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We Learn to Add -- The Global Sum Problem
Background
In Search of Numerical Consistency in Parallel Programming, Robey, 

R.W., Robey, J.M., Aulwes, R., Parallel Computing, Vol. 37, Issues 4-5, 
April-May 2011, pgs. 217-229
– Jon Robey, UC Davis
– Rob Aulwes, CCS-7, LANL

• Other helpful sources
– M. Cleveland, T. Brunner, N. Gentile, and J. Keasler, Lawrence Livermore National 

Laboratory (LLNL), Obtaining Identical Results with Double Precision Global 
Accuracy on Different Numbers of Processors in Parallel Particle Monte Carlo 
Simulations., Journal of Computational Physics, Vol. 251, Oct 15, 2013

– D. Bailey, et.al – higher precision arithmetic libraries
– Peter Ahrens, UC Berkeley and now MIT



Reproducibility Problem for Parallel Processing
answers change with number of processors
• Finite precision addition not associative
• Order of operations change with number of processors
• Precision errors same order of magnitude as programming errors

– boundary condition errors
– old ghost cell values

• Solver iterations change with number of processors
• Stability of method is posited on conservation laws, but cannot check 

total mass and energy with global sum with enough precision to verify 
correct implementation



Error of Our Ways
The Prevailing Thought for a Decade (or more)
• Global sums (such as total mass and energy or total residual error) vary 

with number of processors
• It is an order problem because finite precision arithmetic is not 

associative
– Can be fixed by sorting, but this is too expensive and difficult with distributed 

memory
• Solver iterations should use max residual error because total residual 

error varies with number of processors

So we just have to live with it …?...



The Revelation

• It is a precision problem!
– Enough precision and addition is associative

But Now the Questions
• How much precision is enough?
• What is the impact at the application level?
• What is the cost of the precision?



The Study

• Take a simple compressible fluid dynamics hydrocode with total mass 
and energy checks

• Compile and run with standard global sums, recording change in total 
mass and energy

• Besides the order changing of global sums, there is also a time-
marching error – which dominates?

• Pure order change in sum is examined by reversing the loops so they 
run from nsize to 0 instead of 0 to nsize



Local Kahan Sum

• Lets try the Kahan Sum using two doubles

double corrected_next_term, new_sum, sum=0.0, correction=0.0;
for(unsigned int j=nbound; j<mysize+nbound; j++){

for(unsigned int i=nbound; i<isize+nbound; i++){
corrected_next_term = var[j][i]*deltaX*deltaY - correction;
new_sum = sum + corrected_next_term;
correction = (new_sum - sum) - corrected_next_term;
sum = new_sum;

}    }

This gives us essentially 128 bits precision for the local 
sums with the MPI sums still just a single double.

Let’s see the results.



Summary Table (cont)

Conservation max relative diffs in machine epsilon (adjusted to half epsilon): 
Normal:          Mass:            13434 Energy            -9615
Reverse:         Mass:           456918 Energy          -232830
Long:            Mass:               16 Energy                0
Long Reverse:    Mass:              -72 Energy                0
Kahan simple:    Mass:                0 Energy                0
Kahan corrected: Mass:                0 Energy                0
Kahan mpiop:     Mass:                0 Energy                0
Rev Kahan mpiop: Mass:                0 Energy                0

Conservation max relative diffs calculated from absolute error/orig total: 
Normal:          Mass:   1.49148489e-12 Energy -1.067482042e-12
Reverse:         Mass:  5.072813106e-11 Energy                0
Long:            Mass:  1.831064039e-15 Energy                0
Long Reverse:    Mass: -7.990097625e-15 Energy                0
Kahan simple:    Mass:                0 Energy                0
Kahan corrected: Mass:                0 Energy                0
Kahan mpiop:     Mass:                0 Energy                0
Rev Kahan mpiop: Mass:                0 Energy                0
MACHINE EPS IS  2.220446049e-16



MPI Kahan Sum

• With many processors, we may need to maintain precision in the 
MPI Sum. To do so, we define a new MPI op as follows:

