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Abstract 
 
The aim of this project was to design a series of blast-wave driven Rayleigh-Taylor (RT) 
experiments on the National Ignition Facility (NIF).  The experiments of this kind are  
relevant to mixing in core-collapse supernovae (ccSNe) and have the potential to address 
previously unanswered questions in high-energy density physics (HEDP) and 
astrophysics. The unmatched laser power of the NIF laser offers a unique chance to 
observe and study “new physics” like the mass extensions observed in HEDP RT 
experiments performed on the Omega laser [1], which might be linked to self-generated 
magnetic fields [2] and so far could not be reproduced by numerical simulations. 
Moreover, NIF is currently the only facility that offers the possibility to execute a diverging 
RT experiment, which would allow to observe processes such as inter-shell penetration 
via turbulent mixing and shock-proximity effects (distortion of the shock by RT spikes). 
 
1. Accomplishments 
 
1.1 Scope of the project 
 
In the course of this project, we performed numerical simulations using the adaptive-mesh 
radiation magnetohydrodynamics (MHD) codes CRASH, FLASH, and Proteus to guide 
the experiment design. The codes include extensive HEDP capabilities, like 3-
temperature hydrodynamics, multigroup radiation transport, tabulated EOS, laser ray 
tracing and multi-material treatment. Using different codes at the same time is helpful in 
improving computational machinery. We have implemented the extended MHD 
formulation according to Braginskii [3] in our version of the FLASH code [4], Proteus, 
which puts us into a position to study the influence of magnetic fields generated via the 
Biermann battery effect on the RT morphology. 
 
Our strategy towards fielding a diverging RT experiment on NIF was to perform a planar 
experiment first in order to develop the drive and diagnostics platforms. As the next step, 
we were to consider experiments with a non-planar (but forward-propagating) shock 
wave, and finally, experiments with a diverging shock. The planar design was finished [5]. 
However, the promised NIF shots never materialized leaving our project in a state of 
limbo. Nevertheless, we continued the design study by enriching the planar RTI design 
by new physics (magnetic fields), as reported in [9], and considering closely related 
Kelvin-Helmholtz instability problem in the HEDP setting (in a doctoral project). 
 
In what follows, we first summarize the results obtained in the planar design study (Sec. 
1.2), accomplishments in Year 3 and during the no-cost extension period (Sect. 1.3), 
before we move on to discuss our plans for the future (Sec. 1.4). 
 
1.2 Planar target design study 



 
Target setup   We used the CRASH code to simulate 
the design of the planar target. The target is two-
layered, with the heavy material being copper and the 
light material plastic. Three NIF cones are used to 
illuminate the target, with the fourth cone being 
reserved to generate diagnostic x-ray photons. We 
used analytic estimates together with numerical 
simulations in order to optimize the laser drive and 
the target parameters for optimal diagnostic results.  
Fig. 1 shows a sketch of the proposed setup. 
 
Synthetic radiographs   We have developed a radiographic model that accounts for the 
fact that outside the “perturbed region” (where the Cu/CH interface is flat, see Fig. 1), 
copper structures will “wrap around” and (due to the very high opacity of copper) pose the 
danger to reduce the signal in the region of interest. Our radiographic model includes 
photon shot noise (the dominant noise source) and motion blur (blurring of radiographs 
due to target motion). We are able to show that the experiment can be diagnosed using 
currently available point-projection x-ray radiography capabilities on NIF. We find that 
using zinc as the backlighter material gives the best results and that using higher drive 
energies lead to better radiographic contrast. See Fig. 2 for example radiographs. 
 

Sensitivity to numerical diffusion   We 
conducted a rigorous study on the 
dependence of the simulation results on the 
effective numerical resolution, finding that the 
width of the mix layer (the region where 
copper and plastic are mixed) is converged at 
a resolution of 1 micron. 
  
Sensitivity to the drive energy   We explored 
drive energies in the range between 80-300 
kJ and find that higher drive energies lead to 
better radiographic contrast and a deeper 
spike penetration. Since the time delay 
between drive and diagnostic beams is also 
shorter at higher energies, using 300 kJ of 
drive energy is highly favored. 
 
