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ABSTRACT. Algorithms and software have been developed for pro-
ducing variations in plutonium 239 neutron cross sections based
on experimental uncertainties and covariances. The varied cross-
section sets may be produced as random samples from the multi-
variate normal distribution defined by an experimental mean vec-
tor and covariance matrix, or they may be produced as Latin-
Hypercube/Orthogonal-Array samples (based on the same means
and covariances) for use in parametrized studies. The variations
obey two classes of constraints that are obligatory for cross-section
sets and which put related constraints on the mean vector and
covariance matrix that detemine the sampling. Because the ex-
perimental means and covariances do not obey some of these con-
straints to sufficient precision, imposing the constraints requires
modifying the experimental mean vector and covariance matrix.
Modification is done with an algorithm based on linear algebra
that minimizes changes to the means and covariances while insur-
ing that the operations that impose the different constraints do not
conflict with each other.
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This report documents algorithms developed by the authors for pro-
ducing variations in plutonium 239 neutron cross sections based on
experimental uncertainties and covariances. Two kinds of sampled vari-
ations may be produced:

(1) Random samples from a multivariate normal distribution for
cross sections defined by an experimental mean vector and co-

variance matrix; or

(2) Latin-Hypercube/Orthogonal-Array (LH/OA) samples for use
in parametrized studies of the effects of cross-section and other
uncertainties on the outputs of physics codes for which the cross

sections and other varied quantities are inputs.

The task of performing either kind of sampling is complicated by the
need for the samples to obey certain constraints, a nonnegativity con-
straint (Section 4.1) and a set of (linear) summation constraints (Sec-
tion 4.2). These constraints on the sampled cross sections in turn put
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constraints on the mean vector and covariance matrix that define the
two sampling processes, constraints that the experimental means and
covariances only imperfectly obey. We have developed a methodology
for “repairing” the mean vector and covariance matrix that minimizes
changes to the means and covariances while insuring that the opera-
tions that impose the different constraints do not conflict with each
other. This methodology is explained in Section 4 on constraints.

Random sampling from a multivariate normal distribution in which
the covariance matrix obeys summation constraints cannot be handled
by the standard method for multivariate normal sampling, and the
task is further complicated by the need for the samples to strictly obey
the nonnegativity constraint. We explain how to do such sampling in
Section 5.

LH/OA sampling has a couple of additional complications, in addi-
tion to the need to respect the constaints that it shares with normal
sampling. In the first place, handling correlated variations in LH/OA
sampling is not straightforward. The method for sampling from a cor-
related and constrained normal distribution that we describe in Sec-
tion 5 provides a basis for doing LH/OA sampling that both obeys the
constraints and respects the correlations between cross sections, as we
explain in Section 6.

In addition, LH/OA sampling requires us to drastically reduce the
degrees of freedom in the cross-section variations in order to charac-
terize them with a small number of parameters, as is required for com-
bining cross-section variations with other uncertainties in integrated
studies. Clearly, we need to do so in a way that captures the variations
in cross sections that maximize the variations in the outputs of the
physics codes to which the cross sections are inputs. Here, as in the
problem of correlated and constrained LH/OA sampling, the method
for doing constrained and correlated normal sampling provides a basis
for solving the problem, as we explain in Section 6.

In Section 7 we explain how to do a modified type of LH/OA sam-
pling that uses flux weights to increase the ability to capture the cross
section variations that maximize the variations in physics code outputs
with a minimum of parameters. This kind of sampling captures 98% of
the variance in the weighted cross sections with just three parameters.

We begin in Section 2 immediately below with a brief discussion of
the source and structure of our experimental mean vector and covari-
ance matrix. In Section 3, we then present some elementary formulas
and facts about multivariate normal distributions and covariance ma-
trices that we will use in the rest of the report. In Section 4, we begin



4 PU239 CROSS-SECTION VARIATIONS

the main technical topics of the paper. We conclude with appendices
presenting some mathematical results used in the body of the paper.

2. EXPERIMENTAL CROSS SECTION MEAN VECTOR AND
COVARIANCE MATRIX

2.1. Sources. The experimental mean vector, u., and covariance ma-
trix, X, used in this work were produced by one of the authors (Par-
sons) using the LANL nuclear cross-section processing code NJOY [3]
based on evaluated nuclear data from the ENDF/B VIL.1 library [1].

2.2. Cross-Section Structure. A complete set of Pu239 neutron cross
sections is specified for the total cross section and for six reactions (elas-
tic scattering, inelastic scattering, n2n, n3n, fission, and absorption)®.
Within each of these seven blocks, cross sections are specified for each
of 30 energy groups, which are the same across all blocks. There are
thus 210 individual cross sections.

The experimental mean vector for the cross sections naturally has
the same structure as just described for a cross-section set.

