
LA-UR-16-28005
Approved for public release; distribution is unlimited.

Title: Parallel Algorithms for the Exascale Era

Author(s): Robey, Robert W.

Intended for: Recruiting Presentation at New Mexico State University Oct 27th

Issued: 2017-10-06 (rev.1)

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for
the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Parallel Algorithms
for the Exascale Era

Robert W. Robey
Eulerian Applications Group

Los Alamos National Laboratory
New Mexico Tech
October 6th, 2017

LA-UR-16-28005

We Learn to Add -- The Global Sum Problem
Background
In Search of Numerical Consistency in Parallel Programming, Robey,

R.W., Robey, J.M., Aulwes, R., Parallel Computing, Vol. 37, Issues 4-5,
April-May 2011, pgs. 217-229
– Jon Robey, UC Davis
– Rob Aulwes, CCS-7, LANL

• Other helpful sources
– M. Cleveland, T. Brunner, N. Gentile, and J. Keasler, Lawrence Livermore National

Laboratory (LLNL), Obtaining Identical Results with Double Precision Global
Accuracy on Different Numbers of Processors in Parallel Particle Monte Carlo
Simulations., Journal of Computational Physics, Vol. 251, Oct 15, 2013

– D. Bailey, et.al – higher precision arithmetic libraries
– Peter Ahrens, UC Berkeley and now MIT

Reproducibility Problem for Parallel Processing
answers change with number of processors
• Finite precision addition not associative
• Order of operations change with number of processors
• Precision errors same order of magnitude as programming errors

– boundary condition errors
– old ghost cell values

• Solver iterations change with number of processors
• Stability of method is posited on conservation laws, but cannot check

total mass and energy with global sum with enough precision to verify
correct implementation

Error of Our Ways
The Prevailing Thought for a Decade (or more)
• Global sums (such as total mass and energy or total residual error) vary

with number of processors
• It is an order problem because finite precision arithmetic is not

associative
– Can be fixed by sorting, but this is too expensive and difficult with distributed

memory
• Solver iterations should use max residual error because total residual

error varies with number of processors

So we just have to live with it …?...

The Revelation

• It is a precision problem!
– Enough precision and addition is associative

But Now the Questions
• How much precision is enough?
• What is the impact at the application level?
• What is the cost of the precision?

The Study

• Take a simple compressible fluid dynamics hydrocode with total mass
and energy checks

• Compile and run with standard global sums, recording change in total
mass and energy

• Besides the order changing of global sums, there is also a time-
marching error – which dominates?

• Pure order change in sum is examined by reversing the loops so they
run from nsize to 0 instead of 0 to nsize

Local Kahan Sum

• Lets try the Kahan Sum using two doubles

double corrected_next_term, new_sum, sum=0.0, correction=0.0;
for(unsigned int j=nbound; j<mysize+nbound; j++){

for(unsigned int i=nbound; i<isize+nbound; i++){
corrected_next_term = var[j][i]*deltaX*deltaY - correction;
new_sum = sum + corrected_next_term;
correction = (new_sum - sum) - corrected_next_term;
sum = new_sum;

} }

This gives us essentially 128 bits precision for the local
sums with the MPI sums still just a single double.

Let’s see the results.

Summary Table (cont)

Conservation max relative diffs in machine epsilon (adjusted to half epsilon):
Normal: Mass: 13434 Energy -9615
Reverse: Mass: 456918 Energy -232830
Long: Mass: 16 Energy 0
Long Reverse: Mass: -72 Energy 0
Kahan simple: Mass: 0 Energy 0
Kahan corrected: Mass: 0 Energy 0
Kahan mpiop: Mass: 0 Energy 0
Rev Kahan mpiop: Mass: 0 Energy 0

Conservation max relative diffs calculated from absolute error/orig total:
Normal: Mass: 1.49148489e-12 Energy -1.067482042e-12
Reverse: Mass: 5.072813106e-11 Energy 0
Long: Mass: 1.831064039e-15 Energy 0
Long Reverse: Mass: -7.990097625e-15 Energy 0
Kahan simple: Mass: 0 Energy 0
Kahan corrected: Mass: 0 Energy 0
Kahan mpiop: Mass: 0 Energy 0
Rev Kahan mpiop: Mass: 0 Energy 0
MACHINE EPS IS 2.220446049e-16

