DOE-ROCSTAR-09596

A
AVA

ILLINOIS ROCSTAR

PHASE II FINAL REPORT

Topic 2. Increasing Adoption of HPC Modeling and Simulation in the Advanced Manufacturing and
Engineering Industries

Subtopic b. HPC Support Tools and Services

Identification Number DE-SC0009596: Infrastructure for Multiphysics Software Integration in High
Performance Computing-Aided Science and Engineering

Michael T. Campbell, SBC Principal Investigator
Development Team:

Masoud Safdari

Jessica E. Kress

Michael J. Anderson

Samantha Horvath

Mark D. Brandyberry

Woohyun Kim

Neil Sarwall

Brian Weisberg

OpenMultiphysics

Illinois Rocstar LLC
1800 South Oak Street, Suite 108
Champaign, IL 61820

Reporting Period: April 14, 2014 through October 15, 2016

This work was funded in whole or in part by DOE Identification Number DE-SC0009596. The U.S. Government
has for itself and others acting on its behalf a paid-up, nonexclusive, irrevocable worldwide license to use, modify,
reproduce, release, perform, display, or disclose the work by or on behalf of the U.S. Government.

U.S. Department of Energy
Washington DC

A
AVA |llinois Rocstar LLC Identification Number: DE-SC0009596

PHASE II FINAL REPORT
Identification Number DE-SC0009596: Infrastructure for Multiphysics Software Integration in High
Performance Computing-Aided Science and Engineering

Michael T. Campbell*
Illinois Rocstar LLC
1800 S. Oak, Suite 108
Champaign, IL 61820
www.illinoisrocstar.com
*tech@illinoisrocstar.com

Ceren Susut
DOE Program Manager
Office of Science — Germantown
U.S. Department of Energy
Germantown Building
1000 Independence Avenue, S.W.
Washington D.C., 20585-1290

www.illinoisrocstar.com
mailto:tech@illinoisrocstar.com

A
AVA |llinois Rocstar LLC Identification Number: DE-SC0009596

Acknowledgments

Ilinois Rocstar LLC would like to thank the Department of Energy and the SBIR Program for sup-
porting and funding this work. We would also like to thank Aerojet-Rocketdyne, AMAX, Boeing, Cater-
pillar, Kitware, NCSA, Orbital-ATK, Sandia National Laboratory, and the Computational Science and
Engineering program at the University of Illinois for their support, participation, and invaluable infor-
mation.

iii

A
AVA |llinois Rocstar LLC

Identification Number: DE-SC0009596

Contents

1 Executive Summary

2 Introduction

2.1 Significance
2.2 PublicBenefits
2.3 A Note about Language
2.4 Technical Objectives
2.5 Community Goals.
2.6 Approach
27 Products L.
2.8 Environment
281 Scrum
2.8.2 Automated Build and Testing
2.8.3 Customer Team
2.8.4 Test-driven Development
2.8.5 TriBITS Lifecycle
2.9 Infrastructure Development
3 IMPACT
3.1 Overview
3.2 Design Philosophy
3.3 Abstraction
3.4 Software Integration Layer
35 Services
3.6 User Applications
37 Orchestration
3.8 Multiphysics Infrastructure
3.8.1 Multiphysics Services
3.8.2 Multiphysics Orchestrator
3.9 Infrastructure Implementation
391 SIT
3.9.2 Publishing Native Data
3.9.3 Publishing Native Methods
3.9.4 Inter-Component Communication

v

A
AVA |llinois Rocstar LLC

Identification Number: DE-SC0009596

3.10 Multiphysics Services
3.10.1 Service Adapters
3.10.2 Service Applications

3.11 Multiphysics Orchestrator

Implementation and Application

4.1 IMPACT-enabling Process
4.2 ElmerFoamFSI
42.1 Overview
422 Development Process
43 Rocstar
43.1 Overview
43.2 Rocstar Modules
433 IMPACT-enabled Rocstar
4.4 Stand-alone Module Testing
4.4.1 OpenFOAM Stand-alone Testing
442 Elmer Stand-alone Testing
4.5 ElmerFoamFS| Testing
4.5.1 \Verification: Static Problem
4.5.2 \Verification: Dynamic
4.5.3 Verification: Hron-Turek Problem . . .
4.54 ElmerFoamFSI Scaling Study
4.6 Rocstar Multiphysics Testing

4.6.1 Rocflo/Elmer Combination
4.6.2 Rocfrac/OpenFOAM Combination

Community Involvement and Usage
5.1
52

Community Development

Interactions

5.3 Follow-on IMPACT Projects

Publications and Presentations
6.1
6.2
6.3 Other products

Website(s) or other Internet site(s)

Inventions, patent applications, and/or licenses

\Y4

A
AVA |llinois Rocstar LLC

Identification Number: DE-SC0009596

7 Conclusions and Path Forward 52
7.1 Accomplishments e 52
T IMPACT . 52

7.1.2 ElmerFoamFSI 53

7.1.3 Rocstar Multiphysics e 53

7.1.4 Documentation e e 53

7.2 Next Steps o o e e 54

A IMPACT Core Domain Model 56
A.l Introduction L e e e 58
A.1.1 Language, Terminology, and Color Usage 59

A.1.2 Background e 61

A.1.3 Motivation e 62

A2 Overview of IMPACT e e e e e e e e e e 64
A3 In-Depth Look at IMPACT s 67
A.3.1 Software Integration Toolkit. 67

A3.2 Orchestration L 68

A.3.3 Applications and Services 69

A.4 Modules, Coupling, and Infrastructures 70
A.4.1 Integrating Applications as Modules 71

A.4.2 Serial vs Parallel Applications 72

A.4.3 Relationship to Other Infrastructures 72

A.5 Rocstar Multiphysics Example 74

B IMPACT User’s Guide 78
B.l Overview 79
B.2 How to Get IMPACT e e e e e e e e e 79
B.3 Build IMPACT 80
B.4 Prerequisites and TPLs e 80
B.5 Run CMake 80
B.6 Use IMPACT e e e e e e 81

C COM User’s Guide 83
C.1 Introduction e e e 84
C2 Overview 85
C.2.1 Object-Oriented Interfaces 85

A
AVA |llinois Rocstar LLC Identification Number: DE-SC0009596

C.2.2 Functions i i e e 87
C2.3 Inheritance oL 88
C.2.4 Datalntegrity e e e 88

C.3 Architecture of COM e 89
C3.1 COMAPL. . . . e 89
C.3.2 C++ClassInterfaces 90
C.3.3 COM Runtime System v v vt e e 90

C.4 Module Requirements e e 91
C5 COM APIL . o 91
C.5.1 Initialization and Finalization o 91
C.5.2 Data and Function Registration 93
CS5.3 Creationof CIWindow oo 0 e 94
CS54 Functions e 100
C.55 ExampleCode e 101

C.6 Procedure Calls e 103
C.6.1 Dataltem and FunctionHandles 103
C.6.2 Invocation. i e 103
C.63 CallTracing. o i e e e e e e e e e 104
C.6.4 High-Level Profiling 104
C.6.5 Calling System CallsinFortran 105
C.6.6 Calling AtExit and Exit Functions In Fortran 105

C.7 Advanced Window Management 105
C.7.1 Memory Management e 105
C.7.2 Pointer Dataltems 107
C.73 Imheritance e 108
C.74 Deletionof Entities o e 109

C.8 Information Retrieval L 110
C.8.1 Windowandpanes i i e 110
C.8.2 Dataltem and Connectivity L e 112
C.8.3 SizZes o o e 113
C.8.4 Arrays. e e e 113
C.8.5 Bounds e 114

C.O9 Sample Codes e e e 115
D SIM User’'s Guide 116

vii

A
AVA |llinois Rocstar LLC Identification Number: DE-SC0009596

D.1 Overview e 117
D.2 Capabilities e e e 117
D.2.1 Design Features e 118

D.3 System Architecture L 118
D.3.1 Top-level Iterations 118
D.3.2 Actions and Schedulers 120
D.3.3 Agents and Coupling Schemes 121
D.3.4 Predictor-corrector lterations L 122

D.4 Predefined Actions L 122
D.4.1 Solve . . . 122
D.42 Interpolate 123
D43 Jump Conditions 123
D.4.4 Actions for PCCoupling e 123

D.5 Schedulers. 124
D.5.1 Sequential 124
D.5.2 Concurrent oL 124
D.5.3 InterproCess. e e e e e e e 124

D.6 Predefined Agents e 124
D.6.1 Fluid agent e e 124
D.6.2 Solidagent 125
D.6.3 Burnagent e 125

D.7 Predefined Coupling Schemes 125
D.7.1 Fluid-alone e 125
D.7.2 Solid-alone 125
D.7.3 Fluid-solid interaction 125
D.7.4 Fluid-solid-combustion interaction 125

E SimlO User’s Guide 126
E.1 Functionality e e 127
E2 APl o 127
E.2.1 Read Window e 127
E.22 Read by Control File e 128
E.2.3 Obtain Dataltem 131
E.2.4 |Initialization and Finalization o oo 131

E.3 Implementation Notes 131

viii

A
AVA |llinois Rocstar LLC Identification Number: DE-SC0009596

Ed4 SimOUT e 132
E.4.1 Functionality e e 132

E42 APl . 132

E4.3 Output e 132

E.4.4 Metadata Output 134

E.4.5 Synchronization 134

E4.6 Control 134

E.4.7 Initialization and Finalization L o 135

E.4.8 Implementation Notes 135

E49 Sample Code 135

F Simpal User’s Guide 136
F1 Overview 137
F2 Requirements and Conventions 137
F3 Simpal Interface e e 137
F4 Supported Operations e e 137
ES5S Simpal APl e 138
F.6 Building and Testing Simpal 140

G SurfX User’s Guide 141
G.1 Overview e e 142
G.2 SurfX APL. . e 142
G.2.1 Overlaying Meshes 142

G.2.2 Data Transfer 143

G.3 Compiling SurfX e e e 143
G4 Surfdiver e e e e e 144
G.5 Advanced Tuning for Feature Detection 144
G.5.1 Fine-Tuning Parameters 144

G.6 Test Problems e 145

H SurfMap User’s Guide 146
I Physics of FSI Coupling in ElImerFoamFSI 158
I.1 Fluid-Solid Interaction (FST) e 159
I.2 Partitioned Approach: Strong vs. Weak Coupling 160

1.3 ElmerFoamFSI: A Partitioned Approach, 162

A
AVA |llinois Rocstar LLC Identification Number: DE-SC0009596

L4 Overview o e e 162
LS5 ElmerInput e e 162
L6 OpenFOAM Input e e e e e e 165
L7 ElmerFoamFSIInput e 167
1.8 ElmerFoamFSI Call Procedure 168
J Mathematics of FSI Coupling 172
J.1 Interaction of Fluids and Structures — An Introduction by Keyes 173
J.1.1 Comments on a Few Common Coupling Approaches 173
J.1.2 Example Multiphysics FSI Software Package — AERO 174

J.2 Computational Aeroelastic Models 175
J.3 Keyes' Prototype Algebraic Forms and Nomenclature 177
J4 Comments on Transfer Functions 180
1.5 Discussion of Some FSI Coupling Strategies 180
J5.1 Picard Iteration 181
J.5.2 Newton Methods (Review) 181
J.5.3 Nonlinear Elimination L 182

J.6 Simple Coupling Strategy for Aeroelastic Problems Using Rocstar 182
J.6.1 Variables Definitions and Nomenclature 182
J.6.2 Subcycling Scheme 183

J.6.3 Communication Mechanism 184
J.6.4 Controlling Program Flow — FSI Coupling Scheme 187

1.7 JENK Coupling Strategy for Aeroelastic Problems 189
J.7.1 Introduction to JFNK Method 190
J.7.2 Fundamentals JENK Methods L. 190
J.7.3 Computational JENK Algorithm for Aeroelastic Problems 194

A
AVA |llinois Rocstar LLC Identification Number: DE-SC0009596

List of Figures

10

11
12
13
14
15
16

17

In partitioned multiphysics, each domain is simulated by a dedicated, domain-specific sim-
ulation application and interaction occurs at the intersections of the domains. 3

Abstraction model for software integration infrastructure - Application layer components
can use capabilities from the Services layer, interface with other application layer compo-
nents, and participate as part of a composite software system coordinated by the Orchestra-
tion layer. All inter-component exchanges are mediated by the Software Integration Toolkit.
Problem and domain specificity increases from bottom to top layers. Software packages
implementing components of each layer are shown in square brackets. 9

COM architecture with multiple software modules, wherein no ICC layer is needed to com-
municate. Each module is loaded at runtime and shares the same process with the orchestrator. 13

COM’s Component Interface encapsulates the user application and contains inter-component
communication (ICC) endpoints, which hide the details of data and function call transport
across any physical network that may separate the user application process(es) from that of
the Orchestration component. v v vt i vt e e e 14

The COM Component Interface Window provides access to application-native data and
functions through the ICC interface. Currently, CI supports only one DataGroup, which
may have multiple instances. 15

Basic infrastructure primitives. L. oL o e e e e 16

COM architecture with multiple software modules, wherein no ICC layer is needed to com-
municate. Each module is loaded at runtime and shares the same process with the orchestrator. 17

COM architecture with multiple software components, including two user applications and
one service application. Each component may be operating in its own process and separated
by a physical network. L 17

Common data layouts in memory. oL o e 18

Through shallow modifications, existing user applications can use capabilities from the Ser-
vices layer, interface with other user applications, and participate as part of a composite
software system coordinated by the Orchestration layer. All inter-component exchanges are
mediated by the Software Integration Toolkit. Problem and domain specificity increases

frombottom totop. 22
Overall architecture of the Rocstar multiphysics simulation application. 26
Streamwise velocity contour for Case-1 with parabolic inlet velocity and CFL=0.1.. 28
Streamwise velocity contour for Case-2 with parabolic inlet velocity 28
Streamwise velocity countour of Case-3 with parabolic inlet velocity at time 4s.. 29
Velocity magnitude contour of Case-4 with parabolic inlet velocity. 30

Typical cantilever beam showing length L, concentrated load P and transverse displacement
0. Graciously borrowed from http://www.doitpoms.ac.uk/t1lplib/thermal-expansion/
printall.php e e e e e 30

Graphical relationships of the mesh density in each direction and its effect on the vertical
displacement. e e e e e 31

X1

http://www.doitpoms.ac.uk/tlplib/thermal-expansion/printall.php
http://www.doitpoms.ac.uk/tlplib/thermal-expansion/printall.php

A
AVA |llinois Rocstar LLC

Identification Number: DE-SC0009596

18 Beam displacement for V&V problem using Elmer.
19 Domain and boundary conditions for static verification problem.
20 OpenFOAM simulation results for simple static problem.
21 ElmerFoamFSI simulation results for simple static problem.

22 Parallel domain partitioning used in the parallel ElmerFoamF'SI simulation of the static ver-
ification problem. L e

23 Domain and boundary conditions for dynamic simple verification problem.

24 OpenFOAM simulation result for + = 5.0s showing (a) pressure (Pa), (b) velocity (m/s) and
(c) displacement contours (M). v v vttt e e e e e e

25 OpenFOAM solution for the displacement field along cantilever.
26 Domain and boundary conditions for Heron Turek verification problem.

27 ElmerFoamFSI simulation results showing velocity contour (top), pressure contour (middle)
for t = 5.0s, displacement history for the tip of the beam (bottom).

28 Partitioning of the simulation domain for parallel Heron Turek verification problem.

29 Comparison between serial and parallel ElmerFoamFSI predictions for the displacement of
thetipofthebeam.

30 ElmerFoamFSI scaling study: parallel efficiency and CPU time partitions for HronTurek
problem (a,c) and simple dynamic problem (b,d). oo

31 Images from the super-seismic shock examplecase.

32 Super-seismic shock problem solved by different modules of Rocstar Multiphysics for the
verification purpose. e e e e e e e e e e e e

34
35
35

36
37

38

39

41

42

33 Rocfrac/OpenFOAMsolution compared with OpenF OAM/Elmerfor Hron-Turek FSI3 problem. 46

A.34 As precedented by [Keyes et al. (2013)], the preciseness of language is an important facet
of the multiphysics discussion. Here we present our three core terms and the distinction
between them: interaction (physics), coupling (mathematics and numerics), and integration
(software). e e

A.35 In a multiphysics problem the different physical domains can interact in the space of another
overlapping domain of the same (or different) dimensionality.

A.36 Two or more 3D domains abut at a common interface. The goal of multiphysics computation
is to simulate two or more physical domains that interact. In this problem they interact
across a moving, reacting interface. (a) These domains do not overlap, the geometry of the
interface is a 2D surface in space, and the domains may move and/or deform, but they do
not come apart. Mass, momentum, energy, and charge are conserved across the interface;
however, some physical quantities of interest “jump” at the interface (e.g., density). (b) The
interface could be reactive with a combustive or other chemical process, or the interface
could propagate or move due to SOME PIrOCESS. « « v v v v v e e

A.37 A partitioned approach with staggered time stepping. Computation of the interacting domain
is centrally synchronized.

Xii

A
AVA |llinois Rocstar LLC Identification Number: DE-SC0009596

A.38 A partitioned multiphysics simulation. (a) In general, the domain decomposition is disparate
across the domains. (b) Each solver marches through time according to the domain-specific
physics (i.e., timesteps are disparate). Getting the interface data transfer correct is essential
for accuracy and stability of the simulation. (c) Combustion depends on solution and geom-
etry information from the other domains. Both geometries change drastically as the material
bUMNS aWay. o e e e e e e e 64

A.39 Generalized application coupling and integration. From myriad standalone physics appli-
cations, scientists and engineers choose two (or more) applications to couple together to
solve the complex interactions of their physical systems. The main system driver organizes
the plug-and-play nature of the integrated applications, and the coupling is actuated by the
Infrastructure CONNECOrS. o v v v v vt e 65

A.40 The integration interface provides the mechanisms by which applications can publish and
access methods and data. This interface is the “glue” of the multiphysics simulation. 65

A.41 Infrastructure abstraction model. The Applications Layer can use capabilities from the Ser-
vices Layer, interface with other Applications Layer components, and participate as part of a
composite software system coordinated by the Orchestrations Layer. Agents reside within
the Orchestrations Layer and interface with the Applications Layer. All intercomponent
exchanges are mediated by the Software Integration Toolkit. 65

A.42 Orchestration and orchestrator constructs that drive the system. The Orchestrator is the
driver of the system. It drives the coupling object, which in turn uses actions (shown here as
dark blue arrows) to invoke functions and exchange data between components. The coupling
interface defines the model interfaces (MI) that it needs to implement the coupling algorithm.
These MI are presented by the application-specific Agents that directly interface with the
Applications through their defined component interfaces (CI). The component-side client
(CSC) provides access to the Application-native data and functions to the outside world. As
before all intercomponent exchanges are mediated by the Software Integration Toolkit. . . . 68

A.43 Application modules. The coupling interface defines the model interfaces (MI) that or-
chestrator needs to implement the coupling algorithm. These MI are presented by the
application-specific Agents that directly interface with the Applications through their de-
fined component interfaces (CI). The component-side client (CSC) provides access to the
Application-native data and functions to the outside world. This figures is a subset of Fig-
ure A.42 that focuses on Application Modules. L. 70

A.44 Rocstar process — Domain decomposition. Each Rocstar process has one or more sections
of one or more of the solvers’ domains. 74

A.45 Rocstar process — Solver Applications. Each domain is simulated numerically by methods
observing the respective physics. The domain-specific (CFD and CSM) solvers are physics
Applications and are therefore outlinedingreen. 74

A.46 Rocstar process — Data Mapping. Accurate, conservative data mapping across the interface
and processor-geometry mapping is required. Data mapping is provided by the Services
Layer and is therefore shown inpurple. L. 75

A 47 Rocstar process — Orchestrator. There must be a control flow manager for timestepping,
handling some jump conditions, and converting units. The Orchestrator is the main system
driver. L e 75

Xiii

A
AVA |llinois Rocstar LLC Identification Number: DE-SC0009596

A.48 Rocstar process — Combustion. To handle burning, we need a combustion solver capable
of operating on geometry and data from other solvers and their domains. Combustion is a
physical process addressed by an Application and is therefore shown in green. 76

A.49 Rocstar process — Surface Propagation. We need sophisticated surface propagation capabil-
ities to handle the interface motion due to burning. Surface propagation is provided by the
Services Layer and is therefore showninpurple. 76

A.50 Rocstar process — Mesh Modification. Mesh modifications will be required for handling
the extreme changes in geometry due to burning and deformations. Mesh modification is
provided by the Services Layer and is therefore showninpurple. 77

A.51 Complete Rocstar process. All of the pieces have to interact in an efficient manner, sharing
data and methods and working together, to simulate the complete system. The color coding
of the different pieces represents to which IMPACT abstraction layer they belong. 77

C.52 Rocstar architecture. Many software components (i.e. modules) interact through the inte-
gration infrastructure. L. L e e e 84

C.53 COM architecture with multiple software modules. Each module is loaded at runtime and
shares the same process with the orchestrator. All module-module interactions are conducted

through the CI and mediated by COM. 86
C.54 Scenario of inheritance of mesh and field Dataltems among three CI windows. 89
C.55 UML associations of COM’s classes. oo i v it v i i 90
D.56 Overview of system architecture of SIM. 118
D.57 Overview of actions and schedulers. oL 120
D.58 Overview of agents and coupling schemes. 121

.59 Different types of numerical solution strategies for FSI problems (Figure taken from Hou

etal. (2012)). L e 159
[.60 Conformal and non-conformal meshing strategies used in numerical solution of FSI prob-

lems (Figure taken from Hou et al. (2012)). 160
.61 Strong and weak coupling strategies used in numerical solution of FSI problems (Figure

taken from Benraetal. 2011)).. e 161
.62 Elmer mesh and boundary numbers. 162

J.63 Problem setup: Fluid field Qg, structural field €, and the conjoined interface I';. Here i
is the fluid velocity, p is the pressure, and d° are the structure displacements. Figure taken
from [Gerstenberger and Wall (2008)]. 173

J.64 Sample fluid and structure solvers along with select interfacing methodologies for aeroelas-
tic simulation. Figure taken from [Kamakoti and Shyy (2004)]. 176

J.65 Three-field setup: fluid field Q, interface I'j, and structural field Qg along with respective
domain normals and variables. It is important to note the position of I'; is obviously varying
with time and is only defined through the interaction of both fields. Figure taken from
[Gerstenberger and Wall (2008)]. 183

X1V

A
AVA |llinois Rocstar LLC Identification Number: DE-SC0009596

J.66 Schemata of the relationship between solutions without (J.66a) and with (J.66b) predictor-
corrector steps used during system timestepping from #* to "*!. In both cases, interface
quantities associated with the combustion solver are shown in red, structure solver in green,
and fluid solver in blue. Dashed lines indicate data extrapolation in (J.66a) and variations
in interface quantities during previous predictor-corrector steps in (J.66b). (Only during
the first predictor-corrector step is it necessary to use extrapolation.) Values passed to the
different solvers are marked by cross symbols. Lo 185

XV

A
AVA |llinois Rocstar LLC Identification Number: DE-SC0009596

List of Tables

hn A W D =

o)}

Relative error in Ap, ¢y, and ¢; for Case-1 simulation with different grid resolutions. 27
Relative error in Ap, cy, ¢;, and St for Case-2 simulation with different grid resolutions. . . . 28
Relative error in Ap, ¢4, and ¢; for Case-3 simulation with different grid resolutions. 29
Relative error in Ap, ¢4, and ¢; for Case-4 simulation with different grid resolutions. 29

Relationships showing converging of vertical displacement versus number of divisions in

eachdirection. L. 31
Properties of fluid and solid domains. L L Lo 34
Properties of fluid and solid domains. L. oL oL 37
Properties of fluid and solid domains. Lo 40

XVi

A
AVA |llinois Rocstar LLC Identification Number: DE-SC0009596

1 Executive Summary

The project described in this report constructed and exercised an innovative multiphysics coupling toolkit
called the Illinois Rocstar MultiPhysics Application Coupling Toolkit (/IMPACT). IMPACT is an open
source, flexible, natively parallel infrastructure for coupling multiple uniphysics simulation codes into multi-
physics computational systems. IMPACT works with codes written in several high-performance-computing
(HPC) programming languages, and is designed from the beginning for HPC multiphysics code develop-
ment. It is designed to be minimally invasive to the individual physics codes being integrated, and has few
requirements on those physics codes for integration. The goal of IMPACT is to provide the support needed to
enable coupling existing tools together in unique and innovative ways to produce powerful new multiphysics
technologies without extensive modification and rewrite of the physics packages being integrated.

There are three major outcomes from this project: 1) construction, testing, application, and open-source
release of the IMPACT infrastructure, 2) production of example open-source multiphysics tools using /M-
PACT, and 3) identification and engagement of interested organizations in the tools and applications resulting
from the project. This last outcome represents the incipient development of a user community and appli-
cation echosystem being built using IMPACT. Multiphysics coupling standardization can only come from
organizations working together to define needs and processes that span the space of necessary multiphysics
outcomes, which Illinois Rocstar plans to continue driving toward.

The IMPACT system, including source code, documentation, and test problems are all now available through
the public gitHUB.org system to anyone interested in multiphysics code coupling. Many of the basic docu-
ments explaining use and architecture of IMPACT are also attached as appendices to this document. Online
HTML documentation is available through the gitHUB site. There are over 100 unit tests provided that run
through the Illinois Rocstar Application Development (IRAD) lightweight testing infrastructure that is also
supplied along with IMPACT. The package as a whole provides an excellent base for developing high-quality
multiphysics applications using modern software development practices.

To facilitate understanding how to utilize IMPACT effectively, two multiphysics systems have been devel-
oped and are available open-source through gitHUB. The simpler of the two systems, named ElmerFoamFSI
in the repository, is a multiphysics, fluid-structure-interaction (FSI) coupling of the solid mechanics package
Elmer with a fluid dynamics module from OpenFOAM. This coupling illustrates how to combine software
packages that are unrelated by either author or architecture and combine them into a robust, parallel multi-
physics system.

A more complex multiphysics tool is the Illinois Rocstar Rocstar Multiphysics code that was rebuilt during
the project around IMPACT. Rocstar Multiphysics was already an HPC multiphysics tool, but now that it
has been rearchitected around IMPACT, it can be readily expanded to capture new and different physics
in the future. In fact, during this project, the Elmer and OpenFOAM tools were also coupled into Rocstar
Multiphysics and demonstrated. The full Rocstar Multiphysics codebase is also available on gitHUB, and
licensed for any organization to use as they wish.

Finally, the new IMPACT product is already being used in several multiphysics code coupling projects for
the Air Force, NASA and the Missile Defense Agency, and initial work on expansion of the IMPACT-
enabled Rocstar Multiphysics has begun in support of a commercial company. These initiatives promise to
expand the interest and reach of IMPACT and Rocstar Multiphysics, ultimately leading to the envisioned
standardization and consortium of users that was one of the goals of this project.

A
AVA |llinois Rocstar LLC Identification Number: DE-SC0009596

2 Introduction

2.1 Significance

Many of today’s important and challenging prob- IllinoisRocstar Multiphysics Application Coupling
lems in science and engineering involve multiple Toolkit (IMPACT)

complex, interacting physical systems, often incor-
porating different material states with combustion
or other sources of energy release (e.g. see Fig-
ure 1). Examples of such systems include fluid-
structure interaction (FSI), conjugate heat transfer
(CHT), thermo-mechanical coupling (TMC), and
shock-to-detonation of energetic materials (SDT).
Multiphysics refers to the coupled, advanced mod- |* Decrease product time-to-market by increasing use of
eling techniques used to simulate these interacting multiphysics modeling and simulation

* Lower barriers to entry into multiphysics modeling and
simulation

* Decrease multiphysics application development time

* Facilitate sustainable, reusable multiphysics develop-
ment

* Integrate in-house, open, and commercial tools together

systems. Large-scale modeling and simulation of
such multiphysics problems using high performance computing (HPC) has become a crucial component of
research and development in the private sector, academia, and national laboratories.

Several factors conspire to drive the cost of development and ownership of multiphysics capabilities in-
ordinately high: for example, a private sector entity has limited choices when deciding how to address a
multiphysics simulation requirement. One must either invest in expertise for a "build-your-own" solution or
purchase external expertise and capabilities. There are currently no industry-accepted standards or protocols
for tools and interfaces, commercial or otherwise, that support general software and simulation integration
and coupling for multiple parallel simulation applications. As a result, both choices incur costly software
development and refactoring activities that often result in a single limited-use capability or project-specific
solution.

Commercial off-the-shelf (COTS) solutions are also costly and often difficult to apply diversely in the user’s
environment. Vendor lock-in drives the costs of development and ownership of multiphysics capabilities to
prohibitive levels, particularly for small-to-medium-sized businesses. The difficulty of establishing viable
and diverse solutions with COTS-based software is compounded by prohibitively expensive high perfor-
mance computing (HPC) or multiprocessor licensing models. These difficulties are not confined to the
private sector but are shared by industry, academia, and government entities with large-scale multiphysics
simulation needs.

These technological and economic barriers to the rapid production and testing of high fidelity, high per-
formance multiphysics simulation software are a significant bottleneck for research efforts in areas that
currently or will soon rely heavily on multiphysics simulation tools [Council on Competitiveness (2011)].
An open, industry-accepted set of standard interfaces and protocols for parallel software integration is a key
technology for addressing many of these challenges and its establishment would increase the adoption of
HPC-based M&S within the industry sector.

Over the course of this project, Illinois Rocstar has developed the IllnoisRocstar Multiphysics Application
Coupling Toolkit (IMPACT), an open source multiphysics software integration environment that facilitates
the integration of multiple parallel software components for the purpose of multiphysics simulation ca-
pabilities. IMPACT is designed for use by the broader community interested in developing multiphysics
capabilities with existing simulation applications.

Standardization and specification of software integration interfaces across application, language, and plat-
form boundaries in an HPC environment is necessary for advancing the state-of-the art predictive multi-

[\

A
MVA |linois Rocstar LLC Identification Number: DE-SC0009596

physics simulation capabilities as the underlying algorithms and HPC platforms evolve. General data-driven
interfaces and their adoption by the community comprise a key step in establishing these standards and spec-
ifications.

2.2 Public Benefits

Modern designs must seek to provide advanced in-
terfaces for scientists, engineers, and analysts; these
interfaces must hide many of the details of the plat-
forms and software mechanics required to interface
multiple components. Such infrastructure will sig-
nlﬁcan.ﬂ.y reduce the.barner to entry for .prlvaFe sec (a) Two 3D domains abut and interact through a 2D inter-
tor entities endeavoring to develop multiphysics ca- face surface.

pabilities that leverage the nation’s HPC resources.
To remain competitive in the modern world market-
place, simulation applications must be designed for
deployment in integrated environments and coupled
model while simulating ever more complex inter-
acting systems.

It is noted in [Keyes et al. (2013)] that there exists a
common need for greater encapsulation of software
while allowing for flexible access to data. Another
benefit, as discussed in [Slotnick et al. (2013)], is (b) In a broad class of multiphysics problems, the physics of
greater sustainability of software development in the interacting system can be modeled as separable systems.
the future. If a set of standards is established,
it will become easier to incorporate new develop-
ments into legacy code, which in turn allows the
field to progress more steadily instead of continu-
ally recreating past work.

Although the use of multiphysics is pervasive in
academia and at national laboratories, much of the (C) The domains are each treated by domain-specific mod-
. . . . els, and may be disparately discretized.

effort in ground-breaking research is continually

duplicated due to the lack of an infrastructure for Figure 1: In partitioned multiphysics, each domain is simu-

developlng highly inter_operable’ reusable Software lated by a dedicated, domain—speciﬁc simulation app|ication
. . . and interaction occurs at the intersections of the domains.

components. The infrastructure developed in this

project enables existing high-quality software to be integrated, orchestrated, and operated as components in

composite software systems, fostering collaboration throughout the M&S community.

Integration-ready software encapsulating couple-
ready models are the future of HPC-based M&S and
a key to maintaining national competitiveness.

An open standardized infrastructure would signifi-
cantly enhance the ability of the private sector entity
to leverage HPC-based M&S in its critical mission,

and at a fraction of the current cost. The benefits here include increased realism, decreased time-to-solution,
increased manufacturing capability, reduced manufacturing cost, and a decrease in the product design cycle.

The efficacy with which composite software systems can be composed and orchestrated on modern, par-
allel systems to address complex problems in science and engineering can be greatly improved through
use of this technology. The economic implications and range of commercial applications are promising.
Integration-ready software encapsulating couple-ready models are the future of HPC-based M&S and a key

A
AVA |llinois Rocstar LLC Identification Number: DE-SC0009596

to maintaining national competitiveness.

2.3 A Note about Language

In their final report, the particpants of the Institute for Computing in Science multiphysics workshop [Keyes
et al. (2013)] stress the importance of precise language when discussing multiphysics and its challenges.
This notion resonates strongly with the Illinois Rocstar development team and is important for understand-
ing the subject matter of this work. Keyes makes the crucial distinctions between “strong” and “weak”
coupling of multiphysics models. He also distinguishes between “loose” and “tight” algorithms used to
actuate the coupling. For the purpose of this work, we introduce some further distinctions. When referring
to real, physical systems, our team uses the word “interact.”” When multiple aspects of a physical system
(or systems) interact, multiphysics methods may be needed to model them. We reserve the word “couple”
for referring to mathematical models and numerical algorithms used in modeling interacting systems. We
reserve “integration” for referring to the software systems that implement these models. Software integra-
tion is distinct from numerical coupling and refers to the mechanics of interfacing and operating multiple
software components in concert toward a common goal. Software integration is the main subject matter of
this project.