The experimental covariance matrix for the cross sections necessarily
operates on a vector space with this structure and is thus a 210x210 ma-
trix. The diagonal elements of this matrix give the variances (squares
of the standard deviations) of the individual cross sections, and the
off-diagonal elements provide information on the correlations between
cross sections.

All of the experimental means and covariances are given in single
precision.

3. THE MULTIVARIATE NORMAL DISTRIBUTION AND COVARIANCE
MATRICES

In this section, we present some elementary facts that we will use
in the rest of the report about multivariate normal distributions and
covariance matrices.

3.1. The Multivariate Normal Distribution for Cross Sections.
For the purposes of producing cross-section variations consistent with
a mean vector, u, and covariance matrix, >, we treat these quantities

IThe total cross section is specified separately because it is measured separately
and very accurately.
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as defining a multivariate normal distribution for a cross-section set, s,
p(s) =N(s|p,X)

= (2m) 2[5 V2 exp (—%(3 )T (s - u))

where k is the number of cross-sections.

(1)

3.2. Covariance Matrices: Structure and Constraints. In this
section, we give a brief description of the structure and certain proper-
ties of covariance matrices that we will use extensively in the remainder
of this report.

The covariance matrix for a multivariate random variable encodes in-
formation about both the uncertainties of the individual components of
the random vector and about the correlations between the components.
The diagonal elements of the covariance matrix specify the uncertain-
ties, as they are the variances (the squares of the standard deviations)
of the corresponding components. The off-diagonal elements, on the
other hand, contain the information about the correlations. Specifi-
cally, for a multivariate random variable, s, with a covariance matrix,

by

i = E([si — E(s)] [s5 — E(s)]), (2)
where E is the expectation operator.

This structure, together with the requirement that the multivariate
normal distribution defined in Equation 1 be a proper, normalizable
probability distribution, puts a number of constraints on the covariance
matrix.

(1) Because they are the variances of random variables, it is clear
that the diagonal elements must be nonnegative;

(2) It is clear from the definition in Equation 2 of the off-diagonal
elements of the covariance matrix that the matrix must be sym-
metric, as interchanging ¢ and j does not change the value of

(3) In addition, for the multivariate normal distribution defined by
the mean and covariance to be normalizable, it is necessary that
the covariance matrix be nonnegative-definite.

We might expect from the presence of the inverse of ¥ in Equation 1
that the covariance matrix would need to be invertible and thus not
just nonnegative-definite but actually positive-definite. Note that this
is not the case. A non-trivial null space for the covariance matrix
corresponds to a direction in which the normal distribution does not
vary, indicating that the probability is confined to an affine subspace in
the k-dimensional space of s. In addition, as we will show in Section 5,
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the algorithm for sampling from a multivariate normal does not require
the inverse of the covariance matrix and can be modified to handle the
case where the matrix has a non-trivial null space.

Some properties of symmetric nonnegative-definite matrices and thus
of covariance matrices that we will use in the following are,

(1) A symmetric matrix has a spectral factorization,
¥ =UDU”, (3)

where U is an orthogonal matrix the columns of which are the
normalized eigenvectors of > and D is a diagonal matrix of
corresponding eigenvalues, all of which are real.

(2) A symmetric matrix is nonnegative-definite if and only if all of
its eigenvalues are nonnegative.

(3) We may therefore re-write the spectral factorization of a nonnegative-
definite matrix in the form,

¥ = AAT, (4)
where,
A=UVD, (5)

and the square root may be taken because the eigenvalues are
nonnegative.
(4) For a nonnegative-definite matrix A, the off-diagonal elements

satisfy
|Aii| < JAiAj, (6)

An additional property of covariance matrics that we will use is that,
if x is a multidimensional random variable with covariance matrix X2,

cov(z) = X, (7a)
then a random variable, y defined by multiplying = by a matrix, A,
y = Az, (7b)

has covariance matrix AXAT.

cov(y) = AL AT, (7c)

4. CONSTRAINTS ON CROSS SECTIONS

The task of sampling from the multivariate normal distribution for
cross sections that is defined by the experimental mean vector and
covariance matrix is complicated by the requirement that cross-section
sets produced by the sampling must obey a number of constraints. In
particular,
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(1) No cross section may be negative. This requirement is abso-
lute, as the physics codes that use the cross sections cannot, in
general, handle negative cross sections.

(2) For each energy group, the cross section for that group in the
total block must equal the sum of the cross sections for that
group in the individual reaction blocks. With finite-precision
arithmetic this requirement can only be satisfied approximately
so this is all that the physics codes require.

These two basic constraints in turn put a number of constraints on
the mean vector and covariance matrix, not all of which are obeyed
to sufficient precision by the experimental mean and covariance, which
then requires that we “repair” the mean and covariance before we can
sample from them. In the next two sub-sections we discuss these con-
straints on the mean vector and covariance matrix and how the mean
and covariance may be modified to better satisfy the constraints.