Target construction uncertainties   We used 
high-resolution simulations to study the 
influence of small-scale perturbations (that 
might be introduced during the process of 
target fabrication) on the RT morphology. We 
were able to show that for perturbations 
smaller than 1 micron (which is significantly 
greater than the size of typical fabrication 
errors) the effect is small. 
 
 

 

Fig. 2: Density plots (left) and simulated radiographs 
(right) for different drive energies (top: 100 kJ, middle: 
200 kJ, bottom: 300 kJ). 

 
Fig.  1: Sketch of the experimental setup. 



Buoyancy-drag model On the basis of 
previous work [6,7], we developed a buoyancy-
drag model to describe the evolution of the mix 
layer during the nonlinear stage of the RT 
instability [5].  Our model predicts the evolution 
of the mix layer using only data from a 1D 
simulation. We find excellent agreement 
between our simulation results and the 
buoyancy-drag model (Fig. 3) for the whole 
range of drive energies considered. This 
verifies that the mixing observed in the 
simulations is indeed due to the RT instability. 

 
1.3 Accomplishments in Year 3 and during the no-cost extension period 
 
1.3.1 Influence of self-generated magnetic fields on RT morphology   Magnetic fields 
generated by the Biermann battery effect are possibly important both in ccSNe [8] and 
HEDP experiments [2]. We used our version of the FLASH code, which includes the 
extended MHD formulation according to Braginskii [4], to study the influence of self-
generated magnetic fields [2] on the RT morphology in HEDP experiments. We have 
already studied self-generated magnetic fields in gravity-induced RT instability [4].  

 
Preliminary simulations of a blast-wave driven 
RT systems with pre-imposed magnetic fields 
show dramatic morphology changes already 
for very weak fields (Fig. 4), as we reported in 
the recently published paper [9], with 
structures resembling those found in the 
experiments performed by Kuranz et al. [1]. 
 
 
 
 
 
 
 
 

1.3.2 The Braginskii model implementation 
 
Anisotropic Conductivity Implementation and Verification We have implemented in the 
code an explicit (and now, after further work, an implicit solver for the anisotropic thermal 
conductivity given in Braginskii as 
 

𝑞⃗𝑞 = �−𝜅𝜅∥𝐵𝐵𝑖𝑖𝐵𝐵𝑗𝑗 − 𝜅𝜅⊥�𝛿𝛿𝑖𝑖,𝑗𝑗 − 𝐵𝐵𝑖𝑖𝐵𝐵𝑗𝑗� − 𝜅𝜅^𝜖𝜖𝑗𝑗𝑗𝑗𝑗𝑗𝑏𝑏𝑘𝑘� 
  
This conductivity is implemented by explicitly modifying the heat fluxes along cell 
boundaries with the effect of the magnetic field strength on thermal conductivity taken into 
account. Because this anisotropy manifests itself in temperature (as opposed to say 
viscosity), implementation of a verification test problem for this model was relatively 
straightforward. We used the Stone and Parrish test problem for this purpose, where a 
strictly solenoidal magnetic field was initialized around some center point in an isothermal 

 
Fig. 3: Mix layer width in simulations vs. prediction of 
buoyancy-drag model. 

 
Fig. 4: Spike morphology in blast-wave RT simulations 
with preimposed longitudinal magnetic field of different 
strength (beta=final plasma beta). 



medium. We the initialize a small subportion of a toroidal ring of higher temperature and 
let the system evolve (with the solenoidal magnetic field being imposed in time). This is 
depicted in Figure 5.  

 As is demonstrated, the 
overwhelming amount of 
the thermal energy 
initialized within the 
annulus remained within 
the annulus through 
evolution in time, as one 
would expect due to 
magnetic field driven 
conductive anisotropy. To 
further verify our code, we 
model the above 

configuration on various grid sizes and looked at the residual as a function of the grid 
size. 
 