2.4 Technical Objectives

The high level technical objective of this project is to design and implement an integration infrastructure
which will support the development of multiphysics capabilities. Our approach has been one in which we
separate the multiphysics capabilities from the underlying software integration constructs, then implement
the multiphysics-specific capabilities on top of the general software integration infrastructure. In rough
order of execution the technical goals of the project are:

1. Design and implement a software integration infrastructure
The software integration infrastructure will provide the primitive constructs and capabilities required
for the integration of multiple parallel applications into a composite software system to facilitate
multiphysics simulation.

2. Design and implement multiphysics simulation capabilities and services
Using the interface, constructs, and infrastructure as designed by this project, implement multiphysics-
specific capabilities and services with the ultimate end-goal of implementation of an example multi-
physics simulation capability with services and solvers required by the example system simulations.

2.5 Community Goals

In addition to the specific technical goals of this project above, Illinois Rocstar also seeks to spur a com-
munity discussion and development of an open standard for methods and protocols for general parallel
application coupling. This goal is as important as the specific technical goals and far more difficult. To
realize this standardization goal, a representative community must first be established.

The Illnois Rocstar development team has learned through execution of the project that building a com-
munity for establishing standards and to promote the open source product by “pulling” users is difficult.
Originally, the project included the following community-oriented goals:

A
AVA |llinois Rocstar LLC Identification Number: DE-SC0009596

1. Distribute the software and infrastructure with open/free licensing
To ensure that the infrastructure can be used in any environment without licensing issues, it must be
made available under a free do-anything, non-copyleft license. Users of this infrastructure must not
be required to expose internal developments, reciprocate, or purchase anything of any kind. Users
will be free to redistribute the infrastructure in their own derivative products.

2. Identify a collection of multiphysics example and V&YV problems
These problems are used to demonstrate the feasibility and functionality of a working simulation
application developed during this project. In addition, it is envisioned that they may also be used in
capability-driven efforts to design and develop enhanced capabilities.

3. Build a community of stakeholders to guide the design of the infrastructure
A community of scientists, engineers, analysts, and developers from industry, academia, and govern-
ment is required to ensure that the developments of this project are useful and relevant for all involved.

As we have learned over the course of this project, some of the specific design and implementation goals
presented here conflict with the broader goal of standards initiation. We desire to spur the development
of a standard interface and protocols for general parallel application integration, yet this project presents a
specific design and a multiphysics infrastructure implementation that does not build to an industry-accepted
standard or set of protocols. The development of standards and protocols requires a community effort and
has proven to be beyond the scope of this project; instead we present both a brief characterization of a
general infrastructure and our specific infrastructure implementation. We envision this effort as a call for
standardization, as well as a lead-on to the standardization effort, wherein our infrastructure implementation
can be refactored for standard compliance.

2.6 Approach

During the initial phase of the project, the thrust of the community involvement track involved design and
production of a community involvement website (http://openmultiphysics.org), and word-of-mouth
discussion during personal and technical meetings. Contacts with a number of large companies and uni-
versities were made, but while initial interest was there, maintaining interest during product development,
when there was not a testable, runnable product available became difficult. We discovered, on this and other
current open-source projects that there needs to be at least a basic product in place before external interest
can be generated.

Given the issues with generating community involvement discussed above, the focus of the project returned
to example programs, documentation, and expanded use. As will be discussed in this report, two open source
examples of use of the IMPACT infrastructure have been constructed and released during this project. One,
the ElmerFoamFSI fluid-structure-interaction package illustrated coupling two non-Illinois Rocstar tools
that had no common heritage, and had not been designed to be coupled. The second rebuilt the internal
Illinois Rocstar Rocstar Simulation Suite package around IMPACT to produce the new Rocstar Multiphysics
package. In addition, both Elmer and the OpenFoam module were easily coupled into Rocstar Multiphysics
to enhance it’s capabilities. Further discussion of the community involvement aspects of the project are
discussed in Section 5.

http://openmultiphysics.org

A
AVA |llinois Rocstar LLC Identification Number: DE-SC0009596

2.7 Products

The project products are open, freely available multiphysics simulation applications capable of simulating
the multiphysics V&V cases. In addition, the infrastructure is applied to a series of representative problems
to pave the road for the user community adoption. In the subsequent sections of this report the products
developed are described in detail.

2.8 Environment

This is Illinois Rocstar’s first open source project. Changes to our development environment were required
to effectively accomplish the project goals as we had envisioned them. Early in the project, we spoke with
developers of the computational science and engineering software packages Trilinos and LIME, who highly
recommended that we adopt and adapt the TriBITS lifecycle model for this project. It wasn’t until later in
the project that we fully appreciated the extent of 7riBITS relevance.

The process by which a piece of CSE software be-
gins life as a set of research requirements and then
matures into a trusted high-quality capability is both
commonplace and extremely challenging. [Bartlett et
al. (2012)]

To best achieve our project goals and to es-
tablish a sustainable development infrastructure
for stakeholder-driven design, we have adopted
and adapted a Lean/Agile approach [Poppendieck
and Poppendieck (2003)] to the development and

project management.

2.8.1 Scrum

We have adapted a Scrum-like approach to our environment, implementing the following practices:

* Daily stand-up

* Two-week development iterations

* Project backlogs

* Team planning

* Demo/Review/Retro ceremonies

* Distributed “project owner” (one for each project)

¢ Fixed scrum master

2.8.2 Automated Build and Testing

We have developed and implemented an automated build-and-test framework that provides developers with
several constructs for adding and executing unit and integration tests. The testing framework supports con-
tinuous, hourly, and nightly tests, submitting all results to a project dashboard. The framework leverages
Kitware’s CMake and CDash, and adds our own original innovative code that supports building and test-
ing on multiple remote platforms with asynchronous mechanisms for running parallel tests through batch
systems.

6

A
AVA |llinois Rocstar LLC Identification Number: DE-SC0009596

2.8.3 Customer Team

Our customer team is an internal team, the purpose of which is to act as the customer. The customer team
tests, attempts to break, and otherwise helps developers harden the iteration products. Since we have many
projects and our team works across these projects, the customer team roles change from task to task. To
ensure each feature is tested appropriately, the customers must consist of those staff members who were not
involved in the development of the tested feature.

2.8.4 Test-driven Development

In this project we have developed a test-driven development (TDD) process. We have set up a robust frame-
work to support TDD and are gaining experience with it as we execute our projects. We have been pushing
ourselves to discuss how each existing (and developing) feature should be tested.

2.8.5 TriBITS Lifecycle

TriBITS lifecycle model is adopted for this project. This task is somewhat challenging, since it involves
refactoring a legacy code of an unspecified maturity level. These aspects are notoriously difficult to effec-
tively grandfather into the system. In this project we began by addressing the key components of sustain-
ability for the project product: open source, core domain distillation documentation/design; exceptionally
well-tested, clean code; and minimization of dependencies. See [Bartlett et al. (2012)] for more information
on the TriBITS lifecycle model.

2.9 Infrastructure Development

Our planned approach to simply refactor the legacy Rocstar application was not well aligned with the
technical development practices of the current project. Grandfathering this existing code into any formal
Lean/Agile engineering code development and lifecycle model is challenging by itself. Parallel to our effort
to retrofit the legacy code with good software engineering practices, the infrastructure development effort
proceeded with the following approach and activities:

* Survey existing/modern frameworks : During the period of performance, we studied other frame-
works in more detail. This examination proved essential in guiding our code development as well
as our commercialization effort. In particular, we strove to understand the most relevant and modern
coupling packages, such as LIME, OpenFSI, and PreCICE.

* Planning and design : The ultimate goal of this project is to support a stakeholder-driven design
with closed development. That is, we want the design to be driven by our stakeholder community,
and the development and implementation to be performed completely by Illinois Rocstar. As per our
Lean/Agile approach, we conducted weekly technical planning meetings wherein each development
iteration was planned and Customer Teams acted as surrogates for the stakeholder community.

* Refactoring : The initial phase of the project was mostly refactoring activities. Several aspects
of the legacy Rocstar infrastructure were not amenable to the targeted distribution strategy for the
final infrastructure product. Besides refactoring for abstraction model correspondence, we factored
out incompatibly-licensed code (e.g., GNU Public License (GPL) and other proprietary or copyleft-
licensed code), Illinois Rocstar intellectual property, and any otherwise experimental code that is not
yet ready for release to the general public.

A
AVA |llinois Rocstar LLC Identification Number: DE-SC0009596

3 IMPACT

3.1 Overview

The Ilinoisrocstar Multiphysics Application Coupling Toolkit (IMPACT) is a general infrastructure for soft-
ware integration in support of multiphysics simulation capabilities. The overarching goals of this software
are to: reduce the cost of development and ownership of multiphysics capabilities; to lower the technical and
economic barriers of entry for HPC-based Modeling and Simulation (M&S) in advanced manufacturing and
engineering industries; and to initiate a standardization effort for parallel software integration in the HPC
environment.

This software leverages experience gained over 15 years of development, ownership, and operation of a
massively parallel multiphysics simulation application, Rocstar, initially developed under the DOE ASCI
program at the University of Illinois Center for Simulation of Advanced Rockets (CSAR). Informed by our
community of stakeholders, which includes other companies with multiphysics needs, Illinois Rocstar has
extracted Rocstar’s underlying coupling framework and refactored it for general use in developing multi-
physics capabilities.

IMPACT is the result of extracting and generalizing the Rocstar multiphysics software integration infras-
tructure for use by the broader community interested in developing multiphysics capabilities with existing
simulation applications. We envisioned that this general open multiphysics infrastructure would serve as a
reference implementation to help guide the development of a new open standard for highly inter-operable
multiphysics software design and execution. Our motivating problem domain is illustrated in Figure 1,
where multiple domains interact across a moving, reacting interface. The resulting work, however, is not
limited to this particular situation and, moreover, transcends multiphysics altogether.

3.2 Design Philosophy

Part of our goal for this project was to spur an inter-organization discussion of standards and protocols
for general parallel software integration. To encourage this, we build an abstraction that separates out
capabilities and data constructs that are domain-independent (i.e., independent of multiphysics and M&S).
Our efforts to produce such an abstraction are presented in this section. The motivations for this abstraction
hierarchy are:

¢ software reuse,

* maximizing interoperability among disparate software components,

* reducing complexity in developing integrated software systems,

* facilitating more rapid prototyping,

* providing encapsulation,

* heterogeneity,

* and to launch a platform for standards development.

A significant portion of the effort required in building integrated composite software systems lies in infras-
tructure development. Common architectures include those in which the various constituent components are

A
AVA |llinois Rocstar LLC Identification Number: DE-SC0009596

centrally orchestrated or end-to-end workflows with no centralized orchestration. The integration of multiple
executables, one of which may have “ownership” of the control flow, is often required. These architectures
sometimes involve physical networks between the various components of the integrated system. This situa-
tion usually calls for physical network-based communication and often involves complicated, event-driven
control flow management.

In the current work, we have attempted to design a software integration infrastructure that generalizes the
common features of these architectures, and encapsulates them into a separate toolkit for use by the devel-
opment community in software integration endeavors. Further, as we describe in later sections, we have
attempted to identify a minimal set of domain-independent multiphysics capabilities and factor them onto
the infrastructure as “services,” such that the services, together with the software integration toolkit, form
a general infrastructure for multiphysics capability development. A high-level depiction of the general in-
frastructure layers is shown in Figure 2. The bottom layer represents a software integration toolkit which
provides the basic constructs allowing applications to publish native data structures and functions. In this
context, by publish, we mean that the application can describe, and provide access to native data structures
and functions by outside software. Each layer is discussed in more detail in the following sections.

3.3 Abstraction

The overarching technical objective of the project
was to design and implement a general infrastruc-
ture for software integration in support of the de-

velopment of multiphysics capabilities. Our ap-
Software Integration Toolkit

proach was to form an abstract model wherein all g CO
. . . e 0° [COM]
multiphysics-specific capabilities were factored out \z\
. e . . . i . 10 Adapters
into layers with increasing domain specificity. The 949 5 [DGA]
abstraction is shown in Figure 2. This model forms 0 ~—

a framework around which industry-wide standards
may be discussed and developed.

The most general layer with no multiphysics-
specific constructs is called the Software Integra-
tion Toolkit (SIT) Layer. The SIT provides the ba-
sic constructs necessary for the integration of mul-
tiple software components. Specifically, the SIT N
provides for i) application encapsulation, ii) native Figure 2: Abstraction model for software integration infras-
data publication, iii) native method publication®, tructure - Application layer components can use capabilities
and iv) inter-component communication (ICC). The from the Services layer, interface with other application layer

. components, and participate as part of a composite software
SIT layer encapsulates the constructs most suitable system coordinated by the Orchestration layer. All inter-

for industry-wide standardization. component exchanges are mediated by the Software Integra-
tion Toolkit. Problem and domain specificity increases from
bottom to top layers. Software packages implementing com-
ponents of each layer are shown in square brackets.

The layer at the next level of domain-specificity is
the Service Layer (green in Figure 2). This layer
provides capabilities through the SIT that can be
used to implement and perform domain-specific capabilities and tasks. For example, a service to accom-
plish data mapping between the disparately discretized surfaces in Figure 1 would be a common and useful
service in the partitioned multiphysics domain. Services may be implemented as service applications or as

*“In this context, publication refers to the act of making something available to outside, non-native components.

A
AVA |llinois Rocstar LLC Identification Number: DE-SC0009596

service adapters. Service adapters are those that provide an enhanced capability by mutating or morphing
the SIT, while service applications simply use the SIT to provide a capability.

The Applications Layer, shown in blue in Figure 2, encapsulates those applications that provide the “pri-
mary” domain-specific capabilities that must be integrated in the composite software system. In a multi-
physics system, the single physics domain applications would live in the applications layer.

This integration is done through the SIT by adapting the application source code or wrapping the application
executable or interface using an API provided by the SIT implementation. This API provides the constructs
and mechanisms necessary for the application to share its data and functions with the integrated software
system. Applications that interact with the coupled system only through the infrastructure are considered
fully integrated. All others are considered as only partial integrations. Once integrated, whether fully or
partially, the user application becomes a component of the integrated system. Fully integrated components
are also referred to as modules.

Application adaptations for integration should be shallow. The SIT provides an API that can understand,
perhaps with minor changes, the application-native data structures and interface with application-native
methods.

Finally, the Orchestration Layer of the model integration infrastructure (shown in olive green in Figure 2)
encapsulates the driver for the integrated composite software system. The orchestration layer is the most
domain-specific piece of the integrated capability; often, but not always, this piece is implemented as an
orchestrating driver, or orchestrator. Other possibilities for orchestration layer constructs include “passive”
or event-driven middleware components.

3.4 Software Integration Layer

At the core of the infrastructure lies an abstraction layer for general software integration in the HPC envi-
ronment. This layer, the Software Integration Toolkit (SIT), defines the primitive software integration con-
structs that facilitate the sharing of application-native data and methods across the component-component
boundary. As will be explained in the remainder of this section, it is designed to support several different
composite software system architectures and types of user applications. We identify the following constructs
and capabilities as those under purview of the SIT:

Application Encapsulation

The SIT must provide an abstraction that encapsulates or represents an application and its interface
to the composite system. All of the applications’ interactions with the composite software system
are conducted through this abstraction. This abstraction must support serial and parallel applications,
which may use a variety of parallelization strategies (e.g., OpenMP*, MPI', or proprietary*). Support
should be provided for integrating both library applications as well as applications that must run
as stand-alone executables (i.e., users should be able to integrate both stand-alone applications and
libraries).

Native Method Publication
The SIT must provide abstractions and constructs for publishing application-native methods (i.e.,
functions) and associated metadata. Since applications integrated into the composite system will typi-
cally be coded in a variety of programming languages, allowing coexistence of multiple programming

*http://openmp.org/up/
Thttps://www.open-mpi.org/ and https://www.mpich.org/
*e.g. https://software.intel.com/en-us/intel-mpi-library

http://openmp.org/wp/
https://www.open-mpi.org/
https://www.mpich.org/
https://software.intel.com/en-us/intel-mpi-library

A
AVA |llinois Rocstar LLC Identification Number: DE-SC0009596

languages is necessary. This piece of the SIT must also include the mechanisms required to invoke
application-native methods across the programming language and component boundaries.

Native Data Publication
To support the vast disparity in programming languages and data structures among composite system
components, a unified, language-independent, abstract view of application-native data is necessary to
standardize intermodule exchanges. This abstraction must be flexible and self-describing. General
abstractions, constructs, and mechanisms for publishing application-native data and associated meta-
data must be provided by the SIT. This includes mechanisms for specifying access policies on data
(e.g., read-only, read/write, etc.) and layout of the data in memory (e.g., see Figure 9).

Inter-Component Communication
An interface must be provided to hide the mechanics and complexity of the communication between
components of the integrated software system. This Inter-Component Communication (ICC) interface
allows for the greatest variety in the architecture for the applications and the composite software
system. For example, to support architectures in which some component must run as a stand-alone
executable, some form of interprocess communication (IPC) must be used to actuate communication
between the stand-alone component and the rest of the system.

3.5 Services

In our proposed software integration architecture, services are specific capabilities provided through the
constructs of the SIT that support domain-specific integrated software systems. Examples include com-
putational and numerical services such as parallel I/0, mesh smoothing, and surface propagation. In our
tear-down of the Rocstar simulation application, we have identified two types of services: adapters and
applications.

Service Adapters
Service adapters are non-application services that mutate parts of the SIT toward a particular domain
or application. These types of services provide additional or specialized abstractions to be used in the
higher layers of the architecture (i.e., in Service Applications, User Applications, or Orchestration).
Mesh-aware data structures and data structures with built-in parallelism are two examples of service
adapters.

Service Applications
Service applications interact with the integrated software system in very much the same way that user
applications do (i.e., through the SIT). In general there is little distinction between user applications
and service applications, but greater distinction comes with domain-specific applications. The general
distinction is that service applications typically do not have their own data and, instead, operate on
data owned by other components. For example, multiphysics simulation services might include such
capabilities as mesh smoothing, surface propagation, data mapping, and remeshing.

3.6 User Applications

User applications are those that provide the “primary” domain-specific capabilities that must be integrated
into the composite software system. In a multiphysics case, two example user applications could be an

A
AVA |llinois Rocstar LLC Identification Number: DE-SC0009596

application implementing a computational fluid dynamic (CFD) model with another implementing a com-
putational solid mechanics (CSM) or transient thermal model. In this case, the target simulation for the
integrated software system could include fluid solid interaction (FSI) or congjugate heat transfer (CHT).

User applications are integrated through the SIT by adapting the application source code or wrapping the
application executable or interface using an API provided by the SIT implementation. This API provides the
constructs and mechanisms necessary for the application to share its data and functions with the integrated
software system. Applications that interact with the coupled system only through the infrastructure are
considered fully integrated; all others are considered as only partial integrations. Once integrated, whether
fully or partially, the user application becomes a component of the integrated system.

As mentioned earlier, application adaptations for integration should be shallow. The SIT should provide
an API that can understand, in some cases with modifications, the application-native data structures and
interface with application-native methods. The integration adaptations are typically in the application’s
native programming language and live outside the main source code for the application. This avoids the
exposure of any potentially proprietary information to other components of the integrated software system.

3.7 Orchestration

The orchestration layer of the model integration infrastructure is the piece that implements the integrated
composite software system. Often, but not always, this is implemented as an orchestrating driver, or orches-
trator. Other possibilities for orchestration layer constructs include “passive” or event-driven middleware
components. Regardless of implementation, orchestration layer constructs have access to one or more ap-
plications through the SIT and use intrinsic functionalities, or those provided by services, to actuate the
interactions between system components.

In multiphysics systems, orchestrators typically manage the control flow and implement the coupled timestep-
ping schemes. For example, Rocstar’s orchestrator manages control flow, implements the coupled timestep-
ping, and actuates the data transfers between physical domain-specific components, including implementa-
tion of the jump conditions.

3.8 Multiphysics Infrastructure

Project goals include the implementation of a multiphysics infrastructure based on abstraction, discussed in
Section 3.3. The main crux and focus of this project has been to develop the SIT abstraction and implement
its functionalities. Faithful representation of the general design abstraction has been somewhat challenging
since the implementation and abstraction have co-evolved with our understanding of the requirements of
our various collaborators and potential customers during the course of the project. We have implemented a
working infrastructure; however, it does not exactly follow the general abstraction model.

Illinois Rocstar’s design for the infrastructure is largely based on the architecture of its multiphysics simu-
lation application, Rocstar (e.g., see Figure 11). In Rocstar, multiple application “modules” share functions
and data through an interface component with a centrally orchestrated control flow. As will be described,
our adaptations to adhere more closely with the abstract design presented in Section 3.3 have resulted in
increased utility and support of more diverse architectures.

We use an object-oriented approach to infrastructure implementation. Our infrastructure is implemented in
C++ and supports software components written in C, C++, and Fortran 90. Flexible and clean interoperability
between these languages is emphasized.

A
MVA |linois Rocstar LLC Identification Number: DE-SC0009596

Application Application
Module 1 ‘ Module 2

Figure 3: COM architecture with multiple software modules, wherein no ICC layer is needed to communicate. Each
module is loaded at runtime and shares the same process with the orchestrator.

3.8.1 Multiphysics Services

We identified a minimal set of problem domain-independent multiphysics capabilities and factored them
onto the infrastructure as “services,” such that the services, together with the software integration toolkit,
form a general infrastructure for multiphysics capability development. The service packages are indicated
in Figure 2. Support for discrete geometries (i.e. meshes) were built-in using a service adapter, Discrete
Geometry Adapter (DGA). Surface-surface data mapping is provided by the SurfX service application, and
disk I/O services are provided by SimlO.

3.8.2 Multiphysics Orchestrator

The Simulation Integration Manager (SIM) is our orchestration package. It has the mechanisms, constructs,
and API required for managing multiple applications, their data, and control flow between component ob-
jects. SIM, and its constructs are discussed in more detail in Section 3.9.1. An overview of the full, integrated
system is illustrated in Figure 7.

3.9 Infrastructure Implementation

Implementation of a multiphysics infrastructure is based on the abstraction proceeded with an implementa-
tion of the SIT layer, a set of orchestration layer constructs, and several services. These software packages
fit into the abstraction as shown in Figure 2 in square brackets, e.g. [COM] and [DGA]. Each implemented
software package is briefly discussed in the subsequent sections.

A
AVA |llinois Rocstar LLC Identification Number: DE-SC0009596

Component InterComponent Component
Interface . Communication “Interface

Figure 4: COM'’s Component Interface encapsulates the user application and contains inter-component communication
(1CC) endpoints, which hide the details of data and function call transport across any physical network that may separate
the user application process(es) from that of the Orchestration component.

3.9.1 SIT

Our implementation of the SIT layer is embodied in the Component Object Manager (COM). The COM
package provides several constructs for encapsulation of applications, their published interfaces, and data.
The main high-level constructs of COM can be seen in Figure 4, with an example of an integrated application
in Figure 7. One of the components of COM is the Component-side Client (CSC), an application-native
construct that uses the COM API* to produce one or more Component Interface (CI) objects. CI objects
encapsulate the application’s published functions and data, and provide the interface through which external
components can access the application; the ICC thus provides communication between CIs. Application-
native data are encapsulated by Dataltems and DataGroups, which are not shown in Figures.

Component Interface Object (ClI) The Component Interace Object, shown in Figure 5, is the main
abstraction for components of the integrated software system. Specific application-native data and meth-
ods are encapsulated in distributed, uniquely-named Component Interface Objects through which all inter-
component interactions are mediated. A component constructs a CI at runtime and populates it with
application-native data and functions. Components reference a CI, their contained data, and functions us-
ing their unique names, which are of character-string type. CI names must be unique across all modules.
Components may access Cl-encapsulated data and functions directly or by obtaining integer handles from
the COM runtime system. Accessing functions and data through handles provides transparent language in-
teroperability while maintaining the object-oriented paradigm. For architectures with components separated
by physical networks, ICC endpoints can be used to synchronize control flow and data across the network.

Component-Side Client (CSC) The Component-side client is the software component responsible for
creating a CI and “registering” an application’s native data and functions. This client is the software con-
struct that must be written to integrate an external software application with the composite system. The
CSC is not an infrastructure piece, per se, but uses the API provided by the infrastructure to implement an
application-specific construct that allows the application to publish its native data and functions. CSC’s are
almost always written in the application’s native language and are built as an intrinsic piece of the appli-
cation for which they are developed. In some cases (e.g., when the source code for the application is not
available) the CSC can be a wrapper construct for a stand-alone executable.

*Application programming interface.

A
AVA |llinois Rocstar LLC Identification Number: DE-SC0009596

Componentinterface

(CI Dataltems Cl DataGroup

“_ Dataltem ~ . Pane

4 Functions
] ICC
L ‘ Endpoint
— Function

Figure 5: The COM Component Interface Window provides access to application-native data and functions through the
ICC interface. Currently, Cl supports only one DataGroup, which may have multiple instances.

Component Module Object (CM) In the COM infrastructure implementation, an application can be
completely encapsulated into a Component Module Object; CM-integrated applications hereafter are called
“modules.” Modules are designed to be built into a shared object that is dynamically loaded at system
runtime. COM provides an API and runtime system for loading and managing modules at runtime. Modules
are useful in systems that support plug-and-play of different applications which offer the same interface.
Plug-and-play is a commonly desired feature for multiphysics systems where users want to try a variety of
domain-specific simulation applications.

2

3.9.2 Publishing Native Data

In the COM infrastructure, application-native data are encapsulated into named Dataltems. Multiple Dataltems
may be gathered together into composite named data types called DataGroups. All Dataltems and Data-
Groups belong to one or more CI objects with a defined access policy and scope. Dataltems and DataGroups
are further described below.

Dataltem A Dataltem is the lowest level of encapsulation provided by the infrastructure for a compo-
nent’s native data. As illustrated in Figure 6a, each Dataltem has a name, a pointer to a memory address
(i.e., a buffer), and a collection of metadata, which describes the relevant sizes, shape (i.e., how the data are
arranged in the buffer), datatype, and access policy. Buffers associated with Dataltems can have contiguous
or staggered layouts with or without constant strides. Strides indicate offsets between neighboring entities
of the Dataltem. See Figure 9 for examples of data layouts currently supported by COM. All Dataltems are
associated with either a CI or a DataGroup.

Aggregate Dataltems For example, consider a Dataltem named “Coordinates,” which stores the Carte-
sian coordinates of a mesh. The number of components for the Coordinates Dataltem is three, one for each
of X, Y, and Z. If the mesh has N nodes, the Dataltem has total size of 3N. If the application has these
coordinates in a floating point array data structure with two scalar fields per point, say pressure and temper-
ature, for example, arranged as {X1,Y1,Z,,P,1T1,X2,Y>,2>, P, T;}, then the layout is pointwise strided
(e.g., see Figure 9).

The Coordinates Dataltem is created with a pointer to X, where it expects to find three floating point values,

A
AVA |llinois Rocstar LLC Identification Number: DE-SC0009596

one for each component. The Dataltem has a stride of five to skip P, and 7,. The “Pressure” Dataltem would
get number of components 1, with a stride of five to skip T, X(,,41), ¥(u11), and Z, 1 1).

DataGroup A DataGroup, depicted in Figure 6c,
is a uniquely identified collection of Dataltems,
essentially representing a simple composite data

Dataltem

+ Name
+ Access Policy

. Application- : 3i:ﬁkjeyrp§fComponents
type. Drawing on the example above, a “Sur- Nativeor o - S
: . Internal Buff : Co
face” DataGroup could consist of the “Coordinate,” A
“Pressure,” and “Temperature” Dataltems. Compo- (a) A Dataltem provides access to application-
nents can then reference given data by referring to native data with associated metadata.

Function

Vietadata + Name
+ Arguments

“Surface.Coordinate” or “Surface.Pressure.” Data-
Groups are quite useful in situations where there

will be many of a given construct that the Data- @ﬁ ; ddress
Native Function
Group was created to represent. For example, there
would be an instance of the Surface DataGroup for (b) Void functions (i.e., with no return value)
each surface of a given fype in a simulation. An are published by providing a pointer to the
example of a surface type could be a surface with function with a description of its arguments.
. L h h

a given boundary conc.htlon, so that each boundary DataGroup
condition has an associated surface, and thus a Sur-

Yil= . Name

face DataGroup.

COM defines a number of aggregate Dataltems.
Aggregate Dataltems enable high level, inter-
module interfaces. For example, one can pass the
“all” Dataltem of a CI to a parallel I/O routine to
write all of the contents of a CI into an output file
with a single call. As another example, it is some- (c) DataGroups are named groups of Dataltems.
times more convenient for users to have COM allo- Figure 6: Basic infrastructure primitives.

cate memory for the Dataltems and have the component codes retrieve memory addresses for those buffers
from the CI. COM provides an API for memory allocation, which takes a CI-Dataltem name pair as in-
put. A user can pass in “all” for the Dataltem name, which will create COM-allocated memory for all the
unregistered Dataltems (i.e,. those whose buffer pointers are NULL).

Dataltem 1 Dataltem 2

Dataltem N

Component-wise Access COM also allows for multi-component Dataltems to be accessed component-
by-component by specifying “i-DataltemName” (i > 1) to refer to the ith component. Again drawing on the
above example, to get the X-coordinate, one could refer to “1-Coordinate.”

All Dataltems and DataGroups are created as part of a given CI and associated with application-native data
by registering the physical location of the source data buffer. COM also offers an API for internal allocating
space for data buffers. A Dataltem can be associated with either the CI or a DataGroup. Examples of
Cl-associated Dataltems include a data structure that encapsulates the internal states of a module or some
control parameters. An example of a DataGroup Dataltem is an integer flag for the boundary condition type
of a surface patch or the surface solution field.

The name of Dataltems and DataGroups IDs must be unique within a CI. Components can refer to Dataltems
and DataGroups by name (as described above) and can access their stored data by obtaining a “handle.”
The handle of a Dataltem can be either mutable or immutable, where an immutable handle allows only
read operations to its referenced Dataltem, similar to a “const reference” in C++. Each DataGroup has a

16

A
AVA |llinois Rocstar LLC

Identification Number: DE-SC0009596

user-defined positive integer ID, which must be unique within the CI across all processors but need not be

consecutive.

In a parallel setting, a DataGroup belongs to a sin-
gle process, while a process may own any number
of DataGroups. A CI can have multiple Dataltems
and DataGroups, but one current restriction of the
CI is that all of its DataGroups must have the same
types of Dataltems, although the sizes of Dataltems
may vary. This restriction means that a component
must create multiple Cls, one for each type of Data-
Group defined by the application. We hope to ad-
dress this limitation in the future with the concept of
DataFrames.

3.9.3 Publishing Native Methods

A CI may contain not only data members but also
function members. As shown in Figure 6b, COM

Module 1

Figure 7: COM architecture with multiple software mod-
ules, wherein no ICC layer is needed to communicate. Each
module is loaded at runtime and shares the same process
with the orchestrator.

represents application-native functions with a function pointer, a set of metadata about the function, and
its arguments. Components can register application-native functions into a CI to allow other components to
invoke the function through the COM interface. Registration of functions enables a limited degree of runtime
polymorphism. It also overcomes the technical difficulty of linking object files compiled from different
languages, where the mangled function names can be platform and compiler dependent; as a reminder,
function names must be unique within a given CI. This section describes the main features of COM function

encapsulation.

Member Functions Outside the realm of the sim-
plest functions, a typical function needs to operate
with certain internal states. In object-oriented pro-
grams, such states are encapsulated in an “object,”
which is passed to a function as an argument instead
of being scattered into global variables, as in tra-
ditional programs. In some modern programming
languages, this object is passed implicitly by the
compiler to allow for cleaner interfaces. In mixed-
language programs, even if a function and its con-
text object are written in the same programming lan-
guage, it is difficult to invoke such functions across
languages because C++ objects and Fortran 90 data
structures are incompatible.

To address this problem, COM provides for member
functions of Dataltems. Specifically, during registra-

CSC

icc1 a1 a2 Icc2 1 RN
cc1 ; J ,

Figure 8: COM architecture with multiple software compo-
nents, including two user applications and one service appli-
cation. Each component may be operating in its own process
and separated by a physical network.

tion a function can be specified as the member function of a particular Dataltem in a given CI. COM keeps
track of the specified Dataltem and passes it implicitly to the function during invocation in a way similar
to C++ member functions. Because the caller no longer needs to know the context object of the callee, this
concept overcomes the incompatibility without sacrificing object-oriented behavior.

A
AVA |llinois Rocstar LLC Identification Number: DE-SC0009596

12 34 5 6....

Optional Arguments COM supports the seman-
tics of optional arguments similar to that of C++ to
allow for cleaner codes. Specifically, during func-
tion registration, a component can specify the last
few arguments as optional. COM passes null point- 123 4 5 6 ...,

ers for those optional arguments which are missing
corresponding actual parameters during invocation.

-

r r r

N=< X

pointwise layout

N <X

block layout

3.9.4 Inter-Component Communication

N <X

COM’s ICC implementation is not fully imple-
mented; however, despite being incomplete, an ar- | :
chitecture including ICC over TCP/IP is testing pos- M
itively. COM'’s architecture with direct memory strided layout
access simply omits the ICC (e.g., see Figure 7).
Strictly speaking, the abstract architecture model
does not support this construction and an ICC should be present with a direct access substrate. This short-
coming of ICC can be planned for the near future, as well as implement an MPI substrate for the ICC.

| —stide —»

Figure 9: Common data layouts in memory.