In addition to the constraints on the mean and covariance arising
directly from the nonnegativity and summation constraints on cross-
section sets, the constraint that the covariance matrix be nonnegative-
definite will require an additional “repair” of the matrix. This repair
comes naturally after the imposition of the summation constraints, so
we discuss it in the final sub-section of this section.

4.1. The Nonnegativity Constraint. Strictly speaking, sampling
from a normal distribution cannot obey a nonnegativity constraint, as
the support of the normal distribution is the entire real line. However, if
every component of the mean vector is positive and the corresponding
standard deviation from the covariance matrix is small compared to
the mean, samples with negative components will be rare. In this
situation and for many applications, it makes sense simply to disgard
such cases. This is the strategy that we adopt in our work because,
given our experimental mean vector and covariance matrix, for both
normal and LH/OA sampling, including the latter with flux weights,
the fraction of cross-section sets with negative cross sections is never
larger than about 0.06

In addition to being able to handle the case where standard devia-
tions are small with respect to means by simply disgarding the resulting
rare cross-section sets with negative cross sections, it is also possible
to accomodate zero components in the mean vector if the correspond-
ing standard deviations are also zero, although some care is required
in handling such components, as we discuss in the remainder of this
subsection.
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In any case, the requirement that no cross section be negative obvi-
ously requires that no element of the mean vector be negative which,
thankfully, is the case with our experimental mean vector.

Our experimental mean vector does have some zero cross sections?.
Clearly, a zero for a component of the mean vector must be matched by
a zero for the corresponding variance on the diagonal of the covariance
matrix because otherwise sampling will produce a negative cross section
half the time. Fortunately, the experimental covariance matrix has
a zero variance for every zero component of the experimental mean
vector.

A somewhat less obvious constraint that a zero value in the i-th
component of the mean vector puts on the covariance matrix is that
the entire i-th row and column of the matrix must be zero. This fol-
lows from Equation 6 and the requirement that the variance of such a
component be zero. Again, our experimental covariance matrix obeys
this constraint.

Since the nonnegativity constraint must be strictly obeyed, it is es-
sential to insure, when we are drawing samples from the multivari-
ate normal distribution in Equation 1, that roundoff error from finite-
precision arithmetic in the sampling computation not produce small
nonzero values in components of samples that should be strictly zero,
as there is no way to guarantee that such small nonzero values will
not be negative. Since the sampling algorithms described in Sections 5
and 6 involve the computation of the spectral decomposition of the co-
variance matrix and the construction of samples as linear combinations
of the eigenvectors of the matrix, a complex computation that operates
globally over the entire covariance matrix, pretty much the only way
to insure that roundoff error does not produce small nonzero values in
the components of the samples that should be zero is to remove the
zero components of the mean vector and the corresponding zero rows
and columns of the covariance matrix prior to performing the sampling
computation, and then to restore the zero components in the samples
after they are produced.

In addition, as we discuss in the next subsection, the experimental
mean vector and covariance matrix do not obey the summation con-
straints to sufficient precision and it is therefore necessary to modify
them slightly in order to improve the compliance with those constraints.
As with the computation of samples, the need to prevent roundoff error

2These zeros occur in blocks for reactions that have an energy threshold—the
inelastic scattering, n2n, and n3n blocks—so they are always in the lower energy
groups in these blocks.
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in this computation from corrupting the components of the mean vector
and the rows and columns of the covariance matrix that should remain
zero requires us to remove these before performing any modifications on
the mean vector or the covariance matrix, and to restore the removed
zero components, rows, and columns only after the modifications have
been made.

4.2. The Summation Constraints. The summation constraint on
cross-section sets described above may be represented in matrix form
by defining a constraint matrix,

b—1 blocks
OT:[IQ :Ig g - _I;} (8)

where ¢ is the number of energy groups, I, is the g x g identity matrix,
b is the number of blocks (the number of reactions plus one for the
total block), and it is assumed that the total block comes first. With
this notation, the summation constraints on a cross-section vector, s,
may be written as,

CTs=0. (9)
If want our sampled cross-section sets to obey these constraints, it is

clear that the mean vector, pu, for our multivariate normal distribution
(Equation 1) must also obey this constraint,

CTu=0. (10)

The question then arises of what we are to do if the experimental
mean vector, p., does not obey the constraint in Equation 10 to suf-
ficient precision. It appears that we should somehow repair the mean
vector in that case. To see how to do this, begin by noting that the
rows of CT (the columns of C) are vectors in the space of cross sections
and that they therefore span a subspace, ¢. Equation 10 tells us that p
must be orthogonal to each of these vectors. Geometrically, this means
that p must lie in the orthogonal complement of €, ¥, . The natural
way to repair u. if it does not, in fact, lie in %, is to compute the
projection of u. onto €, and use the projected vector as our repaired
L.