MPI Kahan Sum

• With many processors, we may need to maintain precision in the
MPI Sum. To do so, we define a new MPI op as follows:

MPI_Type_contiguous(2, MPI_DOUBLE, &MPI_TWO_DOUBLES);
MPI_Type_commit(&MPI_TWO_DOUBLES);

MPI_Op_create((MPI_User_function *)kahan_sum, 1, &KAHAN_SUM);

MPI_Allreduce(&local, &global, 1, MPI_TWO_DOUBLES, KAHAN_SUM,
MPI_COMM_WORLD);

MPI_Op_free(&KAHAN_SUM);
MPI_Type_free(&MPI_TWO_DOUBLES);

The type and op can be created once at startup and
destroyed once at the end of the program rather than every
use. The user op is on the next page.

Kahan Sum User Op

void kahan_sum(struct esum_type * in , struct esum_type * inout , int *
len , MPI_Datatype *MPI_TWO_DOUBLES)

{
double corrected_next_term , new_sum;
corrected_next_term = in->sum + (in->correction + inout->correction) ;
new_sum = inout->sum + corrected_next_term ;
inout->correction = corrected_next_term - (new_sum – inout->sum) ;
inout->sum = new_sum;

}

Our Discoveries

• How much precision is enough?
– Varies by the problem, but 2 extra digits is not enough (long double or 80 bit numeric

registers). Four extra digits is a minimum. Two doubles suffices for most problems. A
rounding routine can help with a consistent result.

• What is the impact at the application level?
– We achieve near perfect reproducibility regardless of number of processors. We can

also verify the correct implementation of the conservation equations.
• What is the cost of the precision?

– Coding is simple. Run-time cost is low and when MPI Allreduce is factored in, almost
free. Applications that do more frequent global sums may need to be more selective
in the use of enhanced precision sums.

Thoughtful Precision in Mini-apps

10/5/17 | 12Los Alamos National Laboratory

The CLAMR mini-app was run in full,
mixed, and minimum precision (mixed
stores state in single and computes in
double precision). CLAMR implements the
shallow-water equations.

The upper graph shows the results for all
the runs are visually identical for the
circular dam break problem.

The lower plot shows the difference
between pairs of runs. Most of the
difference is between mixed and minimum.

Runtime and storage savings

10/5/17 | 13Los Alamos National Laboratory

Looking at the run-time
across various CPU and
GPU hardware, single
precision can run faster and
do so on cheaper
hardware.

The bottom table shows
that even on the CPU the
runs are faster and a third
of storage is saved.

Hashing – A path to scalable algorithms

10/5/17 | 14Los Alamos National Laboratory

• Many leading algorithms are tree-based using O(log n) comparisons
• Tree-based algorithms are difficult to implement on GPUs.
• Can we do better?

Let’s sort the room alphabetically.
Method 1:
• Pair up and and compare your last names. If earlier in a dictionary sequence,

move left, else move right.
• Repeat – (GPU note: when you reach the end of your row, it is like reaching the

end of a workgroup and you must exit your kernel and start a new one)
• When you arrive at the front of the room, you will be sorted
Method 2:
• Line up bins across the room labeled A-Z.
• Each person comes up to the front of the room and lines up at the beginning letter

of their last name
• If there are more then one person in a bin, we repeat the sort.

Observations on the hash method

10/5/17 | 15Los Alamos National Laboratory

• Can be O (1)
• No comparisons – perfect algorithm for <insert your major here>; you

don’t have to talk to anyone
• Less data movement
• Much easier to program on the GPU

• Needs to be customized for the data (A-Z doesn’t work for numbers)
• Requires extra memory

• So how do we utilize this concept in numerical calculations?

• The key is to define a hash bin size
small enough that only one spatial
location will map to it.

• AMR – the hash size is set to the
smallest cell size.