MPI_Type_contiguous(2, MPI_DOUBLE, &MPI_TWO_DOUBLES);
MPI_Type_commit(&MPI_TWO_DOUBLES);

MPI_Op_create((MPI_User_function *)kahan_sum, 1, &KAHAN_SUM);

MPI_Allreduce(&local, &global, 1, MPI_TWO_DOUBLES, KAHAN_SUM, 
MPI_COMM_WORLD);

MPI_Op_free(&KAHAN_SUM);
MPI_Type_free(&MPI_TWO_DOUBLES);

The type and op can be created once at startup and 
destroyed once at the end of the program rather than every 
use. The user op is on the next page.



Kahan Sum User Op

void kahan_sum( struct esum_type * in , struct esum_type * inout , int *
len , MPI_Datatype *MPI_TWO_DOUBLES)

{
double corrected_next_term , new_sum;
corrected_next_term = in->sum + ( in->correction + inout->correction) ;
new_sum = inout->sum + corrected_next_term ;
inout->correction = corrected_next_term - (new_sum – inout->sum) ;
inout->sum = new_sum;

}



Our Discoveries

• How much precision is enough?
– Varies by the problem, but 2 extra digits is not enough (long double or 80 bit numeric 

registers). Four extra digits is a minimum. Two doubles suffices for most problems. A 
rounding routine can help with a consistent result.

• What is the impact at the application level?
– We achieve near perfect reproducibility regardless of number of processors. We can 

also verify the correct implementation of the conservation equations.
• What is the cost of the precision?

– Coding is simple. Run-time cost is low and when MPI Allreduce is factored in, almost 
free. Applications that do more frequent global sums may need to be more selective 
in the use of enhanced precision sums.



Thoughtful Precision in Mini-apps 
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The CLAMR mini-app was run in full, 
mixed, and minimum precision (mixed 
stores state in single and computes in 
double precision). CLAMR implements the 
shallow-water equations.

The upper graph shows the results for all 
the runs are visually identical for the 
circular dam break problem.

The lower plot shows the difference 
between pairs of runs. Most of the 
difference is between mixed and minimum.



Runtime and storage savings
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Looking at the run-time 
across various CPU and 
GPU hardware, single 
precision can run faster and 
do so on cheaper 
hardware.

The bottom table shows 
that even on the CPU the 
runs are faster and a third 
of storage is saved.



Hashing – A path to scalable algorithms
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• Many leading algorithms are tree-based using O(log n) comparisons
• Tree-based algorithms are difficult to implement on GPUs.
• Can we do better?

Let’s sort the room alphabetically. 
Method 1:
• Pair up and and compare your last names. If earlier in a dictionary sequence, 

move left, else move right.
• Repeat – (GPU note: when you reach the end of your row, it is like reaching the 

end of a workgroup and you must exit your kernel and start a new one)
• When you arrive at the front of the room, you will be sorted
Method 2:
• Line up bins across the room labeled A-Z.
• Each person comes up to the front of the room and lines up at the beginning letter 

of their last name
• If there are more then one person in a bin, we repeat the sort.



Observations on the hash method
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• Can be O (1)
• No comparisons – perfect algorithm for <insert your major here>; you 

don’t have to talk to anyone
• Less data movement
• Much easier to program on the GPU

• Needs to be customized for the data (A-Z doesn’t work for numbers)
• Requires extra memory

• So how do we utilize this concept in numerical calculations?



• The key is to define a hash bin size 
small enough that only one spatial 
location will map to it.

• AMR – the hash size is set to the 
smallest cell size.

• Unstructured – based on minimum 
distances in cell

Bk =
Xi − Xmin
ΔXmin

Perfect Hashing applied to AMR
and Unstructured Methods



Find Neighbors by Hash Look-up
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Unstructured Hash Concept

Nicholaeff, D. and Robey, R.N., Poster at 2012 LANL Student Symposium

1. Every cell writes its cell number into the bin at the center of each face. If the 
face is to the left and up from the center it writes its index to the first of two 
places in the bin, else it writes to the second place.
2. Every cell checks for each face if there is a number in the other bucket. If 
there is, it is the neighbor cell. If not, it is an external face with no neighbor.
à We have found our neighbors in a single write and read!