3.10 Multiphysics Services

The services layer is where the implementation begins to focus on a more domain-specific application
(i.e., multiphysics-simulation specific). Our goal is to provide general, simulation-specific, application-
independent capabilities that reduce the cost of development of domain-specific simulation applications. The
application-independent multiphysics capabilities and support services are implemented using the primitive
constructs capabilities provided by the SIT implementation (i.e., the COM package).

Our multiphysics services are presented as service adapters and service applications as indicated in abstrac-
tion (Section 3.3). Section 3.10.1 will outline our service adapters, while the various service applications
are discussed in Section 3.10.2.

3.10.1 Service Adapters

We have added the crucial simulation-specific capability of dealing with discrete geometries (i.e., meshes)
and mesh-associated data fields as service adapters. These adapters inherit from the SIT implementation but
offer enhanced, built-in simulation-specific capabilities. An explanation of our service adapters follows.

Support for Discrete Geometries We have added built-in, permanent mesh-specific Dataltems to Data-
Groups to provide inherent support for discrete geometries. Our specialized DataGroups, with these per-
manent Dataltems, are called Panes to differentiate them from generic DataGroups. Each pane comes with
several built-in Dataltems that may or may not be populated.

The new Dataltems represent the nodal coordinates, element connectivities, and inter-connectivity among
panes. These specialized Dataltems provide support for block-structured and unstructured meshes with lin-
ear or quadratic 2D and 3D elements. Currently supported are hexahedron, tetrahedron, prism, and pyramid
elements, along with their 2D analogues for surface meshes (i.e., squares and triangles). Mesh Dataltems
are given special, reserved names and data types.

A
AVA |llinois Rocstar LLC Identification Number: DE-SC0009596

The nodal coordinates are double-precision, floating-point numbers with three components per node. If
the coordinates of a DataGroup are stored contiguously, the storage can be registered using the Dataltem
name “nc.” Otherwise the x-, y-, and z-components must be registered separately using the Dataltem names
“I-nc,” “2-nc,” and “3-nc,” respectively.

COM supports both surface and volume meshes, which can be either multi-block structured or unstructured
with mixed elements. For multi-block meshes, each block corresponds to a DataGroup/Pane in a CI. Struc-
tured meshes have no connectivity tables and the shape of a Pane is registered using the Dataltem name
“st.” For unstructured meshes, each Pane has one or more connectivity tables, where each connectivity table
contains consecutively numbered elements of the same type.

Each connectivity table must be stored in an array with contiguous or staggered layout, registered using
reserved keywords (such as “t3” or “t-3” for contiguous or staggered 3-node triangles, respectively). To
facilitate parallel simulations, COM also allows a user to specify the number of layers of ghost nodes and
cells for structured meshes, as well as the numbers of ghost nodes and cells for unstructured meshes.

Support for Solution/Field Data Service adapters for mesh-associated solution fields have also been
added. These adapters allow Dataltems to be associated with the DataGroup’s mesh nodes or elements. A
nodal or elemental Dataltem of a DataGroup/Pane is conceptually a 2D dataset: one dimension corresponds
to the nodes/elements and the other corresponds to the data within a node/element. Field variables are nodal
or elemental Dataltems that have no pre-designated names or data types. A user must first define such an
Dataltem in the CI and then register the addresses of the Dataltem for each Pane.

For a specific Pane, if a field variable is stored in an array with contiguous or staggered layout, then the
array is registered with a single call. If it is stored in multiple arrays, then the component must register these
arrays separately, similar to registering staggered nodal coordinates.

3.10.2 Service Applications

The current implementation of the multiphysics infrastructure includes several service applications. These
applications provide key capabilities for multiphysics simulations building on the lower layers of the in-
frastructure abstraction and depending on the service adapters discussed in Section 3.10.1. The service
applications we are currently distributing support a large number of multiphysics simulations with abutting
domains and few-to-no physical processes occurring at the interface between domains. It is important to
note that simulations with interface physics are not precluded from our current distribution, but the infras-
tructure is not offering any built-in service for surface propagation, nor solution mapping for overlapping
domains. The services applications currently implemented are explained below and arranged according to
the capability they offer.

Mesh-associated communication operations
Our SurfMap package provides services that perform geometry/process mapping (i.e., matching inter-
acting geometries across process and component boundaries). SurfMap provides several routines for
MPI communication across adjoining surface meshes, including MPI collective operations on shared
boundaries. Also provided are facilities for calculating ghost zones for connecting surface meshes.

Surface-specific numerics
The SurfUtil package provides generic numerical routines to calculate face normals, areas, curvature,
and quality metrics on discrete surfaces.

A
AVA |llinois Rocstar LLC Identification Number: DE-SC0009596

Simple math for field data
Simpal is a service application that provides simple scalar, vector, and matrix mathematical operations
commonly needed for field data. These services operate on the primitive Dataltems provided by
COM, providing a powerful API for performing the types of operations commonly associated with
implementing numerical physics (e.g., implementation of jump-conditions, convergence checks, etc).

Surface-surface data mapping
Services for accurate and, if necessary, conservative transfer of data between disparate discretiza-
tions are provided by the SurfX package. SurfX implements an advanced, state-of-the-art data transfer
method developed at the University of Illinois ASCI Center. Robust methods for accurate and conser-
vative transfers are key in multiphysics simulation fidelity and reliability [Jiao and Heath (2005), Jiao
et al. (2006)].

The SurfX package enables physics modules with abutting domains to exchange quantities across the
interface between them. By construction, the data transfer scheme exactly conserves mass, momen-
tum, and energy across the interface, even if their respective meshes do not match [Jiao and Heath
(2005), Jaiman et al. (2005), Jiao et al. (2006)]. Conservation is achieved by using the common re-
finement of the two meshes, each subdivision of which lies entirely within a cell face in both surface
meshes [Jiao and Heath (2005)].

Interpolation errors are minimized in the least squares sense, leading to a scheme that is several orders
of magnitude more accurate than previous conservative methods. The high accuracy of the transfer
method makes it ideal to monitor the conservation of the overall system; identify unexpected errors as
quickly as possible, such as those result from either software bugs or hardware failures; and to audit
the propagation of errors among different physics modules.

Disk I/O Services
Low level disk I/O operations are encapsulated by the SimlO package. SimlIO offers a high level API
allowing components to write out standard format, platform-independent files containing state and
solution information. SimlO operates on CI, DataGroups (and Panes), and Dataltems, so components
must register data with COM if they wish to use SimlO to handle parallel I/O. SimlO currently supports
HDF4 and CGNS formats with conversion tools for VTK and Plot3D formats.

3.11 Multiphysics Orchestrator

The Simulation Integration Manager (SIM) is our orchestration package. It has the mechanisms and con-
structs required for managing multiple applications, their data, and control flow between component objects.
SIM is oriented towards partitioned multiphysics (e.g., see Figure 1) where any jump conditions between
simulation components and solution data are exchanged at the interfaces between their respective domains.
SIM is designed around several primitive constructs that serve as the building blocks for developing coupled
simulation drivers. A description of SIM constructs follows.

Agent
The SIM Agent is responsible for interfacing with a particular application and for constructing a set of
CI to represent a particular application. Typically, a given simulation will require a particular interface
(i.e., particular set of functions) to facilitate plug-and-play of different modules; the agent specifies a
set of CI that present the required interface.

Action
The Action construct encapsulates a generic procedure that operates on CI and Dataltems and presents

20

A
AVA |llinois Rocstar LLC Identification Number: DE-SC0009596

3

it as a standard interface. As currently implemented, actions provide an “init(), run(), and

finalize()” interface and hide further (arbitrary) complexity inside.

Scheduler
The Scheduler is responsible for operating a sequence of Actions. Actions can be sequenced, ini-
tialized, run, and finalized in arbitrary order. The scheduler offers several interfaces for scheduling
actions and handling exceptions from action operation.

Coupling
A SIM coupling object encapsulates a given scheduler and is responsible for constructing the scheduler
by adding actions (i.e., scheduling actions) to implement a particular simulation or class of simulations
(e.g., aeroelasticity with CFD and CSM agents).

Driver
A driver represents the highest level of orchestrator function. It controls the simulation by driving the
coupling object and implements any timestepping routines.

When an implicit solver is involved, predictor-corrector iterations are required to converge on the jump
conditions between domains. The implementation of these jump conditions involves operations, such
as manipulating data on some interface mesh or transferring data between different meshes. These
additional operations are independent of the physical modules, are provided by the service modules,
and invoked by a centralized orchestration module at this level.

21

A
AVA |llinois Rocstar LLC Identification Number: DE-SC0009596

4 Implementation and Application

4.1 IMPACT-enabling Process

Orchestration
The ultimate goal of the IMPACT project

is to minimize programming effort for
computational physicists interested in 5 Il,Jse_r 5 .
coupling single-physics codes. The first PP gl SRR

step for the user is to identify at least a |
pair of single-physics codes and follow a
series of subsequent steps to couple them
through IMPACT; we refer to this pro-
cess as IMPACT-enabling.

Host System/OS

IMPACT-enabling requires some knowl- Figure 10: Through shallow modifications, existing user applications can
edge about each of the codes involved in use capabilities from the Services layer, interface with other user applica-

this composite software development ef- tions, and participate as part of a composite software system coordinated

. . . by the Orchestration layer. All inter-component exchanges are mediated
fort. As dl.SCllSSCd in Section 3.3, IM- by the Software Integration Toolkit. Problem and domain specificity in-
PACT provides a well-defined abstrac- creases from bottom to top.

tion for this purpose and tries to mini-
mize the effort level needed while streamlining the programming process for users.

Figure 10 illustrates the overall architecture of an IMPACT-enabled product. At the very top level, a user
must develop the coupling algorithms using the constructs provided in the orchestration layer. Different cou-
pling schemes can be used for different physics combinations. In Section J we provide a thorough discussion
about the mathematical aspects of coupling and we refer users to this section for more information.

The orchestrator is usually implemented as a single standalone application which interacts directly with
the end-user. It may also be a middle-ware or a service module implemented for a more general front-
end application; these types of decisions are made at the user’s discretion. Regardless of these details,
the orchestrator interacts with application modules (the blue components in Figure 10). Therefore, these
application modules should be developed as a separate component for each physics solver.

The physics modules use IMPACT facilities including data and member function abstraction and encapsula-
tion constructs (the light brown area of Figure 10) and potentially any combination of services they need (the
green components in Figure 10) to interact with the core of the physics solver. As Figure 10 indicates (and as
discussed in Section 3.8), the low level services and constructs are generally applicable to any physics solver.
The higher level components will be more domain-specific. In the forthcoming sections, we will provide
a series of examples applications developed and build using IMPACT. These application programs provide
reference examples of how to use IMPACT and they are provided in our publicly accessible repository.

4.2 ElmerFoamFSI
4.2.1 Overview
OpenFOAM* is an open-source, computational fluid dynamic (CFD) code widely adopted by researchers

across most areas of engineering and science. The code has a long list of features and facilities to solve for
anything from fluid dynamics to heat transfer and solid mechanics. OpenFOAM has an internal fluid-solid

*http://www.openfoam.com/

22

http://www.openfoam.com/

A
AVA |llinois Rocstar LLC Identification Number: DE-SC0009596

(or fluid-structures) module to solve for problems involving interaction between fluid and structures.

Elmer* is another well-known open source finite element analysis (FEA) software with a sizable user base.
Similar to OpenFOAM, Elmer has physical models and capabilities to simulate a wide range of problems
including structural mechanics, fluid dynamics and electromagnetics. For further information about these
codes, we refer reader to the comprehensive documentation of these codes on their respective websites.

For the first example application of IMPACT, we choose these two well known codes to build a standalone
multiphysics solver. As an example of application for IMPACT infrastructure, we coupled OpenFOAM
with Elmer to generate the ElmerFoamFSI product, a standalone software capable of simulating problems
involving fluid-structures interactions (FSI).

For this purpose, ElmerFoamFSI utilizes one of OpenFOAM’s incompressible flow solvers and Elmer’s
structural mechanics solver. In ElmerFoamFSI the fluid domain is discretized using finite volume (FV)
scheme and the structures domain is discretized into a finite element (FE) mesh. These numerical schemes
are well known in their respective communities, and IMPACT provides the required abstraction level to
support both FV and FE schemes.

The application modules for Elmer and OpenFOAM are implemented using a similar methodology, with
deviations made only when necessary to address specific concerns unique to each code. There are, of
course, differences between the two applications ranging from overall structure to programming language.
For instance OpenFOAM is a C++ code and Elmer is a Fortran 90 code. However, the essential methodology
followed in creating application module for each code is similar thanks to the IMPACT’s full support for
these programming languages. Due to this similarity in approach, different stages of the implementation of
these modules are discussed generally here to avoid redundancy with specific examples when appropriate.

4.2.2 Development Process

In this section the development process of ElmerFoamFSI is discussed. The process has five distinctive
stages which should be followed for any /IMPACT-enabling project. We have tried to use a general tone for
these steps; however, specific details are provided as needed.

Stage 1: Elementary IMPACT module The first step in creating a module from an application is to
develop an empty “test module” that can be loaded by the driver via IMPACT. This test module must be
compiled as a dynamic library so it can be loaded by IMPACT at run time.

Once this simple task is complete, the module can be gradually enriched to include all member data and
functions which expose relevant parts of the application core to IMPACT. This inclusion of code from the
coupled application is generally done in stages to make the process more manageable. In the first stage, the
new module should be able to call the highest level functions needed to startup and run each application
involved. The function(s) can be registered from the module to IMPACT, and therefore be accessible from
the outside world.

Stage 2: Driver utility In this stage, the native application can essentially be run and managed by an
external driver. At this point it is prudent to test the development and verify that the same results can be
achieved by solving problems with the untouched code and the new module/driver system. In order to
test the implementation of the module during the process, a driver for the module can be developed. This

*https://www.csc.fi/web/elmer

23

https://www.csc.fi/web/elmer

A
AVA |llinois Rocstar LLC Identification Number: DE-SC0009596

driver can be a standalone product (optional) or can be gradually morphed to act in the place of the ultimate
orchestrator. The driver code essentially will provide access to the application module through IMPACT.

Stage 3: Functional IMPACT module In the next stage, the user must determine three major com-
ponents of the native code: i) initialization, ii) running, and iii) finalization. Once these pieces identified,
they should be broken into three separate module functions callable by the driver. These functions are
fairly straightforward with initialization encompassing all set up to be done before running and finalization
encompassing all clean up to be done after.

The most crucial aspect of the run function is that it should be capable of stepping the application’s solver in
two different ways. It may need to take multiple steps in time to a specified end time or only take one step
forward in time. In this way, the driver can control the flow of information in and out of the application at
each driver time step.

Note that in some cases one may want the module application to take smaller timesteps than the timesteps
requested by the overall driver or orchestrator. These decisions are taken based on the user discretion, the
physics involved, and type of problems to be solved. Ensuring that the time-stepping can be controlled in
this function may involve breaking apart and refactoring the native application.

In the case of Elmer it was fairly straightforward to locate the time stepping loop and incorporate all previous
and subsequent functionality into initialize and finalize functions for the module. OpenFOAM proved to be
more difficult based on the organization of the code, which illustrated some of the potential differences in
coupling software.

Once the driver can successfully control the time stepping of the application, the remaining task is to register
the application’s data with the IMPACT. In the case of Elmer this meant accessing the mesh data associated
with the FSI BC, the loads on the structure, and the displacements calculated by the solver. Each of these
components must be accessed from Elmer and, therefore, they need to be registered with IMPACT. In the
final coupling, the driver/orchestrator can thus access calculated loads from OpenFOAM, provide those loads
to Elmer, then do the same with the displacements from Elmer to OpenFOAM.

Stage 4: Module testing After the implementation of a fully functional IMPACT module (or during
development), it is highly necessary to test the code. The driver utility plays major role in testing the module.
A suite of tests should be created to ensure the proper operation of all registered functions and data using the
test driver mentioned above. These tests include regression tests, which ensure the module/driver obtains the
same results as the original application, as well as unit tests that call functions in the module and verify that
data is updated correctly. In the ElmerFoamFSI product, a series of these tests are provided in the festing
folder of each module for the reference.

Stage 5: Orchestrator After completing the module implementation, the remaining development task
is to design and implement an orchestrator that can work with both modules in the way their own test drivers
do. In the ElmerFoamFSI example the orchestrator code is developed separately and solves an FSI problem
described by a series of input files that describe the problem for the Elmer and OpenFOAM modules and
orchestrator code. The orchestrator is the front-end application for our ElmerFoamFSI product. The main
functionalities performed by ElmerFoamFSI orchestrator are as following:

* analyzing user’s input,

* loading and initializing Elmer and OpenFOAM

24

A
AVA |llinois Rocstar LLC Identification Number: DE-SC0009596

* stepping each application in time and exchanging physical quantities (tractions, displacements etc.)
between them

* output solution information (probe files, hdf and vtk outputs etc.)

* finalizing each application and ending the simulation

A series of example FSI problems, regression-, and unit-tests are provided by ElmerFoamFSI to verify the
functionality of each of its components. A brief discussion of these examples are provided in the subsequent
sections of this chapter. More details about the extensive testing of the ElmerFoamFSI is beyond the scope
of this report, and interested readers are referred to our publicly accessible repository * and the online
documentation .

4.3 Rocstar
4.3.1 Overview

The Rocstar simulation application was developed and successfully deployed over the lifetime of Illinois’
DOE ASCI Center for Simulation of Advanced Rockets (CSAR) as a predictive simulation tool for solid
rocket motor (SRM) internal ballistics and performance (Dick et al. (2006)). It is recognized in the SRM
industry as one of the world’s only fully 3-D, time-accurate SRM simulators. Rocstar is MPI parallel and
has demonstrated scalability to tens of thousands of cores on many of the world’s largest HPC platforms.
Since the time of CSAR, Rocstar has been utilized in many academic, government, and industry settings to
conduct predictive simulations of general fluid-structure systems which interact across moving and reacting
interfaces.

As illustrated in the Rocstar software architecture Figure 11, Rocstar orchestrates multiple software and
simulation components in concert to simulate multiphysics systems. Rocstar’s individual component codes
are based on fundamental research and development in turbulence modeling, multiphase flow, constitutive
modeling, combustion chemistry, computational mechanics, coupling methodology, etc. Although the orig-
inal target for Rocstar was internal ballistics of an SRM, Rocstar is capable of simulating a wide variety of
multi-component systems involving fluid dynamics, structural dynamics, combustion, and their interactions.
Rocstar features multiple state-of-the-art solvers for various types of physical components.

4.3.2 Rocstar Modules

Rocstar includes several complementary finite-volume compressible flow solvers that are formulated on
moving meshes (ALE) to handle geometrical changes. Modules Rocflo and Rocflu are general use CFD
solvers, each with strengths for specific problems. Rocflo uses either a centered or an upwind scheme
with Roe flux splitting on multi-block structured meshes. Rocflu operates on unstructured tetrahedral or
mixed-element meshes and employs a novel high-order WENO-like approach, as well as the HLLC scheme
to handle strong transient flows including shocks. Further, the fluid solvers are integrated with additional
physics modules for simulating turbulent and multiphase fluid flows. Supporting integrated physics modules
include Rocturb, which provides three classes of turbulence models, including LES, RANS, and hybrid
models (either LES with a near-wall model or DES).

“https://github.com/I1linoisRocstar/ElmerFoamFSI
"http://illinoisrocstar.github.io/ElmerFoamFSI/index.html

25

https://github.com/IllinoisRocstar/ElmerFoamFSI
http://illinoisrocstar.github.io/ElmerFoamFSI/index.html

A
AVA |llinois Rocstar LLC |dentification Number: DE-SC0009596

s : e : N
Mesh Preparation Integration Framework
Commercial packages CAD Modeling P—— Surface propagation Rocprop (Surface
ije and data transfer propagation)

Orchestration Rocmop (Mesh smoothing)

Gridgen + Patran » Truegrid Mesh Generation Rocrem (Remeshing)

J:L Rocface (Interface data
Rocprep (Mesh and Preprocessing quantity transfer)
data preparation) Roccom
A
s Integration Machine- MBI
Physical Modules Interface independent parallel AMPI/Charm++ (Adaptive
implementation MPI, load balancing)
Open MP

Rocfiu (Unstructured CFD) LU L p?(lj‘;ﬁ:;
Rocflu-ND (Mon-dissipative)

Rocfio {_I\-‘Iult}blgck structured CFD) Utilities Rocbuild (Automated build)
Rocflo-CM (Chimera-based) Roctest (Automated module testing)

Rocpart (Lagrangian super-particle tracking) Integration templates
Rocturb (LES, DES, RANS) J

Rocsmoke (Eulerian smoke tracking) ™
Rocrad (Particle-to-surface heat transfer) Post-processing

Rocprof (Parallel profiling)

Visualization Rocketeer / Voyager

Rocsolid (Implicit, multigrid) Solid Mechanics
Rocsolid-MS (Multiscale)
Rocfrac (Explicit, cracks)

Tecplot

Rocfire (3-D subgrid heat flux) Thermal/
Rocburn (Ignition, regression rate) Combustion/
Roctherm (3-D heat transfer) Chemistry

Rocpack (Morphology) Material
Tomography & reconstruction Characterization

Figure 11: Overall architecture of the Rocstar multiphysics simulation application.

Aside from its compressible-flow solvers, Rocstar is also equipped with a finite-element structures solver
called Rocfrac. Rocfrac uses an explicit finite-element scheme and supports different element shapes in-
cluding tetrahedral and hexahedral elements and their 2D analogs. Rocfrac is also capable to account for
moving meshes (ALE), material and geometric non-linearities.

On top of fluid and structures modules, Rocstar is also equipped with a module to account for solid-fuel
burning during simulation called RocburnAPN. Finally, Rocstar also comes with service modules for mesh
refinement, solution transfer and many other ones which their description is beyond the scope of this report.
Interested readers are referred to Rocstar’s online source code repository* and its documentation’.

4.3.3 IMPACT-enabled Rocstar

The IMPACT project originally started by piecing apart the simulation management and orchestration fa-
cilities of Rocstar. In this project, we have carefully separated the modules from Rocstar extended, then
generalized them into IMPACT. Since Rocstar is a comprehensive multiphysics simulation program, and
is also the mother of IMPACT, we have then decided to rebuild Rocstar code based on the new hardened
IMPACT core. The new Rocstar code has been renamed Rocstar Multiphysics. All of the modules of Roc-
star including Rocflo, Rocflu, Rocfrac were then restructured based on IMPACT. In the subsequent sections,
some of the example simulation performed by Rocstar Multiphysics are discussed in detail. The original

“https://github.com/IllinoisRocstar/Rocstar
Thttps://sourceforge.net/projects/rocstar/

26

https://github.com/IllinoisRocstar/Rocstar
https://sourceforge.net/projects/rocstar/

A
AVA |llinois Rocstar LLC Identification Number: DE-SC0009596

code for Rocstar Multiphysics can be accessed from our public repository*.

4.4 Stand-alone Module Testing

In this section, we briefly present our verification study for application modules developed for Elmer and
OpenFOAM. The testing framework utilized for each module also includes extensive unit and regression
testing. These tests can be performed upon application is successfully built by issuing the command ’make
test’. For further discussion about testing we refer to the respective section of the online documentation for
ElmerFoamFSI' .

4.4.1 OpenFOAM Stand-alone Testing

After selecting OpenFOAM as the open CFD solver for ElmerFoamFSI, some example V& V problems
for OpenFFOAM were chosen. These selected problems consider a situation with 2D laminar flow around a
cylinder as well as a cylinder with a rigid horizontal bar mounted at the rear. The purpose of these validation
problems is to ensure that the open-source solvers used behave properly in thdered for OpenFOAM are sin-
gle phase and single material with incompressible flow. Both steady-state and transient/unsteady problems
were employed.eir standalone mode (uniphysics) before integrating the codes. This also provides a starting
point for determining the best method of integration. The problems consi

Case 1: The first verification case study was a 2D study of steady-state flow over a cylinder with a
parabolic inlet condition as described in Schafer and Turek (1996). Four different grid resolutions were
used for this case, and the relative errors in Ap,c, and ¢; for the different resolutions are presented in Ta-
ble 1.

Table 1: Relative error in Ap,c4, and ¢; for Case-1 simulation with different grid resolutions.

Relative error 49 120 cell grid 12 280 cell grid 3 070 cell grid 730 cell grid

Ap 0.0119668 0.0505758 0.0372198 0.0838296
Cd 0.0169855 0.0392541 0.0186599 0.0285247
c 0.314267 31.3874 0.0959664 0.231629

The solutions produced by the different grid resolutions generally converge to within 10% of the reference
values except for the lift coefficient c;. It is known that ¢; has increased sensitivity to simulation parameters
over other quantities such as c¢; and Ap. In particular, the lift-coefficient for the 12 280 cell grid shows a
large discrepancy compared to the reference value. We believe that this discrepancy can be greatly reduced
by reducing the time-step used. Figure 12 shows an image of the streamwise velocity for one run of this
case.

“https://github.com/IllinoisRocstar/Rocstar/tree/ElmerModule
"http://illinoisrocstar.github.io/ElmerFoamFSI/index.html#quick_start

27

https://github.com/IllinoisRocstar/Rocstar/tree/ElmerModule
http://illinoisrocstar.github.io/ElmerFoamFSI/index.html#quick_start

A
AVA \llinois Rocstar LLC Identification Number: DE-SC0009596

Figure 12: Streamwise velocity contour for Case-1 with parabolic inlet velocity and CFL = 0.1.

Case 2: This is identical to the first case except Case-2 is run with a higher Reynolds number than that in
Case-1; i.e. 100 compared to 20 for Case-1. The higher Reynolds number triggers unsteadiness in the flow
in the form of periodic vortex shedding and oscillatory flow downstream of the cylinder. After a stationary
solution was attained, a quantitative comparison with the reference solution Schafer and Turek (1996) for
AD, Camaxs Clmaxs and St was performed.

The pressure difference Ap was computed at time 1 = 7o+ 1/2f, where f is the shedding frequency and the
inital time ¢ = fy corresponds to the flow state where ¢; = ¢y,,,,,. The Strouhal number was computed in the
time-range of 15 - 30s. In this range the solution has reached a periodic oscillatory condition.

The result is presented in Table 2 for the three grid resolutions used. The relative errors are bounded and
converge to the reference values with the finer grids. Figure 13 shows the streamwise velocity contour for
one run from this case.

Table 2: Relative error in Ap,cy, ¢;, and St for Case-2 simulation with different grid resolutions.

Relative error 12 280 cell grid 3 070 cell grid 730 cell grid

Ap 0.025694 0.0298173 0.147044
cd 0.00168824 0.0310062 0.0626892
c 0.006093 0.0578726 0.913368
St 0.0416667 0.0559896 0.186198
UXx
O -I [. 2

-0.58 2.2

Figure 13: Streamwise velocity contour for Case-2 with parabolic inlet velocity

28

A
MVA |linois Rocstar LLC Identification Number: DE-SC0009596

Case 3: This case used the same grids as the first two cases; however, the parabolic inlet velocity was
prescribed as a profile oscillating in time. Four grid resolutions were used for this case and the relative
errors in Ap, ¢, and ¢; for the different resolutions are presented in Table 3.

Table 3: Relative error in Ap,cy, and ¢; for Case-3 simulation with different grid resolutions.

Relative error 49 120 cell grid 12 280 cell grid 3 070 cell grid 730 cell grid

Ap 0.206864 0.0355727 0.00949091 0.0972727
cd 0.0655939 0.0485078 0.0100108 0.00324237
c 0.995322 0.279131 0.0901021 0.547201

As mentioned above, ¢; is more sensitive to simulation parameters, accounting for the higher relative error.
Figure 14 shows an image of the streamwise velocity at 4 s for one run of this case.

UXx
Moqulll]lileM

1.72

Figure 14: Streamwise velocity countour of Case-3 with parabolic inlet velocity at time 4 s.

Case 4: This case studies flow over a cylinder with a rigid beam attached. Like Case-1 this problem has a
parabolic inflow condition and is steady-state. Four grid resolutions were used, similar to the previous cases.
The relative errors in Ap, ¢4 and ¢; for the different resolutions are presented in Table 4, and Figure 15 shows
the velocity magnitude for one run from this case.

Table 4: Relative error in Ap,c4, and ¢; for Case-4 simulation with different grid resolutions.

Relative error 49 120 cell grid 12 280 cell grid 3 070 cell grid 730 cell grid

Ap 0.0119668 0.0505758 0.0372198 0.0838296
cd 0.0169855 0.0392541 0.0186599 0.0285247
c 0.314267 31.3874 0.0959664 0.231629

Performing these initial V&V cases with OpenFOAM laid the groundwork for being able to verify an Open-
FOAM module created to work with IMPACT.

4.4.2 Elmer Stand-alone Testing

29

A
AVA \llinois Rocstar LLC Identification Number: DE-SC0009596

U Magnitude
0.1 0.2 C|J§ 0.4

e .

0

0.404

[—

Figure 15: Velocity magnitude contour of Case-4 with parabolic inlet velocity.

In this V&V study, we verified whether

the Elmer module could match a Clamp L R
physically-derived analytical solution for) Unloaded Beam i l;, B
the same scenario. v

. . . Loaded Beam
Case 1: Inthis case, a static loadisap- S

plied to the end of a cantilever beam to

verify if the transverse displacement cal- Figure 16: Typical cantilever beam showing length L, concentrated load
culated by Elmer and the analytical solu- P and transverse displacement . Graciously borrowed from http://www.
tion are close, if not the same. The beam doitpoms.ac.uk/tlplib/thermal-expansion/printall.php

is a HronTurek-dimensioned beam. Figure 16 shows a typical cantilever beam of length L. For this Hron-
Turek beam with L = 0.351m, we calculate the maximum deflection at the end of the beam. The curvature
of the beam is given by

M 3 8man(x)

T EI o0x? M

where M is the concentrated load committing the force upon the beam, E is the Elastic Modulus and [is the
moment of Inertia.

Solving for §(x) where x = L gives

PL3

5max (L) = ﬁ

2

It is important to note that for the case of the HronTurek Beam with a cross sectional area of bh, the moment
of Inertia (/) will be

G

1= 3)

where £ is the axis where the bending moment is applied. For this example b = 0.0506m and & = 0.02m.
Elmer utilizes the finite element method to discretize the beam to a mesh. Here the pressure is spread over

30

http://www.doitpoms.ac.uk/tlplib/thermal-expansion/printall.php
http://www.doitpoms.ac.uk/tlplib/thermal-expansion/printall.php

A
AVA |llinois Rocstar LLC Identification Number: DE-SC0009596

the entire cross sectional area (of %). The tables and graphs below show how the horizontal displace-
ment converges versus the density of mesh in each direction. Here, all variables are kept constant with
F(Pressure) = SES % and E = 10.0E9.

Div. (L) | Y-Disp. Div. (W) | Y-Disp. Div. (H) | Y-Disp.

50 -1.928E-2 || 4 -2.073E-2 || 10 -2.124E-2
100 -1.993E-2 || 8 -2.104E-2 || 12 -2.127E-2
200 -2.011E-2 || 16 -2.112E-2 || 18 -2.129E-2
400 -2.016E-2 || 32 -2.114E-2 || 21 -1.655E-2
800 -2.017E-2 || 64 -2.068E-2 || 24 -2.126E-3

Table 5: Relationships showing converging of vertical displacement versus number of divisions in each direction.

Divisions (L) vs. Y-Displacement Divisions (W) vs. Y-Displacement
-0.0192 - : - : - — - -0.02065 : 5 -
"mesh_test.dat" using 1:2 ——— "mesh_test_W.dat" using 1.2 ——
-0.0193 -0.0207
-0.0194 | -0.02075
- -0.0195 — -0.0208
£ E
= -0.0196 I = -0.02085 -
[} i
E 00197 | £ 0.0209 |
[} L
© s
£ -0.0198 | 2 002095 |
n n
o 0.0199 | o -0.021
0.0z t -0.02105 |
-0.0201 -0.0211
-0.0202 . " . " . . . 0.02115 . "
0 100 200 300 400 500 BOO 700 800 o] 10 20 30 40 50 60 70
Divisions Divisions

(@) Meshes in the x-direction vs. the vertical displacement. (b) Meshes in the z-direction vs. the vertical displacement.

Divisions (H) vs. Y-Displacement
-0.002

"mesh_test H.dat" using 1:2 ——
-0.004

0.006
0.008

001 +
0.012

0.014 +

Displacement {m)

0.016 +
-0.018

-0.02 +

-0.022

10 12 14 15 18 20 22 24
Divisions

(c) Meshes in the y-direction vs. the vertical displacement.

Figure 17: Graphical relationships of the mesh density in each direction and its effect on the vertical displacement.

The more nodes the mesh has (in each dimension) the better the approximation to the analytical solution will
be; however, there is a trade off of computational cost to approximation accuracy. The analytical equations
above are only valid once the reduction in error vs. the number of mesh nodes starts to converge. There are
periods when the software will produce outliers which are ignored (as shown above in the second graph).

A
AVA |llinois Rocstar LLC Identification Number: DE-SC0009596

In this example, we found that Elmer closely matched the analytical solution once there were 400 nodes
along the length, 16 nodes along the base, and 12 nodes along the height of the beam.

The finite element software Elmer has been selected to perform the structural mechanics piece of the exam-
ple FSI problem. Like with OpenFoam, an initial V&V case was also performed with Elmer for a uniphysics
problem. This test case was done to verify our use of Elmer and to develop a better understanding for the
integration process.

Case 2: The test problem in this case study is a beam structure found in Turek and Hron (2006). The
computed displacements due to the gravitational load are shown in Figure 18. The y-displacement, which is
the primary comparison parameter in this case, is in reasonable agreement with the reference value reported
in Turek and Hron (2006). The relative error is approximately 5%.