To compute this projection of ., note that the columns of C' are
orthogonal, as, for any index ¢ and any two columns of C, ¢ and d,
it is never the case that both ¢; and d; are nonzerQB. If we normalize
the columns of C' to produce a modified matrix C', we then have an

3This lack of shared nonzero components arises because there is a one-to-one
correspondance between vectors and groups and each vector has nonzero values
only for cross sections for its group.
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orthonormal basis for &. It is easy to show that, given that Cis a
matrix of column vectors that constitute an orthonormal basis for &,
the matrix that projects an arbitrary vector onto % is given by,

P, =CCT. (11)
Then, the matrix that projects onto %, is,
Py =1-CC", (12)

where I is the identity matrix on the space of cross sections. Therefore,
we may repair f simply by multipying it by Py ,

p= Pgpe = (1—55T>ue- (13)

In addition to imposing the constraint in Equation 10 on the mean
vector, it is clear that the requirement that samples from our distri-
bution obey the constraint in Equation 9 must impose constraints on
the covariance matrix as well. If we look at the second expression for
the multivariate normal distribution in Equation 1, it is clear that we
want (s — u)TX 7 (s — p) to be very large (infinite, really) whenever s
is not in €’ . Since our repaired p is in €, and %, is a linear subspace,
s not being in %, is equivalent to s — u not being in €. So, we want
uTY 'y to be infinite for any cross-section vector u that does not lie
in CKJ_.

This will be the case if and only if ¥ operating on any vector in &
gives zero,

»C =0. (14)
This is the constraint on the covariance matrix induced by the con-
straint on samples given in Equation 9.

If 3. does not satisfy this constraint to sufficient precision, we may
fix it by replacing it with the covariance matrix for vectors that have
been projected onto €,

Y =P} S.Pyg,
= Py Y Py, (15)
_ (1 _ 66”) . (1 _ 66”) ,
where we have used the fact that Py , being a projection matrix, is
symmetric (as is also obvious from the definition of Py, in terms of C').
It should be immediately clear that ¥ so defined satisfies the constraint
in Equation 14.
The actual proceedure for repairing p. and ¥, is more complex than

described above, because of the presence of the zero components in
tte and the corresponding zero rows and columns in X, that must be
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exactly preserved in the repaired versions. The solution is to remove
the zero components, rows, and columns, perform the repair on reduced
versions of p, and Y., and then restore the zero components, rows, and
columns to the reduced, repaired versions. Note that this requires
removing the same components from the columns of C' as are removed
from p. and renormalizing the columns in the new, reduced space.
Note also that the reduction does not change the orthogonality of the
columns of (', because the orthogonality is not due to any cancelation
of quantities in a dot product but rather to the fact that there no two
columns have nonzero values for the same component so every term in
the relevant dot product is identically zero.
The proceedure for fixing p. and X, is therefore as follows:

(1) Construct the constraint matrix C' according to Equation 8.
(2) Remove the zero components of y. and the corresponding rows
and columns of ¥, to produce reduced versions, p/, and 3.

(3) Remove the corresponding rows of C' to produce a reduced ver-
sion, C".

(4) Normalize the columns of C’ to produce a normalized, reduced
version, .

(5) Compute the projection matrix onto the subspace orthogonal
to the subspace spanned by C , Py, using Equation 12, but

substituting C" for C.

(6) Apply Py to p and X, as in Equations 13 and 15 to produce
repaired, reduced versions, p,. and X/.

(7) Restore the missing zero components to . and the missing
zero rows and columns to ¥/ to produce our final, full, repaired
versions, p and X.

4.3. The Nonnegative Definiteness Constraint. In addition to
the nonegativity and summation constraints, the covariance matrix is
required to be nonnegative-definite. As discussed in Section 3.2 above,
this nonnegative-definiteness is equivalent to all eigenvalues being non-
negative. Given that some of the eigenvalues of the covariance matrix
must be zero, it is clear that this constraint can only be satisfied ap-
proximately, because round-off error from finite-precision arithematic
is certain to make at least some of the zero eigenvalues have small
negative values. This problem is likely to be worse than it needs to
be because the experimental covariance matrix is only given in single
precision. Since doing either sampling from the normal distribution
in Equation 1 or sampling based on the normal distribution as part
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of a Latin-Hypercube/Orthogonal-Array design involves complex com-
putations with the covariance matrix, it seems best to insure that the
matrix obeys the constraint on its eigenvalues to within double preci-
sion before doing any sampling.

This constraint on the eigenvalues may be enforced simply by taking
the repaired X from the previous sub-section, where we imposed the
summation constraints, performing the spectral factorization, setting
all negative eigenvalues to zero, and inverting the factorization.

Note that there is no danger that such an operation will undo the
summation constraints that have previously been imposed, as these
constraints show up in the spectral factorization as a set of eigenvec-
tors with (near) zero eigenvalues. Leaving these eigenvectors unmod-
ified (which the operation does with all eigenvectors) and setting the
correponding eigenvalues that have small negative values to exactly
zero clearly will do nothing to violate the summation constraints.

