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Abstract

The aim of this project was to design a series of blast-wave driven Rayleigh-Taylor (RT)
experiments on the National Ignition Facility (NIF). The experiments of this kind are
relevant to mixing in core-collapse supernovae (ccSNe) and have the potential to address
previously unanswered questions in high-energy density physics (HEDP) and
astrophysics. The unmatched laser power of the NIF laser offers a unique chance to
observe and study “new physics” like the mass extensions observed in HEDP RT
experiments performed on the Omega laser [1], which might be linked to self-generated
magnetic fields [2] and so far could not be reproduced by numerical simulations.
Moreover, NIF is currently the only facility that offers the possibility to execute a diverging
RT experiment, which would allow to observe processes such as inter-shell penetration
via turbulent mixing and shock-proximity effects (distortion of the shock by RT spikes).

1. Accomplishments
1.1 Scope of the project

In the course of this project, we performed numerical simulations using the adaptive-mesh
radiation magnetohydrodynamics (MHD) codes CRASH, FLASH, and Proteus to guide
the experiment design. The codes include extensive HEDP capabilities, like 3-
temperature hydrodynamics, multigroup radiation transport, tabulated EOS, laser ray
tracing and multi-material treatment. Using different codes at the same time is helpful in
improving computational machinery. We have implemented the extended MHD
formulation according to Braginskii [3] in our version of the FLASH code [4], Proteus,
which puts us into a position to study the influence of magnetic fields generated via the
Biermann battery effect on the RT morphology.

Our strategy towards fielding a diverging RT experiment on NIF was to perform a planar
experiment first in order to develop the drive and diagnostics platforms. As the next step,
we were to consider experiments with a non-planar (but forward-propagating) shock
wave, and finally, experiments with a diverging shock. The planar design was finished [5].
However, the promised NIF shots never materialized leaving our project in a state of
limbo. Nevertheless, we continued the design study by enriching the planar RTI design
by new physics (magnetic fields), as reported in [9], and considering closely related
Kelvin-Helmholtz instability problem in the HEDP setting (in a doctoral project).

In what follows, we first summarize the results obtained in the planar design study (Sec.
1.2), accomplishments in Year 3 and during the no-cost extension period (Sect. 1.3),
before we move on to discuss our plans for the future (Sec. 1.4).

1.2 Planar target design study



Target setup We used the CRASH code to simulate
the design of the planar target. The target is two-
layered, with the heavy material being copper and the
light material plastic. Three NIF cones are used to
illuminate the target, with the fourth cone being
reserved to generate diagnostic x-ray photons. We
used analytic estimates together with numerical
simulations in order to optimize the laser drive and
the target parameters for optimal diagnostic results.
Fig. 1 shows a sketch of the proposed setup. Fig. 1: Sketch of the experimental setup.

Synthetic radiographs We have developed a radiographic model that accounts for the
fact that outside the “perturbed region” (where the Cu/CH interface is flat, see Fig. 1),
copper structures will “wrap around” and (due to the very high opacity of copper) pose the
danger to reduce the signal in the region of interest. Our radiographic model includes
photon shot noise (the dominant noise source) and motion blur (blurring of radiographs
due to target motion). We are able to show that the experiment can be diagnosed using
currently available point-projection x-ray radiography capabilities on NIF. We find that
using zinc as the backlighter material gives the best results and that using higher drive
energies lead to better radiographic contrast. See Fig. 2 for example radiographs.

Sensitivity to numerical diffusion We
conducted a rigorous study on the
dependence of the simulation results on the
effective numerical resolution, finding that the
width of the mix layer (the region where
copper and plastic are mixed) is converged at
a resolution of 1 micron.

Sensitivity to the drive energy We explored
drive energies in the range between 80-300
kJ and find that higher drive energies lead to
better radiographic contrast and a deeper
spike penetration. Since the time delay
between drive and diagnostic beams is also
shorter at higher energies, using 300 kJ of
drive energy is highly favored.

Target construction uncertainties We used
high-resolution simulations to study the
influence of small-scale perturbations (that
might be introduced during the process of
target fabrication) on the RT morphology. We
were able to show that for perturbations
smaller than 1 micron (which is significantly
Fig. 2: Density plots (left) and simulated radiographs greater than the size of typlcal fabrication

(right) for different drive energies (top: 100 kJ, middle: €Irors) the effect is small.
200 kJ, bottom: 300 kJ).