-0.90803523 -0.0002114 -7.043e-05 7.048e-05 0.0002114 9.0003523 -9.0003523 -0.0002111 —7.613e-05 7.048e-05 0.0002114 90.0003523
| | | | | |

Displacement_x Displacement_x

(a) Beam displacement in x-direction (spanwise direction). (b) Beam displacement in y-direction (vertical direction).

—-0.0003523 -0.0002114 —7.043e-05 7.048e-05 0.0002114 0.06003523
i | |

Displacement_x

(c) Beam displacement in z-direction (chordwise direction)

Figure 18: Beam displacement for V&V problem using Elmer.

IS}
\S]

A
AVA |llinois Rocstar LLC Identification Number: DE-SC0009596

4.5 ElmerFoamFSI Testing

Three main test cases are used for verifying and validating ElmerFoamFSI. The three problems increase in
complexity to verify the fact that tractions and displacements are properly exchanged between the fluids and
solids solvers. In the first two cases, verification is performed by comparing against an analytical solution.
For the third case, experimental data is referenced.

Additionally, each problem is solved first using only the OpenFOAM suite, which provides useful verifica-
tion data for comparison against the coupled ElmerFoamFSI solution. Information about the specific solvers
being used from OpenFOAM and Elmer is provided in the subsequent sections, with the discussion of each
test case in Sections 4.5.1 — 4.5.4.

The OpenFOAM module implements an FSI solver based on built-in icoFSIElasticNonLinUL solver of
OpenFOAM. icoFSIElasticNonLinUL uses an iterative algorithm with adaptive under-relaxation for strong
coupling (partitioned approach in FSI, see Section J for discussion). Both solid (Uy,ys) and fluid fields (U, p)
are solved for with separate solvers for the solid and fluid domains coupled together.

The fluid solver is an ALE finite volume incompressible flow solver with automatic mesh smoothing, and the
solid solver uses finite volume discretization based on updated Lagrangian formulation. The adaptive under-
relaxation is performed based on the Aitken algorithm. Note that ElmerFoamFSI uses only the fluid solver of
OpenFOAM and, to make the example case as simple as possible, a non-iterative algorithm is implemented.
For further information on the OpenFOAM solver, interested readers are referred to the OpenFOAM suite
manual OpenFOAM Extend Project (2016).

When using ElmerFoamFSI the fluids solver is coupled to one of the solids solvers from Elmer. The
tractions and displacements are transformed between the solvers using IMPACT. The solid solver selected
from Elmer is a linear elastic solver with large deformation which is a reasonable assumption for the order
of strains observed in these problems and solves “Nonlinear elasticity” equation. More information about
the solid solver can be found in the Elmer overview and solver manuals (Elmer (2016)).

The details of the physics of FSI coupling and the preparation of input files for Elmer, OpenFOAM, and
ElmerFoamFSI are provided in Section I and in the online documentation of the project. It is worthwhile
to note that ElmerFoamFSI is implemented as a MPI parallel program. We judiciously made this choice as
both OpenFOAM and Elmer projects use the same parallelization scheme and it was the best opportunity to
test all the facilities of IMPACT in coupling parallel codes.

4.5.1 Verification: Static Problem

Problem Description: The problem selected to verify ElmerFoamFSI simulates the interaction between
a static viscous fluid with a beam structure. The fluid domain is a square subjected to a uniform pressure.
The boundary conditions are selected in a such way to minimize fluid velocity and motion on the side and top
walls. The bottom wall consists of a cantilever beam (structures component) attached on one side but free
to move in the y-direction elsewhere. Since there is no fluid velocity, the only contributing factor affecting
the beam displacement is due to the pressure from the fluid.

Considering the fact that traction vector has both normal and tangential components, in the simple verifi-
cation problem the normal component will be the major contributing factor. Therefore, this first problem
verifies the pressure-driven component of the total tractions being applied to the beam and ensures it is
passed accurately to the structure during coupled FSI simulation. Figure 19 shows the geometry of the
problem.

A
AVA \llinois Rocstar LLC Identification Number: DE-SC0009596

| B
N
wn
p=a

Figure 19: Domain and boundary conditions for static verification problem.

The dimensions of the domain are L = 1.0m, i, = 0.1 m, and 4y = 1.0 m. The out-of-plane dimension is
selected to be 0.1 m for both domains, arbitrarily. The velocity is initialized to 0.0 m/s throughout the fluid
domain and the pressure given a uniform value of 1.0 Pa. Table 6 summarizes the properties of the solid and
fluid used in the simulation. No changes are made to any of the initial conditions throughout the simulation
other than allowing the problem to reach a steady state. The total simulation time is selected to be t = 5.0s.

Table 6: Properties of fluid and solid

domains.
Property Value Units
vy 1.0x 107 N s/m?
pr 1.0 kg/m?
E, 1.4x10° Pa
Vs 0.4
Ps 10 kg/m?

Exact Solution: Based on Euler-Bernoulli beam theory for small deformations, the exact value for the
maximum deformation for the tip of the beam in the y-direction is

ol* bh3
8y 8EI’ 12 “)

where b = h = 0.1 m for the depth and height of the beam, @ = 0.1 N/m for the pressure of the fluid,
L = 1.0m for the length of the beam, E = 1.4 x 10°Pa as Young’s modulus for the beam, and [is the
moment of Inertia for the cross section of the beam. Using these values, the maximum deflection in the
y-direction is calculated as 1.071 x 1073 m.

34

A
MVA |linois Rocstar LLC Identification Number: DE-SC0009596

OpenFOAM Simulation: As discussed above, for the verification this test problem is first solved using
sole OpenFOAM solver icoFSIElasticNonLinUL. Figures 20a and 20b show contour plots for the pressure
and y-displacement, respectively, for # = 5.001 s. This solver predicts a maximum absolute y-displacement
of 8, = 1.071 x 10~3m for the cantilever.

Pressure
=1.000e+00

y-Displacement

ff -1.071e-03 -0.0008 -0.00054 -0.00027 0.000e+00

(a) Contour plot of pressure (Pa) in the fluid domain (b) Image of the y-direction displacement of the beam
at =5.001s. The small variations result from the at¢=15.0s. (Only the beam is shown.)
incompressible fluid reacting to the movement of the

beam, and the vertical “streaking” is a numerical arti-

fact from the course discretization and the visualization

software.

=9.995e-01

Figure 20: OpenFOAM simulation results for simple static problem.

Serial ElImerFoamFSI Simulation: In the next step, the problem is solved using the ElmerFoamFSI.
The solid mesh for Elmer is generated using the ElmerGrid utility. Figure 21a shows the contour plot for
the maximum displacement obtained by ElmerFoamFSI for t = 5.0s. The maximum predicted absolute
y-displacement at this time is 0, = 8.973 x 10~*m.

y-Displacement

-8.973e-04 -0.00067 -0.00045 -0.00022 2.091e-07

||||||||||H||||||||IIMIIIIIII

(a) Contour plot of the y-displacement field along the cantilever at time t = 5.0s.

Figure 21: ElmerFoamFSI simulation results for simple static problem.

A
MVA |linois Rocstar LLC Identification Number: DE-SC0009596

Parallel ElImerFoamFSI Simulation The static problem was also solved with parallel ElmerFoamFSI
solver. Both solid and fluid domains were decomposed to a set of partitions for the parallel simulation.
Figures 22 shows these partitions for np, = 4 simulation. In the parallel simulation, ElmerFoamFSI registers
information for each process separately and exchanges data between the processor as needed. The parallel
simulation is performed using the same boundary conditions and the maximum deflection captured for the
tip of the beam is &, = 8.870 x 10~*m.

. Process 1
. Process 2
. Process 3
. Process 4

(a) Whole domain (b) Beam domain

Figure 22: Parallel domain partitioning used in the parallel ElmerFoamFSI simulation of the static verification problem.

Results and Discussion: The exact solution for maximum absolute displacement is i = 1.071 x 103 m,
the OpenFOAM solution is u,,r = 1.071 x 103 m, and the ElmerFoamFSI solution is u,; r=8.973 x
1073 m. With respect to the exact solution, OpenFOAM shows a relative error of less than &, = 0.04% pos-
sible due to rounding error (but potentially less), and ElmerFoamFSI has a relative error of &, = 16.14%.
Parallel ElmerFoamFSI also reproduces a similar values for the maximum tip deflection.

The error in the ElmerFoamFSI solution is acceptable and understandable within the context; the key dif-
ference between the two algorithms is the use of sub-iterations between timesteps in the pure OpenFOAM
case. The lack of sub-iterations in the coupled Elmer/OpenFOAM case makes it much harder to achieve
accurate results. In an effort to obtain the best result possible, the grid was refined and the timestep reduced
to as small a step as sustainable for the algorithm. We have concluded that 16.14% is acceptable considering
the lack of sub-iterations. Additionally, it was determined that since the objective of this exercise was to
prove feasibility of coupling two disparate applications, that implementing a sub-iteration algorithm in the
coupling schemed was a lower priority.

4.5.2 \Verification: Dynamic

Problem Description: In the next step of verification, a more dynamic problem is used to test the accu-
racy of ElmerFoamFSI in transient problems. In this problem, a viscous fluid () is subjected to a velocity
profile to generate a simple in-plane traction on the walls of the channel. One of the walls is a cantilever
beam (S). Friction-based traction is applied to the top face of the cantilever to create axial deformation (J;).

The boundary conditions are selected such that only axial deflection is allowed for the beam, therefore,
the effect of the vertical deflection created by potential normal pressure is negligible and only tangential

36

A
AVA \llinois Rocstar LLC Identification Number: DE-SC0009596

components of the traction vector contribute to the deflection. The setting of the problem is necessary to test
the accuracy of the tangential traction and displacement exchanges. Figure 23 shows the geometry of the
problem.

Figure 23: Domain and boundary conditions for dynamic simple verification problem.

The dimensions of the domain are L = 1.0m, hy = 0.01m, and hy = 0.9m. The velocity profile is symmetric
with Uy = 1.5 m/s with axis of symmetry at y = 0.46m. The out-of-plane dimension is selected to be
0.1m for both domains, arbitrarily. Table 7 summarizes the properties of the solid and fluid used in the
simulation. The velocity profile is ramped from zeros to its full developed form within the transition period
of Tiyans = 0.1s and then kept constant for the rest of simulation. The total simulation time is selected to be
T =5.0s.

Table 7: Properties of fluid and solid do-

mains.
Property Value Units
vy 1.0x107° Ns/m?
pr 1.0 kg/m?
E, 1.4 x 109 Pa
V 04
Ps 10.0x 1073 kg/m?

Exact Solution: The exact value for the maximum axial displacement for this problem can be simply
calculated. For this, traction (7) applied to the beam is given by

T= u‘;—(){yy_o =6.6x107° Pa. (5)

37

A
MVA |linois Rocstar LLC Identification Number: DE-SC0009596

We then integrate the total displacement along the beam to achieve
1.0
o, = / &..(z)dz =2.3807 x 107" m. ©6)
0

OpenFOAM Simulation The simulation is first performed solely by the FSI solver of the OpenFOAM
suite. Figure 24 shows the contour plot for the pressure and velocity for # = 5.0s and 100 x 100 discretization
and 100 x 2 discretization for fluid and solid domains, respectively. This solver predicts a maximum axial
displacement of 8, = 2.194 x 10~7m for the cantilever.

o uz
=1.478e-02 -1.500e+00

0.011 B1.132
0.0074 0.765
£0.0037 £0.397

~0.000+00 ‘ 2.9836-02

Usolid Z
-2.194e-07

F1.60-7
11e7
+5.5e-8

~0.0006+00

Figure 24: OpenFOAM simulation result for t = 5.0s showing (a) pressure (Pa), (b) velocity (m/s) and (c) displacement
contours (m).

ElmerFoamFSI Simulation In the next step, the problem is solved with ElmerFoamFSI. The solid mesh
for Elmer is generated by ElmerGrid and matches with the fluid grid used by OpenFOAM. Figure 25 shows
the contour plot for the maximum displacement obtained by the ElmerFoamFSI for t = 5.0s and the same
discretization. The maximum displacement obtained in the axial direction was &, = 2.098 x 10~ "m.

Parallel ElmerFoamFSI Simulation The same simulation was carried on with the parallel Elmer-
FoamFSI using ncp, = 4 processes. The total displacement captured in the axial direction was &, = 2.001 x
10~ "m.

Results and Discussion The exact formulation of the simple dynamic problem reports & = 2.381 x
10~ m for the axial deformation, OpenFOAM solution is u,,r = 2.194 x 10~ 7m, and ElmerFoamFSI solu-
tion in serial and parallel is u,;; = 2.098 x 10~ 7m and u,, r=2.001 x 10 "m, respectively. In comparison
with the exact solution, OpenFOAM shows a relative error of €,,7 = 7.5%, and ElmerFoamFSI has a relative
error of &,y = 12.0%. The errors for both OpenFOAM and ElmerFoamFSI are acceptable as

38

A
AVA |llinois Rocstar LLC Identification Number: DE-SC0009596

Disp. Z
-2.098e-07

b 16e7

le-7

5.2e-8

=0.000e+00

Figure 25: OpenFOAM solution for the displacement field along cantilever.

* the coupling scheme used for the problem is a non-iterative scheme (and therefore is not fully energy-
conservative),

* numerical errors associated to the temporal and spatial discretizations used,

* iterative nature of the linear system solver and the fact that without a proper pre-conditioner, iterative
system solvers used in parallel OpenFOAM, Elmer, and ElmerFoamFSI can be inaccurate,

e numerical truncation errors,

* oscillatory behavior of the solution.

If we accept the OpenFOAM solution as reference (to cancel out iteration errors), the relative error for the
serial and parallel ElmerFoamFSI will be &,y = 4.3% and &,y = 8.8%), respectively.

4.5.3 Verification: Hron-Turek Problem

Problem Description A series of fluid-solid interaction problems are described by Turek and Hron
(2006). These fluid-solid interaction problems are designed based on actual experiments and are well ac-
cepted as the benchmark for validating a FSI solver. Here, we use one of these problems to validate the
ElmerFoamFSI code.

Figure 26 illustrates the configuration of the problem: in this 2D problem, laminar incompressibe flow (F)
is entering a channel from its left side with a fully-developed (after a small transition period) parabolic
velocity profile. A cylinder with a cantilever beam attached (S) is submerged in the fluid close to the entry
of the channel. Traction loads generated by fluid motion/friction develop on the faces of the cylinder and
the cantilever, which causes the beam to deform and oscillate. In this problem, a self-induced oscillation is
developed in the beam as it interacts with the fluid.

| 2.5

Figure 26: Domain and boundary conditions for Heron Turek verification problem.

39

A
AVA |llinois Rocstar LLC Identification Number: DE-SC0009596

We denote the deformation of the free tip of the beam by J, and recognize that the objective of this study
is to see how accurately ElmerFoamFSI captures the variation of §,. Table 8 summarizes the properties of
the solid and the fluid used in the simulation. The velocity profile is ramped from zero to its fully developed
profile (with U = 2 m/s) in the transition period of T},4,s = 0.1 s, after which it is kept constant for the rest
of the simulation. Further details about the boundary conditions and the setup of the Hron-Turek problems

are provided in Turek and Hron (2006).
P () Table 8: Properties of fluid and solid domains.

Benchmark Solution This problem does not have an ex- Property ~ Value Units
act solution: a reference solution provided by Turek and Hron Vg 1.0x 1073 N s/m?
(2006) will be used for the comparison purposes. Py 1.0x10* kg/m’
E, 56x10° Pa
. . Vs 0.4
ElmerFoamFSI Simulation In the next step, the problem D4 1.0x10° ke/m?

is solved with ElmerFoamFSI. ElmerFoamFSI utilizes Open-
FOAM for the fluid and Elmer for the solid calculations. The
tractions, displacement, and velocities are exchanged between the solvers through IMPACT. Elmer as the
structures agent, solves for non-linear elastic deformations as the order of strains developed in the beam
are large. The solid mesh for the Elmer agent is generated by the ElmerGrid. Figure 27 shows the contour
plot for the time-varying fluid velocity, pressure, and the displacement induced on the tip of the beam and
captured by the ElmerFoamFSI.

Parallel ElImerFoamFSI Simulation The same problem was solved using parallel ElmerFoamFSI. The
simulation domain for both fluid and solid were divided into n.p, = 4 partitions. Figure 28 illustrates the
partitioning of the simulation domain. It can be observed that all four processes used in the solid solver have
fluid-solid interfaces, but only two processes share these boundaries in the fluid domain. In general, IMPACT
very well handles such mismatches between domain decomposition which is enforced by the participating
solvers and exchanges information (in parallel) between the processes as needed.

40

A
AVA \llinois Rocstar LLC Identification Number: DE-SC0009596

._/

U (m/s)
0 0.71 1.4 2.1 2.85

R e

P (kPa)
-3.78 -2 -0.12 1.7 3.53

i ! h—

Uy (m)

Figure 27: ElmerFoamFS| simulation results showing velocity contour (top), pressure contour (middle) for r = 5.0s,
displacement history for the tip of the beam (bottom).

41

A
AVA \llinois Rocstar LLC Identification Number: DE-SC0009596

. Process 1
. Process 2

. Process 3
. Process 4

Figure 28: Partitioning of the simulation domain for parallel Heron Turek verification problem.

The displacement for the tip of the beam was also captured by the parallel ElmerFoamFSI.

0.26 . .

nCPU=4 o
SERIAL

024 t

022 t

0.2

Deflection (M)

0.18 |

0.16 }

Time (s)

Figure 29: Comparison between serial and parallel ElmerFoamFSI predictions for the displacement of the tip of the beam.

Results and Discussion ElmerFoamFSI simulation results were compared against those reported in
Turek and Hron (2006). The benchmark values for the amplitude and period of the beam deflection 9,
are about 0.035m and 0.18s, respectively. ElmerFoamFSI predictions for these quantities were 0.038m and
0.18s, matching the reference values. The error for ElmerFoamFSI correspond to:

* numerical errors associated to the temporal and spatial discretization,

* simple non-iterative nature of the solution scheme.

42

A
MVA |linois Rocstar LLC Identification Number: DE-SC0009596

4.5.4 ElmerFoamFSI Scaling Study

To measure parallel performance of ElmerFoamFSI a scaling study was performed. HronTurek and simple
dynamics problems were solved using N, = 1 — 64 cores. Figure 30-a shows the parallel efficiency for
HronTurek problem. In this unbalanced problem the parallel efficiency quickly vanishes. By looking at
Figure 30-c it can be observed that for HronTurek problem most of the computation time is spent on Open-
FOAM solver and therefore the overal performance for ElmerFoamFSI is dominated by the performance of
this module. Figure 30-b depicts similar efficiency curves for simple dynamic problem. This time again
the problem is not well balanced as most of the CPU time is spent in the Elmer module, and therefore the
performance of ElmerFoamFSI is dominated by this module. From this quick study it can be concluded that
the parallel efficiency of an IMPACT-enabled code is very much related to the performance of its modules,
for the case of ElmerFoamFSI to Elmer and OpenFOAM as in a multiphysics problem most of the com-
putation will be happening in the actual physics solvers. Furthermore, Figure 30-c,d indicate that IMPACT
contributes a negligible overhead to the total computation time.

(@) (b)

ElmerFoamFSI - HronTurek3 ElmerFoamFSl - Simple Dynamic
—e—EImerfFoamFsl —e—Elmer —e—0penFoam Surfx —a—ElmerfoamFil —e—Elmer —g— Openfoam Surfx
100 00 @
— _ \
£ &0 E &0
e 4
z 60 S 60
5 5
E =
[Z1) T g
T = R
& I
] — 0 —
0 5 10 15 20 25 30 35 40 45 50 55 60 65 0 5 10 15 20 25 30 35 40 45 50 55 60 65
#CPUs #CPUs
(c) (d)
ElmerFoamFSI-HronTurek3 ElmerFoamFSI-Simple Dynamics

2% _ 0% 5%

0%
' = openFoam

= Elmer

4%

0%
6%

= openFoam
= Elmer
= SurfX-L50 = SurfX-150
Surfx-interp SurfX-Interp
u Misc = Misc

Figure 30: ElmerFoamFSI scaling study: parallel efficiency and CPU time partitions for HronTurek problem (a,c) and

simple dynamic problem (b,d).

4.6 Rocstar Multiphysics Testing

In this section we report the verification tests performed for Rocstar Multiphysics. As mentioned earlier,
Rocstar Multiphysics comes with two compressible fluid dynamics solvers (Rocflu and Rocflo) and a struc-
tures solver (Rocfrac). We also have Elmer and OpenFOAM integrated into Rocstar Multiphysics.

We note that all of these modules are MPI-enabled and are fully compatible with IMPACT. Testing all of the
combinations that can be achieved from these five uniphysics solvers is beyond the scope of this report; here
we have limited our analysis to two cases. In the first case, we combined Rocflo and Elmer to solve a shock
propagation compressible flow FSI problem. In the second case, we solve the Hron-Turek problem with the
combination of Rocfrac and OpenFOAM.

A
AVA |llinois Rocstar LLC Identification Number: DE-SC0009596

4.6.1 Rocflo/Elmer Combination

The super-seismic shock example illustrates a problem with aero-elastic FSI. The shock in the compressible
fluid travels at a speed that exceeds the dilational wave speed in the solid, causing deformation of the solid.
The solid material properties of this example are similar to that of copper. The fluid properties are modified
to achieve a sound speed similar to the pressure coefficient (c)).

This problem can be run on any number of processors and couples the Rocflo and Rocfrac Rocstar Mul-
tiphysics modules. Figure 31 shows images pertaining to the setup and running of this problem. The
verification data for this problem are provided by Arienti et al. (2003) and Jaiman et al. (2004).

@ p—front @

elastic
solid

s—front

Z X

(a) lllustration of super-seismic step load showing the p and s
wave systems (above) and the oblique shock (below).

Pa Pa

2.34e+010 2.30e+010

1.75e+010 1.72e+010

1.17e+010 1.15e+010

5.85e+009 5.74e+009

(b) Shock wave partially through domain depicted using (€) Shock wave almost entirely through domain depicted
Rocketeer. using Rocketeer.

Figure 31: Images from the super-seismic shock example case.

The problem was solved by Rocflo and Elmer combination. Figure 32 summarizes the verification study
outcomes. The solution obtained by Rocflo/Elmer combination is compared against that of Rocflo/Rocfrac
as gold standard. The problem is solved for different mesh densities and with different number of processes.
The results match with the gold standard, proving the proper implementation of the modules provided with

44

A
AVA |llinois Rocstar LLC Identification Number: DE-SC0009596

Rocstar Multiphysics and proper functioning of IMPACT. This test has been added to the testing framework
of Rocstar Multiphysics and all input files and settings for the problem are accessible from our public
repository.

2e+10 T T T T T
ElmerRocflo —+—
GOLD

19¢+10 N E
N\
: . e o
[N,
{ .

18e+10
1.7c+10 | g

Léetlo |/ -

Pressure (Pa)

15c+10
Lde+10 | | E

13c+10 b

1.2¢410 I I I 1 1 1 I I I
5.00e-07 1.00c-06 1.50c-06 200c06 2.50c-06 3.00c-06 3.50c-06 4.00c-06 4.50c-06 5.00c-06 5.50c-0f

Time (s)

(a) Comparison between Elmer/Rocflo solution and
Rocflo/ Rocfrac (GOLD) solution both obtained by Roc-
star Multiphysics.

2.00e+10 T T T T T 2.00e+10 T T T T T
125x12x2, np=4 —+— 250x25x2,np=2 —+—
250x25x2, np=4 250x25%2, np=4
190c+10 | S500x50x2, np=4 —*— 190e+10 250x25x2, np=8 —*—
1.80e+10 - 1.80e+10 -
1.70c+10 A 1.70e+10 A
5 160c+10 - ; 1.60e+10 -
£ £
& &
1.50c+10 A 1.50e+10 A
1.40c+10 — 1.40e+10 —
1.30¢+10 A 1.30e+10 A
1.20c+10 1 1 L L L L L L L 1.20e+10 1 1 1 L L L 1 L L
5.00e-07 1.00e-06 1.50e-06 2.00e-06 2.50e-06 3.00e-06 3.50e-06 4.00c06 4.50e-06 50006 5.50-0¢ 50007 1.00e-06 1.50e-06 2.00e-06 2.50e-06 3.00e06 3.50e-06 4.00e-06 4.50e-06 5.00c-06 5.50-0¢
Time (s) Time (s)

(b) Solution obtained by Rocflo/Elmer combination for dif- (c) Solution obtained by Rocflo/Elmer for different number
ferent mesh densities. of processors.

Figure 32: Super-seismic shock problem solved by different modules of Rocstar Multiphysics for the verification purpose.

4.6.2 Rocfrac/OpenFOAM Combination

The Hron-Turek problem described in Section 4.5.4 was solved in Rocstar Multiphysics using Rocfrac/OpenF OAM
combination. The solids domain was discretized into a finite element mesh composed of tetrahedral ele-
ments. The same grid was used for the OpenFOAM. The simulation was performed for a few timesteps.
Figure 33 compares Rocfrac/OpenFOAM solution with Rocfrac/Rocflo modules showing comparable solu-

tion.

A
AVA |llinois Rocstar LLC

Identification Number: DE-SC0009596

2004e01 -

2002e01 -

2.000e401

1.998e01

Tip Position (m)

1.996¢01

1.994¢401]

199201 -

1.990¢0]

I
Rocfrac/OpenFoam ~ #¥
Elmer/OpenFoam

0.00

0.01

002

0.03

Time (s)

0.04 0.05 0.06

Figure 33: Rocfrac/OpenFOAMsolution compared with OpenFOAM /Elmerfor Hron-Turek FSI3 problem.

46

A
AVA |llinois Rocstar LLC Identification Number: DE-SC0009596

5 Community Involvement and Usage

5.1 Community Development

Community building is of utmost importance to the success of an open source package. The ultimate goals
of standardization, community-driven design, and the nature of our particular, targeted user community
make community building an important task to ensure eventual acceptance and success of the product. We
need a representative sampling of the potential user-base for this infrastructure to ensure the relevance of
its design and implementation. Our overarching community goal of this project is to build a community of
stakeholders. During the Phase I and Phase II projects, we initiated the following conversations and contacts
to discuss interest in and use of IMPACT.

Framework developer contacts
We reached out to developers and development groups of several other multiphysics packages, in-
cluding Sierra, LIME, Trilinos, Rocstar, PreCICE, MpCCI, and OpenFSI. Several of these contacts
resulted in meaningful exchanges of ideas.

Inter-institution meetings

We are members of several interdisciplinary government and industry organizations and have par-
ticipated in several meetings and symposia attended by stakeholders in advanced manufacturing and
engineering industries, academia, and government multiphysics endeavors (e.g., the National Center
for Supercomputing Applications (NCSA) annual Private Sector Program (PSP) meeting, the Joint
Insensitive Munitions Technology Program (JIMTP) review, and the Air Force Research Lab Solid
Rocket Motor (SRM) Integrated Product Team Meeting (IPT)). Reception of this project has been
quite positive, and we have developed promising relationships with a few companies that are inter-
ested in multiphysics capabilities based on IMPACT constructs.

Targeted contacts
We contacted, arranged meetings with, and presented our proposed multiphysics infrastructure to
specific companies, addressing their Modeling and Simulation (M&S) development groups.

Open source distribution
We set up an open source project for distribution of the infrastructure developments. The project is
currently hosted by SourceForge*.

Consortium for Open Multiphysics

We branded our nascent stakeholders community as the “Consortium for Open Multiphysics.” The
Consortium mission statement and details can be found online at http://www.openmultiphysics.
org. We envisioned that the Consortium would help drive the design for the infrastructure; however,
it was discovered that most organizations, sans funding, did not have the resources to put into for-
mal group participation for a tool that was under construction. For now, it is up to Illinois Rocstar
to continue to generate new multiphysics applications to drive interest in the abilities embodied in
IMPACT.

5.2 Interactions

To seed the Consortium participant pool, we directly engaged groups from several institutions with known
multiphysics needs and interests. These institutions include Boeing, ATK, Aerojet, Caterpillar, Procter &

*See http://www.sourceforge.net.

47

http://www.openmultiphysics.org
http://www.openmultiphysics.org
http://www.sourceforge.net

A
AVA |llinois Rocstar LLC Identification Number: DE-SC0009596

Gamble, MSC, AMAX, University of Illinois, NCSA, and Sandia National Laboratory. We have also in-
teracted with several development groups, including developers of LIME, Trilinos, Precice, and Rocstar.
As members of several government and industry organziations, we have attended several inter-institution
meetings, including NCSA’s Annual Private Sector Partners (PSP) meeting, the Joint Insensitive Munitions
Technical Program (JIMTP) meeting, and the Air Force/Industry SRM Integrated Product Team (IPT) meet-
ing.

Among the groups we have engaged, the response to this project has been very positive. Everyone is inter-
ested, but many are reluctant to actively participate before seeing concrete applications of the technology.
Most companies are exploring the use of open source simulation and scientific computing packages, but
there remains some degree of concern surrounding the use of community-developed projects, their life ex-
pectancy, and availability of support. In many of our engagements, several discussions have been centered
around “making a business case” for what many call “co-simulation,” which seems to be a common ter-
minology for multiphysics in industry. We must be sensitive to the potential reluctance among potential
participants.

During the Phase II project, we continued to interact with the groups mentioned above, as well as initiat-
ing discussions with new organizations, such as the United Technologies Research Center in CT, the Missile
Defense Agency, and further Air Force organizations. It became even more apparent that large organizations
did not want to spend resources on a nascent, developing product until it was completed. Given that realiza-
tion, we suspended attempts to initiate a consortium community around /MPACT, and changed tack to look
for application and partnering opportunities to generate more example applications and “buzz”. Section 5.3
discusses the successes to date in finding applications for IMPACT.

5.3 Follow-on IMPACT Projects

To drive IMPACT into use outside of Illinois Rocstar and start to build the envisioned community of users
and possible coupling standardization, IMPACT is now being used in several current projects to further
illustrate its ability to be applied in diverse use cases. Several of these new projects are listed below.

* IMPACT is being used to couple a DoD hydrocode to an existing Air Force simulation tool called
Endgame Framework. The advanced parallel coupling facilities of IMPACT will allow construction
of a remote-coupled parallel runtime facility for this hydrocode in Endgame Framework.

* IMPACT is being used on a NASA project to couple modules in a new Illinois Rocstar-produced
advanced battery modeling tool. The IMPACT-enabled code will then be coupled with other tools
from Idaho National Laboratory and Oak Ridge National Laboratory to produce an advanced tool for
modeling performance and safety of advanced batteries.

* The IMPACT-enabed Rocstar Multiphysics is being used in a joint Illinois Rocstar - University of
Alabama Huntsville (UAH) - Missile Defense Agency (MDA) project to couple a complex-flow lattice
Boltzmann tool into Rocstar Multiphysics to model an apparatus of interest to MDA.

» IMPACT is being designed into the interface on another DOE project to couple certain chemistry
and materials science tools together for exposure through the chemistryhub.org cloud computing
interface.

* United Technology Research Center has been using a non-IMPACT-enabled version of the Rocstar
code for over a year, and is interested in transitioning to Rocstar Multiphysics with the newly capa-
ble Elmer solid mechanics tool included through IMPACT. As new open-source tools are added to

48

chemistryhub.org

A
AVA |llinois Rocstar LLC Identification Number: DE-SC0009596

the newly IMPACT-enabled Rocstar Multiphysics, a much wider base of multiphysics users will be
developed.

* IMPACT is being used in a new lattice-Boltzmann-based chemical diffusion and reaction Air Force
project to allow coupling into an existing Air Force toolchain in the next phase of that project.

* A current Illinois Rocstar DOE project concerning advanced grid/mesh data transfer and manipulation
will result in new service modules to be exposed through IMPACT, and ultimately available to Rocstar
Multiphysics, expanding it’s use and reach.

* New projects continue to be proposed that use IMPACT in different ways.

The list above is just the beginning of the kinds of new coupled multiphysics applications that can be pro-
duced using IMPACT. Final documentation, the gitHUB-hosted downloadable IMPACT code, and an ex-
panding set of example solutions will enable generating a more interested set of stakeholders, and ultimately
the envisioned community of users.

49

A
AVA |llinois Rocstar LLC Identification Number: DE-SC0009596

6 Publications and Presentations

Since the beginning of the Phase II this project has been highlighted as a specific topic or as part of other
topics in sessions at the following venues:

AFRL SRM M&S IPT Meeting — The Solid Rocket Motor Modeling and Simulation Integrated Product
Team meeting hosted by the Air Force Research Lab, attended by several DOD prime contractors
and other industrial and government organizations interested in solid propellant rocket propulsion.
This project is of interest to the IPT community for its potential to enable rocket and rocket-system
modeling and simulation.

DOE ASCR SBIR/STTR Workshop — The Opportunities in Advanced Computing and Networking hosted
by DOE was attended by representatives from several small-to-medium advanced manufacturing and
engineering businesses and small businesses interested in SBIR/STTR, ISVs, and DOE.

NASA SBIR Workshop — March 17 — 18, 2015, NASA Glenn Research Center. IMPACT was highlighted
as an enabling technology for the Illinois Rocstar advanced battery modeling initiative during this dis-
cussion and presentation of NASA SBIR technologies to a broad industry and government audience.

Aerojet Rocketdyne — internal meeting to discuss possible use and support of IMPACT and Rocstar Mul-
tiphysics.

United Technology Research Corp - internal meeting to discuss possible use and support of IMPACT and
Rocstar Multiphysics.

Proposals — Several unfunded proposed applications of IMPACT have been submitted to the Air Force and
Army in addition to the funded initiatives discussed in Section 5.3.