• Unstructured – based on minimum
distances in cell

Bk =
Xi − Xmin
ΔXmin

Perfect Hashing applied to AMR
and Unstructured Methods

Find Neighbors by Hash Look-up

0

3

4

67

68

71 70

5

66

69

65

63

64

54

10

61

15

16

17 18

14 19

13

12

11

60

5962

56

55 57

58

20 21

22

3234

35 33

3836

37 39

51 50

52 49

53 48 47

45 46

44

27

25

2423

26

31 28

2930

41 42

4340

2

1

8

76

9

543210
11109876543210

0

1

2

3

4

5

0

1

2

3

4

5

6

7

8

9

10

11

5

66

65

63

64

10

61

15

16 14 19

13

12

11

60

5962

56

55 57

58

20 21

22

3234

35 33

3836

37 39

51 50

52 49

31 28

2930

41 42

4340

8

76

9

11109876543210

0

1

2

3

4

5

6

7

8

9

10

11

0

0 0

0 1

1 1

1

22

2 2

3 3

33

4 4

44

17

17 17

17 18

18 18

18 23

23

26

26 26

26

23

23 24 24

2424

25 25

2525

27 27

2727

44 44

4444

464545 46

46464545

48 48 47 47

4747484853

5353

5354

5454

5470

70

69

6969

69

70

7071

71

68

68

67

6767

67

68

68

71

71

0
1
lev

el

AMR Mesh Hash Table

Right neighbor of cell 21 is at col 8, row 3. Look up in hash and it is cell 26
Each cell writes its cell number to hash buckets it covers

i

j

Unstructured Hash Concept

Nicholaeff, D. and Robey, R.N., Poster at 2012 LANL Student Symposium

1. Every cell writes its cell number into the bin at the center of each face. If the
face is to the left and up from the center it writes its index to the first of two
places in the bin, else it writes to the second place.
2. Every cell checks for each face if there is a number in the other bucket. If
there is, it is the neighbor cell. If not, it is an external face with no neighbor.
à We have found our neighbors in a single write and read!

Speed-Up Summary

CPU Hash NVIDIA ATI NVIDIA ATI

Relative to k-D tree, quicksort,
bi-section

CPU Hash
**

Reference CPU
**

Sort 4.16 21.5 28.6 89.3 118.9

Sort 2-D 16.2 26.2 37.8 424.1 611.5

Neighbor 54.4 16.6 24.2 903.5 1316.0

Neighbor 2-D 75.5 19.1 19.1 1444.0 1445.3

Remap 18.4 26.9 48.1 495.2 885.8

Remap 2-D 13.6 42.2 61.6 574.0 837.8

Table 2.44 55.7 27.2 136.2 66.5

Note: Based on problem sizes (# of elements or cells) of around 2 million. Reference CPU is generally accepted
method for that operation: quicksort, kD-tree, and bisection.

• Speed-ups are a combined result of:
• replacing an O(n log n) algorithm with an O(n) algorithm
• harnessing the massively parallel compute capability of the GPU
• **we could also thread the CPU, or MIC, instead of the GPU

Compact Hashing
Limits to Perfect Hashing:
• Need to accurately determine minimum size to avoid collisions
• Memory requirements can grow as max to min cell size grows
Benefits of Compact Hashing:
• Compact hashing allows collisions
• Reduces memory requirements
• Scales to large problem sets

From Perfect to Compact Hashes

Collision

The Remap Problem – a tale of two meshes

10/5/17 | 22Los Alamos National Laboratory

0
4

3 9
7 8

65

1 2
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

22 2 2
2 2 2 2
2 2 2 2
2 2 2 2

Input Mesh Hash

90

1
3

2
4

5 6 7 8

Output Mesh
(avg)

5 6
7 8

4
4

4
4

33
3 3 9

9 9
9

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

We could simply have each cell in the input mesh write to all of its
underlying bins

Then the output mesh would just read the bins and average the density of
each of the cells