 
 
Method of Manufactured Solutions for 
Compressible Plasmas As in the proceeding 
section regarding conductivity, we have 
implemented the Braginskii model for 
anisotropic viscosity due to magnetic fields in 
our Proteus code.  While the viscous stress 
tensor in isotropic is described by a single 
viscosity coefficient and a single strain-rate 
tensor of the form  
 
 
The introduction of magnetic field driven 
viscous anisotropy in three dimensions 
necessitates a linear combination of 5 viscous 
coefficients (from microphysics) and 5 strain 
rate tensors, themselves functions of the 

unmodified strain rate tensor above, this being given as 
 
 
These strain-rate tensors are themselves functions of the isotropic strain rate tensor and 
various magnetic field components, with the first and simplest of these being given as  
 
 
 
Given the much more complicated functional dependence on the magnetic field of 
viscosity, and owing to the nonlinear nature of the Navier-Stokes equations in terms of 
velocity (of which viscosity is a function), the creation of an intuitive test setup in order to 
verify correct implementation of the model is not possible. Instead, we were forced to 
devote our energy into the creation of a comprehensive framework for testing problems 
via the method of manufactured solutions, and have demonstrated its accuracy in 
verifying the following dynamical systems. 
 

Figure 5: Evolution of the Parrish-Stone test problem for anisotropic conductivity 
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Figure 6: Convergence of the residual between the 
simulated and exact solutions for the Parrish-Stone 
Annulus Problem on various grid sizes. 



• Pure Inviscid Advection (Moving Gaussian Pulse Problem): 
 
 
 

• Pure Pressure-driven Expansion (Expanding Gaussian Pulse Problem): 
 
 
 

• Full Euler-equation evolution (Isentropic Vortex Problem, grid convergence given 
in Figure 6):   

𝜕𝜕𝑢𝑢�⃗
𝜕𝜕𝜕𝜕

+ (𝑢𝑢�⃗ ⋅ 𝛻𝛻)𝑢𝑢�⃗ +
𝛻𝛻𝛻𝛻
𝜌𝜌

= 0 

We completed a verification of our isotropic viscosity module via a method of a 
manufactured solution approach to the Navier-Stokes momentum equation, and once that 
is completed, we can move on to final verification of our implementation of Braginskii 
anisotropic viscosity.  
 
1.3.3 Anisotropic Diffusion with Multigrid  
 
Electron heat conduction in magnetized plasmas gives rise to thermal diffusion equations 
of the form 
 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

− 𝛽𝛽(𝒙𝒙,𝑇𝑇)𝛻𝛻 ⋅ [𝑫𝑫(𝒙𝒙,𝑇𝑇) ⋅ 𝛻𝛻𝑇𝑇] = 𝑆𝑆(𝒙𝒙,𝑇𝑇), 
 
where 𝛽𝛽 is related to local plasma conditions, 𝑇𝑇 is the electron temperature, and 𝑫𝑫 is the 
diffusion coefficient tensor. For certain conditions, 𝑫𝑫 is anisotropic, spatially dependent, 
and may introduce non-linearity through dependence upon 𝑇𝑇. 
 
Additionally, the diffusion process may operate on much shorter timescales than other 
physical processes, such as hydrodynamics [4,5]. As such, the heat conduction should 
be evolved implicitly to enable evolution of the complete system to relevant times. In the 
following we present an overview of our work toward implementing implicit, anisotropic 
diffusion into our block-AMR hydrocode Proteus.  
 
Temporal Discretization 
 

𝑇𝑇𝑛𝑛+1 − 𝛩𝛩𝛩𝛩𝛩𝛩𝛽𝛽𝑛𝑛+1 𝛻𝛻 ⋅ (𝑫𝑫𝑛𝑛+1 ⋅ 𝛻𝛻𝑇𝑇𝑛𝑛+1) − 𝛩𝛩𝛩𝛩𝛩𝛩𝑆𝑆𝑛𝑛+1
= 𝑇𝑇𝑛𝑛 + (1 − 𝛩𝛩)𝛥𝛥𝛥𝛥𝛽𝛽𝑛𝑛 𝛻𝛻 ⋅ (𝑫𝑫𝑛𝑛 ⋅ 𝛻𝛻𝑇𝑇𝑛𝑛) + (1 − 𝛩𝛩)𝛥𝛥𝛥𝛥𝑆𝑆𝑛𝑛 

 
We discretize the diffusion equation in time using the general 𝛩𝛩-method. This formulation 
encompasses explicit forward Euler (𝛩𝛩 = 0,𝑂𝑂(𝛥𝛥𝛥𝛥)), implicit Crank-Nicolson (𝛩𝛩 =
0.5,𝑂𝑂(𝛥𝛥𝑡𝑡2)), and fully implicit backward Euler (𝛩𝛩 = 1,𝑂𝑂(𝛥𝛥𝛥𝛥)). While Crank-Nicolson is 
second order in time, it is prone to oscillatory (albeit stable) behavior when the numerical 
solution includes steep numerical gradients. However, backward Euler may add large 
numerical diffusion to the solution in the limit of large time steps (Courant factor ≫ 1) due 
to its first order approximation. 
 