6.1 Website(s) or other Internet site(s)

Illinois Rocstar has established a centralized GitHub site for dissemination of software related to this project
(https://github.com/IllinoisRocstar). This new site is linked to openmultiphysics.org and
provides a modern git-based repository.

The results, software, documentation, and community associated with this project will be maintained on
openmultiphysics.org once an active community is built using the software. This site houses the Con-
sortium for Open Multiphysics, documents its mission, and presents a set of multiphysics test cases. The site
also provides a forum for user discussions, an issue ticketing system, and a link to the source code repository
on GitHub.

6.2 Inventions, patent applications, and/or licenses

The IMPACT infrastructure is, by design, an open-source software system using a permissive non-copyleft
license. As such, no patents or other restrictive intellectual property restrictions are implemented. Copyright
for the software is retained by Illinois Rocstar, with the permissive license providing unlimited distribution
rights if the license and copyright are maintained.

50

https://github.com/IllinoisRocstar
openmultiphysics.org
openmultiphysics.org

A
AVA |llinois Rocstar LLC Identification Number: DE-SC0009596

6.3 Other products

This project will result in a collection of publicly available descriptions of domain-specific problems for
multiphysics V&V and a set of working multiphysics applications composed of available open uniphysics
domain solvers targeting one or more of these V&V problems. The initial collection of these problems is
available at OpenMultiphysics.org, and the software will become available at the time of IMPACT Release
1.

51

A
AVA |llinois Rocstar LLC Identification Number: DE-SC0009596

7 Conclusions and Path Forward

The project concludes with major successes in construction of the IMPACT infrastructure itself, establish-
ment of two parallel multiphysics applications using IMPACT, and the creation of several new projects
that are also using IMPACT to construct new multiphysics tools. Section 7.1 discusses IMPACT and the
multiphysics tools and their documentation and Section 7.2 outlines the future of IMPACT and associated
applications.

7.1 Accomplishments

IMPACT, two multiphysics applications: ElmerFoamFSI and Rocstar Multiphysics and their documentation
comprise the major deliverables from this Phase I SBIR. These deliverables are discussed in Sections 7.1.1-
7.14.

7.1.1 IMPACT

As the major deliverable under this project, Illinois Rocstar presents IMPACT, an infrastructure for parallel
software integration aimed at facilitating multiphysics simulation. The infrastructure is designed to provide
a flexible mechanism for inter-application data exchange and function invocation for use in developing
composite parallel software systems. A key objective is minimizing the cost of development and ownership
of integrated capabilities by reducing the effort and depth of changes required for integration. It facilitates
interoperability between different programming languages (in particular, C++ and Fortran 90) and enables
“plug-and-play” of different physics and computer science capability implementations within an integrated
module-based system.

The object-oriented design paradigm and component encapsulation allow for clean inter-application inter-
faces and maximize concurrency in development of different capabilities. A number of multiphysics-specific
capabilities are provided by the infrastructure as reusable service utility modules. This design and set of ca-
pabilities provide a rich environment that allows for rapid prototyping of software systems composed of mul-
tiple integrated applications; it also supports a multitude of architectures for the integrated software system.
The software implementation of the infrastructure has been released under an OSI-approved open source li-
cense and is distributed through a github repository, https://github.com/I1llinoisRocstar/IMPACT.

In addition to the working implementation, an abstract model for the infrastructure has been developed and
presented. This model is intended for use as an abstract framework around which to discuss standardization
and requirements for the infrastructure. We assert that standardization and protocols for low level software
integration constructs and procedures will greatly increase utilization of HPC M&S among the nation’s
advanced manufacturing and engineering industries.

Furthermore, standardization allows for development and deployment of couple-ready capabilities that can
be readily leveraged in producing composite software systems. The economic implications and range
of commercial applications for this technology are promising: integration-ready software encapsulating
couple-ready models are the future of HPC-based M&S and a key to maintaining national competitiveness.

In Appendix A, we have provided a more in-depth document that can be used as a stand-alone reference for
the IMPACT concept. All modules and services provided in IMPACT are also documented in Appendices B
to H.

https://github.com/IllinoisRocstar/IMPACT

A
AVA |llinois Rocstar LLC Identification Number: DE-SC0009596

7.1.2 ElmerFoamFSI

ElmerFoamFSI is the second product delivered under this project and is our first application program build
based on the constructs provided by IMPACT. This product couples two well known computational physics
codes, Elmer and OpenFOAM, to provide a standalone FSI solver. OpenFOAM is an open source com-
putational fluid dynamic (CFD) code widely adopted by researchers across most areas of engineering and
science. The code has a long list of features and facilities to solve for anything from fluid dynamics to
heat transfer and solid mechanics, and contains an internal fluid-solid (or fluid-structures) module to solve
for problems involving interaction between fluid and structures. Elmer is another well-known open source
finite element analysis (FEA) software with a sizable user base. Similar to OpenFOAM, Elmer has physical
models and capabilities to simulate a wide range of problems including structural mechanics, fluid dynam-
ics and electromagnetics. For further information about these codes, we refer reader to the comprehensive
documentation of these codes.

The ElmerFoamFSI project comes with several FSI simulation examples to test its functionality and verify
its action. The setup of these examples are referenced in the Section I and within the online documentation
of the project. The mathematics of FSI coupling was also researched and is provided in Appendix J.

7.1.3 Rocstar Multiphysics

Another product under this project is our rebuilt Rocstar now known as Rocstar Multiphysics. The Rocstar
Multiphysics is another full spectrum example of IMPACT application. Rocstar Multiphysics includes sev-
eral complementary finite-volume compressible flow solvers that are formulated on moving meshes (ALE)
to handle geometric changes. The modules included, Rocflo and Rocflu are general use CFD solvers, both of
which have strengths for specific problems. Rocflo uses either a centered or an upwind scheme with Roe flux
splitting on multi-block structured meshes. Rocflu operates on unstructured tetrahedral or mixed-element
meshes and employs a novel, high-order WENO-like approach with the HLLC scheme to handle strong
transient flows including shocks. Further, the fluid solvers are integrated with additional physics modules
for simulating turbulent and multiphase fluid flows.

Aside from its compressible-flow solvers, Rocstar Multiphysics is also equipped with a finite-element struc-
ture solver called Rocfrac. Rocfrac uses an explicit finite-element scheme and supports different element
shapes including tetrahedral and hexahedral elements and their 2D analogs. Rocfrac is also capable of ac-
counting for moving meshes (ALE), material, and geometric non-linearities. On top of fluid and structures
modules, Rocstar is also equipped with a module to account for solid-fuel burning during simulation. This
module is called RocburnAPN. Finally, Rocstar Multiphysics also comes with service modules for mesh
refinement, solution transfer and many others.

We have also integrated Elmer and OpenFOAM into Rocstar Multiphysics; it is important to note that all
of these modules are MPI-enabled and are fully compatible with IMPACT. The final test for Rocstar Multi-
physics was the combination of Elmer/Rocflo to solve a shock propagation problem in a compressible flow
and OpenFOAM/Rocfrac to solve the Hron-Turek problem. Aside from these tests, a series of unit and
regression tests are provided in Rocstar Multiphysics which verify the accuracy of the product and can be
used as a reference of how to use the code.

7.1.4 Documentation

IMPACT is a complex multiphysics code integration infrastructure and its use requires good documentation.
Emphasis has been placed on producing comprehensive documentation during the project and the combina-

53

A
AVA |llinois Rocstar LLC Identification Number: DE-SC0009596

tion of the web-based documentation for IMPACT, Rocstar Multiphysics, and ElmerFoamFSI and the guides
in the appendices to this document provide a solid base for outside organizations to become familiar with
and use IMPACT and/or the multiphysics tools for their own purposes. In addition, we supply a test infras-
tructure (IRAD) and many test problems for users of the infrastructure to base robust unit and regression
testing protocols on.

7.2 Next Steps

As described in this report, the technical portions of this project have been successful. The IMPACT system
is complete, tested, available, and documented. Two pertinent parallel multiphysics capabilities have been
constructed using IMPACT, and are now available to the community. All of these capabilities are open
source and available from gitHUB.

As discussed in Section 5, building a community of users around a developing product was not a successful
endeavor. We talked with many groups and individuals, many of whom showed interest in the technology
during the project. However, providing their own resources to attend meetings and discussions concerning
their needs from the technology was difficult to maintain. Thus, now that the technology is complete and
available, a different tack has been chosen: to search out and produce as many multiphysics capabilities as
possible, adding additional physics modules to Rocstar Multiphysics as makes sense, and to build a commu-
nity around the developing multiphysics ecosystem instead of only around the IMPACT infrastructure. This
will provide potential users with the ability to connect their own tools together using IMPACT the use of a
burgeoning set of already IMPACT-enabled physics modules; and the Rocstar Multiphysics system to start
from, extend, or learn from as needed.

In Section 5.3, a list of current IMPACT-oriented initiatives is provided where Illinois Rocstar is using the
completed IMPACT infrastructure to build tools for others in both government and industry. Some rely
upon IMPACT and Rocstar Multiphysics, while others are new developments using IMPACT alone. We are
working on adding advanced lattice Boltzmann modeling techniques, modern mesh data transfer, adaptation
and remeshing capabilities, hydrodynamic FEM modeling and diffusion and chemical reaction models to the
IMPACT-enabled set of available tools. Some of these can be made available open-source in the expanding
Rocstar Multiphysics base, while others can only be made available through private or government channels
(e.g., the Air Force hydrodynamics code). All, however, will provide bases for future multiphysics code
development in commercial or government projects.

The next steps to be taken to expand the user base for IMPACT and the Rocstar Multiphysics system built
around it are to:

* Continue to look for more applications to build using IMPACT by responding to RFPs, interacting
with technical and business contacts, and beginning a marketing program for Rocstar Multiphysics.

* Attend appropriate conferences and technical meetings. Produce and present papers and presentations
at conferences and begin to exhibit at conferences and trade shows.

* As community size grows, assess point at which holding user group conferences/meetings/webinars
online is viable.

» Continue to make it easier to use IMPACT for code coupling. Currently, “wizards” to query the user
for information about the codes to be coupled, producing the skeleton for the coupling objects based
on input information is envisioned. Ultimately, a graphical programming system to facilitate coupling
is planned.

54

A
AVA |llinois Rocstar LLC Identification Number: DE-SC0009596

» Continue to expand IMPACT service module capabilities, by integrating Illinois Rocstar and other
open-source tools into the package.

* Produce a series of training webinars to augment the online and .pdf documentation.

* Integrate portions of Rocstar Multiphysics into other commercial systems, potentially through CAD
System plugins or other methods provided by broadly accepted modeling and simulation tools.

Broadly, these next steps are designed to get the system into as many hands and use-cases as possible
to expand the applicability and acceptance of the open source system. That is the first step to building
an interested community, at which point discussions of standards and compliance will be useful. Illinois
Rocstar is dedicated to producing the most useful open source multiphysics tools and solutions possible,
and will leverage the results of this SBIR to the maximum extent possible to improve access to multiphysics
modeling and simulation throughout the US industrial and government sectors.

55

A
AVA |llinois Rocstar LLC Identification Number: DE-SC0009596

A IMPACT Core Domain Model

Version 1.0.0

[llinoisRocstar LLC

October 25, 2016

Copyright ©2016 Illinois Rocstar LLC

www.illinoisrocstar.com

56

A
AVA |llinois Rocstar LLC IMPACT Core Domain Model

License

The software package sources and executables referenced within are developed and supported by Illinois
Rocstar LLC, located in Champaign, Illinois. The software and this document are licensed by the University
of Illinois/NCSA Open Source License. (See opensource.org/licenses/NCSA.) The license is included
below.

Copyright (c) 2016 Illinois Rocstar LLC
All rights reserved.

Developed by: I1linois Rocstar LLC

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the ‘‘Software’’),
to deal with the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimers.

* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimers in the documentation
and/or other materials provided with the distribution.

* Neither the names of Illinois Rocstar LLC, nor the names of its contributors
may be used to endorse or promote products derived from this Software without
specific prior written permission.

THE SOFTWARE IS PROVIDED ‘‘AS IS’’, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE CONTRIBUTORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS WITH THE SOFTWARE.

For more information regarding the software, its documentation, or support agreements, please contact
Illinois Rocstar at:

¢ tech@illinoisrocstar.com

¢ sales@illinoisrocstar.com

57

opensource.org/licenses/NCSA

A
AVA |llinois Rocstar LLC IMPACT Core Domain Model

List of Acronyms

Term Description
1-D or 1D one-dimensional
2-D or 2D two-dimensional
3-D or 3D three-dimensional
API application programming interface
CFD computational fluid dynamics
CSC component-side client
CSM computational structural mechanics
CI component interface
FSI fluid—structure interaction
HPC high performance computing
IMPACT Lllinois Rocstar Multiphysics Application Coupling Toolkit
/0 input/output
NCSA National Center for Supercomputing Applications
MI model interface
MPI message passing interface
M&S modeling and simulation
SIM Software Integration Manager
SIT Software Integration Toolkit
V&V verification and validation

A.1 Introduction

This document serves to define the core domain model of the Illinois Rocstar Multiphysics Application
Coupling Toolkit IMPACT) software. It aims to provide users and developers with a high level description
of IMPACTS purpose and functionality. The idea is that as IMPACT is further developed and changed,
this document will serve as a basis and a guide to sustain the original vision of the software. The broad
overarching goal for IMPACT is to be an infrastructure wherein multiphysics technologies can be rapidly
conceived, deployed, studied, and ultimately utilized, all by the domain scientist(s) seeking to accomplish
the simulation. In essence, it is software to assist in simulating multiphysics problems by integrating other
software.

In multiphysics, the system is broken into two (or more) components that interact, such as an air duct
consisting of a fluids domain (air) and a structural domain (sheet metal duct) that interact (or intersect) at
the vent (or flap). When discussing multiphysics it is important to distinguish between the physics of the
actual phenomenon, the mathematical model used to describe the physics, and the software that implements
the algorithm that solves the mathematical model. Figure A.34 illustrates the distinction between these three
aspects of the multiphysics problem. The full definitions used for these pieces are given below in addition
to our definition of multiphysics.

58

A
AVA |llinois Rocstar LLC IMPACT Core Domain Model

Interaction Coupling Integration
relationship models and
between compo- algorithms used to
nents of the real, describe interacting
physical system systems
(physics) (math & numerics)

Figure A.34: As precedented by [Keyes et al. (2013)], the preciseness of language is an important facet of the multiphysics
discussion. Here we present our three core terms and the distinction between them: interaction (physics), coupling
(mathematics and numerics), and integration (software).

Multiphysics
Problem or process that has two or more components that physically interact.

Interaction
Interdependence between components of the real, physical system.

Coupling
Mathematical models and numerical algorithms where the solution of an equation (or set of equations)
is dependent upon the solution of another, different (set of) equation(s).

Integration
Implementation of the mathematical models describing the interaction and/or the joining of separate
software applications to model multiple physical processes.

Software integration is distinct from numerical coupling and refers to the mechanics of interfacing and
operating multiple software components in concert toward a common goal. Software integration is the main
focus of IMPACT. Before presenting the full background and motivation behind IMPACT, it is pertinent to
further emphasize the relevant language and color coding used throughout the discussion. This clarification
will be followed by the background and motivation, a high level explanation of IMPACT, and a description
of an example multiphysics problem.

A.1.1 Language, Terminology, and Color Usage

In their final report, the participants of the Institute for Computing in Science multiphysics workshop stress
the importance of precise language when discussing multiphysics and its challenges [Keyes et al. (2013)].
This notion resonates strongly with the Illinois Rocstar development team and is important for understand-
ing the subject matter of this work. Keyes et al. makes the crucial distinctions between “strong” and “weak”
coupling of multiphysics models. They also distinguish between “loose” and “tight” algorithms used to ac-
tuate the coupling. As mentioned previously, we introduce further distinctions between “interact,” “couple,”
and “integrate.” Below, more key terminology is defined that will be used throughout this document when
discussing different aspects of multiphysics problems, modeling, and simulations.

59

A
AVA |llinois Rocstar LLC IMPACT Core Domain Model

Strong (weak) interaction
The degree of interdependence among physical systems, a measure of how the changes in one physical
system affect another.

Tight (loose) coupling
The degree of interdependence among mathematical models or algorithms, a measure of how much
one model or equation set influences another.

Full (partial) integration
The degree to which two or more software applications work cooperatively, a measure of the extent
to which software applications have been joined together.

Monolithic vs Partitioned multiphysics
In a partitioned approach, each physical domain is simulated by a dedicated solver, where each solver
is independently developed and utilizes its own timestepping (staggered timestepping is used for the
entire system). In a monolithic approach, a single solver is used for the complete set of interacting
domains with timestepping performed synchronously for the entire system.

In addition to specific language, a color scheme is used throughout this document that remains consistent
across the figures depicting the infrastructure. The color coding corresponds to different layers of the IM-
PACT infrastructure or to aspects that could be present in a general multiphysics software infrastructure.
(Note that this color scheme does not apply in figures displaying physical domains.) The color coding is as
follows.

Red — Connectors
Red represents components of the infrastructure that work to connect applications and/or services to
one another. When discussing IMPACT specifically, these pieces comprise the Software Integration
Toolkit (SIT) that helps transfer data and functionality among applications.

Green — Applications
Green is used to represent software applications. These applications usually model some type of
physics but can represent any general user applications.

Blue — Drivers
Blue represents the main driver for software simulating a multiphysics problem. In relation to IM-
PACT , this piece is termed the orchestrator. The main driver orchestrates the flow to solve the prob-
lem.

Purple — Services
Purple is used to represent services, which are essentially applications, but they have been provided
to the user through the IMPACT infrastructure. They can be thought of as applications that provide
some extra functionality, such as data transfer and mapping, beyond solving the main physics of the
problem.

Grey — SystemOS
Grey is used to represent the operating (base compute) system on which the software is running.

Now that the language and color scheme has been made clear, the background and motivation for creating
IMPACT will be discussed.

60

A
MVA |linois Rocstar LLC IMPACT Core Domain Model

A.1.2 Background

Many of today’s important and challenging problems in science and engineering involve multiple, complex,
interacting physical systems, and often involve combustion or other sources of energy release. Examples
of such systems include fluid-structure interaction (FSI), conjugate heat transfer, thermomechanical cou-
pling, and shock-to-detonation of energetic materials. As mentioned, multiphysics modeling and simulation
refers to the advanced, coupled modeling techniques used to simulate these interacting systems. Large-scale
modeling and simulation of such multiphysics problems using high performance computing (HPC) has be-
come a crucial component of research and development in the private sector, academia, and the national
laboratories.

Multiphysics problems can take a variety of forms which affects the methods used to model and simulate
them. In some cases, multiple physical processes can be occurring within the same domain. An example of
such a case is a problem involving needing to solve for fluid flow with heat transfer. In other cases, all phys-
ical processes are not present throughout the entire system. For example, one domain with specific physical
processes could overlap only part of another domain with different physical processes. This overlap would
create a third domain with the same (or different) dimensionality where the physical processes (domains)
interact. This type of general situation is shown in Figure A.35.

Multiphysics System

Figure A.35: In a multiphysics problem the different physical domains can interact in the space of another overlapping
domain of the same (or different) dimensionality.

In a third case, the physical domains (of dimension #) do not necessarily have to overlap at all, but instead
interact at an interface with dimension n — 1. The setup of an example problem with this type of interaction
is illustrated in Figure A.36. Although this figure shows an FSI problem, other multiphysics problems can
have the same setup and problem flow. A partitioned approach is shown in this example, wherein distinct
solvers would be used for each physical domain.

61

A
AVA \llinois Rocstar LLC IMPACT Core Domain Model

(a) The two domains have differing physical
characteristics and interact at the interface.

(b) The interface may have its own physics. (c) Each domain is simulated numerically by methods ob-

serving the respective physics.

Figure A.36: Two or more 3D domains abut at a common interface. The goal of multiphysics computation is to simulate
two or more physical domains that interact. In this problem they interact across a moving, reacting interface. (a) These
domains do not overlap, the geometry of the interface is a 2D surface in space, and the domains may move and/or deform,
but they do not come apart. Mass, momentum, energy, and charge are conserved across the interface; however, some
physical quantities of interest “jump” at the interface (e.g., density). (b) The interface could be reactive with a combustive
or other chemical process, or the interface could propagate or move due to some process.

The interaction between the physical domains in this partitioned FSI case can be as thus: the movement
of the fluid applies pressure loads to the structure and the deformation of the structure causes displacement
velocities to affect the fluid. In simulating this type of interaction, a staggered timestepping scheme can
be used, computing the solution in one physical domain and then the solving for the second domain. This
process is illustrated in Figure A.37.

In a partitioned multiphysics simulation approach, each physical domain has a unique solver with its own
distinct discretization schemes. Data must be mapped correctly from one discretization to another and the
interface discretization moved correctly in the case of a reacting, moving interface. Figure A.38 illustrates
this part of the FSI multiphysics simulation.

A.1.3 Motivation

Several factors conspire to drive the cost of development and ownership of multiphysics computational
capabilities inordinately high. The private sector entity has limited choices when deciding how to address
a multiphysics simulation requirement. One must either invest in expertise for a “build-your-own solution,”
or purchase external expertise and capabilities. There are currently no existing standards or protocols for
tools and interfaces, commercial or otherwise, that support general software and simulation integration
and coupling for multiple parallel simulation applications. As a result, both choices incur costly software
development and refactoring activities that often result in a single, limited-use capability or a project-specific
solution.

62

A
AVA \llinois Rocstar LLC IMPACT Core Domain Model

displacement
velocities |

(a) The fluids domain steps and calculates pressure loads (b) The structures domain steps and calculates the defor-
at the interface, which are then passed to the structures mation and interface velocities, and the interface motion is

domain. sent to the fluids domain.

(c) The process is repeated to step the simulation in time.

Figure A.37: A partitioned approach with staggered time stepping. Computation of the interacting domain is centrally
synchronized.

The difficulty of establishing a viable solution with commercial, off-the-shelf software is compounded by
prohibitively expensive HPC or multiprocessor licensing models. These difficulties are not confined to the
private sector, but are shared by industry, academia, and government entities with large-scale simulation
needs. These technological and economic barriers to the quick production and testing of high fidelity, high-
performance multiphysics simulation software are a significant bottleneck for research efforts in this and
other areas that now, or will soon, rely heavily on multiphysics simulation [Council on Competitiveness
(2011)].

The vision for IMPACT is to be a general, open-source multiphysics infrastructure that would allow the
broader community to develop multiphysics computational capabilities using existing simulation applica-
tions. In addition, it would serve as a reference implementation to help guide the development of a new,
open standard for highly inter-operable multiphysics software design and execution. In essence IMPACT
allows other applications to be integrated and work cooperatively. Figure A.39 illustrates this concept. IM-
PACT is designed for use with multiphysics, however, is not limited to this particular situation and, in reality,
transcends multiphysics altogether.

Standardization and specification for software integration interfaces across application, language, and plat-
form boundaries in the HPC environment are necessary for advancing the state-of-the-art predictive multi-
physics simulation capabilities as the underlying algorithms and HPC platforms evolve. General data-driven
interfaces and their adoption by the community are a key step in establishing these standards and specifica-
tions. Modern designs must seek to provide advanced interfaces to scientists, engineers, and analysts that
hide many of the details of the platforms and software mechanics. Such an infrastructure will also signifi-
cantly reduce the barrier to entry for private sector entities endeavoring to develop multiphysics computation
capabilities that leverage the nation’s HPC resources. To maintain competitiveness in the modern world mar-
ketplace, simulation applications must be designed for deployment in integrated environments and coupled
models, simulating ever more complex interacting systems.

63

A
AVA \llinois Rocstar LLC IMPACT Core Domain Model

CFD CSM

(a) Each domain is decomposed for distribution among
processes.

CFD CsMm CFD

(b) The domains and shared interface are discretized by (€) The interface is reactive. It catches on fire, ejects
each solver application. materials, and propagates (burns).

CsSMm

Figure A.38: A partitioned multiphysics simulation. (a) In general, the domain decomposition is disparate across the
domains. (b) Each solver marches through time according to the domain-specific physics (i.e., timesteps are disparate).
Getting the interface data transfer correct is essential for accuracy and stability of the simulation. (c) Combustion depends
on solution and geometry information from the other domains. Both geometries change drastically as the material burns

ﬂ,lv ?{'ght of the generality presented Figure A.39, Figure A.40 illustrates how a complete integrated system
modeling interacting physics might look to the user wanting to solve the FSI problem discussed in Fig-
ure A.37. In this case, the relevant solvers are loaded to address the physics in the different domains (fluids,
structure, and interface combustion) as well as the necessary services that manipulate and transfer the re-
quired data. These components are coupled though the integration interface, and the entire simulation is
orchestrated by the main driver.

A.2 Overview of IMPACT

Part of our goal for this effort is to spur an inter-organization discussion on standards and protocols for
general parallel software integration. For this we require an abstraction that separates out capabilities and
data constructs that are domain-independent (i.e., independent of multiphysics and M&S).

A significant portion of the effort required in building integrated composite software systems lies in infras-
tructure development. Common architectures include those in which the various constituent components are
centrally orchestrated or end-to-end workflows with no centralized orchestration. The integration of multiple
executables, one of which may have “ownership” of the control flow, is often required. These architectures
sometimes involve physical networks between the various components of the integrated system. This situa-
tion usually calls for physical network-based communication and often involves complicated, event-driven
control flow management.

64

A
AVA \llinois Rocstar LLC IMPACT Core Domain Model

Generic Physics Coupling & General Software Integration

Main System Driver

Standalone Physics Applications

Structural mechanscs,
Huid aynarmics, oplics,
2/ cs, kinetic
quanturm field theory,
statistical mechanics,
magnelic and electric phenomena,
general and special relativity

b,

Figure A.39: Generalized application coupling and integration. From myriad standalone physics applications, scientists
and engineers choose two (or more) applications to couple together to solve the complex interactions of their physical
systems. The main system driver organizes the plug-and-play nature of the integrated applications, and the coupling is
actuated by the infrastructure connectors.

Main System Driver
Physics Applications Services
Fluid Dynamics Surface Propagation
Combustion Integration Mesh Modification
Interface
Solid Mechanics Solution Transfer

Figure A.40: The integration interface provides the mechanisms by which applications can publish and access methods
and data. This interface is the “glue” of the multiphysics simulation.

=
5]
=
5}
@
a
2]
=
T
£
S
°©

Figure A.41: Infrastructure abstraction model. The Applications Layer can use capabilities from the Services Layer,
interface with other Applications Layer components, and participate as part of a composite software system coordinated
by the Orchestrations Layer. Agents reside within the Orchestrations Layer and interface with the Applications Layer. All
intercomponent exchanges are mediated by the Software Im'6e§ration Toolkit.

A
AVA |llinois Rocstar LLC IMPACT Core Domain Model

In IMPACT, we desire a software integration infrastructure that generalizes the common features of these
architectures and encapsulates them into a separate toolkit for use by the development community in soft-
ware integration endeavors. Further, we want to identify a minimal set of domain-independent, multiphysics
simulation capabilities, and factor them onto the infrastructure as “services,” such that the services, together
with the software integration toolkit, form a general infrastructure for multiphysics capability development.
A high level depiction of the IMPACT infrastructure layers is shown in Figure A.41.

The back layer in Figure A.41 represents the Software Integration Toolkit that provides the basic constructs
allowing applications to publish native data structures and functions. In this context, we use “publish” to
mean that the application can describe and provide access to native data structures and functions by outside
software. Modules or user Applications are those that provide the “primary” domain-specific capabilities
that must be integrated into the composite software system. The abstraction model in Figure A.41 shows
the IMPACT infrastructure layers in order of decreasing generality. A brief introduction of each layer is
discussed here and presented in more detail in the following section.

Software Integration Toolkit The software integration toolkit layer provides the basic constructs neces-
sary for the integration of multiple software components and encapsulates the constructs most suitable
for industry-wide standardization.

» Encapsulates applications into component objects called modules

* Provides constructs for publishing methods and associated metadata

* Provides constructs for publishing data and associated metadata

* Provides associated control mechanisms for inter-language access to published methods and data
* Provides intercomponent communication

Orchestrations Layer The orchestration layer encapsulates the driver for the integrated composite soft-

ware system. This layer is the most domain-specific.
* Directs the flow of the problem
* Ensures that the proper functions are called in the proper order
* Organizes the flow of data
* Solves the multiphysics problem at hand utilizing the available tools
Component Agents An agent is responsible for interfacing with an application module’s component in-
terface and presenting the required model interface to the coupling object.
* Makes calls to the application’s functions
* Accesses application data
* Provides data to the application
» Allows application to access and request other data or function calls

Applications Layer The application layer encapsulates those applications that provide the “primary”” domain-
specific capabilities that must be integrated in the composite software system and includes single
physics domain applications.

* Solves a subset of the physics of the entire multiphysics problem at hand

* Integrated through the SIT by shallowly adapting the source code or wrapping the executable

66

A
AVA |llinois Rocstar LLC IMPACT Core Domain Model

* Examples: solvers for CFD, CSM, FSI, CHT, thermodynamics, quantum field theory, and mag-
netic phenomena

Services Layer The service layer provides capabilities through the software integration toolkit that can be
used to implement and perform domain-specific capabilities and tasks. An example of this layer is
services to accomplish data mapping between disparately discretized surfaces.

* Parallel I/O for general data, geometry, mesh, and mesh-bound solution data
* Parallel mesh-to-mesh data transfer (e.g., interpolation)

» Simple vector algebra on mesh-bound solution data

* Parallel volume mesh smoothing

* Parallel discrete surface operations (e.g., calculate face normals)

* Parallel surface propagation

* Collective operations for decomposed domains (e.g., reduce on shared nodes)

A.3 In-Depth Look at IMPACT

The overarching technical objective of the IMPACT project is to design and implement a general infras-
tructure for software integration in support of the development of multiphysics modeling capabilities. Our
approach was to form an abstract model wherein all multiphysics-specific capabilities were factored out into
layers with increasing domain specificity. The abstraction is shown in Figure A.41. This model forms a
framework around which industry-wide standards may be discussed and developed.

A.3.1 Software Integration Toolkit

At the core of IMPACT lies an abstraction layer for general software integration in the HPC environment.
The layer that we call the Software Integration Toolkit (SIT) defines these primitive software integra-
tion constructs which facilitate the sharing of application-native data and methods across the component—
component boundary. The SIT and its relationship to the other layers of the abstract model was depicted
in the previous section in Figure A.41. All component—component interactions are mediated through the
SIT. It is designed to support several different composite software system architectures and a variety of user
applications. We identify the following constructs and capabilities as those under the purview of the SIT.

Application encapsulation

The SIT must provide an abstraction that encapsulates or represents an application and its interface
to the composite system. All of the applications’ interactions with the composite software system
are conducted through this abstraction. This abstraction must support serial and parallel applications
which may use a variety of parallelization strategies (e.g., OpenMP, MPI, or proprietary). Support
should be provided for integrating both library applications as well as applications that must run
as stand-alone executables (i.e., users should be able to integrate both stand-alone applications and
libraries).

Native method publication
The SIT must provide abstractions and constructs for publishing application-native methods (i.e.,
functions) and associated metadata. Since applications integrated into the composite system will

67

A
AVA |llinois Rocstar LLC IMPACT Core Domain Model

typically be coded in a variety of programming languages, allowing for coexistence of multiple pro-
gramming languages is necessary. This piece of the SIT must also include the mechanisms required
to invoke application-native methods across the programming language and component boundaries.

Native data publication
To support the vast disparity in programming languages and data structures among composite system
components, a unified, language-independent, abstract view of application-native data is necessary to
standardize intermodule exchanges. This abstraction must be flexible and self-describing. General
abstractions, constructs, and mechanisms for publishing application-native data and associated meta-
data must be provided by the SIT, which includes mechanisms for specifying access policies on data
(e.g., read-only, read/write, etc.) and layout of the data in memory.

Intercomponent and interprocess communication
An interface must be provided to hide the mechanics and complexity of the communication between
components of the integrated software system. This intercomponent communication interface allows
for the greatest variety in the architecture for the applications and the composite software system. For
example, to support architectures in which some component must run as a stand-alone executable,
some form of interprocess communication must be used to actuate communication between the stand-
alone component and the rest of the system.

A.3.2 Orchestration

orchestrator

Application Module _ _ Application Module

physics

physics Y2
application

application

CsC SIT Layer

Orchestration Layer

Applications Layer

Service Module

service
application

Services Layer

|

Figure A.42: Orchestration and orchestrator constructs that drive the system. The Orchestrator is the driver of the system.
It drives the coupling object, which in turn uses actions (shown here as dark blue arrows) to invoke functions and exchange
data between components. The coupling interface defines the model interfaces (MI) that it needs to implement the coupling
algorithm. These MI are presented by the application-specific Agents that directly interface with the Applications through
their defined component interfaces (Cl). The component-side client (CSC) provides access to the Application-native data
and functions to the outside world. As before all intercomponent exchanges are mediated by the Software Integration
Toolkit.

68

A
AVA |llinois Rocstar LLC IMPACT Core Domain Model

The Orchestrations Layer of the model integration infrastructure is the piece that implements the integrated
composite software system. The Orchestrations Layer as shown in Figure A.41 and expanded upon in
Figure A.42, is the most domain-specific piece of the integrated capability. Often, but not always, this
piece is implemented as an orchestrating driver, or Orchestrator. Other possibilities for Orchestrations
Layer constructs include “passive” or event-driven middleware components. Regardless of implementation,
Orchestrations Layer constructs have access to one or more applications through the SIT and use intrinsic
functionalities, or those provided by services, to actuate the interactions between system components.

