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We Learn to Add -- The Global Sum Problem

Background

In Search of Numerical Consistency in Parallel Programming, Robey,
R.W., Robey, J.M., Aulwes, R., Parallel Computing, Vol. 37, Issues 4-5,
April-May 2011, pgs. 217-229
— Jon Robey, UC Davis
— Rob Aulwes, CCS-7, LANL

* Other helpful sources

— M. Cleveland, T. Brunner, N. Gentile, and J. Keasler, Lawrence Livermore National
Laboratory (LLNL), Obtaining Identical Results with Double Precision Global
Accuracy on Different Numbers of Processors in Parallel Particle Monte Carlo
Simulations., Journal of Computational Physics, Vol. 251, Oct 15, 2013

— D. Bailey, et.al — higher precision arithmetic libraries
— Peter Ahrens, UC Berkeley and now MIT



Reproducibility Problem for Parallel Processing

answers change with number of processors

* Finite precision addition not associative
» Order of operations change with number of processors
* Precision errors same order of magnitude as programming errors

— boundary condition errors
— old ghost cell values
» Solver iterations change with number of processors
» Stability of method is posited on conservation laws, but cannot check

total mass and energy with global sum with enough precision to verify
correct implementation




Error of Our Ways

The Prevailing Thought for a Decade (or more)

» Global sums (such as total mass and energy or total residual error) vary
with number of processors

* It is an order problem because finite precision arithmetic is not
associative
— Can be fixed by sorting, but this is too expensive and difficult with distributed
memory
» Solver iterations should use max residual error because total residual
error varies with number of processors

So we just have to live with it ...?...




The Revelation

* It is a precision problem!
— Enough precision and addition is associative

But Now the Questions
 How much precision is enough?
 What is the impact at the application level?
 What is the cost of the precision?




The Study

- Take a simple compressible fluid dynamics hydrocode with total mass
and energy checks

« Compile and run with standard global sums, recording change in total
mass and energy

- Besides the order changing of global sums, there is also a time-
marching error — which dominates?

* Pure order change in sum is examined by reversing the loops so they
run from nsize to 0 instead of 0 to nsize




Local Kahan Sum

* Lets try the Kahan Sum using two doubles

double corrected_next_term, new_sum, sum=0.0, correction=0.0;
for(unsigned int j=nbound; j<mysize+nbound; j++){
for(unsigned int i=nbound; i<isize+nbound; i++){
corrected_next_term = var[j][i]*deltaX*deltaY - correction;
new_sum = sum + corrected next_term;
correction = (new_sum - sum) - corrected_next_term;
sum = new_sum;

} o}

This gives us essentially 128 bits precision for the local
sums with the MPI sums still just a single double.

Let’s see the results.



Summary Table (cont)

Conservation max relative diffs in machine epsilon (adjusted to half epsilon):

Normal: Mass: 13434 Energy -9615
Reverse: Mass: 456918 Energy -232830
Long: Mass: 16 Energy 0
Long Reverse: Mass: -72 Energy 0
Kahan simple: Mass: 0 Energy 0
Kahan corrected: Mass: 0 Energy 0
Kahan mpiop: Mass: 0 Energy 0
Rev Kahan mpiop: Mass: 0 Energy 0

Conservation max relative diffs calculated from absolute error/orig total:

Normal: Mass: 1.49148489%e-12 Energy -1.067482042e-12
Reverse: Mass: 5.072813106e-11 Energy 0
Long: Mass: 1.831064039e-15 Energy 0
Long Reverse: Mass: -7.990097625e-15 Energy 0
Kahan simple: Mass: 0 Energy 0
Kahan corrected: Mass: 0 Energy 0
Kahan mpiop: Mass: 0 Energy 0
Rev Kahan mpiop: Mass: 0 Energy 0

MACHINE EPS IS 2.220446049e-16



* With many processors, we may need to maintain precision in the
MPI Sum. To do so, we define a new MPI op as follows:

MPI_Type_contiguous(2, MPI_DOUBLE, &MPI_TWO_DOUBLES);
MPI_Type_commit(&MPI_TWO_DOUBLES);

MPI_Op_create((MPIl_User_function *)kahan_sum, 1, &KAHAN_SUM);

MPI_Allreduce(&local, &global, 1, MPI_ TWO_DOUBLES, KAHAN_SUM,
MPT_COMM_WORLD);

MPI_Op_free(&KAHAN_SUM);
MPI_Type_free(&MPI_TWO_DOUBLES);

The type and op can be created once at startup and

destroyed once at the end of the program rather than every
use. The user op is on the next page.