Spatial Discretization Here we consider the spatial discretization of the diffusion system 
in Cartesian coordinates. The diffusion operator may be expanded into components such 

𝜕𝜕𝑢𝑢�⃗
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that 
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where 𝜉𝜉1 ≡ 𝑥𝑥, 𝜉𝜉2 ≡ 𝑦𝑦, 𝜉𝜉3 ≡ 𝑧𝑧, and 𝑑𝑑 is the dimensionality of the problem. The first 
summation represents the “normal” transport of T, while the second summation 
incorporates the “transverse” transport of T. Note that for isotropic diffusion problems (𝑫𝑫 =
𝐷𝐷𝑰𝑰) the transverse components vanish and only the normal components remain. The 
indices for the tensor elements is provided by 
 

𝑫𝑫 = �
𝐷𝐷11 𝐷𝐷21 𝐷𝐷31

𝐷𝐷12 𝐷𝐷22 𝐷𝐷32

𝐷𝐷13 𝐷𝐷23 𝐷𝐷33 
�  

 
 
We approximate the normal components as the unmodified flux through the axis-aligned 
interfaces of a cell specified by indices (𝑖𝑖, 𝑗𝑗,𝑘𝑘) on a locally uniform grid. The contribution 
for faces partitioning the x-axis is given by 

𝜕𝜕
𝜕𝜕𝜕𝜕

�𝐷𝐷11
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
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𝐷𝐷
𝑖𝑖+12,𝑗𝑗,𝑘𝑘
11 + 𝐷𝐷

𝑖𝑖−12,𝑗𝑗,𝑘𝑘
11

𝛥𝛥𝑥𝑥2
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𝑇𝑇𝑖𝑖−1,𝑗𝑗,𝑘𝑘 + 𝑂𝑂(𝛥𝛥𝑥𝑥2), 

where the diffusion coefficients are evaluated at the lower and upper interfaces (𝑖𝑖 − 0.5 
and 𝑖𝑖 + 0.5, respectively), and the spacing 𝛥𝛥𝛥𝛥 is the local cell width. The formulae for the 
y and z contributions are analogously defined. 
 
The transverse contributions at cell interfaces are approximated as the average of 
surrounding cell-centered transverse gradients. For simplicity we present only the 
transverse components in two dimensions (where the k index is suppressed).  
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In two dimensions, this results in a 9-point stencil using local cells in the logical domain 
[𝑖𝑖 − 1, 𝑖𝑖 + 1] × [𝑗𝑗 − 1, 𝑗𝑗 + 1], with truncation error 𝑂𝑂(𝛥𝛥𝑥𝑥2,𝛥𝛥𝑦𝑦2). In three dimensions the four 
additional transverse components are defined analogously, which extends the 
discretization to a 27-point stencil. The provided discretization is the same as that of [10].  
 
Multigrid The advancement of the temperature field in time requires the solution of a 
spatially-coupled system of equations. To this end, we have chosen to use the multigrid 
Full Approximation Scheme [11] for the inversion of this system. The remainder of this 
work builds upon our previously implemented version used for solving Poisson’s equation 
for self-gravitating mass distributions.  



 
While presenting an in-depth review of multigrid methods is outside the scope of this 
report, we should note some specific aspects. First, multigrid methods are based on the 
idea of approximating the solution of the problem on a hierarchy of nested grids. This 
enables increased convergence rates due to filtering of low and high order spectral modes 
in the error. Information is transferred between the grids by use of restriction and 
prolongation operators (not discussed here). On each grid, or “level,” the solution of the 
diffusion equation is approximated by used of a “level solver”. The order in which levels 
are visited is defined by the cycle type; our implementation uses only the V-cycle, but 
other options such as W- and F-cycles could be incorporated.  
 