Buoyancy-drag model On the basis of
previous work [6,7], we developed a buoyancy-
drag model to describe the evolution of the mix
layer during the nonlinear stage of the RT
instability [5]. Our model predicts the evolution
of the mix layer using only data from a 1D
simulation. We find excellent agreement
between our simulation results and the
buoyancy-drag model (Fig. 3) for the whole
range of drive energies considered. This
Fig. 3: Mix layer width in simulations vs. prediction of Vverifies that the mixing observed in the
buoyancy-drag model. simulations is indeed due to the RT instability.

1.3 Accomplishments in Year 3 and during the no-cost extension period

1.3.1 Influence of self-generated magnetic fields on RT morphology Magnetic fields
generated by the Biermann battery effect are possibly important both in ccSNe [8] and
HEDP experiments [2]. We used our version of the FLASH code, which includes the
extended MHD formulation according to Braginskii [4], to study the influence of self-
generated magnetic fields [2] on the RT morphology in HEDP experiments. We have
already studied self-generated magnetic fields in gravity-induced RT instability [4].

Preliminary simulations of a blast-wave driven
RT systems with pre-imposed magnetic fields
show dramatic morphology changes already
for very weak fields (Fig. 4), as we reported in
the recently published paper [9], with
structures resembling those found in the
experiments performed by Kuranz et al. [1].

Fig. 4: Spike morphology in blast-wave RT simulations
with preimposed longitudinal magnetic field of different
strength (beta=final plasma beta).

1.3.2 The Braginskii model implementation

Anisotropic Conductivity Implementation and Verification = We have implemented in the
code an explicit (and now, after further work, an implicit solver for the anisotropic thermal
conductivity given in Braginskii as

G = (—xyB;B; — 1 (8;j — B;B;) — Kn€jxiby.)

This conductivity is implemented by explicitty modifying the heat fluxes along cell
boundaries with the effect of the magnetic field strength on thermal conductivity taken into
account. Because this anisotropy manifests itself in temperature (as opposed to say
viscosity), implementation of a verification test problem for this model was relatively
straightforward. We used the Stone and Parrish test problem for this purpose, where a
strictly solenoidal magnetic field was initialized around some center point in an isothermal



medium. We the initialize a small subportion of a toroidal ring of higher temperature and
let the system evolve (with the solenoidal magnetic field being imposed in time). This is
depicted in Figure 5.

As is demonstrated, the
overwhelming amount of
the thermal energy
initialized within the
annulus remained within
the annulus  through
evolution in time, as one
would expect due to
magnetic  field  driven
conductive anisotropy. To
further verify our code, we
model the above
configuration on various grid sizes and looked at the residual as a function of the grid
size.

Figure 5: Evolution of the Parrish-Stone test problem for anisotropic conductivity
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These strain-rate tensors are themselves functions of the isotropic strain rate tensor and
various magnetic field components, with the first and simplest of these being given as

o 3 1 1
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Given the much more complicated functional dependence on the magnetic field of
viscosity, and owing to the nonlinear nature of the Navier-Stokes equations in terms of
velocity (of which viscosity is a function), the creation of an intuitive test setup in order to
verify correct implementation of the model is not possible. Instead, we were forced to
devote our energy into the creation of a comprehensive framework for testing problems
via the method of manufactured solutions, and have demonstrated its accuracy in
verifying the following dynamical systems.
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We completed a verification of our isotropic viscosity module via a method of a
manufactured solution approach to the Navier-Stokes momentum equation, and once that
is completed, we can move on to final verification of our implementation of Braginskii
anisotropic viscosity.

1.3.3 Anisotropic Diffusion with Multigrid

Electron heat conduction in magnetized plasmas gives rise to thermal diffusion equations
of the form

E;_: —B(x,T)V - [D(x,T) - VT] = S(x,T),

where g is related to local plasma conditions, T is the electron temperature, and D is the
diffusion coefficient tensor. For certain conditions, D is anisotropic, spatially dependent,
and may introduce non-linearity through dependence uponT.

Additionally, the diffusion process may operate on much shorter timescales than other
physical processes, such as hydrodynamics [4,5]. As such, the heat conduction should
be evolved implicitly to enable evolution of the complete system to relevant times. In the
following we present an overview of our work toward implementing implicit, anisotropic
diffusion into our block-AMR hydrocode Proteus.

Temporal Discretization

Tn+1 _ @Atﬁn+1 7R (Dn+1 . VTn+1) _ @At5n+1
=T"+ (1 - 0)AtB"V - (D™ - VT™) + (1 — @) AtS™

We discretize the diffusion equation in time using the general ®-method. This formulation
encompasses explicit forward Euler (0@ = 0,0(4t)), implicit Crank-Nicolson (0 =
0.5,0(4t?)), and fully implicit backward Euler (@ = 1,0(4t)). While Crank-Nicolson is
second order in time, it is prone to oscillatory (albeit stable) behavior when the numerical
solution includes steep numerical gradients. However, backward Euler may add large
numerical diffusion to the solution in the limit of large time steps (Courant factor > 1) due
to its first order approximation.