Reducing the writes and reads

10/5/17 | 23Los Alamos National Laboratory

0
4

3 9
7 8

65

1 2

Input Mesh Hash

90

1
3

2
4

5 6 7 8

Output Mesh
5 6
7 84

3 9

-1

0

-1 -1 -1
-1 -1 -1 -1
-1 -1 -1 -1

-1 -1 -1
-1 -1

-1
-1-1

-1
-1 -1

-1

1

-1 -1 -1 -1
-1 -1 -1 -1

-1-1-1-1
-1 -1 -1 2

-1 -1 -1 -1
-1 -1 -1 -1
-1 -1 -1 -1

-1 -1 -1

Read 1

Read 2

We could reduce the writes and reads by having only the lower-left cell
written with the input cell number.

Then the output mesh would try a read and if it fails, try where it would
be if it were one cell coarser. Working out the sequence of reads is a bit
complicated to handle all of the cases correctly.

Hierarchical Hashes and Breadcrumbs

10/5/17 | 24Los Alamos National Laboratory

Input Mesh (i) Output Mesh (o)

0
4

3 9
7 8

65

1 2

0 9

1 2
3 4
5 6 7 8

1 2

0 -1

4

3 9

-1

5 6
7 8

90

1
3

2
4

5 6 7 8

avg(i₄,i₃,i₉,avg(i₅,i₆,i₇,i₈))

We could reduce the
number of sentinels (-1)
needed by using a hierachy
of hashes.
Each cell in the input mesh
writes to the level mesh it is
at. Then if it is in the lower-
left corner of a group of
four, it goes up the coarser
mesh and writes -1.
The read phase reads its
location in the coarsest
hash and if it finds a -1, it
continues down the hashes.

Publications
D. Nicholaeff, N. Davis, D. Trujillo, and R. W. Robey, Cell-based adaptive mesh

refinement implemented with general purpose graphics processing units, Tech.
Rep. LA-UR-11-07127, Los Alamos National Laboratory, 2011.

R. N. Robey, D. Nicholaeff, and R. W. Robey, “Hash-based algorithms for discretized
data,” SIAM Journal on Scientific Computing, vol. 35, no. 4, pp. C346–C368,
2013.

R. Tumblin, P. Ahrens, S. Hartse, and R. W. Robey, “Parallel compact hash
algorithms for computational meshes,” SIAM Journal on Scientific Computing, vol.
37, no. 1, pp. C31-C53, 2015.

G. Collom, C. Redman, R. W. Robey, “Fast mesh-to-mesh remaps using hash
algorithms”, In review.

Code – Open Source
Perfect Hashing – http://www.github.com/losalamos/PerfectHash
Compact Hash Neighbor – http://www.github.com/losalamos/CompactHash
Compact Hash Remap -- http://www.github.com/losalamos/CompactHashRemap

More on Spatial Hashing – Publications and Code

Compact Multimaterial Data Structures

10/5/17 | 26Los Alamos National Laboratory

Cell 0 Cell 1 Cell 2

Cell 3 Cell 4 Cell 5

Cell 6 Cell 7 Cell 8

Mat 1 Mat 2

Mat 3Mat 4

Most cells have one or a few of the
many materials in a problem.

Which data structure is best for:
– Disk storage?
– Memory usage?
– Computational performance?

Depends on algorithm and data
structure

Compact Multimaterial Data Structures

10/5/17 | 27Los Alamos National Laboratory

Cell-centric

Material-Centric

Algorithms can be Cell-dominant (outer
loop is over cells) or Material-dominant
(outer loop is over materials).

Data Structures
are cell major or
cell-centric when
the outer index is
by cell and the
fastest varying
index is by
materials.
Material-centric
has the material
for the outer index.

