation and
660 characterization of metal-reducing *Thermoanaerobacter* strains from deep subsurface
661 environments of the Piceance Basin, Colorado. *Appl Environ Microbiol* **68**:6013-
662 6020.
- 663 19. **Simple KM, Westlake DWS.** 1987. Characterization of iron-reducing *Alteromonas*
664 *putrefaciens* strains from oil field fluids. *Can J Microbiol* **33**:366- 371.
- 665 20. **Greene AC, Patel BK, Sheehy AJ.** 1997. *Deferribacter thermophilus* gen. nov., sp.
666 nov., a novel thermophilic manganese- and iron-reducing bacterium isolated from a
667 petroleum reservoir. *Int J Syst Evol Microbiol* **47**:505-509.
- 668 21. **Kieft TL, Fredrickson JK, Onstott TC, Gorby YA, Kostandarithes HM, Bailey
669 TJ, Kennedy DW, Li SW, Plymale AE, Spadoni CM, Gray MS.** 1999.
670 Dissimilatory reduction of Fe(III) and other electron acceptors by a *Thermus* isolate.
671 *Appl Environ Microbiol* **65**:1214-1221.
- 672 22. **Whitman WB, Coleman DC, Wiebe WJ.** 1998. Prokaryotes: the unseen majority.
673 *Proc Natl Acad Sci* **95**:6578-6583.
- 674 23. **Greene AC, Patel BK, Yacob S.** 2009. *Geoalkalibacter subterraneus* sp. nov., an
675 anaerobic Fe(III)- and Mn(IV)-reducing bacterium from a petroleum reservoir, and
676 emended descriptions of the family *Desulfuromonadaceae* and the genus
677 *Geoalkalibacter*. *Int J Syst Evol Microbiol* **59**:781-785.
- 678 24. **Ogg CD, Patel BK.** 2009. *Caloramator australicus* sp. nov., a thermophilic,
679 anaerobic bacterium from the Great Artesian Basin of Australia. *Int J Syst Evol
680 Microbiol* **59**:95-101.
- 681 25. **Ogg CD, Patel BK.** 2010. *Fervidicella metallireducens* gen. nov., sp. nov., a
682 thermophilic, anaerobic bacterium from geothermal waters. *Int J Syst Evol Microbiol*
683 **60**:1394-1400.

- 684 26. **Bowen BB, Ochoa R, Wilkens ND, Brophy J, Lovell TR, Fischietto N, Medina**
685 **CR, Rupp J.** 2010. Depositional and diagenetic variability within the Cambrian
686 Mount Simon Sandstone: Implications for carbon dioxide sequestration. *Environ*
687 *Geosci* **18**:69-89.
- 688 27. **Liu C, Kota S, Zachara JM, Fredrickson JK, Brinkman CK.** 2001. Kinetic
689 analysis of the bacterial reduction of goethite. *Environ Sci Technol* **35**:2482-2490.
- 690 28. **Dong Y, Sanford RA, Locke RA, Cann IK, Mackie RI, Fouke BW.** 2014. Fe-
691 oxide grain coatings support bacterial Fe-reducing metabolisms in 1.7-2.0 km-deep
692 subsurface quartz arenite sandstone reservoirs of the Illinois Basin (USA). *Front*
693 *Microbiol* **5**:511.
- 694 29. **Dong Y, Kumar CG, Chia N, Kim P-J, Miller PA, Price ND, Cann IKO, Flynn**
695 **TM, Sanford RA, Krapac IG, Locke RA, Hong P-Y, Tamaki H, Liu W-T,**
696 **Mackie RI, Hernandez AG, Wright CL, Mikel MA, Walker JL, Sivaguru M,**
697 **Fried G, Yannarell AC, Fouke BW.** 2014. *Halomonas sulfidaeris*-dominated
698 microbial community inhabits a 1.8 km-deep subsurface Cambrian Sandstone
699 reservoir. *Environ Microbiol* **16**:1695-1708.
- 700 30. **Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E.** 2006.
701 Bacteria: Firmicutes, Cyanobacteria, The Prokaryotes: A Handbook on the Biology of
702 Bacteria. Springer Science&Business Media, LLC, New York.
- 703 31. **Evans JB, Harrell LJ.** 1977. Agar shake tube technique for simultaneous
704 determination of aerobic and anaerobic susceptibility to antibiotics. *Antimicrob*
705 *Agents Chemother* **12**:534-536.
- 706 32. **Liu WT, Marsh TL, Cheng H, Forney LJ.** 1997. Characterization of microbial
707 diversity by determining terminal restriction fragment length polymorphisms of genes
708 encoding 16S rRNA. *Appl Environ Microbiol* **63**:4516-4522.