Spatial Discretization Here we consider the spatial discretization of the diffusion system
in Cartesian coordinates. The diffusion operator may be expanded into components such
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where & =x, &, =y, & =2z, and d is the dimensionality of the problem. The first
summation represents the “normal” transport of T, while the second summation
incorporates the “transverse” transport of T. Note that for isotropic diffusion problems (D =
DI) the transverse components vanish and only the normal components remain. The
indices for the tensor elements is provided by

D11 D21 D31
D12 DZZ D32
D13 D23 D33

D =

We approximate the normal components as the unmodified flux through the axis-aligned
interfaces of a cell specified by indices (i, j, k) on a locally uniform grid. The contribution
for faces partitioning the x-axis is given by

11 11 11 11
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where the diffusion coefficients are evaluated at the lower and upper interfaces (i — 0.5
and i + 0.5, respectively), and the spacing 4x is the local cell width. The formulae for the
y and z contributions are analogously defined.

The transverse contributions at cell interfaces are approximated as the average of
surrounding cell-centered transverse gradients. For simplicity we present only the
transverse components in two dimensions (where the k index is suppressed).
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In two dimensions, this results in a 9-point stencil using local cells in the logical domain
[i —1,i+ 1] X [j — 1,j + 1], with truncation error 0(4x?, Ay?). In three dimensions the four
additional transverse components are defined analogously, which extends the
discretization to a 27-point stencil. The provided discretization is the same as that of [10].

Multigrid  The advancement of the temperature field in time requires the solution of a
spatially-coupled system of equations. To this end, we have chosen to use the multigrid
Full Approximation Scheme [11] for the inversion of this system. The remainder of this
work builds upon our previously implemented version used for solving Poisson’s equation
for self-gravitating mass distributions.



While presenting an in-depth review of multigrid methods is outside the scope of this
report, we should note some specific aspects. First, multigrid methods are based on the
idea of approximating the solution of the problem on a hierarchy of nested grids. This
enables increased convergence rates due to filtering of low and high order spectral modes
in the error. Information is transferred between the grids by use of restriction and
prolongation operators (not discussed here). On each grid, or “level,” the solution of the
diffusion equation is approximated by used of a “level solver”. The order in which levels
are visited is defined by the cycle type; our implementation uses only the V-cycle, but
other options such as W- and F-cycles could be incorporated.

Level solvers One of the most important aspects of a multigrid scheme is the level
solver, which is responsible for smoothing the error on each grid in the hierarchy.
Traditional isotropic level solvers utilize either Jacobi iteration, Symmetric Gauss-Seidel,
or Red-Black Gauss-Seidel. For anisotropic problems these methods fail to adequately
reduce error in the solution; as the amount of anisotropy increases, it becomes
increasingly difficult to damp error in the weakest direction [12].

Consequently, level solvers for anisotropic problems attempt to treat the smoothing
operation in a directionally-split manner to damp error in both the strong and weak
directions. One popular technique is to perform line or plane relaxation (in 2D and 3D,
respectively). In line relaxation, one sweeps through the two-dimensional plane and
updates unknowns on a chosen coordinate line simultaneously. For example, in y-line
relaxation, each x-coordinate is visited in sequence and all unknowns in the y extent are
updated simultaneously. For plane relaxation in three-dimensions, solutions are
simultaneously updated on planes instead of lines.

Alternating Zebra Gauss-Seidel We have chosen to use the Alternating Zebra Gauss-
Seidel (AZGS) method [13], which is a robust line/plane solver. For two-dimensional
problems, AZGS is composed of two stages: a horizontal line relaxation followed by a
vertical line relaxation. For a grid of size n; X n;, a single application of horizontal line
relaxation is described by the procedure:

e forallj€[1,n]odd, 1<i<mn,solve

v v v
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where the matrix AY(T") encapsulates the spatio-temporal discretization of the diffusion
operator acting on T, fV(T") is the temporal discretization of the source term S, and v is
a fiducial representation of the current multigrid iterate. The process for vertical line
relaxation is analogously defined, solving for the unknown values of T along the j indices.

The procedure above describes a set of n; quasi-independent tridiagonal systems, each
of which can be approximately or exactly solved. While each line relaxation is expected



to perform well when there is strong coupling along their individual directions, their
combination through AZGS allows relaxing problems with arbitrarily oriented anisotropies.