Speed-Up Summary

CPU Hash NVIDIA ATI NVIDIA ATI

Relative to k-D tree, quicksort, 
bi-section

CPU Hash
**

Reference CPU
**

Sort 4.16 21.5 28.6 89.3 118.9

Sort 2-D 16.2 26.2 37.8 424.1 611.5

Neighbor 54.4 16.6 24.2 903.5 1316.0

Neighbor 2-D 75.5 19.1 19.1 1444.0 1445.3

Remap 18.4 26.9 48.1 495.2 885.8

Remap 2-D 13.6 42.2 61.6 574.0 837.8

Table 2.44 55.7 27.2 136.2 66.5

Note: Based on problem sizes (# of elements or cells) of around 2 million. Reference CPU is generally accepted 
method for that operation: quicksort, kD-tree, and bisection.

• Speed-ups are a combined result of:
• replacing an O(n log n) algorithm with an O(n) algorithm
• harnessing the massively parallel compute capability of the GPU
• **we could also thread the CPU, or MIC, instead of the GPU



Compact Hashing
Limits to Perfect Hashing:
• Need to accurately determine minimum size to avoid collisions
• Memory requirements can grow as max to min cell size grows
Benefits of Compact Hashing:
• Compact hashing allows collisions 
• Reduces memory requirements
• Scales to large problem sets



From Perfect to Compact Hashes

Collision



The Remap Problem – a tale of two meshes
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We could simply have each cell in the input mesh write to all of its 
underlying bins

Then the output mesh would just read the bins and average the density of 
each of the cells



Reducing the writes and reads
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We could reduce the writes and reads by having only the lower-left cell 
written with the input cell number.

Then the output mesh would try a read and if it fails, try where it would 
be if it were one cell coarser. Working out the sequence of reads is a bit 
complicated to handle all of the cases correctly.



Hierarchical Hashes and Breadcrumbs
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We could reduce the 
number of sentinels (-1) 
needed by using a hierachy
of hashes. 
Each cell in the input mesh 
writes to the level mesh it is 
at. Then if it is in the lower-
left corner of a group of 
four, it goes up the coarser 
mesh and writes -1. 
The read phase reads its 
location in the coarsest 
hash and if it finds a -1, it 
continues down the hashes.



Publications
D. Nicholaeff, N. Davis, D. Trujillo, and R. W. Robey, Cell-based adaptive mesh 

refinement implemented with general purpose graphics processing units, Tech. 
Rep. LA-UR-11-07127, Los Alamos National Laboratory, 2011.

R. N. Robey, D. Nicholaeff, and R. W. Robey, “Hash-based algorithms for discretized 
data,” SIAM Journal on Scientific Computing, vol. 35, no. 4, pp. C346–C368, 
2013.

R. Tumblin, P. Ahrens, S. Hartse, and R. W. Robey, “Parallel compact hash 
algorithms for computational meshes,” SIAM Journal on Scientific Computing, vol. 
37, no. 1, pp. C31-C53, 2015.

G. Collom, C. Redman, R. W. Robey, “Fast mesh-to-mesh remaps using hash 
algorithms”, In review.

Code – Open Source
Perfect Hashing – http://www.github.com/losalamos/PerfectHash
Compact Hash Neighbor – http://www.github.com/losalamos/CompactHash
Compact Hash Remap -- http://www.github.com/losalamos/CompactHashRemap

More on Spatial Hashing – Publications and Code



Compact Multimaterial Data Structures
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Cell 0 Cell 1 Cell 2

Cell 3 Cell 4 Cell 5

Cell 6 Cell 7 Cell 8

Mat 1 Mat 2

Mat 3Mat 4

Most cells have one or a few of the 
many materials in a problem.

Which data structure is best for: 
– Disk storage?
– Memory usage?
– Computational performance? 