Compact Data Structures

10/5/17 | 28Los Alamos National Laboratory

10.0 10.0 10.0 10.0 10.0 10.0

0.01 0.01 0.01 0.01 0.01

5.1 5.1 5.1 5.1 5.1

1.0 1.0 1.0

1.0 0.6 0.8 0.4 0.1 0.05

0.4 1.0 0.55 0.55 0.1

0.05 0.45 0.7 0.1 1.0

0.2 0.2 0.75

1. 1. 1. 1. 1. 1. 1. 1. 1.V

1 2 1 2 3 2 3 4 1nmats

1 -1 -1 -1 1 2 -1 -1 2 -1 -1 -1 1 4 -1 -1 1 2 3 -1 2

-1 -1 1 4 3 -1 1 2 3 4 3 -1 -1 -1

3matids

-13 52 4-1 -10 1mesh2subset

0 1 3 4 6 7subset2meshS
u

b
s
e
t

1

-1 0 1 -1 2 3 -1 4 -1mesh2subset

1 2 4 5 7subset2meshS
u

b
s
e
t

2

-1 -1 -1 -1 0 1 2 3 4mesh2subset

4 5 6 7 8subset2meshS
u

b
s
e
t

3
-1 -1 -1 0 -1 -1 1 2 -1mesh2subset

3 6 7subset2meshS
u

b
s
e
t

4

Cell Centric Compact Structure

Multimaterial Performance

10/5/17 | 29Los Alamos National Laboratory

1

53.4
96.4

79.1
84

3.27
3.29
3.56
3.65

11.29
23.08

0 20 40 60 80 100 120

Single	Material

Cell,	 Full	2D	Array
Cell,	 Full	2D	Array,	with	if

Material,	Full	2D	Array
Material,	Full	2D	Array,	with	if

Cell,	Compact
Cell,	Compact,	with	nmats

Cell,	Compact,	with	rho_ave
Cell,	Compact,	divide	by	V

Mat,	Compact,	Material-dominant
Mat,	Compact,	Cell-dominant

RUN	TIME	(MS)	LOWER	IS	BETTER

Average	Cell	 Density

2.57

135.6

116.2

4.59

3.59

0 20 40 60 80 100 120 140 160

Single	Material

Cell,	 Full	2D	Array

Material,	Full	2D	Array

Cell,	Compact

Material,	Compact

RUN	TIME	(MS)		LOWER	IS	BETTER

Material	Pressure

With 100 materials and 1 million cells with
few materials in each cell:

The full 2D array data structures show run-
times 50-135x times slower than the single
material reference.

The compact data structures are only 3-20x
times slower than the single material.

The result is reducing memory usage by
95% and run-time by 90%.

10/5/17 | 30Los Alamos National Laboratory

How to Apply
Upper division undergraduate students and early
graduate students in all scientific disciplines are
encouraged to apply. Students must be enrolled
in an accredited U.S. university and in good
academic standing and maintain a GPA of
3.0/4.0 or better.

To apply:
• Submit a current resume (state citizenship)
• Unofficial transcript
• Letter of intent describing your

• research interests and experience,
• computational/computing experience,
• interest in the program, and
• overall strengths and goals.

Send all application materials to:

Email: apply-parallelcomputing@lanl.gov

Application Deadline January 26, 2018
Notification by mid-February 2018

Selection is based on programming, mathematics,
research and presentations skills. Submissions
should clearly describe your desire to join this
program.

Those selected will be required to reply stating
their acceptance and provide official transcripts.

Compensation
Los Alamos National Laboratory offers very
competitive compensation:

• 10-week salary of $7-10K (based on
education and experience)

• Reimbursement for approved travel costs

High in the mountains of Northern New Mexico, the
parallel finger mesas of Los Alamos provide a fitting
location for Parallel Computing Summer Research.

Los Alamos, New Mexico provides the
perfect backdrop for a summer of hiking,

biking, rock climbing, running, and
immersing yourself in cutting-edge HPC.

Sponsor
The Parallel Computing Summer Research
Internship is funded by the Information Science
and Technology Institute (ISTI) at
Los Alamos National Laboratory. ISTI facilitates
scientific collaboration and scholarship.

Visit isti.lanl.gov to learn about other summer
programs.

Parallel Computing
Summer Research Internship2018

http://parallelcomputing.lanl.gov

Solving complex scientific
and national problems on

next-generation supercomputers.