- 709 33. **Maidak BL, Cole JR, Lilburn TG, Parker CT, Jr., Saxman PR, Farris RJ, Garrity GM, Olsen GJ, Schmidt TM, Tiedje JM.** 2001. The RDP-II (Ribosomal Database Project). *Nucleic Acids Res* **29**:173-174.
- 710 34. **Stamatakis A.** 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. *Bioinformatics* **22**:2688-2690.
- 711 35. **Bartholomew JW, Mittwer T.** 1952. The Gram Stain. *Microbiol Mol Biol Rev* **16**:1-29.
- 712 36. **Bartelt M.** 2000. Diagnostic Bacteriology, A Study Guide. F. A. Davis Co., Philadelphia, PA.
- 713 37. **Lee HS, Salerno MB, Rittmann BE.** 2008. Thermodynamic evaluation on H₂ production in glucose fermentation. *Environ Sci Technol* **42**:2401-2407.
- 714 38. **Schwertmann U, Cornell RM.** 2000. Iron Oxides in the Laboratory: Preparation and Characterization, 2nd ed. Wiley-VCH Verlag GmbH, Weinheim.
- 715 39. **Moune S, Eatock C, Matheron R, Willison JC, Hirschler A, Herbert R, Caumette P.** 2000. *Orenia salinaria* sp. nov., a fermentative bacterium isolated from anaerobic sediments of Mediterranean salterns. *Int J Syst Evol Microbiol* **50 Pt 2**:721-729.
- 716 40. **Kemner KM, Kelly SD.** 2007. Synchrotron-based Techniques for Monitoring Metal Transformations, p 1183-1194. *In* Hurst CJ (ed), *Manual of Environmental Microbiology*. ASM Press, Washington DC.
- 717 41. **Kropf AJ, Katsoudas J, Chattopadhyay S, Shibata T, Lang EA, Zyryanov VN, Ravel B, McIvor K, Kemner KM, Scheckel KG, Bare SR, Terry J, Kelly SD, Bunker BA, Segre CU.** 2010. The New MRCAT (Sector 10) Bending Magnet Beamline at the Advanced Photon Source. *AIP Conference Proceedings* **1234**:299-302.

- 734 42. **O'Loughlin EJ, Kelly SD, Cook RE, Csencsits R, Kemner KM.** 2003. Reduction
735 of uranium(VI) by mixed iron(II)/iron(III) hydroxide (green rust): formation of UO₂
736 nanoparticles. *Environ Sci Tech* **37**: 721-727.
- 737 43. **Newville M, Ravel B, Haskel D, Stern EA, Yacoby Y.** 1995. Analysis of multiple-
738 scattering XAFS data using theoretical standards. *Physica B: Condens Matter*
739 **208/209**: 154-156.
- 740 44. **Ravel B, Newville M.** 2005. ATHENA, ARTEMIS, HEPHAESTUS: data analysis
741 for X-ray absorption spectroscopy using IFEFFIT. *J Synchrotron Radiat* **12**: 537-541.
- 742 45. **Boyanov MI, O'Loughlin EJ, Roden EE, Fein JB, Kemner KM.** 2007. Adsorption
743 of Fe(II) and U(VI) to carboxyl-functionalized microspheres: The influence of
744 speciation on uranyl reduction studied by titration and XAFS. *Geochim Cosmochim
745 Acta* **71**: 1898-1912.
- 746 46. **Otto TD, Sanders M, Berriman M, Newbold C.** 2010. Iterative Correction of
747 Reference Nucleotides (iCORN) using second generation sequencing technology.
748 *Bioinformatics* **26**: 1704-1707.
- 749 47. **Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y, Tang
750 J, Wu G, Zhang H, Shi Y, Yu C, Wang B, Lu Y, Han C, Cheung DW, Yiu SM,
751 Peng S, Xiaoqian Z, Liu G, Liao X, Li Y, Yang H, Wang J, Lam TW.** 2012.
752 SOAPdenovo2: an empirically improved memory-efficient short-read de novo
753 assembler. *GigaScience* **1**: 18.
- 754 48. **Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW.** 2015.
755 CheckM: assessing the quality of microbial genomes recovered from isolates, single
756 cells, and metagenomes. *Genome Res* **25**: 1043-1055.
- 757 49. **Markowitz VM, Chen IM, Palaniappan K, Chu K, Szeto E, Grechkin Y, Ratner
758 A, Jacob B, Huang J, Williams P, Huntemann M, Anderson I, Mavromatis K,**

- 759 **Ivanova NN, Kyrpides NC.** 2012. IMG: the Integrated Microbial Genomes database
760 and comparative analysis system. *Nucleic Acids Res* **40**:D115-122.
- 761 50. **Oren A, Pohla H, Stackebrandt E.** 1987. Transfer of *Clostridium-Loretii* to a New
762 Genus *Sporohalobacter* Gen-Nov as *Sporohalobacter-Loretii* Comb-Nov, and
763 Description of *Sporohalobacter-Marismortui* Sp-Nov. *Systematic and Applied*
764 *Microbiology* **9**:239-246.
- 765 51. **Fredrickson JK, Zachara JM, Kennedy DW, Dong H, Onstott TC, Hinman NW,**
766 **Li SM.** 1998. Biogenic iron mineralization accompanying the dissimilatory reduction
767 of hydrous ferric oxide by a groundwater bacterium. *Geochim Cosmochim Acta*
768 **62**:3239-3257.
- 769 52. **Hansel CM, Benner SG, Neiss J, Donhnalkova A, Kukkadapu RK, Fendorf S.**
770 2003. Secondary mineralization pathways induced by dissimilatory iron reduction of
771 ferrihydrite under advective flow. *Geochim Cosmochim Acta* **67**:2977-2992.
- 772 53. **Roden EE, Urrutia MM.** 2002. Influence of biogenic Fe(II) on bacterial crystalline
773 Fe(III) oxide reduction. *Geomicrobiol J* **19**:209-251.
- 774 54. **Roh Y, Zhang CL, Vali H, Lauf RJ, Zhou J, Phelps TJ.** 2003. Biogeochemical and
775 environmental factors in Fe biomimetic magnetite and siderite formation. *Clays*
776 and Clay Miner **51**:83-95.
- 777 55. **O'Loughlin EJ, Boyanov MI, Flynn TM, Gorski CA, Hofmann SM, McCormick**
778 **ML, Scherer MM, Kemner KM.** 2013. Effects of bound phosphate on the
779 bioreduction of lepidocrocite (gamma-FeOOH) and maghemite (gamma-Fe₂O₃) and
780 formation of secondary minerals. *Environ Sci Technol* **47**:9157-9166.
- 781 56. **McInerney MJ, Sieber JR, Gunsalus RP.** 2009. Syntrophy in anaerobic global
782 carbon cycles. *Curr Opin Biotechnol* **20**:623-632.