Level solvers One of the most important aspects of a multigrid scheme is the level 
solver, which is responsible for smoothing the error on each grid in the hierarchy. 
Traditional isotropic level solvers utilize either Jacobi iteration, Symmetric Gauss-Seidel, 
or Red-Black Gauss-Seidel. For anisotropic problems these methods fail to adequately 
reduce error in the solution; as the amount of anisotropy increases, it becomes 
increasingly difficult to damp error in the weakest direction [12]. 
 
Consequently, level solvers for anisotropic problems attempt to treat the smoothing 
operation in a directionally-split manner to damp error in both the strong and weak 
directions. One popular technique is to perform line or plane relaxation (in 2D and 3D, 
respectively). In line relaxation, one sweeps through the two-dimensional plane and 
updates unknowns on a chosen coordinate line simultaneously. For example, in y-line 
relaxation, each x-coordinate is visited in sequence and all unknowns in the y extent are 
updated simultaneously. For plane relaxation in three-dimensions, solutions are 
simultaneously updated on planes instead of lines. 
 
Alternating Zebra Gauss-Seidel  We have chosen to use the Alternating Zebra Gauss-
Seidel (AZGS) method [13], which is a robust line/plane solver. For two-dimensional 
problems, AZGS is composed of two stages: a horizontal line relaxation followed by a 
vertical line relaxation. For a grid of size 𝑛𝑛𝐼𝐼 × 𝑛𝑛𝐽𝐽, a single application of horizontal line 
relaxation is described by the procedure: 
 

• for all 𝑗𝑗 ∈ [1,𝑛𝑛𝐽𝐽] odd, 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛𝐼𝐼, solve 
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𝜈𝜈  ]𝑇𝑇𝑖𝑖,𝑗𝑗𝜈𝜈+1 + �
𝐴𝐴𝑖𝑖−1,𝑗𝑗+1
𝜈𝜈 𝐴𝐴𝑖𝑖,𝑗𝑗+1𝜈𝜈 𝐴𝐴𝑖𝑖+1,𝑗𝑗+1

𝜈𝜈

− − −
𝐴𝐴𝑖𝑖−1,𝑗𝑗−1
𝜈𝜈 𝐴𝐴𝑖𝑖−1,𝑗𝑗−1

𝜈𝜈 𝐴𝐴𝑖𝑖+1,𝑗𝑗−1
𝜈𝜈

� 𝑇𝑇𝑖𝑖,𝑗𝑗𝜈𝜈 = 𝑓𝑓𝑖𝑖,𝑗𝑗𝜈𝜈−1 + 𝑓𝑓𝑖𝑖,𝑗𝑗𝜈𝜈  

 
• for all 𝑗𝑗 ∈ [1,𝑛𝑛𝐽𝐽] even, 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛𝐼𝐼, solve 

[𝐴𝐴𝑖𝑖−1,𝑗𝑗
𝜈𝜈 𝐴𝐴𝑖𝑖,𝑗𝑗𝜈𝜈 𝐴𝐴𝑖𝑖+1,𝑗𝑗

𝜈𝜈  ]𝑇𝑇𝑖𝑖,𝑗𝑗𝜈𝜈+1 + �
𝐴𝐴𝑖𝑖−1,𝑗𝑗+1
𝜈𝜈+1 𝐴𝐴𝑖𝑖,𝑗𝑗+1𝜈𝜈+1 𝐴𝐴𝑖𝑖+1,𝑗𝑗+1

𝜈𝜈+1

− − −
𝐴𝐴𝑖𝑖−1,𝑗𝑗−1
𝜈𝜈+1 𝐴𝐴𝑖𝑖−1,𝑗𝑗−1

𝜈𝜈+1 𝐴𝐴𝑖𝑖+1,𝑗𝑗−1
𝜈𝜈+1

� 𝑇𝑇𝑖𝑖,𝑗𝑗𝜈𝜈+1 = 𝑓𝑓𝑖𝑖,𝑗𝑗𝜈𝜈−1 + 𝑓𝑓𝑖𝑖,𝑗𝑗𝜈𝜈  

 
where the matrix 𝐴𝐴𝜈𝜈(𝑇𝑇𝜈𝜈) encapsulates the spatio-temporal discretization of the diffusion 
operator acting on 𝑇𝑇, 𝑓𝑓𝜈𝜈(𝑇𝑇𝜈𝜈) is the temporal discretization of the source term 𝑆𝑆, and 𝜈𝜈 is 
a fiducial representation of the current multigrid iterate. The process for vertical line 
relaxation is analogously defined, solving for the unknown values of 𝑇𝑇 along the 𝑗𝑗 indices.  
 