Kahan Sum User Op

void kahan_sum( struct esum_type * in, struct esum_type * inout , int *
len, MPI_Datatype *MPI_TWO_DOUBLES)

double corrected _next_term , new_sum;

corrected_next_term = in->sum + ( in->correction + inout->correction) ;
new_sum = inout->sum + corrected_next_term ;

inout->correction = corrected_next_term - (new_sum - inout->sum) ;
inout->sum = new_sum;




Our Discoveries

 How much precision is enough?

— Varies by the problem, but 2 extra digits is not enough (long double or 80 bit numeric
registers). Four extra digits is a minimum. Two doubles suffices for most problems. A
rounding routine can help with a consistent result.

 What is the impact at the application level?

— We achieve near perfect reproducibility regardless of number of processors. We can
also verify the correct implementation of the conservation equations.

 What is the cost of the precision?

— Coding is simple. Run-time cost is low and when MPI Allreduce is factored in, almost
free. Applications that do more frequent global sums may need to be more selective
in the use of enhanced precision sums.




Thoughtful Precision in Mini-apps

The CLAMR mini-app was run in full, il \ ln‘ |
mixed, and minimum precision (mixed ol [\ /i |
stores state in single and computes in Z B / |
double precision). CLAMR implements the =t VARV | 1
shallow-water equations. l ‘

: \
The upper graph shows the results for all e — g

the runs are visually identical for the

circular dam break problem. B seos |

£
The lower plot shows the difference ; TR
between pairs of runs. Most of the A ool Y = Mixed - Min -
difference is between mixed and minimum. Position ’

Fig. 1. Comparison shows slices of CLAMR simulation results are nearly
identical for each precision level (top) with 64 grid points and 2 levels of AMR.
Differences between full and mixed precision results are smallest (bottom)
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Runtime and storage savings

TABLE 1. SINGLE PRECISION IMPROVES CLAMR RUNTIMES AND

Looking at the run-time REDUCES MEMORY USE

across various CPU and Arch. Memory Usage (GB) Runtime Speedup
GPU h d . | Min Mixed  Full Min Mixed Full
o ardware, singie Haswell 159 160 166 263 299 313 19%
precision can run faster and Broadwell 159 159 166 253 310 314 24%
n r Tesla K40m 050 050 052 49 128 128  261%
do so on cheape
hardware. Quadro K6000 050 050 050 42 106 106  252%

GTX TITAN X  0.50 0.52 0.58 2.8 12.5 12.7 453%

The bottom table shows
that even on the CPU the

. TABLE III. CLAMR PRECISION COMPARISONS AND VECTORIZATION
runs are faster and a third

Of Storage iS Saved. . _ Min. Precision Mixed Precision Full Precision
finite_diff time unvectorized 11.4 12.3 12.7
finite_diff time vectorized 4.8 8.9 9.2
Checkpoint file size 86M 86M 128M

Los Alamos National Laboratory 10/5/17 | 13



Hashing — A path to scalable algorithms

* Many leading algorithms are tree-based using O(log n) comparisons
» Tree-based algorithms are difficult to implement on GPUs.
« Can we do better?

Let’s sort the room alphabetically.
Method 1:

» Pair up and and compare your last names. If earlier in a dictionary sequence,
move left, else move right.

* Repeat — (GPU note: when you reach the end of your row, it is like reaching the
end of a workgroup and you must exit your kernel and start a new one)

* When you arrive at the front of the room, you will be sorted
Method 2:
 Line up bins across the room labeled A-Z.

« Each person comes up to the front of the room and lines up at the beginning letter
of their last name

« If there are more then one person in a bin, we repeat the sort.