In fact, it is important that the constraint on the eigenvalues be
imposed only after the summation constraints are imposed precisely
so that we may be certain that the eigenvectors that correspond to the
summation constraints are exactly as they should be (to within double
precision, of course).

In practice, along with setting all negative eigenvalues to zero, we
identify the eigenvectors that correspond to the summation constraints,
and set all of their eigenvalues (whether negative or not) to zero before
inverting the spectral factorization. We identify the appropriate eigen-
vectors in the first place by noting that their eigenvalues should have
the smallest absolute magnitudes (as we have just imposed the summa-
tion constraints) and then confirm this identification by showing that
the subspace spanned by the identified eigenvectors is the same as the
subspace of the summation constraints. We make the latter identifica-
tion by using a standard method for comparing subspaces by finding
the largest principal angle between them (see [2, Section 6.4.3]).

Of course, these operations, like pretty much any complex operations
on the covariance matrix, should only be carried after removing the
rows and columns of the matrix that should be exactly zero, with the
removed rows and columns restored once the operation is completed.
In practice, this can be done after the imposition of the summation
constraints described in the preceeding section, or as a part of it after
the reduced matrix is multiplied by the projection matrices for the
constraints but before the zero rows and columns are restored.

With this final repair, we have a covariance matrix that satisfies
all constraints as well as possible. Henceforth in this report, we will
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assume that all computations using the mean vector and covariance
matrix will be carried out using the fully repaired versions p and .

5. SAMPLING FROM A NORMAL DISTRIBUTION WITH A
COVARIANCE MATRIX WITH ZERO EIGENVALUES

If the covariance matrix, X, of a multivariate normal distribution has
zero eigenvalues, then the conventional algorithm for sampling from a
multivariate normal distribution cannot be used, as the algorithm re-
lies on taking the Cholesky factorization of Y, which cannot be done
for a matrix that is not strictly positive-definite. There is, fortunately,
an alternative algorithm that can be used in such cases. The alterna-
tive algorithm uses the spectral factorization in place of the Cholesky
factorization.

Both algorithms depend on the following property of multivariate
normal distributions, which is a simple consequence of the formula for
the covariance of the linear transformation of a multidimensional ran-
dom variable given in Equations 7: If x is a multidimensional random
variable with a standard normal distribution,

z ~ N(0,1), (16)

where I is the identity matrix, then a random variable defined by an
affine transformation of x,

y=p+ Az, (17)
has a transformed normal distribution,
Y~ N(M,AAT) ) (18)

Thus, given an arbitrary multivariate normal distribution with mean
p and covariance matrix X, N (u, ), we can sample from the distri-
bution if we can write ¥ as a product of a matrix and its transpose,
¥ = AAT. With this factorization of ¥, a sample may be obtained by
taking a (multivariate) sample, z, from a standard multivariate normal
of the appropriate size, multiplying the sample vector by the matrix A,
and adding p as in Equation 17. Note that a sample from a standard
multivariate normal may be produced by any algorithm for produc-
ing independent samples from a standard univariate normal, as the
identity covariance matrix in Equation 16 specifies that the individual
components of the multivariate sample x are independent. More inde-
pendent samples from the multivariate normal are obtained by simply
repeating the process (assuming that the underlying random number
generator continues to produce independent samples from the standard
univariate normal).
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We pointed out in Section 3.2 that the spectral factorization of any
covariance matrix, ¥, (Equation 3) may be written in the form ¥ =
AAT (Equation 4), where A = Uv/D, U is the matrix the columns
of which are the eigenvectors of ¥, and D is the diagonal matrix of
eigenvalues. Thus, the spectral factorization provides precisely the kind
of factorization of ¥ that is needed for sampling from N(u, 32), provided
we set

A=UVD (19)

in Equation 17 to compute,
y =+ UVDz. (20)

Numerically, the algorithm is a bit more complex, because of the
effects of round-off error in the computation of the spectral factoriza-
tion of 2. Even if ¥ is strictly nonnegative-definite, with some zero but
no negative eigenvalues, round-off error from finite-precision arithmetic
will cause some eigenvalues in the computed spectral factorization to
be slightly negative. The obvious solution is to set all of the negative
eigenvalues in D to zero before taking the square root. If this pre-
scription is followed, then the algorithm as described above properly
samples from the multivariate normal distribution defined by © and X2,
whether or not Y has zero eigenvalues.

The presence of zero components of ;1 complicates the sampling algo-
rithm further, as it is essential that the samples exactly reproduce the
zero components. This is accomplished as in the discussion of imposing
summation constraints in Section 4.2 by producing reduced versions of
i and ¥ with the zero components of ¢ and the corresponding rows and
columns of ¥ removed, performing the sampling algorithm described
above using the reduced p and Y, and restoring the zero components,
rows, and columns in the resulting samples. This works because the
eigenvectors of the reduced > become eigenvectors of the full ¥ once
we restore the zero components, which follows from the fact that the
removed components were zero.