Depends on algorithm and data 
structure 



Compact Multimaterial Data Structures

10/5/17 |   27Los Alamos National Laboratory

Cell-centric

Material-Centric

Algorithms can be Cell-dominant (outer 
loop is over cells) or Material-dominant 
(outer loop is over materials). 

Data Structures 
are cell major or 
cell-centric when 
the outer index is 
by cell and the 
fastest varying 
index is by 
materials. 
Material-centric 
has the material 
for the outer index.



Compact Data Structures
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Multimaterial Performance

10/5/17 |   29Los Alamos National Laboratory

1

53.4
96.4

79.1
84

3.27
3.29
3.56
3.65

11.29
23.08

0 20 40 60 80 100 120

Single	Material

Cell,	 Full	2D	Array
Cell,	 Full	2D	Array,	with	if

Material,	Full	2D	Array
Material,	Full	2D	Array,	with	if

Cell,	Compact
Cell,	Compact,	with	nmats

Cell,	Compact,	with	rho_ave
Cell,	Compact,	divide	by	V

Mat,	Compact,	Material-dominant
Mat,	Compact,	Cell-dominant

RUN	TIME	(MS)	LOWER	IS	BETTER

Average	Cell	 Density

2.57

135.6

116.2

4.59

3.59

0 20 40 60 80 100 120 140 160

Single	Material

Cell,	 Full	2D	Array

Material,	Full	2D	Array

Cell,	Compact

Material,	Compact

RUN	TIME	(MS)		LOWER	IS	BETTER

Material	Pressure

With 100 materials and 1 million cells with 
few materials in each cell:

The full 2D array data structures show run-
times 50-135x times slower than the single 
material reference.

The compact data structures are only 3-20x 
times slower than the single material.

The result is reducing memory usage by 
95% and run-time by 90%.



10/5/17 |   30Los Alamos National Laboratory

How to Apply
Upper division undergraduate students and early 
graduate students in all scientific disciplines are 
encouraged to apply. Students must be enrolled 
in an accredited U.S. university and in good 
academic standing and maintain a GPA of  
3.0/4.0 or better. 

To apply: 
• Submit a current resume (state citizenship)
• Unofficial transcript
• Letter of  intent describing your

• research interests and experience,
• computational/computing experience,
• interest in the program, and
• overall strengths and goals.

Send all application materials to:

Email: apply-parallelcomputing@lanl.gov

Application Deadline January 26, 2018
Notification by mid-February 2018 

Selection is based on programming, mathematics,  
research and presentations skills.  Submissions 
should clearly describe your desire to join this 
program.
  
Those selected will be required to reply stating 
their acceptance and provide official transcripts.

Compensation
Los Alamos National Laboratory offers very 
competitive compensation: 

• 10-week salary of  $7-10K (based on
education and experience)

• Reimbursement for approved travel costs

High in the mountains of  Northern New Mexico, the 
parallel finger mesas of  Los Alamos provide a fitting 
location for Parallel Computing Summer Research.

Los Alamos, New Mexico provides the 
perfect backdrop for a summer of hiking, 

biking, rock climbing, running, and 
immersing yourself in cutting-edge HPC.  

Sponsor
The Parallel Computing Summer Research 
Internship is funded by the Information Science 
and Technology Institute (ISTI) at  
Los Alamos National Laboratory. ISTI facilitates 
scientific collaboration and scholarship.  

Visit isti.lanl.gov to learn about other summer 
programs.

Parallel Computing 
Summer Research Internship2018     

http://parallelcomputing.lanl.gov

Solving complex scientific 
and national problems on 

next-generation supercomputers.

LA-UR-15-28310



PCSRI Goals
Ø TRAINING NEXT GENERATION

• Provide solid HPC education 
• Explore algorithms, methods and 

technologies based on architectural 
features

• Instill good software development 
practices

Ø DEVELOP COLLABORATION SKILLS
• Create a common language and break 

down barriers from science domain to 
hardware

Ø ESTABLISH NEW PIPELINE FOR LANL 
& OTHER PROGRAMS
• Over half of staff historically have 

started in student programs

Figure 1: LANL HPC/Computing Student Pipeline by experience 
level and topic area. 