Los Alamos National Laboratory 10/5/17 | 14



Observations on the hash method

« Can be O (1)

 No comparisons — perfect algorithm for <insert your major here>; you
don’t have to talk to anyone

Less data movement
Much easier to program on the GPU

Needs to be customized for the data (A-Z doesn’t work for numbers)
Requires extra memory

« So how do we utilize this concept in numerical calculations?

Los Alamos National Laboratory 10/5/17 | 15



Perfect Hashing applied to AMR

and Unstructured Methods

[~ Cell Sz, . B « The key is to define a hash bin size
N ———— S small enough that only one spatial

"Differential Discretized Data" used as =A

Spatial hash based on minimum

a Computational Mesh ;- o g cell size location will map to it.

. ES /BBuB * AMR —the hash size is set to the
4 NEHPE smallest cell size.
, ==
2?7 . « Unstructured — based on minimum
N . Sz distances in cell
At SYVANY B B _ Xi _Xmin
. E A k -
A Y e ) LN 9D Spatial Hash AXmin
AMR and Unstructured Mesh



Find Neighbors by Hash Look-up

i AMR Mesh Hash Table
11 11 |71|71|70|70|54]|54|53]|53] 48|48 47|47
5| 7 70 3 48 7
10 / 10 |71|71|70|70|54|54|53]|53]|48]48]|47]47
9 5{5 57 | 52 46 9 |es|68|69|69|55|57|52|49]|45]|45]46]46
4| 68 69 5 6
8 56 | 4s | 3150 s |6s|68|69|69|56|58|51|50]45]|45]46]46
7 66 | 63162 | 49 | a7 | 39440 | 45 7 le7|e67|66|63|62|59]|37|39]|40]|43|44](44
3| e 4
6 5164 | 61160 | 36 [ 38 | 41142 6 |67|67|65|64|61]|60|36]|38]41|42]44]44
5 57 | vo-41 | 45 | 43 | 6139 5 |4|4|6|7|10]l11]35]|33]|30]29]27]27
2 | | - 7
4 ~5 9 | 12| 34 | 32441 | 257 4 |ala|s]|8|9|12]34]|32]31]28]27]27
N
=1 13|36 3) s l3lalalislisloolon!26)26]|25]25
(3}1 o 1 26/ 5 O =%/
2 16 4] 19| 2 2 |3l3|2]2|16|14]|19|22]|26]26]25]25
1 \ \ 1 {olol1|1]|17]17]18] 18|23 232424
o| o 8 >3 4
0 o |olo|1]|1|17]17]18|18]23]|23]24]24
%

p—

0 1 2 4 5 .
0 1 2 38 4 5 6 9 10 11 ' 01234567@91011

Each cell writes its cell number to hash buckets it covers
Right neighbor of cell 21 is at col 8, row 3. Look up in hash and it is cell 26



Unstructured Hash Concept

Nicholaeff, D. and Robey, R.N., Poster at 2012 LANL Student Symposium

1. Every cell writes its cell number into the bin at the center of each face. If the
face is to the left and up from the center it writes its index to the first of two
places in the bin, else it writes to the second place.

2. Every cell checks for each face if there is a number in the other bucket. If
there is, it is the neighbor cell. If not, it is an external face with no neighbor.

- We have found our neighbors in a single write and read!



Speed-Up Summary

Note: Based on problem sizes (# of elements or cells) of around 2 million. Reference CPU is generally accepted
method for that operation: quicksort, kD-tree, and bisection.

CPU Hash NVIDIA ATI NVIDIA ATI
Relative to k-D tree, quicksort, CPU Hash Reference CPU
bi-section ** *

Sort 4.16 215 28.6 89.3 118.9
Sort 2-D 16.2 26.2 37.8 424 1 611.5
Neighbor 54.4 16.6 242 903.5 1316.0

Neighbor 2-D 75.5 19.1 19.1 1444.0 1445.3
Remap 18.4 26.9 48.1 495.2 885.8
Remap 2-D 13.6 42.2 61.6 574.0 837.8
Table 2.44 55.7 27.2 136.2 66.5

. Speed-ups are a combined result of:
. replacing an O(n log n) algorithm with an O(n) algorithm
. harnessing the massively parallel compute capability of the GPU
. **we could also thread the CPU, or MIC, instead of the GPU