Note that computing y = u 4+ Uv/Dx, where D is diagonal and
nonnegative, is equivalent to computing

y=n+ Yz (21)

where the x; are the components of x, the \; are the elements of the
diagonal matrix D (the eigenvalues of ¥) and the u; are the columns
of U (the corresponding normalized eigenvectors of ). We may thus
view a sample from the multivariate normal N(u, ) as the sum of u
and a linear combination of the eigenvectors of ¥, with each eigenvector
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weighted by the square root of its eigenvalue and multiplied by a ran-
dom sample from a standard univariate normal. This way of looking
at the sampling in Equation 20 will prove useful in Section 6, where we
explain how to produce cross-section variations for parametric studies
based on Latin-Hypercube/Orthogonal-Array sampling.

It is also important to note that the eigenvectors of ¥ for which the
corresponding eigenvalues are non-zero will be orthogonal to any vector,
v, for which X v =0 =0 - v, because such a v is clearly an eigenvector
of ¥ with eigenvalue 0 and eigenvectors of a symmetric matrix with
distinct eigenvalues are orthogonal. In particular, if v represents a
constraint on X as in Equation 14, then, provided p obeys the related
constraint in Equation 10, a sample, s, formed from the sum of u
and a linear combinations of the eigenvectors of ¥ as in Equations 20
and 21 will obey the constraint in Equation 9, as the eigenvectors with
eigenvalue 0 contribute nothing to the sample by virtue of the weighting
by v

Finally, we note that the eigenvectors of 3 contribute to the variance
of the cross-section variations produced by sampling from N (i, X)) in
proportion to their eigenvalues. This observation will be important
in Section 6 where we seek to reduce the cross-section variations to
functions of a small number of parameters.

6. LATIN-HYPERCUBE/ ORTHOGONAL-ARRAY SAMPLING

In addition to being able to sample from the multivariate normal
distribution defined by the experimentally-determined mean vector u
and covariance matrix ¥ (both properly repaired of course), we also
want to be able to produce varied cross-section sets appropriate for
parametrized studies of the effects of various uncertainties on outputs
of physics codes. This requires being able to compute cross-section
variations as a function of a small number of parameters, certainly no
more than, say, six. Given that the number of cross sections is 210
(albeit with 30 constraints, a number of cross sections with zero mean
and variance, and substantial correlations), this is a formidable demand
for dimensional reduction.

Values of these intended parameters for a study, together with values
of other parameters representing other kinds of uncertainties, are to be
produced as part of a Latin-Hypercube/Orthogonal-Array (LH/OA)
design. The inputs for such a design are a minimum and a maximum
value (that is, a range), for each parameter. These ranges collectively
define a hypercube in the multidimensional space of the parameters.
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Given these inputs, the LH/OA design algorithm produces a collection
of parameter sets that are optimally distributed within this hypercube.

For example, if one has several parameters, each of which may be
varied independently of the others and for each of which the uncertainty
may be characterized by a normal distribution, one will typically take
2-0 or 3-0 ranges for the parameters as the inputs to the LH/OA
algorithm.

However, it is not clear how to apply the LH/OA algorithm when
it does not make sense to vary certain subsets of the parameters inde-
pendently, as when their variations should be correlated or when they
must obey certain multivariate constraints. The solution is to write
the parameters in question as (usually affine) functions of a new set of
the parameters the values of which can be varied independently.

In incorporating cross-section variations into our studies, then, we
seek a set of vectors in the space of cross sections that meet the following
requirements:

(1) There is a natural way to write a cross-section set as a linear
combination of the vectors (plus a mean vector);

(2) Such a cross-section set is guaranteed to satisfy the constraints;

(3) The coefficients of the vectors in the linear combination that
computes a cross-section set can reasonably be varied indepen-
dently;

(4) There is a reasonable way to choose these coefficients so as to
at least approximate the correlated uncertainties that charac-
terize our knowledge of the cross sections (as represented by the
multivariate normal distribution in Equation 1).

(5) It can be shown that a small number of these vectors are suffi-
cient to capture the variations in the cross sections that signif-
icantly affect the outputs of our physics codes.

If we can find such a set of vectors, then the coefficients in the linear
combination that produces a cross-section set become our new param-
eters that can be varied independently.

The eigenvectors of the covariance matrix, weighted by the square
roots of their eigenvalues, that are used to do random sampling from
the multivariate normal distribution in Equation 21 above are good
candidates for such a set of vectors because:

(1) Equation 21 gives a general cross-section set as a linear combi-
nation of the eigenvectors;

(2) A cross-section set computed using Equation 21 is guaranteed
to satisfy the constraints;
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(3) It makes good sense to vary the coefficients of the eigenvectors
(the z; in the linear combination of eigenvectors in Equation 21)
independently in an LH/OA design as the eigenvectors are sta-
tistically independent in N(u, X).