As shown in Figure A.42, once multiple Application modules have been created, an Orchestrator is cre-
ated to implement the coupling scheme and drive the simulation by managing the control flow and the
intermodule interactions. The IMPACT infrastructure provides an orchestration toolkit called the Software
Integration Manager (SIM). SIM provides constructs designed to be used in the implementation of Orches-
trators. It is instructive to think of the Orchestrator as having three main functionalities: driver and driver
logistics, coupling algorithm, and component agents.

Driver and driver logistics
The Orchestrator is responsible for loading the Application modules, managing their MPI communi-
cators (if necessary), and handling the control flow among the components of the integrated simula-
tion. SIM offers basic constructs for handling these functions for synchronized operation of serial and
MPI parallel components.

Coupling algorithm

SIM offers three constructs for building coupling algorithms. The coupling objects encapsulate a
scheduler that executes actions in a particular order and/or progression to actuate the coupling al-
gorithm. The actions are a general abstraction and encapsulation for almost any procedural set of
instructions. Typical actions include invoking modules and interpolating between meshes. The key
consideration in the implementation of this part of the system is that the interface to each domain-
specific model (i.e., the so-called model interface (MI)) is defined by what the coupling algorithm
requires. This consideration puts some restrictions on the possible choices for the domain-specific
simulation applications that this coupling algorithm may utilize in the integrated simulation.

Component agents
Once the driver and coupling algorithm are in place, and model interface defined, the domain-specific
Application modules are plugged into the simulation by using SIM’s Agent construct. An Agent is
responsible for interfacing with an application module’s component interface (CI) and presenting the
required model interface to the coupling object.

In multiphysics systems, Orchestrators typically manage the control flow and implement the coupled timestep-
ping schemes. For example, Rocstar’s orchestrator managres control flow, implements the coupled timestep-
ping, and actuates the data transfers between physical domain-specific components, including implementa-
tion of the jump conditions.

A.3.3 Applications and Services

User Applications, shown in green in Figures A.41 and A.42, are those that provide the “primary” domain-
specific capabilities that must be integrated into the composite software system. In the multiphysics case,
two example user applications could be an application implementing a computational fluid dynamics (CFD)
model and another one implementing a computational structural mechanics (CSM) or transient thermal

69

A
AVA |llinois Rocstar LLC IMPACT Core Domain Model

model, as illustrated in Figure A.36. In this case the target simulation for the integrated software system
could include fluid—structure interaction (FSI) or conjugate heat transfer.

User Applications are integrated through the SIT by adapting the application source code or wrapping the
application executable or interface using an API provided by the SIT implementation. This API provides the
constructs and mechanisms necessary for the application to share its data and functions with the integrated
software system. Applications that interact with the coupled system only through the infrastructure are
considered fully integrated. All others are considered as only partial integrations. Once integrated, whether
fully or partially, the user application becomes a component of the integrated system.

Application adaptations for integration should be shallow. The SIT should provide an application pro-
gramming interface (API) that can understand (perhaps after light massaging) the application-native data
structures and interface with application-native methods. The integration adaptations are typically in the
application’s native programming language and live outside the main source code for the application, which
avoids the exposure of any potentially proprietary information to other components of the integrated soft-
ware system.

In our software integration architecture, shown in Figures A.41 and A.42, Services are specific capabilities
that are provided through the constructs of the SIT that support domain-specific integrated software systems.
Examples include computational and numerical services, such as parallel I/O, mesh smoothing, and surface
propagation.

A.4 Modules, Coupling, and Infrastructures

IMPACT facilitates the integration of in-house, commercial, and open software components for rapid multi-
physics application development. Our IMPACT project objectives require assembly of working examples of
integrated simulation applications using the multiphysics infrastructure. Each developed application should
successfully run a subset of the example V&V test cases and be built from freely available, open compo-
nents. These simulation applications will serve as both an examples of how to use the infrastructure and as
demonstrations of feasibility. Development of an integrated multiphysics application using the infrastructure
requires two major activities: application integration and and simulation orchestration.

orchestrator

Application Module v ! Application Module

physics

physics - ysic:
application

application (8] @

Figure A.43: Application modules. The coupling interface defines the model interfaces (MI) that orchestrator needs to
implement the coupling algorithm. These MI are presented by the application-specific Agents that directly interface with
the Applications through their defined component interfaces (Cl). The component-side client (CSC) provides access to
the Application-native data and functions to the outside world. This figures is a subset of Figure A.42 that focuses on
Application Modules.

70

A
AVA |llinois Rocstar LLC IMPACT Core Domain Model

A.4.1 Integrating Applications as Modules

Figure A.41 covers most of the main high level components of the infrastructure design. Infrastructure
constructs are used to shallowly modify the user’s application, producing an application module. A module
is an application-native software construct with an embedded component-side client, as show in Figure A.43.

The component-side client (CSC) is an Application-native software construct that uses an infrastructure
application programming interface (API) to provide read/write/execute access to the original user Applica-
tion’s native data structures and computational methods. This access is communicated over an intercompo-
nent communication method to one or more component interfaces (Cls) in the integrated system. Integrated
systems are accomplished by the production of the Software Integration Manager (SIM). The SIM manages
all of the component interfaces for all of the applications and mediates their interactions.

Application
The Application, or user application, is the software construct that encapsulates the capability that
the user wishes to use in an integrated system of multiple components. The Application can be open
source, a closed/proprietary library, or a standalone executable.

Component-side client
The component-side client (CSC) is the software construct embedded in the Application that allows
the Application to publish its data and computational methods for use in the integrated system. The
CSC is written in the Application’s native programming language, with access to both the Applica-
tion’s native data structures and the native programming language bindings for the infrastructure APL

Application module
An Application Module is an Application with its associated component-side client. Itis an integration-
ready software component that encapsulates the Application.

Intercomponent communication
Communication of data, metadata, and commands between system components and the integrated
system is provided by intercomponent communication. Specifically, it provides the communication
method between the component-side client and component interfaces. Note that the options for the
communication substrate of the intercomponent communication (i.e., the low level communication
method, e.g., Posix IPC or MPI) are limited by the type of application (e.g., open-source, closed,
executable only, etc.).

Component interface
Each Application Module interacts with the integrated system through one or more component inter-
faces. From the integrated system’s perspective, each Application Module and the integrated system’s
interactions with the module are encapsulated by and done through the component interface.

Software Integration Manager
The Software Integration Manager (SIM) is the software construct that manages all of the component
interfaces and their interactions. The SIM typically manages the control flow of the integrated system,
but not always. Depending on implementation, the SIM can be driven by other integrated components.
A SIM can be written in any language for which the infrastructure implementation offers an API or
bindings.

How the Application Module and Software Integration Manager (SIM) map to processes is application
and system specific and has implications on the allowed communication substrate for the intercomponent

71

A
AVA |llinois Rocstar LLC IMPACT Core Domain Model

communication. If the SIM and the Application Module are implemented in a single process, then inter-
component communication would be most efficiently implemented as a direct memory access. On the other
hand, if the SIM and the Application Module are in separate processes, then the intercomponent communica-
tion has to use a particular communication method. Possible choices for this communication method include
MPI, MPI2, shared memory, TCP/IP, some other Unix IPC, or even files. The available communication sub-
strates for the intercomponent communication are implementation-specific, but clearly have implications for
the types of integrated systems that can be constructed.

A.4.2 Serial vs Parallel Applications

The modern HPC environment typically consists of many multicore nodes together with high speed inter-
connects, usually with some number of GPU nodes. The current design does not include consideration of
GPU parallel applications. Instead, we focus on the need to support MPI, OpenMP, shared memory, and
hybrid applications. Since the infrastructure itself is not GPU parallel, there are some resulting design con-
straints for the integrated system involving GPU parallel user applications, but this design does not preclude
use of the infrastructure by GPU parallel applications.

In general, each integrated component will have its own native communication method and parallelization
strategy, and the infrastructure constructs need to support the integration of these disparately developed and
parallelized application components. The following is meant to be a general description of an integrated sys-
tem architecture. Several existing multiphysics simulation integration packages, such as Rocstar, PreCICE,
MCT, and LIME, implement systems very similar to those described here.

The general system architecture with two integrated serial applications is shown in Figure A.43. In general,
each Application Module can use any of the implemented intercomponent communication methods. The
Software Integration Manager (SIM) manages all of the component interfaces (Cls) for all of the Applica-
tion Modules, mediates their interactions, and usually (but not always) manages the control flow between
the integrated components. Depending on implementation, integrated components can be serial or parallel
standalone applications or libraries, spawned separately or as children of the SIM process.

The parallel application typically, but not always, uses MPI for the communication substrate. The Applica-
tion’s native communication method is used to provide interprocess communication between the component-
side clients (CSCs) for each processor. Each CSC can communicate with the SIM process via the intercom-
ponent communication, or the SIM—CSC communication can be done by only one CSC. Parallel components
with a single communicating CSC are usually OpenMP, or otherwise threaded applications, but this situation
can also arise with a master—slave type of parallelization model using MPI or another interprocess commu-
nication method. In parallel integrated systems, the SIM can, itself, be a parallel construct. Parallelization
of the SIM requires a communication method for SIM interprocess communication, which is usually done
by MPI, but is implementation-specific in general.

A.4.3 Relationship to Other Infrastructures

There have been a number of interfaces developed relatively recently that target large scale, scientific soft-
ware development. While these interfaces do address some of the varied requirements of multiphysics
infrastructure for HPC applications, there remains a need for a standardization and interface specification
for parallel software coupling. It is also important that new infrastructure efforts allow for relatively easy
integration of existing scientific applications to lower the development costs and encourage a high level
of software reuse, thereby lowering the entry barriers to HPC multiphysics simulation to industry and the

72

A
AVA |llinois Rocstar LLC IMPACT Core Domain Model

research community at large. Some of the interfaces that we considered were POOMA [Reynders et al.
(1996)], ALEGRA [Budge and Peery (1998)], Overture [Bassetti et al. (1998)], LIME [Stewart and Edwards
(2004)], Cactus [Allen et al. (2001)], CCA [Allan et al. (2002)], and OpenF'SI. Additional discussion of the
interfaces most relevant to the current endeavor is given below.

OpenFSI

OpenFSI is an open-source, fluid—structure interaction (FSI) infrastructure that is currently under
development. OpenFSI is built over the Service Component Architecture, which is a relatively new
specification for constructing applications using a Service-Oriented Architecture. While OpenFSI is a
step in the right direction, in that it attempts to provide a standard specification for FSI, it does not ad-
dress the general multiphysics simulation development problems, nor does it stand ready to make use
of HPC, as it provides no inherent parallelism or support for external parallelism. The infrastructure
we are discuss here would complement OpenFSI by providing mechanisms by which the OpenFSI
client could communicate across the application-application boundary and perform conservative and
accurate data mapping across the “wetted” surface.

LIME
LIME is an infrastructure developed at Sandia National Laboratories and is one of the most advanced
parallel interfaces for integrated multiphysics simulation. Unfortunately for application software au-
thors, LIME is a development infrastructure that must be adopted throughout the application develop-
ment effort. While it offers a very powerful environment for development and multiphysics simula-
tion, it is not well suited to integrating existing applications without significant code overhaul.

Cactus
Another powerful parallel simulation infrastructure is found in Cactus, originally developed at the
National Center for Supercomputing Applications. In this framework, all parallelism is provided by
the infrastructure itself, again requiring infrastructure adoption in the development effort.

Common Component Architecture
The multiphysics infrastructure that we discuss here shares several features with this framework. The
Common Component Architecture (CCA) allows one to wrap existing software constructs to create
software components that present a standard interface to the underlying infrastructure and other com-
ponents. The level of integration offered by the CCA is fine-grained, and places emphasis on runtime
discovery of available services, similar to the Service-Oriented Architecture approach.

Trilinos

Trilinos is a comprehensive framework dedicated to facilitating large-scale multiphysics applications
and simulations [Heroux et al. (2005); M. A. Heroux et al. (2012)]. Developed by Sandia National
Laboratories, a leader in multiphysics software, Trilinos is the current state-of-the-art in advanced
multiphysics coupling, offering many constructs designed to allow components to interoperate and
cooperate in the HPC environment. The infrastructure we discuss here is complementary to 7rilinos,
providing the constructs needed to take advantage of the capabilities Trilinos offers, while offering
additional services for the applications that must stand alone (e.g., commercial/closed packages from
independent software vendors).

73

A
AVA \llinois Rocstar LLC IMPACT Core Domain Model

Rocstar process

e I []iii

CFD

e /
P p
A1 -
11
e pd
e Ve v
1 -
L~ -

Figure A.44: Rocstar process — Domain decomposition. Each Rocstar process has one or more sections of one or more
of the solvers’ domains.

A.5 Rocstar Multiphysics Example

In this section, we present a higher level, pictorial explanation of multiphysics coupling and integration,
with a focus on the Rocstar package. Rocstar is an open-source, multiphysics simulation suite distributed
by Illinois Rocstar and its core constructs form the basis for IMPACT. We use Rocstar to illustrate the
components IMPACT and their relationship to partitioned multiphysics through use of a generalized, coupled
computational fluid dynamics (CFD), computational structural mechanics (CSM) problem, similar to that
first introduced in Figures A.36 — A.38. The simulation is done in parallel, so the CFD and CSM domains are
decomposed and distributed among processors. The problem setup and domain decomposition is illustrated
in Figure A.44. Note that the domains are not decomposed in the same manner.

Rocstar process
[_CFD solver | [CsMsolver |
=~ [j
CFD CSM

AN

NN\ N\

AANANAN

Figure A.45: Rocstar process — Solver Applications. Each domain is simulated numerically by methods observing the
respective physics. The domain-specific (CFD and CSM) solvers are physics Applications and are therefore outlined in
green.

74

A
AVA \llinois Rocstar LLC IMPACT Core Domain Model

Figure A.45 illustrates that this problem is solved using a partitioned approach. Therefore, distinct solvers
are used for the CFD domain and the CSM domain. These solvers are the physics applications discussed in
the previous sections, which are integrated using IMPACT.

Rocstar process | data transfer & mapping ﬂ
[CoMsaiver |
7 g

CFD CSM

A\
N ANAN

Figure A.46: Rocstar process — Data Mapping. Accurate, conservative data mapping across the interface and processor-
geometry mapping is required. Data mapping is provided by the Services Layer and is therefore shown in purple.

Data mapping between the solvers is a critical issue that is handle by the IMPACT services. This mapping
is shown in Figure A.46. Data must be mapped across the different domain decompositions, and perhaps
adjustments made for different meshing techniques between the solvers.

Rocstar process | orchestrator ﬂ | data transfer & mapping g
[CoMsaver |

A

—— ¢

§ @

Figure A.47: Rocstar process — Orchestrator. There must be a control flow manager for timestepping, handling some
jump conditions, and converting units. The Orchestrator is the main system driver.

Figure A.47 illustrates the job of the orchestrator in this context. It would control the entire problem flow

75

A
AVA \llinois Rocstar LLC IMPACT Core Domain Model

including passing of data from one solver to another, ensuring that timesteps are synchronized or properly
adjusted if staggered, and that proper function calls are made in order.

Rocstar process | orchestrator ﬂ | data transfer & mapping ﬂ
[CFD solver J (Cswsoiver |
- ‘ combustion U Q

CsSM

AN

ANANAN

Figure A.48: Rocstar process — Combustion. To handle burning, we need a combustion solver capable of operating on
geometry and data from other solvers and their domains. Combustion is a physical process addressed by an Application
and is therefore shown in green.

There may be unique physics occurring at the interface of the two domains. In this case, combustion occurs
at the CFD-CSM interface. This physical process could be handled by another separate physics application
or by one of the existing applications. Figure A.48 illustrates this concept.

Rocstar process I orchestrator g | data transfer & mapping ﬂ
/ 7
| CFD solver a | surface propagation g ‘
- ’ I combustion ﬂ Q

CFD CSM

SO

Figure A.49: Rocstar process — Surface Propagation. We need sophisticated surface propagation capabilities to handle the
interface motion due to burning. Surface propagation is provided by the Services Layer and is therefore shown in purple.

Surface propagation is required to model the regressing, burning interface. IMPACT has a service module

76

A
AVA \llinois Rocstar LLC IMPACT Core Domain Model

for surface propagation as illustrated in Figure A.49.

Figure A.50 shows that mesh modification may be needed after altering the problem geometry due to surface
propagation. IMPACT has a service module for mesh modification as well. In this case, both meshes will
have to be altered, and it is critical that the correct mapping between the domains is ensured.

Rocstar process | orchestrator ﬂ | data transfer & mapping ﬂ

| CFD solver ﬂ | surface propagation g | mesh modification ﬂ | CSM solverﬂ

9" | combustion f Q ﬁ

CFD CSM

NNANY
= A\

NN

AN

ARRRNNNANY

Figure A.50: Rocstar process — Mesh Modification. Mesh modifications will be required for handling the extreme changes
in geometry due to burning and deformations. Mesh modification is provided by the Services Layer and is therefore shown
in purple.

Rocstar process —rTTPe— e ——

IICFDsoIver ﬂ I surface propagation ﬂ | mesh modification u |ICSM solverﬂ

- ’ | combustion U Q ﬁ

CFD CSM

AR
= N\

AN

AN

ARRRNRRANY

Figure A.51: Complete Rocstar process. All of the pieces have to interact in an efficient manner, sharing data and
methods and working together, to simulate the complete system. The color coding of the different pieces represents to
which IMPACT abstraction layer they belong.

Finally, Figure A.51 shows all the pieces of the Rocstar simulation discussed above, each with the appropri-
ate color coding used throughout the document.

77

A
AVA |llinois Rocstar LLC IMPACT User's Guide

B IMPACT User’'s Guide

IMPACT User’'s Guide
Version 0.1.0 lllinoisRocstar LLC October 25, 2016

License

The software package sources and executables referenced within are developed and supported by Illinois
Rocstar LLC, located in Champaign, Illinois.The software and this document are licensed by the University
of Illinois/NCSA Open Source License (see opensource.org/licenses/NCSA). The license is included
below.

Copyright (c) 2016 Illinois Rocstar LLC
All rights reserved.

Developed by: Illinois Rocstar LLC

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the ‘‘Software’’),
to deal with the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimers.

* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimers in the documentation
and/or other materials provided with the distribution.

* Neither the names of Illinois Rocstar LLC, nor the names of its contributors
may be used to endorse or promote products derived from this Software without
specific prior written permission.

THE SOFTWARE IS PROVIDED ‘‘AS IS’’, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE CONTRIBUTORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS WITH THE SOFTWARE.

For more information regarding the software, its documentation, or support agreements, please contact
Ilinois Rocstar at:

¢ tech@illinoisrocstar.com

» sales@illinoisrocstar.com

78

opensource.org/licenses/NCSA

A
AVA |llinois Rocstar LLC IMPACT User's Guide

B.1 Overview

IMPACT is a developing suite of software packages with an integrated build system. It is designed to be
used as an infrastructure for composing multiphysics simulation capabilities from multiple, disparately de-
veloped simulation applications. The software is now fully functional and can be used to build multiphysics
capabilities in its current state. The following quick start guide will help the user get started with obtaining,
building, and using IMPACT.

B.2 How to Get IMPACT

IMPACT is distributed from its online repository, https://github.com/I1linoisRocstar/IMPACT.
This distribution package includes the source and all available documentation. There are other files available
for download which are not part of this integrated package.

This distribution directory structure for IMPACT contains:
IMPACT/

AUTHORS

LICENSE

README

CMakeLists.txt

Documentation/
IMPACT_User.pdf
COM_User.pdf
SurfX_User.pdf
SurfMap_User.pdf
SIM_User.pdf
SimI0_User.pdf
Simpal_User.pdf

com/

SIM/

SimI0/

Simpal/

SurfMap/

SurfUtil/

SurfX/

This directory is the source directory of the distribution. It is highly recommended, and this document will
assume, that the user will set an environment variable to indicate the IMPACTsource directory:

MPACT_SOURCE=/the/full/path/to/IMPACT

The software packages and their documentation are included in the IMPACT distribution. In addition, the
user will find the AUTHORS file which indicates the primary architects and developers for the suite of
tools included in IMPACT. The LICENSE file contains the license text, which can also be found at http:
//opensource.org/licenses/NCSA. The README file is a very quick-and-dirty instruction on building
IMPACT.

79

https://github.com/IllinoisRocstar/IMPACT
http://opensource.org/licenses/NCSA
http://opensource.org/licenses/NCSA

A
AVA |llinois Rocstar LLC IMPACT User's Guide

B.3 Build IMPACT

IMPACT uses Kitware’s CMake build system, and should build on just about any Unix or Unix-clone system.
We’ve tested it under the GCC, and Intel compilers on several flavors of Linux and MAC OS X. IMPACT
requires CMake-2.8+.

B.4 Prerequisites and TPLs

IMPACT and its various packages have very few dependencies on outside packages. IMPACT requires the
following support software and third-party libraries:

e C, C++, and Fortran 90 compilers. GCC and Intel are tested.

* MPICH-derived MPI can be obtained from http://www.mpich.org or http://mvapich.cse.
ohio-state.edu/ for MPI over InfiniBand. As a side note, the system should work with OpenMPI
but is not well tested. MPI can also be installed by using a Linux system’s software package manager.

* HDF4 can be obtained from http://www.hdfgroup.org/products/hdf4/ or installed by using
Linux distribution package managers.

* CGNS (optional) can be obtained from http://cgns.sourceforge.net/ or installed by using
Linux distribution package managers.

These packages will need to be installed before building IMPACT.

B.5 Run CMake

With the MPACT_SOURCE directory all set up and prerequisites installed, the IMPACT software is ready to
be configured and built. Out-of-source builds are highly recommended for IMPACT. To accomplish this,
create a build directory that is not a subdirectory of IMPACT_SOURCE. It is assumed the user will create an
environment variable to store the build directory:

IMPACT _BUILD=/full/path/to/mpact_build_directory
The user should set the following variables for specification of the compilers:

CC=mpicc (or equivalent)
CXX=mpicxx (or equivalent)
FC=mpif90 (or equivalent)

If HDF4 is installed somewhere other than a system location (e.g., /usr, or /usr/local), then an additional
variable should be set:

CMAKE_PREFIX_PATH=/path/to/hdf4/install

Where HDF4 libraries should be found in /path/to/hdf4/install/lib. Once these are set up, the user can go
into the build directory and run CMake:

80

http://www.mpich.org
http://mvapich.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/
http://www.hdfgroup.org/products/hdf4/
http://cgns.sourceforge.net/

A
AVA |llinois Rocstar LLC IMPACT User's Guide

> cd ${IMPACT_BUILD}
> cmake ${IMPACT_ SOURCE}

If all of the necessary prerequisites are satisfied, the stated commands should complete without error, result-
ing in Makefiles customized for the host environment. To build IMPACT, just issue “make’:

> make

This command should complete the build without errors. Presuming this happened, the user will find the
following libraries in the build tree:
1lib/

1ibSITCOM. so
1ibSITCOMF.a
1ibRHDF4.so
1ibSimIN.so
1ibSim0UT.so
1libSimpal.so
1ibSIM.so
libSurfMap.so
1ibSurfUtil.so
1ibSurfX.so

B.6 Use IMPACT

IMPACT is not an application, but a software development infrastructure. It is designed to be used from the
build directory, and provides its capabilities in libraries that are linked by the user’s applications. Assuming
the user’s software package is named UserFoo, the following general steps are taken to integrate UserFoo:

1. Prepare the application for integration.
(a) Massage UserFoo architecture so that it consists of a library and a driver which links and drives
the library.

(b) Major part: Make necessary changes to represent interacting interface surfaces as stand-alone,
self-descriptive surface mesh.

(c) Major part: Make necessary changes to support externally supplied boundary solution on inter-
face meshes. The source of the solution and any transformations may be neglected.

2. Implement the Component-side Client in UserFoo’s library.

(a) Implement UserFoo_load_module and UserFoo_unload_module (see COM User’s Guide).

(b) Using COM API, create UserFoo’s Componentlnterface and register UserFoo-native data and
functions as needed.

3. Implement a driver making sure it does the following:

(a) Initializes MPI, if necessary
(b) Initializes COM
(¢) Loads UserFoo with COM_LOAD_STATIC_DYNAMIC(UserFoo, "userfoowindow_name")

81

A
AVA |llinois Rocstar LLC IMPACT User's Guide

(d) Can access registered Dataltems through the CI
(e) Can call UserFoo functions through the CI

The COM API is the most used part of IMPACT for preparing and integrating an existing application. This
API is documented in the COM User Guide. Once ready to develop a driver, SIM may be optionally used to
create multiphysics drivers, or the driver can be entirely designed by the user. Again, the COM API is used to
access integrated applications’ data and methods through the COM CI. A user’s driver may load and use any
of the service modules included in IMPACT in creating a multiphysics capability. Each package is described
in its own documentation included in the IMPACT distribution in IMPACT_SOURCE/Documentation.

82

A
AVA |llinois Rocstar LLC COM User's Guide

C COM User’s Guide

Component Object Manager Users Guide
Version 0.1.0 lllinoisRocstar LLC October 25, 2016

License

The software package sources and executables referenced within are developed and supported by Illinois
Rocstar LLC, located in Champaign, Illinois.The software and this document are licensed by the University
of Illinois/NCSA Open Source License (see opensource.org/licenses/NCSA). The license is included
below.

Copyright (c) 2016 Illinois Rocstar LLC
All rights reserved.

Developed by: Illinois Rocstar LLC

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the ‘‘Software’’),
to deal with the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimers.

* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimers in the documentation
and/or other materials provided with the distribution.

* Neither the names of Illinois Rocstar LLC, nor the names of its contributors
may be used to endorse or promote products derived from this Software without
specific prior written permission.

THE SOFTWARE IS PROVIDED ‘‘AS IS’’, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE CONTRIBUTORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS WITH THE SOFTWARE.

For more information regarding the software, its documentation, or support agreements, please contact
Ilinois Rocstar at:

¢ tech@illinoisrocstar.com

» sales@illinoisrocstar.com

83

opensource.org/licenses/NCSA

A
AVA |llinois Rocstar LLC COM User's Guide

C.1 Introduction

Large-scale numerical simulation of a complex system, such as a solid rocket motor (SRM), requires con-
sideration of multiple, interacting physical components, such as fluid dynamics, solid mechanics, and com-
bustion. Numerical simulations of such systems are commonly called multiphysics simulations. Because of
their multidisciplinary nature, development of such a multiphysics simulation capability typically involves
a broad range of expertise and collaboration among many groups or institutions. It is common to take a
partitioned approach, in which the individual physics codes are developed more or less independently of
one another, and the software integration effort required to orchestrate them into a coherent system.

The objective of the Component Object Manager (COM) is to ease the integration of such independently
developed applications into a coherent, integrated software system, particularly in a distributed parallel
setting. It is designed to maximize concurrency in development of different applications and components,
minimize user effort in software integration, and provide interoperability between different programming
languages (in particular, C, C++, and Fortran 90).

The motivating application for the this integration infrastructure is Illinois Rocstar’s flagship multiphysics
simulation application, Rocstar. Originally developed by the Center for Simulation of Advanced Rockets
(CSAR) at the University of Illinois DOE ASCI Center (http://www.csar.uiuc.edu), for simulating
SRM, Rocstar is now a general multiphysics application and is applicable to fluid-structure interaction
(FSI) across a moving, reacting interface.

Mesh Preparation Integration Framework

‘Commercial packages ‘CAD Modeling Rocman Surface propagation Rocprop (Surface
igs Orch . and data transfer Prspagation)
rchestration Racmop (Mesh smocthing)

Gridgen « Patran » Truegrid Mesh Generation Rocrem (Remeshing)

Rocface (Interface data
Rocprep (Mesh and Preprocessing quantity transfer)

data preparation) Roccom

MPI
independent parallel AMPI/Charm++ (Adaptive
implementation MPI, load balancing)
Global Open MP
profiling Racprof (Parallel profiling)

Int:ﬁace

Physical Modules

Rocfiu (Unstructured CFD) Fluid Dynamics
Rocfiu-ND (Non-dissipative)
EGC:G m:‘fé’:Ck S"‘:‘“':‘: CED) Utilities Rocbuild (Automated build)

ocfio-CM (Chimera-bases Roctest (Automated module testing)
Rocpart (Lagrangian super-particle tracking) Integration templates

Rocturb (LES, DES, RANS) ¥
Post-processing
Visualization Rocketeer / Voyager
Tecplot

Rocsmoke (Eulerian smoke tracking)
Rocrad (Particle-to-surface heat transfer)

{
Rocsolid (Implicit, multigrid) Solid Mechanics
Rocsolid-MS (Multiscale)

Rocfrac (Explicit, cracks)

Rociire (3-D subgrid heat flux) Thermal/
Rocburn (Ignition, regression rate) Combustion/
Roctherm (3-D heat transfer) Chemistry

Rocpack (Morphology) Material
Tomography & reconstruction Characterization

Figure C.52: Rocstar architecture. Many software components (i.e. modules) interact through the integration infrastruc-
ture.

Figure C.52 shows the overall structure of the current generation of Rocstar. In the Rocstar architecture,
user applications are built as modules which are integrated into the composite software system through the
Rocstar integration interface, Roccom. COM is the integration interface of Rocstar extracted and generalized
for use in arbitrary parallel software integration efforts.

COM categorizes modules into two types: application modules (including computation (physics) modules
and orchestration modules) and service modules In Figure C.52, the boxes on the left show the physics
modules. On the top is the orchestration module, Rocman, which manages the coupling algorithms. On
the right are the computer science modules that provide services to the physics and orchestration modules
through COM. Typically, the physics modules are written in Fortran 90 and the service modules are written
in C++. The parallel implementation uses the standard Message Passing Interface (MPI) for all modules.

84

http://www.csar.uiuc.edu

A
AVA |llinois Rocstar LLC COM User's Guide

Although it was motivated specifically by the needs of the rocket simulation application described above,
the integration infrastructure we have developed is quite general, and should be equally applicable to many
other multiphysics simulations involving multiple, interacting software modules representing various phys-
ical components, especially those based on spatial decomposition into geometric domains with associated
meshes. COM provides systematic methods for modules in a complex simulation to keep track of their
data and to access data defined by other modules. Besides declaring variables and allocating buffers, each
computation module registers its datasets with COM. These datasets can later be retrieved from COM by the
same module or other modules, using parameters such as data block number, attribute name, etc. Functions
can be registered and invoked in a similar way through COM. This scheme allows great independence in de-
sign and development of individual modules, hides the coding details and potential IP of different modules,
and can enable plug-and-play of different modules.

COM is composed of three parts: a simple API (Application Programming Interface) for application mod-
ules, a C++ interface for developing service modules, and a runtime system. The API provides subroutines
for registering the public data and functions of a module, querying a publicized data of a module, and invok-
ing registered functions. In general, the API is the only part that application code developers need to learn
in order to use COM. After an application code registers its data with COM, it can easily take advantage
of the service utilities built on top of COM’s developers interface (such as parallel I/0). COM also pro-
vides support for eliminating global variables from application codes, which is highly desirable in threaded
environments. In this documentation, we address only the general concepts of COM and its API. For a
more in-depth discussion on the developers interface or runtime system, please see the (upcoming) COM
Developers Guide.

C.2 Overview

COM (standing for Component Object Manager) is a component-based, object-oriented, data-centric soft-
ware integration infrastructure, which provides a systematic, object-oriented, data-centric approach for inter-
module interaction. Using infrastructure constructs, a computation module implements a Component-side
Client (CSC) which creates distributed objects called Componentinterfaces (CI) and registers its datasets
into ComponentInterface instances called Windows. With the authorization of their owner modules or the
orchestration module, these datasets can later be retrieved from COM by other modules using handles pro-
vided by COM. Functions can be registered and invoked similarly through COM. This scheme allows great
independence in design and development of individual modules, hides the coding details of different re-
search subgroups, and provides additional features such as automatic tracing and profiling.

C.2.1 Object-Oriented Interfaces

to simplify inter-module interfaces, COM utilizes an object-oriented methodology for abstracting and man-
aging the data and functions of a module. This abstraction is mesh- and physics-aware and supports encap-
sulation, polymorphism, and inheritance.

Componentinterface Windows and Panes COM organizes data and functions into distributed ob-
jects called Componentinterface Windows. A CI Window (or simply window) encapsulates a number of
Dataltems (such as the mesh and some associated field variables) and public functions of a module, any of
which can be empty. Dataltems may be gathered together into groups called DataGroups. A window can be
partitioned into multiple frames called Panes, each of which instantiate a DataGroup. Panes and their Data-
Groups are useful for exploiting parallelism or for distinguishing different material or boundary-condition

85

A
AVA |llinois Rocstar LLC COM User's Guide

types. In a parallel setting, a pane belongs to a single process, while a process may own any number of panes.
All panes of a given window must have the same DataGroup, although the total sizes of the Pane’s Data-
Group Dataltems may vary. A module constructs windows inside its CSC at runtime by creating Dataltems
and registering the addresses of the Dataltems and functions. Typically, the Dataltems registered with COM
are persistent (instead of temporary) datasets, in the sense that they live throughout the simulation (except
that CI windows may need to be reinitialized at some events, such as remeshing). Different modules can
communicate with each other only through their CI windows, as illustrated in Figure C.53.

COM Runtime

Module 1 Module 2

Figure C.53: COM architecture with multiple software modules. Each module is loaded at runtime and shares the same
process with the orchestrator. All module-module interactions are conducted through the Cl and mediated by COM.

A code module references CI windows, Dataltems, or functions using their names, which are of character-
string type. Window names must be unique across all modules, and an Dataltem or function name must
be unique within a window. A code module can obtain an integer handle of (i.e., a reference to) an
Dataltem/function from COM with the combination of the window and Dataltem/function names. The
handle of an Dataltem can be either mutable or immutable, where an immutable handle allows only read
operations to its referenced Dataltem, similar to a const reference in C++. Each pane has a user-defined pos-
itive integer ID, which must be unique within the window across all processors but need not be consecutive.