LA-UR-15-28310

PCSRI Goals
Ø TRAINING NEXT GENERATION

• Provide solid HPC education
• Explore algorithms, methods and

technologies based on architectural
features

• Instill good software development
practices

Ø DEVELOP COLLABORATION SKILLS
• Create a common language and break

down barriers from science domain to
hardware

Ø ESTABLISH NEW PIPELINE FOR LANL
& OTHER PROGRAMS
• Over half of staff historically have

started in student programs

Figure 1: LANL HPC/Computing Student Pipeline by experience
level and topic area.

Ex
pe

rie
nc

e
Le

ve
l

Supercomputing Challenge
(partly sponsored by LANL)

350 High School & Middle School Students

Systems Applications

Computational
Physics

~20 Students
Senior - 4th Yr

Graduate

Data Science
at Scale

~ 20 Students
PhD Students
(year round)

Co-Design
Summer
School

6 Students
PhD Students

Machine
Learning

12 Students
PhD Students

Computer Systems,
Cluster & Networking

Institute

12 Students
Junior Undergraduate

Parallel Computing Summer Research Internship

Pilot Year (2016): 12 Students à 16 (2017)
Upper level Undergrad – Early Grad

Needed NOW more than ever
HPC	is	increasing	in	complexity

CPUs + GPUs Many-Core

EXASCALE

Memory Hierarchy

Affinity

Schedulers - SLURM Threading + Scoping

Compiler BugsVectorization

Performance Portability

On-Node
Parallelism

Profiling

Asynchronous
Task-Based

In-Situ
Visualization

Leadership/Organization: It Takes a Community

Workshop Coordinator
Nickole Aguilar Garcia

ISTI Director – Stephan Eidenbenz

Co-Leads Mentors Guest Lecturers
Bill Archer (ADX)
Galen Shipman (CCS-7)
Ryan Braithwaite (CCS-7)
Scott Pakin (CCS-7)
Rob Cunningham (HPC)
David Rogers (CCS-7)
Jennifer Estrada (ISR)
Ron Green (CCS-7)
Brendan Krueger (XCP-2)
KT Thompson (CCS-2)
Angela Herring (XCP-1)
Doug Jacobsen (Intel)
John Levesque (Cray)

Bob Robey
XCP-2

Hai Ah Nam
CCS-2

Kris Garrett
CCS-2

Joe Schoonover
CCS-2 (formerly)
VACANCY

Neil Carlson (CCS-2)
Hai Ah Nam (CCS-2)
Garrett Kenyon (CCS-3)
Cristina Garcia Cardona (CCS-3)

Stefano Gandolfi (T-2)
Brendt Wohlberg (T-5)

Bob Robey (XCP-2)
Jesse Canfield (XCP-4)

Youzuo Lin (EES-17)
Eunmo Koo (EES-16)

Laura Monroe (HPC-DES)

2017 PCSRI Student Research Projects
• Asynchronous Dictionary Learning for Remote Sensing Imagery Classification

Prerna Patil (Brown), Kirtus Leyba (UNM); Mentors: Youzuo Lin (EES-17)

• Phase Transitions in Sparsely Coded Neural Networks
Jacob Carroll (Virginia Tech), Nils Carlson (NM Tech); Mentor: Garrett Kenyon (CCS-3)

• Towards Parallelized Dictionary Learning and Sparse Coding
Trokon Johnson (U of Florida), Rachel LeCover (Cornell); Mentors: Brendt Wohlberg (T-5), Cristina Garcia Cardona (CCS-3)

• Parallelization of Volume of Fluid Algorithms on Unstructured Meshes
Justin Sunu (CGU), Alonso Navarro (SDSU), Donald Kruse (UNM); Mentor: Neil Carlson (CCS-2)

• Parallel Calculation of the Radiation View Factor Matrix using Charm++
William Rosenberger (UNM); Mentor: Neil Carlson (CCS-2)

• Developing an efficient particle transport routine for the HIGRAD fluid dynamics software
Robert-Martin Short (UC Berkeley); Mentors: Eunmo Koo (EES-16), Bob Robey (XCP-2)