Compact Hashing

Limits to Perfect Hashing:

 Need to accurately determine minimum size to avoid collisions
« Memory requirements can grow as max to min cell size grows
Benefits of Compact Hashing:

« Compact hashing allows collisions

 Reduces memory requirements

« Scales to large problem sets




From Perfect to Compact Hashes

bucket
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The Remap Problem — a tale of two meshes

Input Mesh Hash Output Mesh
f(avg)

We could simply have each cell in the input mesh write to all of its
underlying bins

Then the output mesh would just read the bins and average the density of
each of the cells

Los Alamos National Laboratory
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Reducing the writes and reads

Output Mesh

ol Ll Ll e | S A [
| IR N D N N N B B A N B §
I—'I—'I—‘I—'I—'I—“m

We could reduce the writes and reads by having only the lower-left cell
written with the input cell number.

Then the output mesh would try a read and if it fails, try where it would

be if it were one cell coarser. Working out the sequence of reads is a bit
complicated to handle all of the cases correctly.

10/5/17 | 23
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Hierarchical Hashes and Breadcrumbs

Input Mesh (i) Output Mesh (o)

We could reduce the
number of sentinels (-1)
needed by using a hierachy
of hashes.

Each cell in the input mesh
writes to the level mesh it is
at. Then if it is in the lower-
left corner of a group of
four, it goes up the coarser
mesh and writes -1.

The read phase reads its
location in the coarsest
hash and if it finds a -1, it
continues down the hashes.

avg(i4,i3,i9,avg(i5,ie,i7,is))

Los Alamos National Laboratory 10/5/17 | 24



More on Spatial Hashing — Publications and Code

Publications

D. Nicholaeff, N. Davis, D. Trujillo, and R. W. Robey, Cell-based adaptive mesh
refinement implemented with general purpose graphics processing units, Tech.
Rep. LA-UR-11-07127, Los Alamos National Laboratory, 2011.

R. N. Robey, D. Nicholaeff, and R. W. Robey, “Hash-based algorithms for discretized
data,” SIAM Journal on Scientific Computing, vol. 35, no. 4, pp. C346—-C368,
2013.

R. Tumblin, P. Ahrens, S. Hartse, and R. W. Robey, “Parallel compact hash
algorithms for computational meshes,” SIAM Journal on Scientific Computing, vol.
37, no. 1, pp. C31-C53, 2015.

G. Collom, C. Redman, R. W. Robey, “Fast mesh-to-mesh remaps using hash
algorithms”, In review.

Code — Open Source

Perfect Hashing — http://www.github.com/losalamos/PerfectHash
Compact Hash Neighbor — http://www.github.com/losalamos/CompactHash

Compact Hash Remap -- http://www.github.com/losalamos/CompactHashRemap




Compact Multimaterial Data Structures

Most cells have one or a few of the
many materials in a problem.

Which data structure is best for:
— Disk storage?

— Memory usage?

— Computational performance?

Depends on algorithm and data
structure

Cell 8
Mat 3
Cell 5
Mat 1 Mat 2
Cell 0 Cell Cell 2

10/5/17 | 26
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Compact Multimaterial Data Structures

all = | = gl = Algorithms can be Cell-dominant (outer
loop is over cells) or Material-dominant
Data Structures 7 loos!| 011 01 lo7s P _ ) ,
are cell major or (outer loop is over materials).
. 0.1 - 070 |F 02
cell-centric when M .
the outer index is € 5 | ~ [055]048) — | ©
c
by cell and the 1 4 |04 lossloos| - | ¢ 3
. l r
TaSteST[ varying s 3 NOBN - | - RORN i 2
index is by a
materials. 2= | = [ : 1
Material-centric 1 - = | =
has the material ol el =1l = T = Cells
for the outer index. . .
L2 3 4 Material-Centric
Materials
Cell-centric
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Compact Data Structures

State Arrays
V,p, t,p

-1 2 -1 2 3 2 3 4 -1 Number of Materials, nmats

tlolalalalalolals Material/Linked List Index nmats[1 [2[1]2[3]2]3]4]1]
imaterial

A/A/A/ 7 \ \ matigs [1 [ ]a]1 [z [a]a]2[a[a]a]2 [« [a[a] 1] 2[3][2]2]3]
r/ & :