(4) Choosing the coefficients z; as independent samples from a stan-
dard univariate normal gives us our samples from the multivari-
ate normal distribution in Equation 1 through Equation 21, so
the eigenvectors are directly related to our knowledge of the
cross sections embodied in the multivariate normal.

(5) The eigenvalue corresponding to an eigenvector quantifies the
contribution of that eigenvector to the overall variance in the
cross sections, suggesting that we may be able to reduce the
dimensionality of our representation of cross-section variations
by using only the eigenvectors with the largest eigenvalues.

In order to use the eigenvectors in a LH/OA design, then, we order
the eigenvectors® in descending order of their eigenvalues and choose a
number of eigenvectors to retain, m. When building our LH/OA design
we specify m cross-section variation parameters. The values of these
parameters in each parameter set in the design will just be substituted
for the first m x; in Equation 21 to produce the actual cross-section
samples. If we want to explore a 2-0 range, we specify the ranges of
the z; to run from -2 to 2 and mutatis mutandis for 3-o ranges or any
other desired range.

Note that there is no guarantee that using only the eigenvectors with
the largest eigenvalues will actually meet our last requirement for the
vectors on the coefficients of which we will build our LH/OA design
because the vectors that produce the maximum variance in the cross-
sections are not necessarily the vectors that will produce the largest
variations in the outputs of the physics codes that use the cross sec-
tions. Nevertheless, the eigenvectors are the obvious set with which
to start and any more sophisticated choice for the vectors to use in
the design should probably be expressed as linear combinations of the
eigenvectors with non-zero eigenvalues, as any such linear combinations
will be guaranteed to obey the constraints and the relationship of the
eigenvectors to sampling from the distribution for the cross sections,
N(u,X), allows us to map their coefficients onto the LH/OA model.

40f course, we must compute the eigenvectors as described in Section 4.2, work-
ing on reduced versions of p and ¥ with the zero components of p and the corre-
sponding rows and columns of ¥ removed, in order to satisfy the requirement to
preserve the zero components in the samples exactly.
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7. LATIN-HYPERCUBE/ORTHOGONAL-ARRAY SAMPLING WITH
PER-GROUP FLUX WEIGHTS

In this section, we describe how we use flux weights for the energy
groups in our Latin-Hypercube/Orthogonal-Array sampling in order to
increase the probability that the low-dimensional parametric represen-
tation of cross-section variations discussed in Section 6 captures the
variations that have the most effect on the outputs from the physics
codes.

Flux weights are a kind of importance weighting for each energy
group. They are specified by group (rather than, say, for each reaction)
because they are computed based on the neutron populations in each
group in a typical application. The 30 group flux weights that we use
in this work were derived from the fission spectrum and the DT fusion
peak of the traditional Los Alamos “TD” weight function. The 1/E
and Maxwellian flux shapes at lower incident neutron energies were not
included®.

Given a set of weights for the energy groups as a vector w of length g,
where g is the number of groups, we construct a diagonal matrix, W, of
size gb x gb, where b is the number of blocks (including the total block),
by repeating w down the diagonal of W, once for each block. Then,
we may compute a weighted cross-section set, ¢, from an ordinary set,
s, as,

t=Ws. (22)

We then compute the covariance matrix for the weighted cross sec-
tions, using Equations 7,

T = cov(t) = WEWT = WEW, (23)

where the last expression comes from the obvious symmetry of W.
We may draw samples for weighted cross sections by using T just as
we would draw samples for unweighted cross sections by using >, using
in this case the spectral decomposition of T rather than the spectral
decomposition of ¥ as described in Section 5 for normal sampling and
Section 6 for LH/OA sampling. Doing so does not actually buy us
anything if we use all of the eigenvectors of T, as the resulting samples
need to be transformed back to unweighted cross-section sets in order
to be used by the physics codes and we will just have samples with the
same statistical properties as before (assuming that there are no zero

5The “TD” weight function is also sometimes referred to as the “CLAW” weight
function. It is numerically specified as a 49 point log-log interpolation table and
may be found as the IWT=9 weight function of the GROUPR subroutine of the LANL
neutron cross-section processing code NJOY [3].
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weights, see below). However, if we want to do LH/OA sampling using
a limited number of eigenvectors in order to have a parametric repre-
sentation with a small number of parameters, as described in Section 6,
using a small number of eigenvectors of T with the largest eigenvalues
rather than a similar set of eigenvectors of X is likely to give us samples
that do a better job of capturing the variations in cross sections that
have the greatest effect on the outputs of the physics codes.