The procedure above describes a set of 𝑛𝑛𝐽𝐽 quasi-independent tridiagonal systems, each 
of which can be approximately or exactly solved. While each line relaxation is expected 



to perform well when there is strong coupling along their individual directions, their 
combination through AZGS allows relaxing problems with arbitrarily oriented anisotropies.  
 
Implementation comments for block-AMR grids  The theoretical framework for 
multigrid with line-based relaxations becomes muddled when extended to practical 
problems involving parallelized, block-AMR grids. In particular, we note 1) the data 
required for a line relaxation across the computational domain is distributed in processor 
space, and 2) the concept of coarsening and refinement is no longer applied uniformly 
throughout the computational domain.  
 
The first concern is resolved by communicating ghost cell information between blocks 
after each sweep of the AZGS procedure on the current level. Once this is communicated, 
the first two interior layers of zones in the block are relaxed with a local Gauss-Seidel 
smoothing step. This serves to couple the information from adjacent blocks without 
requiring additional applications of AZGS.  
 
The second issue requires careful treatment. In particular, the restriction/prolongation 
operations required to properly set ghost cell data are already complicated for isotropic 
diffusion problems. The addition of the 9-point stencil in our spatial discretization not only 
requires that the ghost cells lying on a face of the block be updated, but also that the 
ghost cells at the corners of the block be as well. Implementation of the required 
communication patterns and operators in an ongoing portion of this work. Therefore, in 
the following verification tests we will use uniformly refined block-AMR grids with 8x8 
zones per block.  
 
Verification  We are interested in anisotropic systems for which the elements of the 
diffusion tensor 𝑫𝑫 are represented (in two dimensions) as  
 

𝐷𝐷11 = 𝜅𝜅∥𝑏𝑏𝑥𝑥2 + 𝜅𝜅⊥(1 − 𝑏𝑏𝑥𝑥2),
𝐷𝐷21 = 𝜅𝜅∥𝑏𝑏𝑥𝑥𝑏𝑏𝑦𝑦 − 𝜅𝜅⊥𝑏𝑏𝑥𝑥𝑏𝑏𝑦𝑦 − 𝜅𝜅∧𝑏𝑏𝑧𝑧 ,
𝐷𝐷22 = 𝜅𝜅∥𝑏𝑏𝑦𝑦2 + 𝜅𝜅⊥�1 − 𝑏𝑏𝑦𝑦2�,
𝐷𝐷12 = 𝜅𝜅∥𝑏𝑏𝑥𝑥𝑏𝑏𝑦𝑦 − 𝜅𝜅⊥𝑏𝑏𝑥𝑥𝑏𝑏𝑦𝑦 + 𝜅𝜅∧𝑏𝑏𝑧𝑧 ,

 

 
where 𝑏𝑏𝑖𝑖 are the normalized components of a vector 𝑩𝑩(𝒙𝒙), 𝜅𝜅∥(𝑇𝑇) is the transport 
coefficient in the direction of 𝑩𝑩, while 𝜅𝜅⊥(𝑇𝑇) and 𝜅𝜅∧(𝑇𝑇) are the transport coefficients in the 
plane orthogonal to 𝑩𝑩. Physically, this model corresponds to electron heat conduction 
confined by a magnetic field in a plasma. 
 