Halala[a]s[a[a]z]s]4]3]a]a]4]
1| -1 3| -1]5 |6 [-1[8 [-1[10|1l|-1]|13]|14 |15 | -1 | nextfrac

1|13 3)a|lalals|s|e|le6]|6|7|7]|7]7]|fac2een meshasvoset [0 [1 [1 [2 [3 [ [4 [5 [1 |

/
Bi=4
N
N

subsethesh‘O [1[3[4[ 6[ 7‘

1 2 1 4 1 2 3 2 3 1 3 4 1 2 3 4 | Material

State Arrays

02 | 04 (0.5510.05 1055 (045 0.1 0.7 [ 02 |0.05| 0.1 [ 0.1 |0.75 | ;" " s mesh2subset [ 1] o{ 1\1 [/f [/ [y[ 1]
n
3 4 5 6 7 8 9 10 11 12 13 14 15 H suvsetzmesn [ 1 [ 3 [ 4 [ s | 7 ]
Mixed Data Storage Arrays o1 10_0[ 10_0[ 10 0[ 10.0[ 10 0[ 10.0 ‘
m omeshasuset| A [ a[a[afo[1]2]3]4a]
g , p2 [ 0.01] 0.01] 0.01] 0.01] 0.01]
7] subset2mesh 4 5 6 7 8 [ ] [ [

Cell Centric Compact Structure

mesthubset‘ -1 [,1 [,1 [0 [,1 [,1 [1 [2 [,1 ‘ P4 | 1.0
subset2mesh n

Subset 4
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Multimaterial Performance

Average Cell Density

With 100 materials and 1 million cells with w12, Compsct, Cell-dominant [ 23,08
few materials in each cell: Co, Compct dhicebyV @ 365

Cell, Compact, with rho_ave B 3.56
Cell, Compact, with nmats B 3.29
Cell, Compact B 3.27

Material, Full 2D Array, with if 1 84

The full 2D array data structures show run- il 20 Ay xR
times 50-135x times slower than the single e
material reference. 0 2 4 e s 100 120

RUN TIME (MS) LOWER IS BETTER

The compact data structures are only 3-20x Material Pressure
times slower than the single material. vetein, compact T 359

Cell, Compact :l 459

The result is reducing memory usage by e
95% and run—time by 90%_ Cell, Full 2D Array ] 1356

Single Material I 2.57

0 20 40 60 80 100 120 140 160
RUN TIME (MS) LOWER IS BETTER
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How to Apply

Upper division undergraduate students and early
graduate students in all scientific disciplines are

encouraged to apply. Students must be enrolled
in an accredited U.S. university and in good
academic standing and maintain a GPA of
3.0/4.0 or better.

To apply:
+ Submit a current resume (state citizenship)
« Unofficial transcript
« Letter of intent describing your
« research interests and experience,
+ computational/computing experience,
* interest in the program, and
« overall strengths and goals.

Send all application materials to:
Email: apply-parallelcomputing@]lanl.gov

Application Deadline January 26, 2018
Notification by mid-February 2018

Selection is based on programming, mathematics,

research and p. jons skills. Submission.
should clearly describe your desire to join this
program.

Those selected will be required to reply stating
their acceptance and provide official transcripts.

Compensation
Los Alamos National Laboratory offers very
competitive compensation:
+ 10-week salary of $7-10K (based on
education and experience)
» Reimbursement for approved travel costs

LA-UR-15-28310

Los Alamos National Laboratory

» Los Alamos
NATIONAL LABORATORY
EST.1943

i &
High in the mountains of Northern New Mexico, the
parallel finger mesas of Los Alamos provide a fitting
location for Parallel Computing Summer Research.

Parallel Computing

Summer Research Internship

Los Alamos, New Mexico provides the
perfect backdrop for a summer of hiking,
biking, rock climbing, running, and
immersing yourself in cutting-edge HPC.

Sponsor

The Parallel Computing Summer Research
Internship is funded by the Information Science
and Technology Institute (ISTT) at

Los Alamos National Laboratory. ISTI facilitates
scientific collaboration and scholarship.