- 783 57. **Flynn TM, O'Loughlin EJ, Mishra B, DiChristina TJ, Kemner KM.** 2014. Sulfur-
784 mediated electron shuttling during bacterial iron reduction. *Science* **344**:1039-1042.
- 785 58. **Haveman SA, Holmes DE, Ding YH, Ward JE, Didonato RJ, Jr., Lovley DR.**
786 2006. c-Type cytochromes in Pelobacter carbinolicus. *Appl Environ Microbiol*
787 **72**:6980-6985.
- 788 59. **Shi L, Rosso KM, Clarke TA, Richardson DJ, Zachara JM, Fredrickson JK.**
789 2012. Molecular Underpinnings of Fe(III) Oxide Reduction by *Shewanella*
790 *Oneidensis* MR-1. *Front Microbiol* **3**:50.
- 791 60. **Zhilina TN, Tourova TP, Kuznetsov BB, Kostrikina NA, Lysenko AM.** 1999.
792 *Orenia sivashensis* sp nov., a new moderately halophilic anaerobic bacterium from
793 Lake Sivash lagoons. *Microbiol* **68**:452-459.
- 794 61. **Sorokin DY, Kolganova TV.** 2014. Bacterial chitin utilization at halophilic
795 conditions. *Extremophiles* **18**:243-248.
- 796 62. **Dahle H, Garshol F, Madsen M, Birkeland NK.** 2008. Microbial community
797 structure analysis of produced water from a high-temperature North Sea oil-field.
798 *Antonie Van Leeuwenhoek* **93**:37-49.
- 799 63. **Bosch J, Heister K, Hofmann T, Meckenstock RU.** 2010. Nanosized iron oxide
800 colloids strongly enhance microbial iron reduction. *Appl Environ Microbiol* **76**:184-
801 189.
- 802 64. **Roden EE, Zachara JM.** 1996. Microbial reduction of crystalline iron(III) oxides:
803 Influence of oxide surface area and potential for cell growth. *Environ Sci Technol*
804 **30**:1618-1628.
- 805 65. **Arnold RG, DiChristina TJ, Hoffmann MR.** 1988. Reductive dissolution of Fe(III)
806 oxides by *Pseudomonas* sp. 200. *Biotechnol Bioeng* **32**:1081-1096.

- 807 66. **Das S, Hendry MJ, Essilfie-Dughan J.** 2011. Transformation of Two-Line
808 Ferrihydrite to Goethite and Hematite as a Function of pH and Temperature. Environ
809 Sci Technol **45**:268-275.
- 810 67. **Taitel-Goldman N.** 2013. Recrystallization Processes Involving Iron Oxides in
811 Natural Environments and In Vitro. *In* Wilson P (ed), Recent Developments in the
812 Study of Recrystallization doi:10.5772/53735. Intech.
- 813 68. **Levar CE, Chan CH, Mehta-Kolte MG, Bond DR.** 2014. An inner membrane
814 cytochrome required only for reduction of high redox potential extracellular electron
815 acceptors. MBio **5**:e02034.
- 816 69. **Bethke CM, Sanford RA, Kirk MF, Jin QS, Flynn TM.** 2011. The
817 Thermodynamic Ladder in Geomicrobiology. Am J Sci **311**:183-210.
- 818 70. **Ma C, Zhuang L, Zhou SG, Yang GQ, Yuan Y, Xu RX.** 2012. Alkaline
819 extracellular reduction: isolation and characterization of an alkaliphilic and
820 halotolerant bacterium, *Bacillus pseudofirmus* MC02. J Appl Microbiol **112**:883-891.
- 821 71. **Ye Q, Roh Y, Carroll SL, Blair B, Zhou JZ, Zhang CL, Fields MW.** 2004.
822 Alkaline anaerobic respiration: isolation and characterization of a novel alkaliphilic
823 and metal-reducing bacterium. Appl Environ Microbiol **70**:5595-5602.
- 824 72. **Fuller SJ, McMillan DGG, Renz MB, Schmidt M, Burke IT, Stewart DI.** 2014.
825 Extracellular Electron Transport-Mediated Fe(III) Reduction by a Community of
826 Alkaliphilic Bacteria That Use Flavins as Electron Shuttles. Appl Environ Microbiol
827 **80**:128-137.
- 828 73. **Lengeler J, Drews G, Schlegel H.** 2009. Biology of the Prokaryotes. John Wiley &
829 Sons.
- 830 74. **Karp G.** 2008. Cell and Molecular Biology, 5 ed. Wiley.