Implementation comments for block-AMR grids The theoretical framework for
multigrid with line-based relaxations becomes muddled when extended to practical
problems involving parallelized, block-AMR grids. In particular, we note 1) the data
required for a line relaxation across the computational domain is distributed in processor
space, and 2) the concept of coarsening and refinement is no longer applied uniformly
throughout the computational domain.

The first concern is resolved by communicating ghost cell information between blocks
after each sweep of the AZGS procedure on the current level. Once this is communicated,
the first two interior layers of zones in the block are relaxed with a local Gauss-Seidel
smoothing step. This serves to couple the information from adjacent blocks without
requiring additional applications of AZGS.

The second issue requires careful treatment. In particular, the restriction/prolongation
operations required to properly set ghost cell data are already complicated for isotropic
diffusion problems. The addition of the 9-point stencil in our spatial discretization not only
requires that the ghost cells lying on a face of the block be updated, but also that the
ghost cells at the corners of the block be as well. Implementation of the required
communication patterns and operators in an ongoing portion of this work. Therefore, in
the following verification tests we will use uniformly refined block-AMR grids with 8x8
zones per block.

Verification We are interested in anisotropic systems for which the elements of the
diffusion tensor D are represented (in two dimensions) as

Dy = wybg +x.(1-b3),
Dy1 = Kybyby — Kk byby, — Kpby,
Dy, = b2 +x,(1-b2)
Di; = Kybyby, — Kk byby, + Kpb,,

where b; are the normalized components of a vector B(x), k;(T) is the transport
coefficient in the direction of B, while x, (T) and k,(T) are the transport coefficients in the
plane orthogonal to B. Physically, this model corresponds to electron heat conduction
confined by a magnetic field in a plasma.

Annular transport Here we demonstrate a test problem which is, physically, quite
similar to the application problems we are interested in. This test case is based on that of
[10] and considers transport constrained by a circular vector field inside the domain
[—1,1]%, with k; = 1 and k, = k, = 0. The components of the vector field are defined as

By(x) = sin(¢),
By(x) = cos(¢),
B,(x) = 0,

where ¢ = atan(y/x). The initial scalar field is provided by
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10, otherwise

The constraint of parallel transport should prohibit any transfer through the surfaces at
|x| = 0.5 and |x| = 0.7, thus confining the temperature evolution to an annulus. However,
our spatial discretization does not allow for such a curved surface which leads to a non-
zero flux into grid cells outside of the annulus.

Figure 7 shows the temporal evolution of this system at t = 0,100, and 200 for Crank-
Nicolson (CN) at Courant factors of 100 and 1000, and backward Euler (BE) for Courant
1000. The V-cycle multigrid process is performed with 8 pre-smoothing steps and 1 post-

t =100 t =200

Crank-Nicolson Crank-Nicolson
Courant = 1000 Courant = 100

Backward Euler
Courant = 1000

Figure 7: Evolution of temperature fields over time for multiple solvers and Courant factors. Columns denote t =
0,100,200 from left to right. (Top row) Crank-Nicolson with Courant 100. The temperature diffuses primarily
along the vector field, with radial diffusion caused by the spatial discretization. (Middle row) Crank-Nicolson with
Courant 1000. This scheme breaks down at large Courant factors, generating unphysical oscillations at the initial
discontinuity in temperature. (Bottom row) Backward Euler with Courant 1000. This scheme can be pushed to
large Courant numbers at the price of temporal accuracy.

smoothing step. Convergence of a multigrid cycle is satisfied when the norm of the
residual is less than 10~° of the norm of the spatiotemporal discretization of the previous
timestep (the right-hand-side of the discretization equation).

For the CN at a Courant of 100, the diffusion of T is visibly transported along the circular
vector field. Over time, however, evolution of the temperature field outside of the annulus
is readily noticeable. For CN at Courant 1000, however, the solution becomes highly



oscillatory at the initial temperature jump. While the CN method is unconditionally stable,
it is not guaranteed to be non-oscillatory. This is a result of Crank-Nicolson being the
combination of a forward Euler half-step and a backward Euler-half step. Any forward
Euler contribution is eliminated when 6 = 1, which is just the backward Euler case. The
BE models at Courant 1000 evolve as expected.

While the order of the temporal truncation error differs between CN and BE, the models
presented are dominated by the spatial discretization error. As models are computed with
high fidelity grids, however, this error will manifest. Therefore, to maintain a formally
0(At?) error at large Courant factors, and without oscillations, methods such as
Richardson extrapolation can be applied, which is composed of two backward Euler half-
timesteps.