Annular transport  Here we demonstrate a test problem which is, physically, quite 
similar to the application problems we are interested in. This test case is based on that of 
[10] and considers transport constrained by a circular vector field inside the domain 
[−1,1]2, with 𝜅𝜅∥ = 1 and 𝜅𝜅⊥ = 𝜅𝜅∧ = 0. The components of the vector field are defined as   
 

𝐵𝐵𝑥𝑥(𝒙𝒙) = sin(𝜙𝜙),
𝐵𝐵𝑦𝑦(𝒙𝒙) = cos(𝜙𝜙) ,
𝐵𝐵𝑧𝑧(𝒙𝒙) = 0,

 

 
where 𝜙𝜙 = atan (𝑦𝑦/𝑥𝑥). The initial scalar field is provided by 
 



𝑇𝑇0(𝒙𝒙) = �12, 0.5 < |𝒙𝒙| < 0.7,
5𝜋𝜋
12

≤ 𝜙𝜙 ≤
7𝜋𝜋
12

  

10, otherwise
. 

 
The constraint of parallel transport should prohibit any transfer through the surfaces at 
|𝒙𝒙| = 0.5 and |𝒙𝒙| = 0.7, thus confining the temperature evolution to an annulus. However, 
our spatial discretization does not allow for such a curved surface which leads to a non-
zero flux into grid cells outside of the annulus.  
 
Figure 7 shows the temporal evolution of this system at 𝑡𝑡 = 0, 100, and 200 for Crank-
Nicolson (CN) at Courant factors of 100 and 1000, and backward Euler (BE) for Courant 
1000. The V-cycle multigrid process is performed with 8 pre-smoothing steps and 1 post-

smoothing step. Convergence of a multigrid cycle is satisfied when the norm of the 
residual is less than 10−9 of the norm of the spatiotemporal discretization of the previous 
timestep (the right-hand-side of the discretization equation). 
 
For the CN at a Courant of 100, the diffusion of 𝑇𝑇 is visibly transported along the circular 
vector field. Over time, however, evolution of the temperature field outside of the annulus 
is readily noticeable. For CN at Courant 1000, however, the solution becomes highly 
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Figure 7: Evolution of temperature fields over time for multiple solvers and Courant factors. Columns denote 𝒕𝒕 =
𝟎𝟎,𝟏𝟏𝟏𝟏𝟏𝟏,𝟐𝟐𝟐𝟐𝟐𝟐 from left to right. (Top row) Crank-Nicolson with Courant 100. The temperature diffuses primarily 
along the vector field, with radial diffusion caused by the spatial discretization. (Middle row) Crank-Nicolson with 
Courant 1000. This scheme breaks down at large Courant factors, generating unphysical oscillations at the initial 
discontinuity in temperature. (Bottom row) Backward Euler with Courant 1000. This scheme can be pushed to 
large Courant numbers at the price of temporal accuracy. 
 



oscillatory at the initial temperature jump. While the CN method is unconditionally stable, 
it is not guaranteed to be non-oscillatory. This is a result of Crank-Nicolson being the 
combination of a forward Euler half-step and a backward Euler-half step. Any forward 
Euler contribution is eliminated when 𝜃𝜃 = 1, which is just the backward Euler case. The 
BE models at Courant 1000 evolve as expected.  
 
While the order of the temporal truncation error differs between CN and BE, the models 
presented are dominated by the spatial discretization error. As models are computed with 
high fidelity grids, however, this error will manifest. Therefore, to maintain a formally 
𝑂𝑂(𝛥𝛥𝑡𝑡2) error at large Courant factors, and without oscillations, methods such as 
Richardson extrapolation can be applied, which is composed of two backward Euler half-
timesteps. 
 
Note the undershooting behavior from the numerical diffusion normal to the annulus 
surface. This characteristic of the central differencing scheme employed in the spatial 
discretization when coupled with relatively strong gradients in the solution. If this it 
determined to be a problem in real simulations, the problem may be mitigated by using 
quasi-upwinding schemes for the spatial discretization. 
 
Grid-aligned transport Our first case considers diffusive transport in the unidirectional 
field 𝑩𝑩 = 𝒙𝒙�, with 𝜅𝜅∥ = 1 and 𝜅𝜅⊥ = 𝜅𝜅∧ = 0. The scalar field 𝑇𝑇 is initialized on the periodic 
domain [−1,1]2 such that 
 

𝑇𝑇0(𝒙𝒙) = �12, |𝒙𝒙| < 0.5
10, |𝒙𝒙| ≥ 0.5. 