Ex
pe

rie
nc

e 
Le

ve
l

Supercomputing Challenge
(partly sponsored by LANL)

350 High School & Middle School Students

Systems  Applications

Computational 
Physics

~20 Students
Senior - 4th Yr

Graduate

Data Science
at Scale

~ 20 Students
PhD Students
(year round)

Co-Design
Summer 
School

6 Students
PhD Students

Machine 
Learning

12 Students
PhD Students

Computer Systems, 
Cluster & Networking 

Institute

12 Students
Junior Undergraduate

Parallel Computing Summer Research Internship

Pilot Year (2016):  12 Students à 16 (2017)
Upper level Undergrad – Early Grad



Needed NOW more than ever
HPC	is	increasing	in	complexity

CPUs + GPUs                           Many-Core

EXASCALE

Memory Hierarchy

Affinity

Schedulers - SLURM Threading + Scoping

Compiler BugsVectorization

Performance Portability

On-Node
Parallelism

Profiling

Asynchronous
Task-Based

In-Situ
Visualization



Leadership/Organization:  It Takes a Community

Workshop Coordinator
Nickole Aguilar Garcia

ISTI Director – Stephan Eidenbenz

Co-Leads Mentors Guest Lecturers
Bill Archer (ADX)
Galen Shipman (CCS-7)
Ryan Braithwaite (CCS-7)
Scott Pakin (CCS-7)
Rob Cunningham (HPC)
David Rogers (CCS-7)
Jennifer Estrada (ISR)
Ron Green (CCS-7)
Brendan Krueger (XCP-2)
KT Thompson (CCS-2)
Angela Herring (XCP-1)
Doug Jacobsen (Intel)
John Levesque (Cray)

Bob Robey
XCP-2

Hai Ah Nam
CCS-2

Kris Garrett
CCS-2

Joe Schoonover
CCS-2 (formerly)
VACANCY

Neil Carlson (CCS-2)
Hai Ah Nam (CCS-2)
Garrett Kenyon (CCS-3)
Cristina Garcia Cardona (CCS-3)

Stefano Gandolfi (T-2)
Brendt Wohlberg (T-5) 

Bob Robey (XCP-2)
Jesse Canfield (XCP-4)

Youzuo Lin (EES-17)
Eunmo Koo (EES-16)

Laura Monroe (HPC-DES)



2017 PCSRI Student Research Projects
• Asynchronous Dictionary Learning for Remote Sensing Imagery Classification

Prerna Patil (Brown), Kirtus Leyba (UNM); Mentors: Youzuo Lin (EES-17)

• Phase Transitions in Sparsely Coded Neural Networks
Jacob Carroll (Virginia Tech), Nils Carlson (NM Tech); Mentor: Garrett Kenyon (CCS-3)

• Towards Parallelized Dictionary Learning and Sparse Coding
Trokon Johnson (U of Florida), Rachel LeCover (Cornell); Mentors: Brendt Wohlberg (T-5), Cristina Garcia Cardona (CCS-3)

• Parallelization of Volume of Fluid Algorithms on Unstructured Meshes
Justin Sunu (CGU), Alonso Navarro (SDSU), Donald Kruse (UNM); Mentor: Neil Carlson (CCS-2)

• Parallel Calculation of the Radiation View Factor Matrix using Charm++
William Rosenberger (UNM); Mentor: Neil Carlson (CCS-2)

• Developing an efficient particle transport routine for the HIGRAD fluid dynamics software
Robert-Martin Short (UC Berkeley); Mentors: Eunmo Koo (EES-16), Bob Robey (XCP-2)

• Hydrodynamic Instability in Inertial Confinement Fusion
Bryan Kaiser (MIT); Mentor: Jesse Canfield (XCP-4)