- 831 75. **Straub KL, Benz M, Schink B.** 2001. Iron metabolism in anoxic environments at
832 near neutral pH. *FEMS Microbiol Ecol* **34**:181-186.
- 833 76. **Fredrickson JK, McKinley JP, Bjornstad BN, Long PE, Ringelberg DB, White
834 DC, Krumholz LR, Suflita JM, Colwell FS, Lehman RM, Phelps TJ, Onstott TC.** 1997. Pore-size constraints on the activity and survival of subsurface bacteria in a late
835 Cretaceous shale-sandstone sequence, northwestern New Mexico. *Geomicrobiology
836 Journal* **14**:183-202.
- 838 77. **Buckel W, Thauer RK.** 2013. Energy conservation via electron bifurcating
839 ferredoxin reduction and proton/Na⁺ translocating ferredoxin oxidation. *Biochim
840 Biophys Acta* **1827**:94-113.
- 841 78. **De Luca G, de Philip P, Dermoun Z, Rousset M, Vermeglio A.** 2001. Reduction of
842 technetium(VII) by *Desulfovibrio fructosovorans* is mediated by the nickel-iron
843 hydrogenase. *Appl Environ Microbiol* **67**:4583-4587.
- 844 79. **Peters JW.** 1999. Structure and mechanism of iron-only hydrogenases. *Curr Opin
845 Struct Biol* **9**:670-676.
- 846 80. **Calusinska M, Happe T, Joris B, Wilmotte A.** 2010. The surprising diversity of
847 clostridial hydrogenases: a comparative genomic perspective. *Microbiology*
848 **156**:1575-1588.
- 849 81. **Slobodkin AI.** 2005. Thermophilic microbial metal reduction. *Mikrobiologiiia*
850 **74**:581-595.
- 851 82. **Munch JC, Ottow JCG.** 1983. Reductive transformation mechanism of ferric oxides
852 in hydromorphic soils. *Environ Biogeochem Ecol Bull* **35**:383-394.
- 853 83. **Lehours A-C, Rabiet M, Morel-Desrosiers N, Morel J-P, Brigitte LJ, Arbeille
854 GM, Fonty G.** 2010. Ferric iron reduction by fermentative strain BS2 isolated from
855 an iron-rich anoxic environment (Lake Pavin, France). *Geomicrobiol J* **27**:714-722.

- 856 84. **Lovley DR, Phillips EJ.** 1986. Organic matter mineralization with reduction of ferric
857 iron in anaerobic sediments. *Appl Environ Microbiol* **51**:683-689.
- 858 85. **Pollock J, Weber KA, Lack J, Achenbach LA, Mormile MR, Coates JD.** 2007.
859 Alkaline iron(III) reduction by a novel alkaliphilic, halotolerant, *Bacillus* sp isolated
860 from salt flat sediments of Soap Lake. *Appl Environ Microbiol* **77**:927-934.
- 861 86. **Bonneville S, Behrends T, Van Cappellen P.** 2009. Solubility and dissimilatory
862 reduction kinetics of iron(III) oxyhydroxides: A linear free energy relationship.
863 *Geochim Cosmochim Acta* **73**:5273-5282.
- 864 87. **Trolard F, Tardy Y.** 1987. The stabilities of gibbsite, boehmite, aluminous goethites
865 and aluminous hematites in bauxites, ferricretes and laterites as a function of water
866 activity, temperature and particle size. *Geochim Cosmochim Acta* **51**:945-957.

867

868 **Funding information**

869 This project was co-funded by a U.S. Department of Energy National Energy
870 Technology Laboratory (NETL) grant award (US DOE DE-FC26-05NT42588), and the
871 National Aeronautics and Space Administration (NASA) through the NASA Astrobiology
872 Institute under Cooperative Agreement No. NNA13AA91A issued through the Science
873 Mission Directorate. The XAFS data collection and analyses and effort of KMK, MIB, EJO,
874 and TMF were supported by the Subsurface Science Scientific Focus Area (SFA) at Argonne
875 National Laboratory funded by the Subsurface Biogeochemical Research Program, Office of
876 the Biological and Environmental Research, Office of Science, U.S. Department of Energy
877 (DOE), under contract DE-AC02-06CH11357. MRCAT/EnviroCAT operations are
878 supported by DOE and the MRCAT/EnviroCAT member institutions.

879

880 **Acknowledgements**

881 This project was a fully collaborative research effort. The Illinois Basin-Decatur Project
882 (IBDP) well was planned, drilled and maintained by the Midwest Geological Sequestration
883 Consortium (MGSC), Schlumberger Carbon Services and Water Services, led by the Illinois
884 State Geological Survey (ISGS). We thank technical support from Lou Ann Miller for TEM
885 at the Frederick Seitz Materials Research Laboratory Central Facilities, UIUC. Yongqi Lu
886 with Illinois State Geological Survey kindly analyzed BET surface area for the ferric iron
887 minerals used in this study. We especially appreciate Bhoopesh Mishra, Drew Latta, and the
888 MRCAT/EnviroCAT beamline staff for assistance during XAFS data collection.