Solving complex scientific
and national problems on
next-generation supercomputers.

Visit isti.lanl.gov to learn about other summer
programs.

http://parallelcomputing.lanl.gov
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PCSRI Goals

> TRAINING NEXT GENERATION

4  Systems Applications «  Provide solid HPC education

* Explore algorithms, methods and
technologies based on architectural

features

9 ~20 Students | ~20 Students  Instill good software development

Senior - 4 Yr PhD Students 6 Students 12 Students ;
3 Graduate (year round) PhD Students PhD Students practlces
2 Computer Systems, > DEVELOP COLLABORATION SKILLS
) Cluster & Networking
o Institut ) .
X MSHEEE Pilot Year (2016): 12 Students > 16 (2017) Create a common language and break

12 Students Upper level Undergrad - Early Grad down barriers from science domain to
Junior Undergraduate hardware

(partly sponsored by LANL)
350 High School & Middle School Students » ESTABLISH NEW PIPELINE FOR LANL

& OTHER PROGRAMS

» Over half of staff historically have
started in student programs

Figure 1: LANL HPC/Computing Student Pipeline by experience
level and topic area.
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Needed NOW more than ever

CPUs + GPUs Many-Core
(£ ‘. J;mnm MCDRAM 21:146 Dx“:' MCDRAM  MCDI IAM\
(L)J.F;FI?B \ g A 15—y \“"‘
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NVLink v 28 PU < NVLink = 272'\'\‘\‘-eads' e é EXASCALE
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It Takes a Community

Co-Leads Mentors Guest Lecturers
Neil Carlson (CCS-2 Bill Archer (ADX)
i  Bob Robey Hai Ah Nam ((CCS—Z)) Galen Shipman (CCS-7)
% XCP-2 Garrett Kenyon (CCS-3) Ryan Braithwaite (CCS-7)
: Cristina Garcia Cardona (CCS-3) Scott Pakin (CCS-7)
Rob Cunningham (HPC)
Hai Ah Nam Stefano Gandolfi (T-2) David Rogers (CCS-7)
CCS-2 Brendt Wohlberg (T-5) Jennifer Estrada (ISR)
Ron Green (CCS-7)
Bob Robey (XCP-2) Brendan Krueger (XCP-2)
Kris Garrett Jesse Canfield (XCP-4) KT Thompson (CCS-2)
CCS-2 Angela Herring (XCP-1)
Youzuo Lin (EES-17) Doug Jacobsen (Intel)
Eunmo Koo (EES-16) John Levesque (Cray)
i Joe Schoonover Laura Monroe (HPC-DES)
i CCS-2 (formerly) \
. VACANCY Workshop Coordinator \‘) i
Nickole Aguilar Garcia Q

ISTI Director — Stephan Eidenbenz
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. 2000000000000 NN
2017 PCSRI Student Research Projects

+ Asynchronous Dictionary Learning for Remote Sensing Imagery Classification Overlap
Prerna Patil (Brown), Kirtus Leyba (UNM); Mentors: Youzuo Lin (EES-17) .
Parallel Computing

+ Phase Transitions in Sparsely Coded Neural Networks .
Jacob Carroll (Virginia Tech), Nils Carlson (NM Tech); Mentor: Garrett Kenyon (CCS-3) with
- Towards Parallelized Dictionary Learning and Sparse Coding Machine Learning
Trokon Johnson (U of Florida), Rachel LeCover (Cornell); Mentors: Brendt Wohlberg (T-5), Cristina @arcia Cardona (CCS-3)
+ Parallelization of Volume of Fluid Algorithms on Unstructured Meshes
Justin Sunu (CGU), Alonso Navarro (SDSU), Donald Kruse (UNM); Mentor: Neil Carlson (CCS-2)
« Parallel Calculation of the Radiation View Factor Matrix using Charm++
William Rosenberger (UNM); Mentor: Neil Carlson (CCS-2)
+ Developing an efficient particle transport routine for the HIGRAD fluid dynamics software
Robert-Martin Short (UC Berkeley); Mentors: Eunmo Koo (EES-16), Bob Robey (XCP-2)
* Hydrodynamic Instability in Inertial Confinement Fusion
Bryan Kaiser (MIT); Mentor: Jesse Canfield (XCP-4)
*  Quantum Monte Carlo with OpenMP 4.0+ for Performance Portability
Jordan Fox (SDSU), Jenny Soter (Drew University); Mentors: Stefano Gandolfi (T-2), Hai Ah Nam (CCS-2)
» Thoughtful Precision in Mini-Apps
Siddhartha Bishnu (Florida State University), Shane Fogerty (U of Rochester); Mentors: Laura Monroe (HPC-DES), Bob Robey (XCP-2)
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* 8 Individual/Group posters presented at the LANL Student Symposium
» 2 Best Poster Winners for Computing