• Hydrodynamic Instability in Inertial Confinement Fusion
Bryan Kaiser (MIT); Mentor: Jesse Canfield (XCP-4)

• Quantum Monte Carlo with OpenMP 4.0+ for Performance Portability
Jordan Fox (SDSU), Jenny Soter (Drew University); Mentors: Stefano Gandolfi (T-2), Hai Ah Nam (CCS-2)

• Thoughtful Precision in Mini-Apps
Siddhartha Bishnu (Florida State University), Shane Fogerty (U of Rochester); Mentors: Laura Monroe (HPC-DES), Bob Robey (XCP-2)

Overlap
Parallel Computing

with
Machine Learning

Impact

• 8 Individual/Group posters presented at the LANL Student Symposium
• 2 Best Poster Winners for Computing

• Nils Carlson and Jacob Carroll: Investigating Phase Transitions in Sparsely Coded
Convolutional Neural Networks

• Siddhartha Bishnu and Shane Fogerty: Thoughtful Precision In Mini-apps

• 1 Distinguished Mentor Award: Bob Robey (XCP-2)
• 1 Distinguished Student Award: William Rosenberger (A-1)

• SC17 > poster submission, student volunteer, HPC 4 Undergrads
• Papers, conferences, etc.

• IEEE Cluster paper acceptance (Fogerty, Bishnu, Robey)
• 2-3 papers in the works (continued collaborations)
• Internship at Starbucks Technology Center, Arizona

An Equal Opportunity Employer / Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

LANL Summer Schools
Educational internship opportunities for undergraduate and graduate students

The goal of summer schools is to augment student learning through focused lectures coupled with hands-on real-world
projects. The Information Science & Technology Institute (ISTI) organizes, co-sponsors, and/or supports the following
summer schools. ISTI enables LANL’s Integrating Information, Science, and Technology for Prediction (IS&T) pillar
to address emerging challenges in national security, societal prosperity, and fundamental science.

Visit http://isti.lanl.gov for more information and to apply to these internship opportunities.

• Parallel Computing Summer Research Internship
Providing students with a solid foundation in modern high performance computing (HPC) topics integrated with research
on real problems encountered in large-scale scientific codes
Target Student: Upper-level undergraduate and early graduate students; http://parallelcomputing.lanl.gov

• Computer System, Cluster, and Networking Summer Institute (CSCNSI)
Learn the basics of high performance computing system administration. Students work in small project teams to execute
real-world projects on computer clusters that they have assembled and configured.
Target Student: Upper-level undergraduate and early graduate students; http://clustercomputing.lanl.gov

• Co-design School
Team research project for graduate students from varying backgrounds (usually CS, computational physics, and
mathematics) to work on a computational co-design topic, such as novel programming models on a specific application,
such as Hydro- and Molecular dynamics.
Target Student: Upper-level graduate students; http://codesign.lanl.gov

• Data Science at Scale School
The Data Science at Scale School is active year round to recruit outstanding students to the laboratory to participate in data
intensive science projects. Particular focus is placed on using big data technologies to gain insights from science data.
Target Student: Upper-level undergraduate and graduate students; http://datascience.lanl.gov

• Cyber Security Summer School
Students will learn the necessary concepts and skills for cyber incident response. In addition to classroom training and
lectures, students will spend most of their time working with a mentor on a small team project.
Target Student: Junior, Senior, or Master's student; http://cyberfire.lanl.gov/toaster.html

• Applied Machine Learning Summer Research Internship
Team research projects for graduate students from varying backgrounds (computer science, statistics, mathematics, or
domain science fields) to apply machine learning methods to real-world scientific data analysis problems.
Target Student: Upper-level Graduate students; http://aml.lanl.gov

LANL student summer fellowships:

• Computational Physics Workshop
http://compphysworkshop.lanl.gov

• Los Alamos Dynamics Summer School
http://ladss.lanl.gov

LANL has a variety of summer schools,
workshops and internships.

They are run by enthusiastic, caring staff,
truly interested in the topic and in
working with students.

Programs are generally around 10 weeks
long and paid at the LANL student rates.