Note the undershooting behavior from the numerical diffusion normal to the annulus
surface. This characteristic of the central differencing scheme employed in the spatial
discretization when coupled with relatively strong gradients in the solution. If this it
determined to be a problem in real simulations, the problem may be mitigated by using
quasi-upwinding schemes for the spatial discretization.

Grid-aligned transport Our first case considers diffusive transport in the unidirectional
field B = %, with k; = 1 and k, = k, = 0. The scalar field T is initialized on the periodic
domain [—1,1]? such that

(12, |xl<05
TO(")_{m, x| =05

The V-cycle multigrid process is performed with 8 pre-smoothing steps and 1 post-
smoothing step. Convergence of a multigrid cycle is satisfied when the norm of the
residual is less than 10~° of the norm of the spatiotemporal discretization of the previous
timestep (the right-hand-side of the discretization equation).

1.4 Future work

The original (hemispherical) target design has currently little chances to be fielded on NIF
because of possible damage to the optical systems due to target shrapnels. We will
therefore consider a design where the target is a cone with opening angle 0<a<180°,
which is in between the cylindrical tube used in the planar design (a=0°) and the
hemisphere used in the original design (a=180°). In this way, one can reduce the danger
due to target shrapnels while still keeping the effects due to divergence. We will perform
a series of simulations with different opening angles a in order to decide which opening
angle can be tolerated. Specific physics questions that will be addressed within this study
are shock-proximity effects (shock deformation), inter-shell penetration via turbulent
mixing and shell breakouts.

Because several basic physics and experimental components are shared between the
planar RTI designs and Kelvin-Helmholtz HEDP experiments, studying the latter system
in some detail using the extended Proteus code appears very interesting. As the
implementation of the additional code modules is finished, we will be able to perform
sensitivity analysis and subgrid-scale modeling of the Kelvin-Helmholtz instability. The
envisioned parameter study involves the key parameters of interest (Mach number,
Atwood number, viscosity coefficient, mixed-layer width) with reasonable ranges of
values. The required computational framework then will create and execute a series of



simulation experiments based on every combination of these values in order to probe the
entire parameter space of the problem. We will then able to analyze the database of the
results and extract the numerical KHI growth rates. The numerical growth rates can be
estimated using the kinetic energy due to the velocity component tangent to the interface,
and compare to theoretical results.

3. Products

We have new experimental design to study blast-wave driven RT instability on NIF. The
major paper presenting the planar target design, related simulations and analysis, was
published in 2014 in High Energy Density Physics [5]. The second paper in the planar
design series was published in 2015 in the same journal. In this paper we focused on the
evolution and role that self-generated magnetic fields play in the planar SNRT
experiments [9].

The results of our design work were presented in poster sessions at the 80" Annual
Meeting of Southeastern Section of American Physical Society in Tallahassee, FL, and a
contributed talk and poster at the international conference, Magnetic Fields in the
Universe IV: From Laboratory and Stars to the Primordial Structures, held in Playa del
Carmen, Mexico, February 4-8, 2013. A brief presentation of the planar target design
study has been published in the conference series of RevMexAA. Posters of the project
were presented at the NIF users group meeting 2013, the Plasma Physics Conference
2014 and the NIF users group meeting 2014.

In the course of the project, our design code, Proteus, has been significantly expanded
to include additional plasma physics modules. In particular, Proteus now allows to study
evolution of HEDP systems using single fluid MHD approximation (the Braginskii model)
taking into account the effects of self-generation of magnetic fields, thermal and friction
forces, and anisotropic viscous and plasma conductivity effects.

4. Participants and other collaborating organizations

The main contributors to the project were Dr. Markus Flaig, Dr. Timothy Handy, and
doctoral candidate, Mr. Ryan Learn. Both Dr. Flaig and Dr. Handy were fully (1 FTE)
supported in this project as postdoctoral research associates in Year 1-3 (Dr. Flaig) and
during the no-cost extension period (Dr. Handy). No support was provided to Ryan Learn,
who acted as an informal contributor.

A group of informal project participants also included long-term collaborators from the
University of Michigan (Dr. P. Keiter, Prof. R. P. Drake, Dr. C. Kuranz) and LLNL (Dr. Hye-
Sook Park, Dr. A. Miles, Dr. B. Remington). Dr. Hye-Sook Park was our NIF Diverging
Supernova RTI Project Science Liaison. Drs. Plewa and Flaig had a status of LLNL
collaborators and used computing resources of LLNL OCF systems to conduct majority
of design simulations. Additional computations were performed at the University of
Michigan and DOE SC NERSC supercomputer center.
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