The situation is actually a bit more complex than this because there
are some zero weights, for the first six energy groups (starting from the
lowest energy group). In this case, we need to take care in inverting
the weighting transformation to go from the sampled weighted cross
sections to the unweighted cross sections used by the physics codes.
Essentially, we simply impose the condition that there are no variations
in the first six energy groups and all samples will simply have the mean
value for these groups (in all blocks). We do this by removing the
rows and columns of the zero-weighted groups from T (as well as the
zero rows and columns that Y inherits from ¥) before performing the
spectral decomposition. We then proceed with sampling as usual using
the eigenvectors and eigenvalues of T, transform back to unweighted
samples, and then restore the zero components to the samples.

More precisely, our proceedure is:

(1) Compute the diagonal matrix of weights, .

(2) Using the repaired covariance matrix from Equation 15, com-
pute the weighted covariance matrix T from Equation 23.

(3) Remove the zero rows and columns of YT (both the ones that
are zero due to zero weights and the ones that were zero in the
original X).

(4) Compute a reduced version of W by removing the same rows
and columns that were removed from Y.

(5) Compute the spectral decomposition of the resulting reduced
T.

(6) Use the eigenvectors and eigenvalues of T to compute sam-
ple weighted cross-section sets according to Equation 21, where
here the u; and \; refer to the eigenvectors and eigenvalues of
T, not X, and we ignore the mean vector i for the moment.

(7) Transform the samples back to unweighted samples by multi-
plying them by the inverse of the reduced version of W, which
exists because the zero elements on the diagonal of W were
eliminated in doing the reduction.

(8) Restore the zero components to the samples.

(9) Add p to each sample.
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In this proceedure, the z; in the sampling algorithm are chosen as
independent samples from a standard univariate normal if we are doing
normal sampling, or according to a LH/OA design with ranges from,
say, -2 to 2 if we are doing LH/OA sampling over a 2-0 range.

When we perform LH/OA sampling using flux weights, we capture
98% of the variance in the weighted cross sections using just the first
three eigenvectors of the weighted covariance matrix.

8. APPENDICES

8.1. Quantifying Violation of the Summation Constraints. In
Section 4.2 we discussed how to impose the summation constraints
on the mean vector, p, and the covariance matrix, 3, if the given
experimental mean and covariance do not satisfy the constraints to
sufficient precision, but we did not explain how to determine whether
or not a violation of the constraints large enough to require “repair”
of the mean or covariance is present, or even how to quantify such a
violation. In this section, we explain how to quantify such violations
of the constraints.

To begin with, note that the definition of the constraints in Equa-
tion 9 for an arbitrary cross-section vector, s, leads naturally to the
definition,

A, =CTs, (24)
where A; is a vector of length g, where g is the number of energy
groups, that quantifies, for each energy group, the degree to which the
cross sections for the individual reactions fail to sum to the value in
the total block®.

In practice, it is probably more meaningful to give the discrepancy
between the total of the reactions and the value in the total block as
a fraction of the value in the total block, so we define a vector, d5, of

length g by,
(0:); = (As); [ (s0);» i =A{L,.... g}, (25)
where s; is just the total block of s.
Quantifying violations of the summation constraints in the mean
vector is now straightforward—we simply use the absolute quantity,

A

o

A, =CTy, (26)
of the relative quantity, J,,,

On); = (Bu)i / (a);, i=A{1,.... g}, (27)

where 1 is just the total block of the mean vector.

6Note that the definition of A, involves C and not C.



PU239 CROSS-SECTION VARIATIONS 21

Quantifying the degree to which ¥ violates the summation con-
straints is more complex because, unlike g, ¥ is not itself a cross-
section vector. We proceed by considering the cross-section vectors
that will produced by sampling from a multivariate normal distibution
with mean 0 and covariance ¥, N(0,X) (where we are ignoring p be-
cause we want to look just at the contribution of ¥ to any violation of
the constraints). If we define s as a multivariate random variable with
this distribution, then we may take Equation 24 as defining a new ran-
dom variable, A,, by multiplying s by the matrix C7. Then, according
to Equation 7, the covariance of Ay is,

cov(A,) = CTs (T =cTx ., (28)

(and, in fact, the distribution of Ay is N(O, oy C))

If we then consider the covariance matrix C7X C for A, we see that
its diagonal elements of are precisely the variances of the elements of
Ag. The square roots of these elements are the standard deviations of
the elements of A, and we may reasonably take these as measures of
the degree that > produces violations of the summation constraints in
sample cross sections, Ay,

Ay, = 4/diag(CTE0). (29)

Finally, as with violations of the constriants by the mean vector, it
probably makes sense to look at the violations coming from 3 relative
to the mean values in the total block, dy,

(0s); = (As); / (e);, i =A{1,.... g} (30)
Alternatively, we can take the components of Ay relative to the

standard deviations of the groups in the total block, \/diag(X;), where
Yy is the sub-matrix of X corresponding to the total block,
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