889 Table 1. Physiological characterization of strain Z6 and its closest phylogenetic relative

Character	Strain Z6	<i>Orenia chitinotropha</i> ^T (61)	<i>Orenia marismortui</i> ^T (39, 50)	<i>Orenia salinaria</i> ^T (39)	<i>Orenia sivashensi</i> ^T (60)
Sample characteristics					
Habitat	2.1 km depth, Illinois Basin, IL, USA	Saline lake, Russia	Dead sea	Solar salterns, France	Saline lagoons, Crimea Peninsula
Morphology (D×L) (μm)	Rod (0.5×(2-20))	Rod ((0.25- 0.3)×(5-15))	Rod (0.6×(3-13))	Rod (1×(6-10))	Rod ((0.5- 2.5)×(2.5-10))
Spore formation	+	+	+	-	+
Gram Stain	-	-	-	-	-
G+C content of DNA (%)	32.1	32	29.6	33.7	28.6
Oxidase	-	NA	-	-	NA
Catalase	-	NA	-	-	NA
NaCl range (optimal) (%)	2-20 (2.8)	5.8-16(8.8)	3-18(3-12)	2-25(5-10)	5-25 (7-10)
Temp. range (optimal) (°C)	20-60 (30-50)	-45(40)	25-50 (36-45)	10-50(40-45)	25-50 (40-45)
pH range (optimal)	6-9 (6-7)	6.8-8.2(7.2-7.4)	NA ^b	5.5-8.5 (7.2-7.4)	5.5-7.8 (6.3-6.6)
Major membrane fatty acids	16:0, 16:1 18:0	14:1, 14:0, 16:0	14:0, 16:0, 16:1, 18:0	NA	NA
Fermentation^c					
Betaine	+-	NA	NA	-	-
Celllobiose	+	+	NA	+	+
Chitin	NA	+	-	NA	-
Fructose	+	NA	+	+	-
Fumarate	-	NA	-	NA	-
Galactose	-	-	-	-	-
Glucosamine	-	+	-	-	NA
Glutamate	-	NA	-	-	+
Glucose	+	+	+	+	+
Glycine	+	NA	-	-	-

890	Glycerol	+	NA	-	-	-
891	Lactose	-	-	NA	-	-
892	Mannose	+	-	+	-	+
893	Maltose	+	+	+	+	+
894	Mannitol	-	NA	NA	+	+
895	Peptone	-	NA	NA	NA	NA
896	Starch	+	-	+	-	+
897	Sucrose	+	+	+	+	+
898	Trehalose	+	-	NA	+	+
899						
900						
901	^a +, - and +/- indicate positive, negative and marginal response for the physiological properties or activity;					
902	^b Not studied or not available; ^c Growth for the fermenting cultures was identified by OD ₆₀₀ .					

903 Table 2. Iron dynamics and secondary biomineralization products as a function of initial Fe
 904 oxide substrate and iron-reducing organism

	Ferrihydrite Fe(OH) ₃	Lepidocrocite γ-FeO(OH)	Goethite (α-FeOOH)	Hematite (Fe ₂ O ₃)
Fe(III)_{int} (mmol/L)^a	9.66±0.66	10.19±0.99	10.02±0.15	15.27±0.22
Fe(II) speciation^b				
Fe(II) produced (mM)	3.87±0.24	4.40±1.35	2.35±0.18	4.51±0.23
Fe(II) _{tot} /Fe(III) _{int} (%) ^c	40.1±3.9	43±13	23.5±1.8	29.5±1.6
Fe(II) _{solid} /Fe(III) _{solid} (%) ^d	7.5	25	38.8	13.6
Fe(III) reduction rates				
Initial (μmole Fe(II)/h)	2.67±0.16	1.51±0.61	1.02±0.33	1.252±0.021
Initial (μmole Fe(II)/m ² /h)	0.742±0.046	1.79±0.80	0.88±0.28	0.572±0.036
Observed minerals by EXAFS fit^e				
Siderite	9	20	11	12
Vivianite	- ^f	5	10	-
Sorbed Fe(II) ^g	-	-	-	2
Ferrihydrite	23	-	-	-
Lepidocrocite	-	75	-	-
Goethite	-	-	79	-
Hematite	68	-	-	86
Magnetite	-	-	-	-
FeS	-	-	-	-

905 ^aFe(III)_{int} means the initial Fe(III) concentrations. ^bThe initial concentrations of ferrous iron in the samples were
 906 lower than 0.29 mM. ^cFe(II)_{tot}/Fe(III)_{int} indicate the fraction of ferric minerals reduced. ^dFe(II)_s/Fe(II)_{tot} is
 907 defined as the ratio of Fe(II) in the form of solid phase versus total Fe(II). ^eThe values show the relative content
 908 of Fe(II)/Fe(III) as percentage of the total Fe in the wet, filtered solids based on the linear combination fits of
 909 the XANES data. Results were obtained by a two-component XANES LC fit and the uncertainties are estimated
 910 as ±5%. ^f- denotes the values or minerals below detection limit or no statistical production occurred. Results
 911 were obtained by considering up to three of the components in a LC fit of the EXAFS data. ^gSorbed Fe(II)
 912 stands for the standard of Fe(II) adsorbed to carboxyl functionalized beads, which is used as the spectral
 913 representative of disordered Fe(II) associated with the mineral or bacterial surfaces in the system.