Dataltems Dataltems of a module can include mesh data, field variables, and other data associated with
the CI window or pane. The former two types of Dataltems are associated with nodes or elements. A nodal
or elemental Dataltem of a pane is conceptually a two-dimensional dataset: one dimension corresponds to
the nodes/elements, and the other dimension corresponds to the data within a node/element. The dataset
can be stored in a row- or column-major two-dimensional array, or be stored in separate arrays for each
component of the dataset. COM allows users to specify a stride (the distance in the base data type, such as
int or double precision) between the same component of two consecutive items (such as nodes/elements).

Mesh Data Mesh data include nodal coordinates, pane connectivity, and element connectivity (or simply
connectivity), whose Dataltem names and data types are predefined by COM. The nodal coordinates are
double-precision floating-point numbers, with three components per node. The pane connectivity specifies
the communication patterns between nodes shared by two or more panes, and is a pane Dataltem packed in

86

A
AVA |llinois Rocstar LLC COM User's Guide

a 1-D array. The registration of pane connectivity is desirable for many purposes, but it is optional and can
be computed automatically from coordinates using Rocmap.

COM supports both surface and volume meshes, which can be either multi-block structured or unstructured
with mixed elements. For multi-block meshes, each block corresponds to a pane in a window. For un-
structured meshes, each pane has one or more connectivity tables, where each connectivity table contains
consecutively numbered elements (i.e., their corresponding field variables are stored consecutively) of the
same type. Each connectivity table must be stored in an array with contiguous or staggered layout. To
facilitate parallel simulations, COM also allows a user to specify the number of layers of ghost nodes and
cells for structured meshes, and the numbers of ghost nodes and cells for unstructured meshes.

Field Variables Field variables are nodal or elemental Dataltems that have no designated names or data
types. A user must first define such an Dataltem in the window and then register the addresses of the
Dataltem for each pane. For a specific pane, if a field variable is stored in one single array, then the array
is registered with a single call; if it is stored in multiple arrays, then the user must register these arrays
separately.

Windowed and Panel Dataltems A data member can also be associated with either the CI window
or a pane. Examples of windowed Dataltems include data structures that encapsulate the internal states
of a module, its CI, or some control parameters. An example of a pane Dataltem is an integer flag for
the boundary condition type of a surface patch. Similar to field variables, these Dataltems do not have
designated names or data types, and must be created within a CI window and then registered, or allocated.

Aggregate Dataltems In COM, although Dataltems are registered as individual arrays, Dataltems can be
referenced as an aggregate. For example, the name “mesh” refers to the collection of nodal coordinates and
element connectivity; the name “all” refers to all the data Dataltems in a window. For staggered Dataltems,
one can use “i-Dataltem” (i > 1) to refer to the ith component of the Dataltem or use “Dataltem” to refer to
all components collectively.

Aggregate Dataltems enable high-level inter-module interfaces. For example, one can pass the “all” Dataltem
of a window to a parallel I/O routine to write all of the contents of a window into an output file with a single
call. As another example, it is sometimes more convenient for users to have COM allocate memory for
data Dataltems and have application codes retrieve memory addresses from COM. COM provides a call for
memory allocation, which takes a window Dataltem name pair as input. A user can pass in “all” for the
Dataltem name, which will have COM allocate memory for all the unregistered Dataltems.

C.2.2 Functions

A CI can contain not only data members but also function members. A module can register a function
into its CI window, to allow other modules to invoke the function through COM. Registration of functions
enables a limited degree of runtime polymorphism. It also overcomes the technical difficulty of linking
object files compiled from different languages, where the mangled function names can be platform and
compiler dependent.

87

A
AVA |llinois Rocstar LLC COM User's Guide

Member Functions Except for very simple functions, a typical function needs to operate with certain
internal states. In object-oriented programs, such states are encapsulated in an “object”, which is passed to a
function as an argument instead of being scattered into global variables as in traditional programs. In some
modern programming language, this object is passed implicitly by the compiler to allow cleaner interfaces.

In mixed-language programs, even if a function and its context object are written in the same programming
language, it is difficult to invoke such functions across languages, because C++ objects and F90 structures
are incompatible. To address this problem, we introduce the concept of member functions of Dataltems into
COM. Specifically, during registration a function can be specified as the member function of a particular
data Dataltem within one of its CI windows. COM keeps track of the specified Dataltem and passes it
implicitly to the function during invocation, in a way similar to C++ member functions. Because the caller
no longer needs to know the context object of the callee, this concept overcomes the incompatibility without
sacrificing object-orientedness.

Optional Arguments COM supports the semantics of optional arguments similar to that of C++ to allow
cleaner codes. Specifically, during function registration a user can specify the last few arguments as optional.
COM passes null pointers for those optional arguments whose corresponding actual parameters are missing
during invocation.

C.2.3 Inheritance

In multiphysics simulations, inheritance of CI data on the interface surface between domains is useful in
many situations. First, the orchestrator sometimes needs to create data buffers associated with a computation
module for the manipulation of jump conditions. Inheritance of windows allows the orchestration module
to create a new window for extension or alteration, without altering an existing application’s CI. Second, a
module may need to operate on a subset of the mesh of another module. In rocket simulation, for example,
the combustion module needs to operate on the burning surface between the fluid and solid. Furthermore, the
orchestrator sometimes needs to split a user-defined CI into separate windows based on boundary-condition
types, so that these subwindows can be treated differently (e.g., written into separate files for visualization).
Figure C.54 depicts a scenario of inheritance among three windows.

To support these needs, COM allows inheriting the mesh from a parent window to a child window in either
of two modes. First, the mesh can be inherited as a whole. Second, only a subset of panes that satisfy a
certain criterion are inherited. After inheriting mesh data, a child window can inherit data members from
its parent window, or other windows that have the same mesh (this allows for multiple inheritance). The
child window obtains the data only in the panes it owns and ignores other panes. During inheritance, if an
Dataltem already exists in a child window, COM overwrites the existing Dataltem with the new Dataltem.

COM supports two types of inheritance for data members: cloning (with duplication) and using (without
duplication). The former allocates new memory space and makes a copy of the data Dataltem in the new
window, and is safer in terms of data integrity. The latter makes a copy of the references of the data member,
which avoids the copying overhead associated with cloning and guarantees data coherence between the
parent and child, and is particularly useful for implementing orchestration modules.

C.2.4 Data Integrity
In complex systems, data integrity has profound significance for software quality. Two potential issues

can endanger data integrity: dangling references and side effects. COM addresses these issues through the
mechanisms of persistency and immutable references, respectively.

88

A
AVA |llinois Rocstar LLC COM User's Guide

winl:Window
g :panel:
‘ coordinates: connectivity: flag: velocity:
g :pane2:
‘ coordinates: connectivity: flag: velocity:
win2 uses sub-mesh of winl win3 uses velocity of winl
win2:Window
o . .
:pane2:
o
coordinates: connectivity: pressure:
.
T

win3 uses whole megL of win2 win3 clones pressure of win2|

win3:Window
g :pane2:
coordinates: connectivity: pressure: velocity:

Figure C.54: Scenario of inheritance of mesh and field Dataltems among three Cl windows.

Persistency COM maintains references to the datasets registered with its CI. To avoid dangling refer-
ences associated with data registration, COM imposes the following persistency requirement: the datasets
registered with a CI window must outlive the life of the window. Under this model, any persistent object
can refer to other persistent objects without the risk of dangling references. In a heterogeneous program-
ming environment without garbage collection, persistency cannot be enforced easily by the runtime systems
instead, it is considered as a design pattern that application code developers must follow.

Immutable References Another potential issue for data integrity is side effects due to inadvertent changes
to datasets. For the internal states of the modules, COM facilitates the traditional integrity model through
member functions described earlier. In COM, a service module can obtain accesses to another module’s
data Dataltems only through its function arguments, and COM enforces at runtime that an immutable han-
dle cannot be passed to mutable arguments.

C.3 Architecture of COM
The core of COM is composed of three parts: an Application Programming Interface (API), a C++ class

interface for development of service modules, and a runtime system for the bookkeeping associated with
data objects and invocation of functions.

C.3.1 COM API

The COM API supplies a set of primitive function interfaces to physics and service modules and orchestra-
tors for system setup, CI management, information retrieval, and function invocation. The subset of the API

89

A
AVA |llinois Rocstar LLC COM User's Guide

for CI management serves essentially the same purpose as the Interface Definition Language (IDL) of other
frameworks (such as CCA), except that COM parses the definitions of the CI at runtime. COM provides
different bindings for C++ and F90, with similar semantics. See Section C.5 for details.

C.3.2 C++ Class Interfaces

COM provides a unified view of the organization of distributed data objects for service modules through
the abstractions of CI windows and panes. Internally, COM organizes windows, panes, Dataltems, func-
tions, and connectivities into C++ objects, whose associations are illustrated in Figure C.55,0n a UML class
diagram.

s

Function
.
. 0.1
Datalt em refers
0.1 #
% refers
Connectivity
-1\ refers
1 1 takes arguments o 1
*
data array function pointer

Figure C.55: UML associations of COM'’s classes.

A Componentlnterface window maintains a list of its local panes Dataltems, and functions; a Pane object
contains a DataGroup which is a list of Dataltems and connectivities; a Dataltem object contains a reference
to its owner window. By taking references to Dataltems as arguments, a function can follow the links to ac-
cess the data Dataltems in all local panes. The C++ interfaces conform to the principle of deeply immutable
references, ensuring that a client can navigate through only immutable references if the root reference was
immutable. Through this abstraction, the developers can implement service utilities independently of appli-
cation codes, and ensure applicability in a heterogeneous environment with mixed meshes, transparently to
physics modules.

C.3.3 COM Runtime System

The runtime serves as the middleware between modules. It keeps track of the user-registered data and func-
tions. During function invocation, it translates the function and Dataltem handles into their corresponding
references with an efficient table lookup, enforces access protection of the Dataltems, and checks whether
the number of arguments of the caller matches the declaration of the callee. Furthermore, the runtime system
also serves as the middleware for transparent language interoperability. For example, if the caller is in F90

90

A
AVA |llinois Rocstar LLC COM User's Guide

whereas the callee is in C++, the runtime system will null-terminate the character strings in the arguments
before passing to the callee.

Through the calling mechanism, COM also provides tracing and profiling capabilities for inter-module calls
to aid in debugging and performance tuning. It also exploits hardware counters through PAPI to obtain
performance data such as the number of floating-point instructions executed by modules. A user can enable
such features using command-line options without additional coding.

C.4 Module Requirements

A COM application has a driver or an orchestrator, which is responsible for system setup and invoking
the registered functions in turn. Each COM-compliant module must provide a load-module routine, which
creates a CI window to encapsulate its interface functions and context objects, and an unload-module, which
destroys the window, where the window name is typically the same as that of the module. By calling the
load-module routines, the driver dynamically loads a set of modules into the runtime system. Through
COM’s calling mechanism, the orchestrator then invokes the functions of the physics and service modules,
which in turn can also invoke functions provided by other modules.

C.5 COM API

COM provides different bindings for C, C++, and Fortran 90, with similar semantics, except that C/C++ is
case-sensitive whereas Fortran is case-insensitive, and C/C++ passes arguments by value whereas Fortran
passes by reference. Another subtle difference is that Fortran character strings, which are not null terminated
by default, must be interpreted differently from C/C++ character strings. These differences are apparent in
the prototype definitions of the subroutines, but are mostly transparent to users. COM’s interface prototypes
are defined in “com.h” (for C/C++) and “comf90.h” (for Fortran 90), which must be included by the codes
in corresponding languages, respectively.

COM’s interface subroutines follow the following conventions: They all start with the prefix COM_, fol-
lowed by lower-case letters (for C/C++). Most subroutines return no values unless otherwise specified. If a
non-fatal error occurred inside a COM subroutine, an error flag will be set. For the C and Fortran interfaces,
the error code can be obtained by calling COM_get__error__code. For the C++ interface, the error code
will be thrown as an exception.

Although COM’s API has about 40 functions, a simple computation module needs to use only about 10
of them, mostly in Section C.5.2. The other functions are more advanced and provided mostly for the
orchestrators and for more complex physics modules.

C.5.1 |Initialization and Finalization
Startup and Shutdown of COM Implementations of COM’s runtime system require some setup opera-

tions before any other COM operations can be performed. To provide for this, COM includes an initialization
subroutine COM__init.

C: COM_init(int *argc, char ***argv)
Fortran: SUBROUTINE COM_INIT

91

A
AVA |llinois Rocstar LLC COM User's Guide

This subroutine must be called exactly once from every process before any other COM subroutine (apart
from COM_initialized) is called. It is typically called from the driver routine of the application. The C
version accepts the arguments argc and argv, which are the arguments of the main routine of C. COM_init
parses the following options:

» “-com-v n”: Set the verbose level of all processes to n (see COM_set_verbose);
* “_com-vp n”: Set the verbose level of process p to n (see COM_set_verbose);
e “-com-mpi”: Call MPI_Init within COM_init.

* “-com-home <directory>":Search for shared libraries under <directory>/lib. Alternatively, one can
pass the directory by setting either COM_HOME or ROCSTAR_HOME enrionment variables.

The Fortran version COM_INIT takes no arguments. A corresponding subroutine COM_finalize is also
provided for COM to clean up its state after the execution of the program. It also needs to be called on every
process. Once this subroutine is called, no COM subroutine may be called.

C: COM_finalize(void)
Fortran: SUBROUTINE COM_FINALIZE

The following is a piece of code in C that illustrates its usage.

int main(int argc, char **argv) {
COM_init (&argc, &argv);
/* main program */
COM_finalize();

}

COM provides a subroutine COM__initialized for checking whether COM_init has been called.

C: int COM__initialized(void)

Fortran: FUNCTION COM_INITIALIZED()
INTEGER :: COM_INITIALIZED

The argument flag is set to nonzero if COM_init has been called and zero otherwise.

Furthermore, COM runtime environment can also be shut down abnormally by calling COM__abort.

C: void COM_abort(int ierr)

Fortran: SUBROUTINE COM_ABORT(IERR)
INTEGER, INTENT(IN) :: IERR

This function terminates a COM program and returns the error code ierr to the invoking environment. If MPI
was initialized, then COM_abort calls MPI_Abort internally on MPI_COMM_WORLD. Otherwise, it
calls the exit function of the standard C library. For Fortran codes, COM also provides a related subroutine
COM_CALL_EXIT, which we describe in Section C.6.6.

A
AVA |llinois Rocstar LLC COM User's Guide

Loading and Unloading of Modules In the COM infrastructure, user applications can be built into a
dynamic library named “libfoo.so” (where “foo” is arbitrary). The dynamics libraries are called modules,
and COM provides the following interface to load and unload the dynamic library for a module.

C: COM__load_module(const char *modName, const char *winName)

Fortran: SUBROUTINE COM_LOAD_MODULE(MODNAME, WINNAME)
CHARACTER(*), INTENT(IN) :: MODNAME, WINNAME

C: COM_unload_module(const char *modName, const char *winName=NULL)

Fortran:. SUBROUTINE COM_UNLOAD_MODULE(MODNAME,WINNAME)
CHARACTER(*), INTENT(IN) :: MODNAME,WINNAME
OPTIONAL :: WINNAME

The argument modName is the main part of the library name (e.g., “foo” for libfoo.so). The “foo” module
needs to supply two subroutines, foo__load_module and foo__unload_module, which takes winName as
its argument. When COM_load_module/ or COM__unload_module is called, COM locates the sym-
bol foo_load_module/foo_unload__module in libfoo.so, respectively, and invokes these user-provided
routines by passing winName to load/unload the module. For COM__unload_module, the winName ar-
gument can be omitted if the module is loaded only once.

For ease of debugging, sometimes it is desirable to build COM modules and applications statically. In this
case, an application need to define the prototypes of foo_load_module and foo_unload_module and
call them directly instead of through COM_load_module or

COM__unload_module. COM provides the following macros to C/C++ codes (defined when “com.h” is
included):

COM_EXTERN_MODULE(modName_noquotes)
COM_LOAD_MODULE_STATIC_DYNAMIC(modName_noquotes, winName)
COM_UNLOAD_MODULE_STATIC_DYNAMIC(modName_noquotes, winName)

Depending on whether the macro STATIC_LINK is defined (e.g., by passing -DSTATIC_LINK to the
compiler) or not, these macros expands to different statements. When STATIC_LINK is defined, then
COM_EXTERN_MODULE(foo) defines foo__load_module and foo_unload_module. Otherwise,
it expands to noop. For C++ codes, since COM_EXTERN_MODULE uses the extern "C" modifier,
it cannot be used inside a function. COM_LOAD_MODULE_STATIC_DYNAMIC(foo, “FOO”) ex-
pands to foo_load_module(“FOO”) if the STATIC_LINK is defined, and to COM_load_module(
“f00”,“FOQ”), otherwise; similarly for COM_UNLOAD_MODULE_STATIC_DYNAMIC.

C.5.2 Data and Function Registration

COM organizes data and functions into CI windows. A window encapsulates a number of data members
(such as the mesh and some associated data Dataltems) and public functions of a module. A module can
create any number of CI windows. Technically, an application has only one CI with multiple windows, but
this distinction is currently irrelavent. All panes of a window must have the same DataGroup, although the
size of each Dataltem may vary.

93

A
AVA |llinois Rocstar LLC COM User's Guide

C.5.3 Creation of Cl Window

A call to COM_new_window creates an empty window with a given name.

C++: COM__new_window(const std::string wName, MPI_Comm comm=MPI_COMM_SELF)
C: COM__new_window(const char *wName, MPI_Comm comm=MPI_COMM_SELF)

Fortran: SUBROUTINE COM_NEW_WINDOW(WNAME, COMM)
CHARACTER(*), INTENT(IN) :: WNAME
OPTIONAL, INTEGER, INTENT(IN) :: COMM

The wName argument is a character string and must be unique across all modules, and comm is the MPI
communicator of the owner processes of the window. Because a window is a collective concept, this sub-
routine should be called on all processes within the MPI communicator. The communicator can be retrieved
by calling COM__get__communicator (see subsection C.8).

After a window is created, a user can create data Dataltem members and register addresses of data and
functions to it as described later, followed by calling COM_window_init__done to mark the end of the
registration of a window.

C++: COM_window_init__done(const std::string name, int clct=1)
C: COM_window_init__done(const char *name, int clct=1)

Fortran: SUBROUTINE COM_WINDOW_INIT_DONE(NAME, CLCT)
CHARACTER(*), INTENT(IN) :: NAME
INTEGER, INTENT(IN), OPTIONAL :: CLCT

It also takes the window name as its first argument. The second argument clct specifies whether the function
is being called collectively on all the owner processes of the window, so that the mapping from panes
to processes can be determined. If any pane was created or deleted, then COM_window__init__done
must be called collectively before the window is used, by passing a non-zero value (the default) to clct.
After calling COM_window_init__done, the sizes and arrays of the Dataltems can be changed without
calling COM_window_init__done again. Dataltems and/or panes can be added or deleted, given that
COM_window_init__done is called after the changes. If the Dataltems were changed but no panes were
added or deleted from any process, then COM_window_init__done can be called with clct equal to zero,
to avoid recomputing the pane-to-process mapping.

Dataltems

Declaration of New Dataltems Besides mesh data, a window can have other data members, which
can be associated with the window, a pane, nodes, or elements of the pane. Different from keywords, these
data Dataltems do not have designated names or data types. Therefore, a user must first define an Dataltem
by calling COM_new__dataitem before registering the addresses of the Dataltem. Again, this subroutine
must be called collectively on all owner processes of a window.

C++: COM_new_dataitem(const std::string aName, char loc, COM_Type type,
int ncomp, const char *unit)

94

A
AVA |llinois Rocstar LLC COM User's Guide

C: COM__new_dataitem(const char *aName, char loc, COM_Type type,
int ncomp, const char *unit)

Fortran: SUBROUTINE COM_NEW_DATAITEM(ANAME, LOC, TYPE,
NCOMP, UNIT)
CHARACTER(*), INTENT(IN) :: ANAME, FNAME, UNIT
CHARACTER*1, INTENT(IN) :: LOC
INTEGER, INTENT(IN) :: TYPE, NCOMP

In the argument list, aName is the Dataltem name in the format of “window Dataltem”, similar to mesh data

EINE SR R |

names; loc can be either "w’, ’p’, 'n’, or ’e’, corresponding to windowed, panel, nodal, or elemental data;
type specifies the base datatype of the Dataltem, which can be one of the following constant C/C++ Data

types:

* COM_CHAR

* COM_UNSIGNED_CHAR
* COM_BYTE

* COM_SHORT

* COM_UNSIGNED_SHORT
* COM_INT

* COM_UNSIGNED

* COM_LONG

* COM_UNSIGNED_LONG
* COM_FLOAT

* COM_DOUBLE

» COM_LONG_DOUBLE

« COM_BOOL

or Fortran Data types:

COM_CHARACTER

COM_LOGICAL

COM_INTEGER

COM_REAL

COM_DOUBLE_PRECISION

COM_COMPLEX

COM_DOUBLE_COMPLEX

95

A
AVA |llinois Rocstar LLC COM User's Guide

or other:

» COM_MPI_COMMC

* COM_MPI_COMM=COM_MPI_COMMC)
* COM_MPI_COMMF

* COM_MAX_TYPEID(=COM_MPI_COMMF)
* COM_STRING

* COM_RAWDATA

» COM_METADATA

* COM_VOID

* COM_F90POINTER

* COM_OBIJECT

* COM_MIN_TYPEID

ncomp is the number of components of the Dataltem (for example, the number of entries associated with
each node/element for nodal/elemental data); and unit is the unit of the Dataltem, which can be the empty
string *” if the Dataltem is unitless.

One can call COM__new_dataitem on an existing Dataltem to re-define an Dataltem (including the keyword
“nc”). However, one cannot increase the number of components of the predefined Dataltems (see next
subsection). After calling COM_new_dataitem, the previously registered data are reset, and its handles
and inherited Dataltems become invalid. It is the user’s responsibility to ensure the consistency for the
Dataltem.

Predefined Mesh Data Mesh data, including nodal coordinates, pane connectivity, and element connec-
tivity (or simply connectivity), have predefined Dataltem names and data types. Nodal coordinates (‘“nc”
are predefined as double-precision nodal Dataltems with three components (corresponding to X, y, and z,
respectively) per node and a default unit “m”. However, nodal coordinates may be redefined by calling
COM_new_dataitem to have less than 3 components, a different base data type, or a different unit. Pane
connectivity (“pconn”) is predefined as a 1-D integer pane Dataltem with no unit.

“nc” for nodal coordinates
“pconn” for pane connectivity

For each pane, the pane-connectivity array can have multiple blocks:

1. shared nodes;
2. real nodes to send;

3. ghost nodes to receive;

96

A
AVA |llinois Rocstar LLC COM User's Guide

4. real cells to send;

5. ghost cells to receive.

The first block goes into the real part of pconn and blocks 2—5 go into the ghost part. Blocks 2 and 3 must
be present together, so are blocks 4 and 5. The ghost part of pconn is optional, and within the ghost part of
pconn, blocks 4 and 5 are optional. Each block has the following content:

<number of communicating-pane blocks to follow>
<communicating pane id 1>
<#local nodes to follow>
<list of local nodes>...
. ! repeat for other remote panes

The lists of nodes for a pair of communicating panes are stored in the same order in their corresponding
tables. Furthermore, the panes are stored in increasing order of pane IDs. If a node is shared by more than
two panes, then every pair of shared nodes is stored in pconn. Note that it is possible for a single pane to
have duplicated nodes, for example, in the case of branch-cut for structured meshes. In this case, in the
block for shared nodes, the list of local nodes is composed of a series of node pairs, where the first node
in the pair always has a smaller node ID than the second, and the number of local nodes is equal to twice
the number of pairs. Note that in the case of partial inheritance, where a subwindow may inherit a subset of
panes from a parent window, pconn may be inherited by the subwindow for its inter-pane communication,
and as a consequence pconn may refer to some remote panes that no longer exist. In this case, it is important
to note that the first number in each block is no longer the actual number of communicating panes, and a
traversal of pconn should skip the nonexisting remote panes.

The names of element connectivities have the format of “:elementtype:aname’”, where the “:aname” part is
optional and is useful when there are multiple connectivity tables for one type of elements. Note that element
connectivities are not regular Dataltems, in that different panes may contain different types of elements, and
an element connectivity must not be created by calling COM_new_dataitem but by setting its size and
registering its address.

“sstl:aname”, ““:st2:aname”, “:st3:aname” for structured mesh of 1, 2 and 3 dimensions.

“:b2:aname” and “:b3:aname” for 2- and 3-node bar elements.

“:t3:aname”, “:t6:aname’, “:qd:aname’, “:q8:aname”, and “:q9:aname” for connectivity ta-
bles of 3- and 6-node triangles, and 4-, 8-, and 9-node quadrilaterals, respectively.

“:Td:.aname”, “:T10:aname”, “:B8:aname” (“:H8:aname”), and *“:B20:aname” for connectiv-
ity tables of 4- and 10-node tetrahedra, and 8- and 20-node bricks, respectively

“:PS:aname”, “:Pld:aname”, “:P6:aname” (“:W6:aname”), “:P15:aname” (“:W15:aname”),
and “:P18:aname” (“:W18:aname”) for connectivity tables of 5- and 14-node pyramids and

6-, 15-, and 18-node prisms (aka pentahedra or wedges), respectively.

For elements of unstructured meshes, COM uses the same numbering convention as the CFD General No-
tation System (CGNS), of which a detailed description can be found in Section 3.3 of CGNS Standard
Interface Data Structures (http://www.grc.nasa.gov/WWW/cgns/sids/sids.pdf). If a pane has mul-
tiple connectivity tables, these tables must be registered in increasing order of the element numbering (i.e.,
the elements with smaller indices in field-variable arrays must be registered earlier), and ghost elements
must be registered last. Note that for structured meshes, a pane can register only one connectivity using
COM_set__array__const described in the next subsection, by passing in the numbers of nodes of all direc-
tions in a single array listed in Fortran convention (See example code in subsection C.5.5). We will allow
for users to add new element types in future releases.

97

http://www.grc.nasa.gov/WWW/cgns/sids/sids.pdf

A
AVA |llinois Rocstar LLC COM User's Guide

Registration of Sizes One sets the sizes of an Dataltem using the following routine.

C++: COM_set_size(const std::string aName, int pane_id, int size, int ng=0)
C: COM_set_size(const char *aName, int pane_.id, int size, int ng=0)

Fortran: SUBROUTINE COM_set_size(ANAME, PANE_ID, SIZE, NG)
CHARACTER(*), INTENT(IN) :: ANAME
INTEGER, INTENT(IN) :: PANE_ID, SIZE, NG
OPTIONAL :: NG

In the arguments, aName is the data name in the format of “window.aname” or “window.:elementtype:aname”
for connectivity tables panelD is a user-defined positive integer identifier of the pane, which must be unique

within the window across all processors but need not be consecutive. Window Dataltems should be reg-

istered with pane-ID 0. The argument size is either the total number of nodes (including ghost nodes) in

the pane (for nodal coordinates), or the number of elements (including ghost elements, for a connectivity

table), or the length of the dataset for panel or windowed Dataltems. ng (optional in F90 and C++; default

is 0) is either the number of ghost nodes in the pane for nodal data or the number of ghost elements for a

connectivity table.

The default size of a window Dataltem is 1, but is undefined for other types of Dataltems. Note that setting
the number of nodes for one nodal Dataltem affects all other nodal Dataltems, and it is more efficient to set
size for “nc”. Typically, one should set the number of elements for each element connectivity.

Registration of Preallocated Array After creating an Dataltem, a user can register the address or
addresses of the Dataltem using the following subroutine.

C++: COM_set__array(const std::string aName, int panelD, void *addr,
int stride=0, int cap=0)

C: COM_set__array(const char *aName, int panelD, void *addr,
int stride=0, int cap=0)

Fortran: SUBROUTINE COM_SET_ARRAY(ANAME, PANEID, ADDR, STRIDE,
CAP)
CHARACTER(*), INTENT(IN) :: ANAME
INTEGER, INTENT(IN) :: PANEID, STRIDE, CAP
<TYPE> :: ADDR
OPTIONAL :: STRIDE, CAP

As for COM_set__size, the aName is either an Dataltem name or the name to a connectivity table, and the
panelD is a positive integer ID for the owner pane or 0 for window Dataltems. The addr argument specifies
the address of the array for the Dataltem. If the components of each item are stored contiguously in an array
of Array(stride,cap) in Fortran convention with stride>=ncomp and cap>=size, one can register the array by
with a single call. If it is stored in an array of Array(cap, ncomp), then the stride should be set to 1. The
stride argument can be omitted if stride is equal to ncomp, and it is invalid if stride is greater than 1 but
smaller than ncomp. In Fortran 90, it is very important not to register a scalar variable defined locally
in a subroutine or function (i.e., a stack variable), unless it has the TARGET or POINTER property.

The cap argument can be omitted if cap==size. Otherwise, the user must register an array for each individual
component of the Dataltem using Dataltem name in the format “window.i-Dataltem”, where i is an integer

98

A
AVA |llinois Rocstar LLC COM User's Guide

between 1 and the number of components of the Dataltem (Not applicable for connectivity tables). One can
change the sizes and the arrays by calling COM__set__size and COM__set__array.

To protect data integrity, COM allows registration of a read-only data by calling COM_set__array__const,
which takes the same arguments as COM__set__array.

C++: COM_set_array__const(...)
C: COM_set_array__const(...)
Fortran: SUBROUTINE COM_SET_ARRAY_CONST(...)

For Fortran 90, the types supported are scalars and pointers to 1-, 2-, and 3-dimensional integer, single-
precision, and double-precision arrays. For other types of variables (such as a function pointer), one can
register using one of the following two functions.

Fortran: SUBROUTINE COM_SET_EXTERNAL(ANAME, PANEID, VAR)
CHARACTER(*), INTENT(IN) :: ANAME
INTEGER, INTENT(IN) :: PANEID
EXTERNAL VAR

Fortran: SUBROUTINE COM_SET_EXTERNAL_CONST(ANAME, PANEID, VAR)

One can obtain a pointer set by COM_set__array__const or COM_SET_EXTERNAL only through
COM_get__array__const.

Registration of Bounds A user can register the lower and upper bounds of a specific Dataltem. One
can register two sets of bounds: one set of hard bounds, which specifies the universal limits that the dataset
must satisfy at all times and whose violation would result in runtime errors; the second set corresponds to
soft bounds, whose violations would result in printing of warning messages at runtime.

C++: COM_set_bounds(const std::string aName, int pane_id,
const void *lbnd, const void *ubnd, int is_soft=0)

C: COM_set_bounds(const char *aName, int pane_id,
const void *lbnd, const void *ubnd, int is_soft=0)

Fortran: SUBROUTINE COM_set_bounds(ANAME, PANE_ID, LBND, UBND, IS_SOFT)
CHARACTER(*), INTENT(IN) :: ANAME
INTEGER, INTENT(IN) :: PANE_ID
<TYPE>, INTENT(IN) :: LBND, UBND
INTEGER, INTENT(IN), OPTIONAL :: IS_SOFT

When pane__id is 0, then the given bounds will be applied to all panes; if it is greater than 0, then they will be
applied to the specific pane with the given pane ID. If the function is called for a vector Dataltem, then the
bounds apply to the magnitude of the vectors. One can also set the bounds for individual components by call-
ing the function on the corresponding component Dataltems (using Dataltem names “window.i-Dataltem”).
The fifth argument, is_soft, which is optional with default value 0, specifies whether the bounds are hard
(is_soft==0) or soft (is_soft£0).

99

A
AVA |llinois Rocstar LLC COM User's Guide

C.5.4 Functions

A window can contain not only data members but also function members. A function is registered into a
window by calling COM__set__function on all owner processes of the window.

C: COM__set__function(const char *fName, void (*faddr)(),
const char* intents, COM__Type types|])

Fortran: SUBROUTINE COM_SET_FUNCTION(FNAME, FADDR, INTENTS, TYPES)
CHARACTER(*), INTENT(IN) :: FNAME, INTENTS
EXTERNAL FADDR
INTEGER, INTENT(IN) :: TYPES

Similar to Dataltem names, fName has the format of “window.function”. The argument faddr takes the
actual function pointer. For the C interface, to register a function that takes at least one argument (note that
all arguments must be pointers), a user code must cast the pointer to the void (*)() type, which is predefined
as COM_Func_ptr. The argument intents is a character string of length equal to the number of arguments
taken by the registered function, and its ith character indicates whether the ith argument is for input, output,
or both if intents; is 'i’/’T’, *0’/°O’, or ’b’/’B’, respectively (see the Optional Arguments paragraph of this
section for more discussion). The argument types is an integer array of length also equal to the number of
arguments, and its ith entry indicates the data type of the ith argument. All arguments of a registered function
must be passed by reference. If a function is expecting an integer pointer/reference for its ith argument, for
example, the ith entry should be either COM_INT (for C/C++) or COM_INTEGER (for Fortran).

See the section on Dataltems above for a list of supported data types.

Member Function Many functions perform operations in a specific context. In object-oriented programs,
such contexts are typically encapsulated in objects instead of being scattered into global variables as in
traditional programs. Such an object is passed into a function as an argument, and frequently is passed
implicitly by the compiler to allow cleaner interfaces in modern programming languages.

To encourage object-oriented programming and cleaner interfaces of application codes, COM supports
the concept of member functions of Dataltems. A user registers a member function using the interface
COM_set_member__function, which takes an Dataltem name as an additional argument.