• Quantum Monte Carlo with OpenMP 4.0+ for Performance Portability
Jordan Fox (SDSU), Jenny Soter (Drew University); Mentors: Stefano Gandolfi (T-2), Hai Ah Nam (CCS-2)

• Thoughtful Precision in Mini-Apps
Siddhartha Bishnu (Florida State University), Shane Fogerty (U of Rochester); Mentors: Laura Monroe (HPC-DES), Bob Robey (XCP-2)

Overlap 
Parallel Computing

with
Machine Learning



Impact

• 8 Individual/Group posters presented at the LANL Student Symposium
• 2 Best Poster Winners for Computing

• Nils Carlson and Jacob Carroll: Investigating Phase Transitions in Sparsely Coded 
Convolutional Neural Networks

• Siddhartha Bishnu and Shane Fogerty: Thoughtful Precision In Mini-apps

• 1 Distinguished Mentor Award:  Bob Robey (XCP-2)
• 1 Distinguished Student Award:  William Rosenberger (A-1)

• SC17 > poster submission, student volunteer, HPC 4 Undergrads
• Papers, conferences, etc.

• IEEE Cluster paper acceptance (Fogerty, Bishnu, Robey)
• 2-3 papers in the works (continued collaborations)
• Internship at Starbucks Technology Center, Arizona
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LANL Summer Schools 
Educational internship opportunities for undergraduate and graduate students 

 
The goal of summer schools is to augment student learning through focused lectures coupled with hands-on real-world 
projects.  The Information Science & Technology Institute (ISTI) organizes, co-sponsors, and/or supports the following 
summer schools. ISTI enables LANL’s Integrating Information, Science, and Technology for Prediction (IS&T) pillar 
to address emerging challenges in national security, societal prosperity, and fundamental science. 
 
 

Visit http://isti.lanl.gov for more information and to apply to these internship opportunities. 

• Parallel Computing Summer Research Internship  
Providing students with a solid foundation in modern high performance computing (HPC) topics integrated with research 
on real problems encountered in large-scale scientific codes 
Target Student:  Upper-level undergraduate and early graduate students; http://parallelcomputing.lanl.gov  
 

• Computer System, Cluster, and Networking Summer Institute (CSCNSI)  
Learn the basics of high performance computing system administration. Students work in small project teams to execute 
real-world projects on computer clusters that they have assembled and configured. 
Target Student:  Upper-level undergraduate and early graduate students; http://clustercomputing.lanl.gov  
 

• Co-design School  
Team research project for graduate students from varying backgrounds (usually CS, computational physics, and 
mathematics) to work on a computational co-design topic, such as novel programming models on a specific application, 
such as Hydro- and Molecular dynamics. 
Target Student:  Upper-level graduate students; http://codesign.lanl.gov  
 

• Data Science at Scale School  
The Data Science at Scale School is active year round to recruit outstanding students to the laboratory to participate in data 
intensive science projects. Particular focus is placed on using big data technologies to gain insights from science data. 
Target Student:  Upper-level undergraduate and graduate students; http://datascience.lanl.gov  
 

• Cyber Security Summer School 
Students will learn the necessary concepts and skills for cyber incident response.  In addition to classroom training and 
lectures, students will spend most of their time working with a mentor on a small team project. 
Target Student:  Junior, Senior, or Master's student; http://cyberfire.lanl.gov/toaster.html 
 

• Applied Machine Learning Summer Research Internship 
Team research projects for graduate students from varying backgrounds (computer science, statistics, mathematics, or 
domain science fields) to apply machine learning methods to real-world scientific data analysis problems. 
Target Student:  Upper-level Graduate students; http://aml.lanl.gov 

LANL student summer fellowships: 

• Computational Physics Workshop  
http://compphysworkshop.lanl.gov 

• Los Alamos Dynamics Summer School 
http://ladss.lanl.gov 

 

LANL has a variety of summer schools, 
workshops and internships.

They are run by enthusiastic, caring staff, 
truly interested in the topic and in 
working with students.

Programs are generally around 10 weeks 
long and paid at the LANL student rates.