914

915

916

929

930 Figure 1. SEM (a) and TEM (b) photo micrographs of strain Z6. The isolates used for cell

931 morphology identification were grown in the presence of ferric citrate at 42 °C in modified

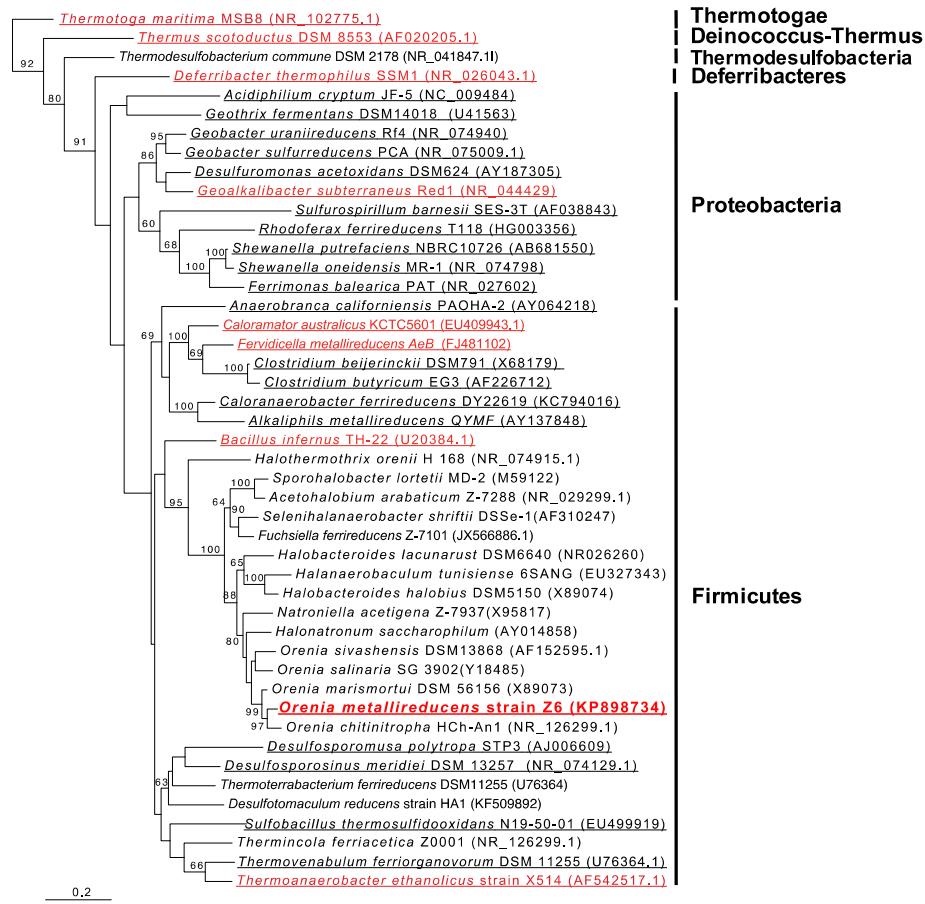
932 groundwater medium. The culture was prepared in modified groundwater medium (pH 7.0-

933 7.2). Ferric citrate (10 mM) was used as the electron acceptor. H₂ (202 µmol/tube) was used

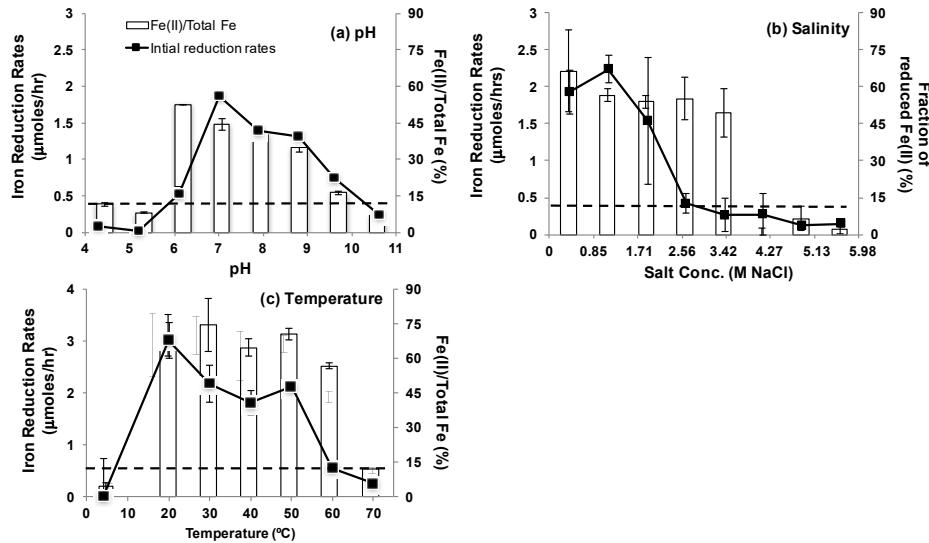
934 as the electron donor and acetate (5 mM) was used as the carbon source. The organism

935 contains peritrichous pili as indicated by the enlargement of the framed area shown in

936 subfigure in (b).