* Nils Carlson and Jacob Carroll: Investigating Phase Transitions in Sparsely Coded
Convolutional Neural Networks

« Siddhartha Bishnu and Shane Fogerty: Thoughtful Precision In Mini-apps
» 1 Distinguished Mentor Award: Bob Robey (XCP-2)

» 1 Distinguished Student Award: William Rosenberger (A-1)
« SC17 > poster submission, student volunteer, HPC 4 Undergrads
- Papers, conferences, etc.

» |IEEE Cluster paper acceptance (Fogerty, Bishnu, Robey)

« 2-3 papers in the works (continued collaborations)

 Internship at Starbucks Technology Center, Arizona

.WN@E@



LANL has a variety of summer schools,
workshops and internships.

They are run by enthusiastic, caring staff,
truly interested in the topic and in
working with students.

Programs are generally around 10 weeks
long and paid at the LANL student rates.

//_\ T

ya
. L;.Z, Alamos

NATIONAL LABORATORY

— EsTioa —— LANL Summer Schools

Educational internship opportunities for undergraduate and graduate students

The goal of summer schools is to augment student learning through focused lectures coupled with hands-on real-world
projects. The Information Science & Technology Institute (ISTT) organizes, co-sponsors, and/or supports the following
summer schools. ISTI enables LANL’s Integrating Information, Science, and Technology for Prediction (IS&T) pillar
to address emerging challenges in national security, societal prosperity, and fundamental science.

Visit http://isti.lanl.gov for more information and to apply to these internship opportuni

+ Parallel Computing Summer Research Internship
Providing students with a solid foundation in modern high performance computing (HPC) topics integrated with research
on real problems encountered in large-scale scientific codes
Target Student: Upper-level undergraduate and early graduate students; http://parallelcomputing.lanl.gov

+ Computer System, Cluster, and Networking Summer Institute (CSCNSI)
Learn the basics of high performance computing system administration. Students work in small project teams to execute
real-world projects on computer clusters that they have assembled and configured.
Target Student: Upper-level undergraduate and early graduate students; http://clustercomputing.lanl.gov

» Co-design School
Team research project for graduate students from varying backgrounds (usually CS, computational physics, and
ics) to work on a putational co-design topic, such as novel programming models on a specific application,
such as Hydro- and Molecular dynamics.
Target Student: Upper-level graduate students; http://codesign.lanl.gov

+ Data Science at Scale School
The Data Science at Scale School is active year round to recruit outstanding students to the laboratory to participate in data
intensive science projects. Particular focus is placed on using big data technologies to gain insights from science data.
Target Student: Upper-level undergraduate and graduate students; http://datascience.lanl.gov

+ Cyber Security Summer School
Students will learn the necessary concepts and skills for cyber incident response. In addition to classroom training and
lectures, students will spend most of their time working with a mentor on a small team project.
Target Student: Junior, Senior, or Master's student; http://cyberfire.lanl.gov/toaster.html

« Applied Machine Learning S Research Internship
Team research projects for graduate students from varying t d p science, statistic:
domain science fields) to apply machine learning methods to real-world scientific data analysis problems.
Target Student: Upper-level Graduate students; http://aml.lanl.gov
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or

LANL student summer fellowships:

¢ Computational Physics Workshop ¢ Los Alamos Dynamics Summer School
http://compphysworkshop.lanl.gov

http://ladss.lanl.gov