 
The V-cycle multigrid process is performed with 8 pre-smoothing steps and 1 post-
smoothing step. Convergence of a multigrid cycle is satisfied when the norm of the 
residual is less than 10−9 of the norm of the spatiotemporal discretization of the previous 
timestep (the right-hand-side of the discretization equation).  
 
1.4 Future work  
 
The original (hemispherical) target design has currently little chances to be fielded on NIF 
because of possible damage to the optical systems due to target shrapnels. We will 
therefore consider a design where the target is a cone with opening angle 0<α<180°, 
which is in between the cylindrical tube used in the planar design (α=0°) and the 
hemisphere used in the original design (α=180°). In this way, one can reduce the danger 
due to target shrapnels while still keeping the effects due to divergence. We will perform 
a series of simulations with different opening angles α in order to decide which opening 
angle can be tolerated. Specific physics questions that will be addressed within this study 
are shock-proximity effects (shock deformation), inter-shell penetration via turbulent 
mixing and shell breakouts. 
 
Because several basic physics and experimental components are shared between the 
planar RTI designs and Kelvin-Helmholtz HEDP experiments, studying the latter system 
in some detail using the extended Proteus code appears very interesting. As the 
implementation of the additional code modules is finished, we will be able to perform 
sensitivity analysis and subgrid-scale modeling of the Kelvin-Helmholtz instability. The 
envisioned parameter study involves the key parameters of interest (Mach number, 
Atwood number, viscosity coefficient, mixed-layer width) with reasonable ranges of 
values. The required computational framework then will create and execute a series of 



simulation experiments based on every combination of these values in order to probe the 
entire parameter space of the problem. We will then able to analyze the database of the 
results and extract the numerical KHI growth rates. The numerical growth rates can be 
estimated using the kinetic energy due to the velocity component tangent to the interface, 
and compare to theoretical results. 
 
3. Products 
 
We have new experimental design to study blast-wave driven RT instability on NIF. The 
major paper presenting the planar target design, related simulations and analysis, was 
published in 2014 in High Energy Density Physics [5]. The second paper in the planar 
design series was published in 2015 in the same journal. In this paper we focused on the 
evolution and role that self-generated magnetic fields play in the planar SNRT 
experiments [9]. 
 
The results of our design work were presented in poster sessions at the 80th Annual 
Meeting of Southeastern Section of American Physical Society in Tallahassee, FL, and a 
contributed talk and poster at the international conference, Magnetic Fields in the 
Universe IV: From Laboratory and Stars to the Primordial Structures, held in Playa del 
Carmen, Mexico, February 4-8, 2013. A brief presentation of the planar target design 
study has been published in the conference series of RevMexAA. Posters of the project 
were presented at the NIF users group meeting 2013, the Plasma Physics Conference 
2014 and the NIF users group meeting 2014. 
 
In the course of the project, our design code, Proteus, has been significantly expanded 
to include additional plasma physics modules. In particular, Proteus now allows to study 
evolution of HEDP systems using single fluid MHD approximation (the Braginskii model) 
taking into account the effects of self-generation of magnetic fields, thermal and friction 
forces, and anisotropic viscous and plasma conductivity effects.  
 
4. Participants and other collaborating organizations 
 
The main contributors to the project were Dr. Markus Flaig, Dr. Timothy Handy, and 
doctoral candidate, Mr. Ryan Learn. Both Dr. Flaig and Dr. Handy were fully (1 FTE) 
supported in this project as postdoctoral research associates in Year 1-3 (Dr. Flaig) and 
during the no-cost extension period (Dr. Handy). No support was provided to Ryan Learn, 
who acted as an informal contributor.  
 
A group of informal project participants also included long-term collaborators from the 
University of Michigan (Dr. P. Keiter, Prof. R. P. Drake, Dr. C. Kuranz) and LLNL (Dr. Hye-
Sook Park, Dr. A. Miles, Dr. B. Remington). Dr. Hye-Sook Park was our NIF Diverging 
Supernova RTI Project Science Liaison. Drs. Plewa and Flaig had a status of LLNL 
collaborators and used computing resources of LLNL OCF systems to conduct majority 
of design simulations. Additional computations were performed at the University of 
Michigan and DOE SC NERSC supercomputer center. 
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