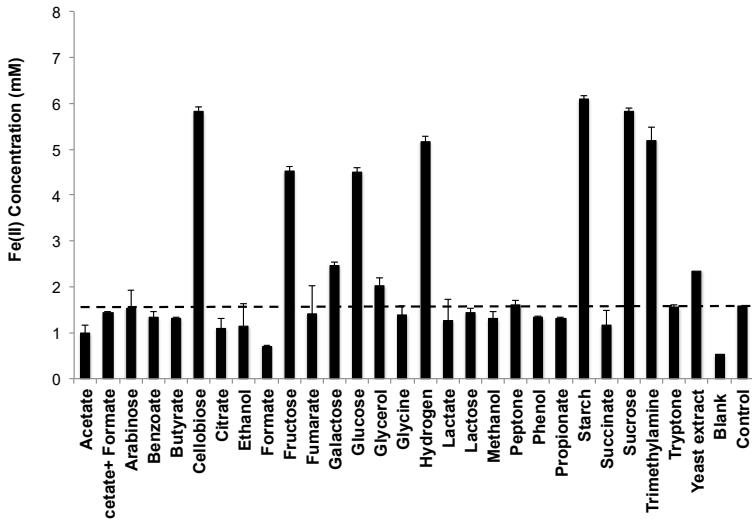

937

938


939

940 Figure 2. 16S rRNA gene-based phylogenetic tree of strain Z6, phylogenetically related
 941 organisms, and previously published iron-reducing bacteria type
 942 strains are underlined and the ones isolated from deep terrestrial subsurface are shown in red
 943 type. The NCBI accession numbers of the type strains are listed in parentheses. *Sulfolobus*
 944 *acidocaldarius* DSM 639 was used as the out-group and is not shown. Statistical confidence
 945 for the evolutionary tree was assessed by bootstrap analysis (500 replicates) and shown as
 946 bootstrap values in percentage. The values lower than 60 are not shown. The scale bar
 947 indicates 0.2 change per nucleotide position.

949
 950



951

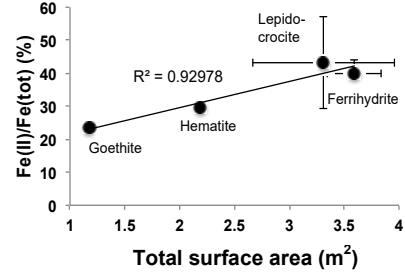
952

953 Figure 3. Effects of different geochemical factors on initial iron reduction rates and fractional
 954 amounts of ferrous iron produced. All the samples were prepared in modified groundwater
 955 medium. Ferrihydrite (10 mmol/L) was used as the electron acceptor. H₂ (202 μmol/tube)
 956 was used as the electron donor and acetate (5 mM) was used as the carbon source. In (b) and
 957 (c), the culture pH was 7.0-7.2. Duplicate samples were prepared and the error bars indicate
 958 standard deviation of replicate samples. The initial Fe(II) concentrations—due to the
 959 introduction of Fe(II) from parental cultures and/or reduction by the chemical reducers (Na₂S
 960 and cysteine) present as medium components—are indicated by the dashed lines.

961

962 Figure 4. Use of different organic and inorganic substrates to support reduction of ferrihydrite
 963 by Z6. All the samples were prepared in modified groundwater medium (pH 7.0-7.2).
 964 Ferrihydrite (10 mmol/L) was used as the electron acceptor. The uninoculated control
 965 samples are labeled as “Blank” and those inoculated with strain Z6 but without electron
 966 donor are labeled as “Control”. H₂ was amended as the electron donor for “Blank”. Under all
 967 the other conditions, the corresponding blanks were prepared in parallel with the active
 968 cultures and no significant changes in Fe(II) was observed. Error bars indicate average
 969 deviation of duplicate samples. The dashed lines show the final Fe(II) in “Control” to
 970 illustrate the iron reduction due to nutrient carryover from the parental cultures.
 971

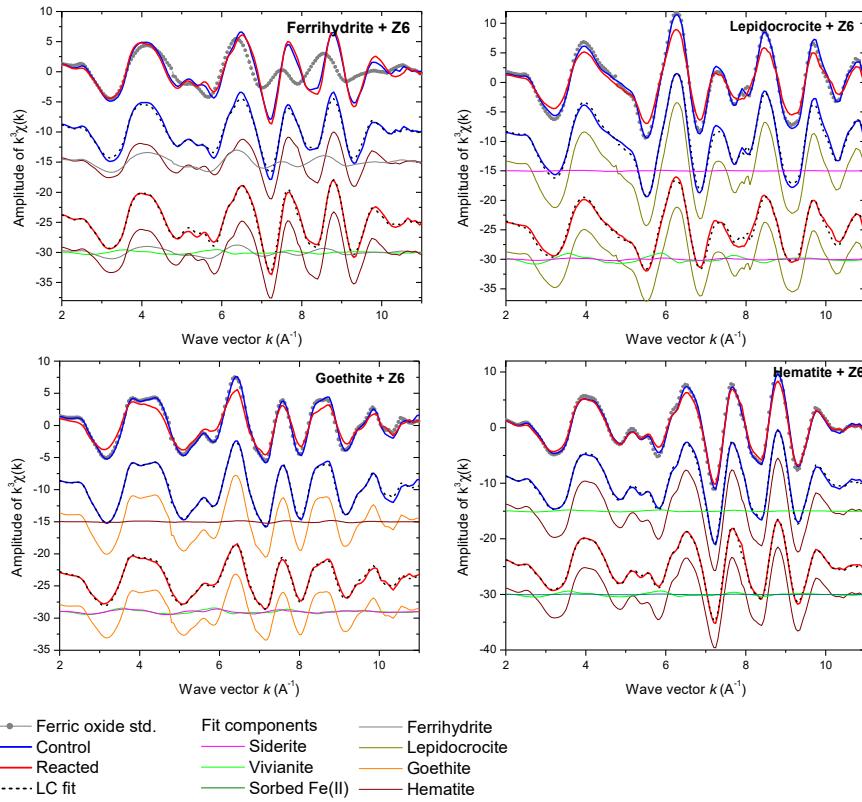
972


973

974 (a)

975

(b)

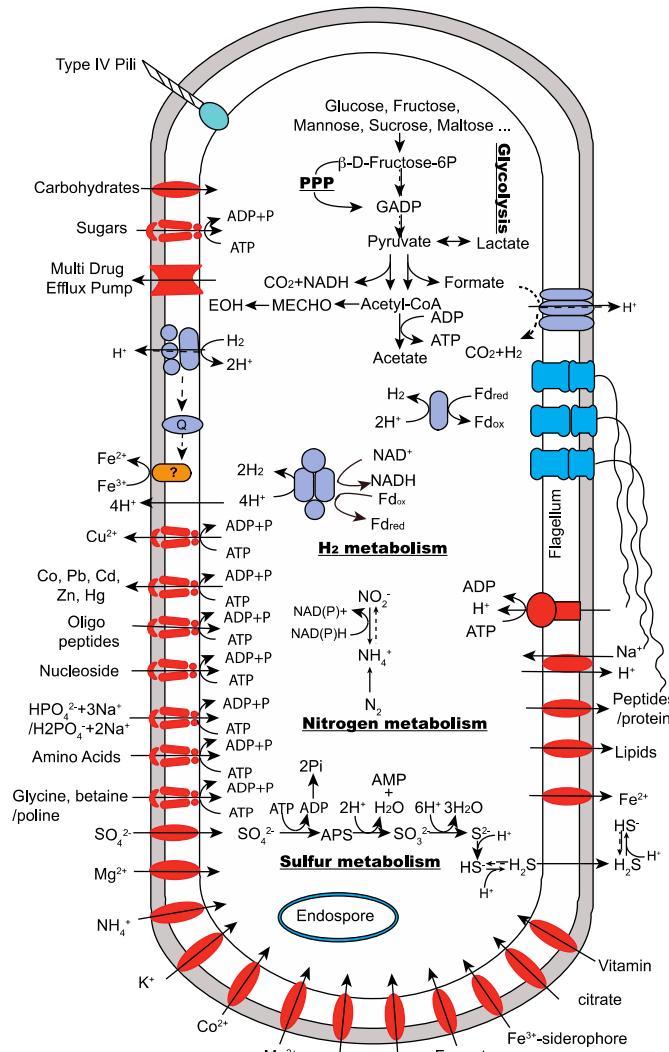


976 Figure 5. Reduction of different ferric iron minerals by strain Z6 (a) and relation between
 977 total mineral surface area of these minerals and fractional Fe(II) production (b). The samples
 978 were prepared in modified groundwater medium (pH 6.5). H_2 (202 $\mu\text{mol/tube}$) was used as
 979 the electron donor and acetate (5 mM) was used as the carbon source. The total surface area
 980 was calculated by the specific surface area multiplied by the mass of the ferric iron oxide
 981 mineral amended into each sample. All the samples were prepared in duplicate and the error
 982 bars indicate standard deviation of the replicates. AFH: amorphous ferrihydrite.
 983

984

985

986



987

988 Figure 6. Fe K-edge EXAFS spectra and linear combination fits. Spectra from the reacted
 989 solids (red) are compared to the control reactor (blue) and the corresponding parent iron
 990 oxides at the top of each graph. The linear combination fit (black dashed line) of the control
 991 sample (blue) is shown below the comparison plot, together with the scaled components in
 992 the fit. The linear combination fit (black dashed line) of the bio-reduced solids (red) is shown
 993 below the LC of the control, together with the scaled components in the fit. The numerical
 994 results of the fits are listed in Table 1.
 995

996

997 Figure 7. Genomic reconstruction for strain Z6 based on the predicted ORFs from its
 998 genome. The solid lines indicate the metabolic functions with identified ORFs, while the
 999 dashed lines mean those without ORFs annotated in the genome of strain Z6. ADP: adenosine
 1000 diphosphate; ATP: adenosine triphosphate; AMP: adenosine monophosphate; APS:
 1001 adenosine 5'-phosphosulfate; D-fructose-6P: D-fructose 6-phosphate; GADP: D-
 1002 glyceraldehyde-3-phosphate; MECHO: acetylaldehyde; EOH: ethanol; NADH/NAD+:
 1003 nicotinamide adenine dinucleotide; PPP: pentose phosphate pathway.
 1004