C: COM_set_member_function(const char *fName, void (*faddr)(),
const char* aName, const char* intents, COM_Type types|])

Fortran: SUBROUTINE COM_SET_MEMBER_FUNCTION(FNAME, FADDR, ANAME,
INTENTS, TYPES)
CHARACTER(*), INTENT(IN) :: FNAME, ANAME, INTENTS
EXTERNAL FADDR
INTEGER, INTENT(IN) :: TYPES(:)

The given Dataltem should encapsulate the context of the registered function. The first entries in intents
and types should specify the intention and data type of this Dataltem, respectively. When an application
code invokes a registered member function through COM, it will not list this Dataltem in the arguments, but
COM will pass it implicitly as the first argument to the function.

In addition, COM also provides a function for registering C++ member functions of a class, which must
be a derived class of COM__Object. An object of a derived class of COM_Object, especially those with

100

A
AVA |llinois Rocstar LLC COM User's Guide

virtual functions, must be registered and retrieved using COM_set_object() and COM__get_ object(),
which takes the same arguments as COM__set__array() and COM_get__array(). The member functions
are registered using the following interface,

C++: COM_set_member_function(const char *fName, void (COM_Object::*faddr)(),
const char* aName, const char* intents, COM__Type types|])

and must be casted to the void (COM_Object::*faddr)() type, which is predefined as COM_Member_func_ptr.
For example, a member function func of a class Rocfoo can be casted as

reinterpret_cast<COM_Member_ func_ptr>(&Rocfoo:func).

Optional Arguments If a registered function is written in C or C++, the last few arguments can be
specified as optional. COM will pass in null pointers for them if the caller omit these arguments. To specify
an argument to be optional, a user should use uppercase letters 'I’, ’O’, or 'B’ instead of ’i’, 0, or ’b’ in its
corresponding entry in intents.

Data Types As we noted earlier, all arguments of a registered data must be passed by reference. A
primitive data type (such as COM_INT) used in the argument types would indicate that the function is
expecting a pointer or reference to that type. There are three special cases, however. First, if a function
is expecting a character string (vs. a single character), which must be null terminated for C/C++ functions
or whose length must be passed in implicitly for Fortran functions, then the corresponding data type of the
argument must be set to COM_STRING. This data type tells COM to adapt the string if necessary (such
as null-terminating the charactering string) to bridge C/C++ and Fortran transparently from users. Second,
if a function is a service utility written in C++ and is expecting a C++ object that contains the description
of an Dataltem, the corresponding data type of the argument must be set to COM_METADATA. If the
function is expecting the physical address of a window Dataltem, then the corresponding datatype should
be COM_RAWDATA. In general, two types of arguments should use COM_RAWDATA: the implicit
argument for a member function, and an argument that is a function pointer.

Limitations and Special Notes For language interoperability, a registered function must return no value,
and all its arguments must be passed by reference (i.e., must be pointers/references for C/C++ functions).
Due to technical reasons, COM has to impose a limit on the maximum number of the arguments that a
registered function can take, and the limit is currently set to 7, including the implicit arguments passed by
COM, i.e., the first argument of member functions and character lengths for Fortran functions. This preset
limit is large enough for most applications, but can be enlarged by changing COM’s implementation if
desired. Similar to Dataltems, a function can be registered multiple times, but only the address of the last
registration will be used.

C.5.5 Example Code

The following is a piece of Fortran code segment that demonstrates the registration of data and functions.

101

A
AVA |llinois Rocstar LLC COM User's Guide

INTEGER :: nnl, ni2, nj2 | sizes of nodes

INTEGER :: nel | sizes of elements
INTEGER :: types(2), dims(2)

INTEGER, POINTER :: connl1(3,nel)

DOUBLE PRECISION, POINTER :: coorsl1(3,nnl), coor2(3,ni2, nj2)
DOUBLE PRECISION, POINTER :: displ1(3,nnl), disp2(3,ni2, nj2)
DOUBLE PRECISION, POINTER :: velol(nel,3), velo2(ni2-1, nj2-1,3)

EXTERNAL fluid_update
CALL COM_NEW_WINDOW("fluid", MPI_COMM_WORLD)

! Create a node-centered double-precision dataset
CALL COM_NEW_DATAITEM("fluid.disp", "n", COM_DOUBLE, 3, "m")

! Create a element-centered double-precision dataset
CALL COM_NEW_DATAITEM("fluid.velo", "e", COM_DOUBLE, 3, "m/s")

! Create a pane with ID 11 of a triangular surface mesh
CALL COM_SET_SIZE("fluid.nc", 11, nnl)

CALL COM_SET_ARRAY("fluid.nc", 11, coorsl, 3)

CALL COM_SET_SIZE("fluid.:t3:", 11, nel)

CALL COM_SET_ARRAY("fluid.:t3:", 11, connl, 3)

! Create a pane with ID 21 of a structured surface mesh
dims(1)=ni2; dims(2)=nj2;

CALL COM_SET_ARRAY_CONST("fluid.:st2:actual", 21, dims)
CALL COM_SET_ARRAY("fluid.nc", 21, coors2, 3)

! Register addresses of Dataltems for both panes

CALL COM_SET_ARRAY("fluid.disp", 11, displ)

CALL COM_SET_ARRAY("fluid.velo", 11, velol, 1) ! Staggered layout
CALL COM_SET_ARRAY("fluid.disp", 21, disp2)

CALL COM_SET_ARRAY("fluid.velo", 21, velo2, 1) ! Staggered layout

! Register a function that takes two input arguments
type (1)=COM_DOUBLE; type (2)=COM_DOUBLE
CALL COM_SET_FUNCTION("fluid.update", fluid_update, "ii", types)

CALL COM_WINDOW_INIT_DONE("fluid")

CALL COM_DELETE_WINDOW("fluid")

102

A
AVA |llinois Rocstar LLC COM User's Guide

C.6 Procedure Calls
C.6.1 Dataltem and Function Handles

A handle is an integer from which COM can obtain the actual data about Dataltems and functions. A user
can obtain a mutable handle to an Dataltem using COM__get__dataitem_handle, or an immutable handle
using COM__get__dataitem_handle__const, which take the same arguments.

C++: int COM_get__dataitem_handle(const std::string aName)
C: int COM_get__dataitem__handle(const char *aName)

Fortran: FUNCTION COM_GET_DATAITEM_HANDLE(ANAME)

CHARACTER(*), INTENT(IN) :: ANAME

INTEGER :: COM_get_dataitem_handle
The function can be called on user-defined Dataltems, or a pre-defined Dataltem “nc”, “conn”, “pconn”,
“mesh”, “pmesh”, “data”, and “all”, which refer to nodal coordinates, element connectivity, pane connec-
tivity, mesh data (including coordinates and element connectivity), parallel mesh data (including mesh and
pane connectivity), all field Dataltems (excluding parallel mesh), and all Dataltems, respectively. Note that
it is illegal to call COM_get_dataitem_handle on connectivity tables, whose scopes are within panes
instead of within windows.

To obtain a handle to a function, one should use COM__get__function_handle instead, whose prototype
is essentially the same as COM__get__dataitem_handle.

If the function or Dataltem exists, then a positive integer ID will be returned; otherwise, 0 will be returned.
So these functions can be used to detect the existence of a function or Dataltems. Similarly, one can detect
the existence of a window by calling COM_get_ window__handle.

C.6.2 Invocation

To invoke a function registered with COM in C or Fortran, a user need to use the following function.

C: COM_call_function(int fHandle, int argc, void *argl, ...)

Fortran: SUBROUTINE COM_CALL_FUNCTION(FHANDLE, ARGC, ARGL, ...)
INTEGER, INTENT(IN) :: FHANDLE, ARGC
<TYPE> :: ARGI, ...

The first argument is a function handle, and the second Dataltem is the number of arguments to be passed,
followed by the pointers (or references) to the data values or Dataltem handles.

For C++, we take advantage of the function overloading feature of the language to provide a cleaner interface
COM__call_function.

C++: COM_call_function(int fHandle, void *argl, ...)

It does not require passing the number of arguments.

A
AVA |llinois Rocstar LLC COM User's Guide

C.6.3 Call Tracing

To help debugging application codes, COM allows users to trace the procedure calls by setting a nonzero
verbose level.

C: COM_set_verbose(int v)

Fortran: SUBROUTINE COM_SET_VERBOSE(V)
INTEGER, INTENT(IN) :: V

If v is a positive number, then COM will print out traces of the calls up to depth (v+1)/2. If v is an odd
number, COM will print only the names of the functions if v even, COM will also print the data types and
values of the arguments passed to the functions.

C.6.4 High-Level Profiling
COM contains a simple profiling tool for timing the execution times of the functions invoked through COM.

C: COM_set__profiling(int enable)

Fortran: SUBROUTINE COM_SET_PROFILING(ENABLE)
INTEGER, INTENT(IN) :: ENABLE

If enable is zero, it disables profiling; otherwise, it enables profiling and resets all the counters of the profiler.

In a parallel run, the timing results are typically more accurate if MPI_Barrier is called before and after a
function call, but putting too many barriers may also affect performance. COM allows a user to control
where barriers should be placed by the following call.

C: COM_set__profiling__barrier(int fHandle, MPI_Comm comm)

Fortran: SUBROUTINE COM_SET_PROFILING_BARRIER(FHANDLE, COMM)
INTEGER, INTENT(IN) :: FHANDLE, COMM

This routine will enable COM to call MPI_Barrier on the given communicator before and after the given
function for the processes of the given communicator.

The profiling results can be printed by calling

C: COM__print_profile(const char *fname, const char *header)

Fortran: SUBROUTINE COM_PRINT_PROFILE(FNAME, HEADER)
CHARACTER(*), INTENT(IN) :: FNAME, HEADER

This routine will append the header and the timing results to the file with name fname. If fname is NULL
or the empty string, the standard output will be used instead. A typical timing result looks as follows.

104

A
AVA |llinois Rocstar LLC COM User's Guide

Function #calls Time (tree) Time (self)
Rocflu.update_solution 100 43.1856 42.8221
Rocfrac.update_solution 100 30.4038 30.3861
RFC.least_squares_transfer 400 0.957599 0.957599
Total(top level calls) 74.806

In the output, the Time(tree) indicates the sum of the elapsed wall-clock time during the execution of a
function since the last call to COM_init__profiling, and Time(self) subtracts the elapsed time of the calls
made with the function.

C.6.5 Calling System Calls in Fortran

To allow Fortran to execute a shell command using the system call interface of C, COM provides the fol-
lowing COM_CALL_SYSTEM function.

Fortran: FUNCTION COM_CALL_SYSTEM(COMMAND)
CHARACTER(*), INTENT(IN) :: COMMAND

It will execute the command and return the return status of the command after the command has been
completed; if the command fails to execute due to fork failure, then -1 will be returned.

C.6.6 Calling AtExit and Exit Functions In Fortran

A Fortran code can also call the atexit and exit functions of the C standard through COM.

Fortran: FUNCTION COM_CALL_ATEXIT(FUNC)
EXTERNAL FUNC

Fortran: FUNCTION COM_CALL_EXIT(IERR)
INTEGER, INTENT(IN) :: IERR

COM_CALL_ATEXIT registers a subroutine to be executed when the program terminates normally.
COM_CALL_EXIT causes the program to end and supplies a status code to the calling environment.

C.7 Advanced Window Management

C.7.1 Memory Management

Sometimes, it is more convenient to let COM allocate arrays instead of registering user-allocated arrays.
This approach avoids having to duplicate the data structures of windows and panes in application codes for

multi-block meshes, and is particularly beneficial for implementing complex orchestration modules. COM
provides the following subroutines for memory allocation.

105

A
AVA |llinois Rocstar LLC COM User's Guide

C++: COM_allocate__array(const std::string aName, int panelD=0, void **addr=NULL,
int strd=0, int cap=0)
C: COM_allocate__array(const char *aName, int panelD=0, void **addr=NULL,

int strd=0, int cap=0)

Fortran: SUBROUTINE COM_ALLOCATE_ARRAY(ANAME, PANEID, ADDR,
STRIDE, CAP)
CHARACTER(*), INTENT(IN) :: ANAME
INTEGER, INTENT(IN) :: PANEID, STRIDE, CAP
<TYPE>, POINTER :: ADDR
OPTIONAL :: PANEID, ADDR, STRIDE, CAP

C++: COM_resize__array(const std::string aName, int panelD=0, void **addr=NULL,
int stride=-1, int cap=0)
C: COM_resize__array(const char *aName, int panelD=0, void **addr=NULL,

int stride=-1, int cap=0)

Fortran: SUBROUTINE COM_RESIZE_ARRAY(ANAME, PANEID, ADDR,
STRIDE, CAP)
CHARACTER(*), INTENT(IN) :: ANAME
INTEGER, INTENT(IN) :: PANEID, STRIDE, CAP
<TYPE>, POINTER :: ADDR
OPTIONAL :: PANEID, ADDR, CAP, STRIDE

These functions take arguments similar to COM__set__array, except that addr is returned passed out instead
of passed into the procedure. They allocate memory for a specific Dataltem in a given pane if panelD is
nonzero or all panes if panelD is zero (the default value). The differences between allocate and resize are
that the latter allocates memory only if the array was not yet initialized, or was previously allocated by COM
but the current capacity is increased or the stride is no longer the same. During resize, values of the old array
will be copied automatically to the new array. If strd is -1, which is the default for COM_resize__array,
the current value registered with COM (or the number of components if not yet registered) will be used;
if strd is 0, then the number of components of the Dataltem will be used. If cap is 0, then the larger of
the current capacity and the number of items will be used. Note that it is an error to resize an inherited or
user-allocated (i..e, not allocated by COM) Dataltem. For the Fortran interface, only scalar, 1-D and 2-D
pointers are allowed. If a scalar pointer is used, the data itself must be a scalar and the argument STRD and
CAP must not be present. If a 1-D pointer is given, then the size of the array will be STRD*CAP. If a 2-D
pointer is given, then the sizes of the array will be (STRD,CAP) if STRD is no smaller than the number of
components of the Dataltem (NCOMP), or be (CAP,NCOMP) if STRD is 1.

A user can use the keyword all in the form of “window.all” for aName to have COM allocate memory for
all Dataltems (including the mesh) in a window. The capacity must be no smaller than the size specified by
COM_set_size; if a value smaller than the actual size is passed to COM__resize__array, then the actual
size will be used instead.

Furthermore, using COM_append_array, COM provides a function to append a series of values to the
end of an array associated with a pane or window Dataltem that has no ghost items.

C++: COM__append_array(const std::string aName, int panelD, const void *addr,
int strd, int size)

C: COM_append_array(const char *aName, int panelD, const void *addr,

106

A
AVA |llinois Rocstar LLC COM User's Guide

int strd, int size)

Fortran: SUBROUTINE COM_APPEND_ARRAY(ANAME, PANEID, ADDR,
STRD, SIZE)
CHARACTER(*), INTENT(IN) :: ANAME
INTEGER, INTENT(IN) :: PANEID, STRD, SIZE
<TYPE>, INTENT(IN) :: ADDR

This function is equivalent to calling COM__resize__array to increase the capacity of the array if necessary
using the stride currently registered with COM, calling COM__set_size to increase the number of items
by size, and then copying data from user buffer addr with a stride strd. This function is particularly useful
for packing a series of values into a big array in COM. Note that after calling COM_append_array, the
array in COM may have been reallocated if its capacity was increased, in which case the address previously
obtained from COM becomes invalid and the user must reobtain the address by calling COM__get__array.

Allocated memory should be deallocated by calling COM__deallocate__array.

C++: COM_deallocate__array(const std::string aName, int panelD=0)
C: COM_deallocate__array(const char *aName, int panelD=0)

Fortran: SUBROUTINE COM_DEALLOCATE_ARRAY(ANAME, PANEID)
CHARACTER(*), INTENT(IN) :: ANAME
INTEGER, INTENT(IN) :: PANEID
OPTIONAL :: PANEID

If the deallocation routine is not called, the memory will be freed automatically when the window is de-
stroyed.

C.7.2 Pointer Dataltems

COM provides two special data types, COM_VOID and COM_F90POINTER. The former means a void
pointer in C or C++, and the latter a Fortran 90 pointer. A F90 pointer is different from C/C++ pointers, in
that it is a structure containing the descriptor of the data that are referenced, and the exact size of the structure
is compiler dependent and may vary with the types that it references. These two data types are particularly
useful in conjunction with COM__allocate__array to store pointers to some objects, which allows a module
to eliminate global variables completely, so that they can take advantage of Charm++.

When COM allocates a F90 pointer, it allocates a piece of memory that is large enough to hold any type of
F90 pointers. A F90 application code can copy a pointer to or from COM using COM_SET_POINTER
and COM_GET_POINTER, respectively.

Fortran: SUBROUTINE COM_SET_POINTER(ATTR, PTR, ASSO)
CHARACTER(*), INTENT(IN) :: ATTR
<TYPE>, POINTER :: PTR
EXTERNAL ASSO

Fortran: SUBROUTINE COM_GET_POINTER(ATTR, PTR, ASSO)
CHARACTER(*), INTENT(IN) :: ATTR
<TYPE>, POINTER :: PTR
EXTERNAL ASSO

107

A
AVA |llinois Rocstar LLC COM User's Guide

These functions are particularly useful for registering the context variable of member functions, similar to
registering COM_Object associated with the C++ member functions. For that reason, COM also provides
two F90 interface functions, COM_set_object and COM_get_ object, which are essentially aliases of
COM_set__pointer and COM_get_ pointer. The argument ASSO is a user-defined subroutine which
looks like follows.

SUBROUTINE ASSOCIATE_POINTER(attr, ptr)
<TYPE>, POINTER :: attr
<TYPE>, POINTER :: ptr

ptr => attr
END SUBROUTINE ASSOCIATE_POINTER

Because the arguments of COM_set__pointer and COM__get_ pointer are pointers whose types are un-
known to COM, the user must explicitly define the prototypes of these functions in the application codes
using the specific data types.

C.7.3 Inheritance

Inheritance is a key concept of object-oriented programming. In current IMPACT release, inheritance is very
useful under a few situations. First, the orchestration module (SIM) sometimes needs to create intermediate
data associated with a window owned by another module. Inheritance allows SIM to extend the window by
adding additional Dataltems, or altering the definitions of some of the Dataltems. Second, a module (e.g.,
Rocburn in Rocstar Multiphysics) may need to operate on a subset of the mesh of another module (e.g.,
Rocflo or Rocflu). COM facilitates such special needs by allowing a window to inherit (a subset of) another
window without incurring the memory overhead of data duplication. Furthermore, SIM sometimes needs to
split user-defined windows into separate windows based on boundary-condition types, so that they can be
handled differently (such as written into separate files for visualization).

COM supports two types of inheritance: using and cloning. For the former, COM does not duplicate the
dataset; for the latter, COM does. For each type, it allows inheriting the mesh from a parent window to a
child window in two modes. First, the mesh can be inherited as a whole. Second, only a subset of panes
that satisfy a certain criterion are inherited. The following two subroutines support these two modes of
use-inheritance, respectively.

C++: COM_use__dataitem(const std::string wName__to, const std::string wName_ from,
int with_ghost=1, const char *aName=NULL, int val=0)

C: COM_use__dataitem(const char *wName__to, const char *wName_from,
int with_ghost=1, const char *aName=NULL, int val=0)

Fortran: SUBROUTINE COM_USE_DATAITEM(WNAME_TO, WNAME_FROM,
WITH_GHOST,ANAME, VAL)
CHARACTER(*), INTENT(IN) :: WNAME_TO, WNAME_FROM, ANAME
INTEGER, INTENT(IN) :: VAL, WITH_GHOST

108

A
AVA |llinois Rocstar LLC COM User's Guide

OPTIONAL WITH_GHOST, ANAME, VAL

C++: COM__clone__dataitem(const std::string wName__to, const std::string wName_from,
int with_ghost=1, const char *aName=NULL, int vaI:O)

C: COM_clone__dataitem(const char *wName__to, const char *wName_from,
int with_ghost=1, const char *aName=NULL, int val=0)

Fortran: SUBROUTINE COM_CLONE_DATAITEM(WNAME_TO, WNAME_FROM,
WITH_GHOST,ANAME, VAL)
CHARACTER(*), INTENT(IN) :: WNAME_TO, WNAME_FROM, ANAME
INTEGER, INTENT(IN) :: VAL, WITH_GHOST
OPTIONAL WITH_GHOST, ANAME, VAL

In the arguments, the wName are window names and the aName are Dataltem names. The argument
with_ghost indicates whether the ghost nodes and elements should be inherited. The next argument is a
panel Dataltem of integer type, and only the panes whose corresponding values of the Dataltem equal to
the argument val will be inherited. In practice, aName is most likely to correspond to a boundary-condition
type for panes, and val correspond to a boundary condition ID. Note that if aName is empty (i.e., either a
NULL pointer or an empty string) and val is nonzero, then condition is considered to be “panelD==val”, so
that only the pane whose ID is equal to val is inherited.

If a child window needs to contain panes of more than one boundary-condition types, then a user can call
COM__use__dataitem multiple times with different boundary condition ID. Note that in both routines, the
child window does not duplicate memory space for the mesh but inherit the memory addresses of the parent
window. If a pane in the parent window does not exist in the target window, a new pane is inserted into the
derived window if the Dataltem being inherited contains the element connectivities (i.e,. “conn”, “mesh”,
or “all”), or the pane is ignored for other types of elements. If the Dataltem being inherited already exists in
the child window, then the data type and layout of the new Dataltem must be the same as the existing one,
and COM will overwrite other information of the existing Dataltem with the new Dataltem. Note that one
must not delete or redefine an Dataltem that is being used by another window.

A related function of inheritance is COM__copy__dataitem, which copies data from one Dataltem onto
another.

C++: COM_copy__dataitem(const std::string wName__to, const std::string wName_ from,
int with_ghost=1, const char *aName=NULL, int val=0)

C++: COM_copy__dataitem(const int wName__to, const int wName_from,
int with_ghost=1, const char *aName=NULL, int val=0)

C: COM_copy__dataitem(const char *wName_to, const char *wName_from,
int with_ghost=1, const char *aName=NULL, int val=0)

Fortran: SUBROUTINE COM_COPY_DATAITEM(WNAME_TO, WNAME_FROM,
WITH_GHOST,ANAME, VAL)
CHARACTER(*), INTENT(IN) :: WNAME_TO, WNAME_FROM, ANAME
INTEGER, INTENT(IN) :: VAL, WITH_GHOST
OPTIONAL WITH_GHOST, ANAME, VAL

C.7.4 Deletion of Entities

When a window is not needed anymore, it should be destroyed by calling COM_delete__window, which
takes the window name as its only argument.

109

A
AVA |llinois Rocstar LLC COM User's Guide

C: COM_delete__window(const std::string wName)
C: COM__delete__window(const char *wName)

Fortran: SUBROUTINE COM_DELETE_WINDOW(WNAME)
CHARACTER(*), INTENT(IN) :: WNAME

This subroutine allows COM to clean up its internal data created for a window. It also automatically deal-
locates all the datasets allocated using COM__allocate__array or COM__resize__array but not yet deallo-
cated.

Furthermore, one can delete a single pane from a window by calling COM__delete_pane, which takes the
window name and a pane ID as its arguments.

C++: COM_delete__pane(const std::string wName, int pandID)
C: COM__delete__pane(const char *wName, int pandID)

Fortran: SUBROUTINE COM_DELETE_PANE(WNAME, PANEID)
CHARACTER(*), INTENT(IN) :: WNAME
INTEGER, INTENT(IN) :: PANEID

One can also delete an existing Dataltem (except for predefined Dataltems) by calling COM__delete__dataitem.

C++: COM_delete__dataitem(const std::string aName)
C: COM__delete__dataitem(const char *aName)

Fortran: SUBROUTINE COM_DELETE_DATAITEM(ANAME)
CHARACTER(*), INTENT(IN) :: ANAME

The only keyword that can be used with COM__delete__dataitem is “data”, which will removed all user-
defined Dataltems and leave only the mesh. Note that after deleting some panes or Dataltems, one must call
COM_window__init__done on all processes collectively before using the window. In addition, deleting a
window, pane, or Dataltem may invalidate Dataltem and function handles and the structure of inheritance,
so they should be used with extreme care.

C.8 Information Retrieval
C.8.1 Window and panes

Typically, data registered by application modules need to be accessed only by service modules through the
C++ interface described in the Developers Guide. However, some application modules (e.g., Rocburn) need
to obtain the information about a window created by another module (e.g., Rocflo/Rocflu). IMPACT provides
functions to support information retrieval, under the assumption that the caller knows about the Dataltem
names and base data types of the Dataltems.

C: COM_get__communicator(const char *wName, MPI_Comm *comm)

Fortran: SUBROUTINE COM_GET_COMMUNICATOR(WNAME, COMM)
CHARACTER(*), INTENT(IN) :: WNAME
INTEGER, INTENT(OUT) :: COMM

110

A
AVA |llinois Rocstar LLC COM User's Guide

This subroutine obtains the MPI communicator of a window.

The following subroutine obtains the IDs of the panes in a window local to a process:

C/C++: COM_get__panes(const char *wName, int *np, int **pane_ids=NULL, int
rank=myrank)

C++: COM_get__panes(const char *wName, vector<int> &pane_ids, int rank=myrank)

Fortran: SUBROUTINE COM_GET_PANES(WNAME, NP, PANE_IDS, RANK)
CHARACTER(*), INTENT(IN) :: WNAME
INTEGER, INTENT(OUT) :: NP
OPTIONAL, INTEGER, POINTER :: PANE_IDS(:)
OPTIONAL, INTEGER, INTENT(IN) :: RANK

It sets the number of panes to np and loads an array of IDs into pane_ids, whose memory is allocated by
COM and should be deallocated by calling COM_ free__buffer (except for the vector interface). The rank is
in the scope of the MPI communicator of the window. If the rank is not present or is -2, then the default value
is that of the current process. If the rank is -1, then the function will load the panes on all the processes within
the communicator. Note that this function can only be called after calling COM_window__init__done.

C/C++: COM_get__dataitems(const char *wName, int *na, char **names)
C++: COM_get__dataitems(const char *wName, int *na, string &names)

Fortran: SUBROUTINE COM_GET_DATAITEMS(WNAME, NA, NAMES)
CHARACTER(*), INTENT(IN) :: WNAME
INTEGER, INTENT(OUT) :: NA
CHARACTER, POINTER :: NAMES(:)

It sets na to be the number of Dataltems in the window and allocates a space-delimited string names to
store the names of the Dataltems. Except for the string interface, names must be deallocated by calling
COM__free_buffer (see below) after use.

C/C++: COM_get__connectivities(const char *wName, const int *pid,
int *nc, char **names)

C++: COM_get__connectivities(const char *wName, const int *pid,
int *nc, string &names)

Fortran: SUBROUTINE COM_GET_CONNECTIVITIES(WNAME, PID, NC, NAMES)
CHARACTER(*), INTENT(IN) :: WNAME
INTEGER, INTENT(IN) :: PID
INTEGER, INTENT(OUT) :: NC
CHARACTER, POINTER :: NAMES(:)

It sets nc to be the number of connectivity tables in a pane and allocates a space-delimited string names to
store the names of the connectivity tables. Again, names must be deallocated by calling COM__free__buffer
(except for the string interface) after use.

C: COM_free_buffer(char (or int) **buf)

Fortran: SUBROUTINE COM_FREE_BUFFER(BUF)
CHARACTER (or INTEGER), POINTER :: BUF(:)

111

A
AVA |llinois Rocstar LLC COM User's Guide

C.8.2 Dataltem and Connectivity

One can obtain the information of an Dataltem by calling COM_get__dataitem, whose arguments corre-
spond to those of COM__new_ dataitem.

C: COM__get__dataitem(const char *aName, char *loc, COM_Type *type,
int *ncomp, char *unit, int n)

C++: COM__get__dataitem(const char *aName, char *loc, COM_Type *type,
int *ncomp, string *unit)

Fortran: SUBROUTINE COM_GET_DATAITEM(ANAME, LOC, TYPE,
NCOMP, UNIT)
CHARACTER(*), INTENT(IN) :: ANAME
CHARACTER*1, INTENT(OUT) :: LOC
INTEGER, INTENT(OUT) :: TYPE, NCOMP
CHARACTER(*) :: UNIT

One can also use COM__get__dataitem on a connectivity, which will set ncomp to the number of nodes
per element for that particular type of element.

One can also check the status of a window, a pane, an Dataltem, or a connectivity table by calling the
function COM_get__status.

C: int COM__get__status(const char *aName, int panelD)

Fortran: FUNCTION COM_GET_STATUS(ANAME, PANEID)
CHARACTER(*), INTENT(IN) :: ANAME
INTEGER, INTENT(IN) :: PANEID
INTEGER :: COM_GET_STATUS

If aName is a window name (i.e., containing no ’.”) and panelD is 0O, then it checks whether the window
exists, and returns O if so and -1 otherwise. If aName is a window name and panelD is nonzero, then it
checks whether the given pane exist in the window, and returns O if so and -1 otherwise. If aName is in the
form of “window.Dataltem”, then it checks the status of the given Dataltem, and returns one of the following
values:

e -1: does not exist;

¢ (O: exists but not initialized;

* 1: set by the user using set_array or set_object;
» 2: set by the user using set_array_const;

* 3: use from another Dataltem;

* 4: allocated using resize_array, allocate_array, or cloned from another Dataltem.

If an Dataltem uses another, one can get the full name (window.Dataltem) of its parent Dataltem using the
following interface:

112

A
AVA |llinois Rocstar LLC COM User's Guide

C/C++: COM__get__parent(const char *waName, int paneid, char **parent)
C++: COM_get__parent(const char *waName, int paneid, string &parent)

Fortran: SUBROUTINE COM_GET_PARENT(WANAME, PANEID, PARENT)
CHARACTER(*), INTENT(IN) :: WANAME
INTEGER, INTENT(IN) :: PANEID
CHARACTER, POINTER :: PARENT(:)

The storage for the parent name will be allocated by COM and must be freed using COM__free__buffer
after usage, except for the C++ interface.

C.8.3 Sizes

The following function can be used to obtain the sizes of an Dataltem. Note that the size corresponds to the
total size (including ghost items).

C++: COM_get__size(const std::string aName, int pane_id, int *size, int *ng=NULL)
C: COM_get_size(const char *aName, int pane_id, int *size, int *ng=NULL)

Fortran: SUBROUTINE COM_get_size(ANAME, PANE_ID, SIZE, NG)
CHARACTER(*), INTENT(IN) :: ANAME
INTEGER, INTENT(IN) :: PANE_ID
INTEGER, INTENT(OUT) :: SIZE, NG
OPTIONAL :: NG

Note that for structured meshes, its dimensions should be obtained using COM__get__array__const instead
of COM_get_size.

C.8.4 Arrays

One can obtain an array by either obtaining a pointer to the array, or copying the data into a user provided
buffer. The first mode is provided by COM__get__array and COM__get__array__const, which can be used
to obtain a pointer to an array registered or allocated in COM.

C: COM_get__array(const char *aName, int panelD, void **addr,
int *strd=NULL, int *cap=NULL)

Fortran: SUBROUTINE COM_GET_ARRAY(ANAME, PANEID, ADDR,
STRD, CAP)
CHARACTER(*), INTENT(IN) :: ANAME
INTEGER, INTENT(IN) :: PANEID
<TYPE>, POINTER :: ADDR
INTEGER, INTENT(OUT) :: STRD, CAP
OPTIONAL :: STRD, CAP

C: COM_get__array_const(...)
Fortran: SUBROUTINE COM_GET_ARRAY_CONST(...)

A
AVA |llinois Rocstar LLC COM User's Guide

Note that if the Dataltem-name and the pane-ID do not identify a unique array, then a NULL pointer will be
returned. Furthermore, if an array was registered with COM_set__array__const, then it can be retrieved
only by COM__get__array__const. For the Fortran interface, only scalar, 1-D and 2-D pointers are allowed.
If a scalar pointer is used, the data itself must be a scalar and the argument STRD and CAP must not be
present. If a 1-D pointer is given, then the size of the array will be STRD*CAP. If a 2-D pointer is given,
then the sizes of the array will be (STRD,CAP) if STRD is no smaller than the number of components of
the Dataltem (NCOMP), or be (CAP,NCOMP) if STRD is 1.

The second mode is provided by COM__copy__array.

C: COM_copy__array(const char *aName, int panelD, void *val, int v_strd=0,
int v_size=0, int offset=0)

Fortran: SUBROUTINE COM_GET_ARRAY(ANAME, PANEID, VAL, V_STRD,
V_SIZE, OFFSET)
CHARACTER(*), INTENT(IN) :: ANAME
INTEGER, INTENT(IN) :: PANEID, V_STRD, V_SIZE, OFFSET
<TYPE>, POINTER :: VAL
OPTIONAL :: V_STRD, V_SIZE, OFFSET

It copies up to v_size items of the Dataltem starting from the offset-th item of the Dataltem into the given
buffer with stride v_strd. If v_strd=0 (the default value), then the number of components will be used as
the stride. If v_size=0 (the default value), then the number of items will be used as the size. The default
value of offset is 0. Note that a runtime error occurs if offset is negative or offset+v_size is larger than the
actual capacity of the Dataltem.

C.8.5 Bounds

The lower and upper bounds of a specific Dataltem can be obtained by calling COM__get__bounds.

C: COM__get__bounds(const char *aName, int pane_id,
void *Ibnd, void *ubnd, int is_soft=0)

Fortran: SUBROUTINE COM_get_bounds(ANAME, PANE_ID, LBND, UBND, IS_HARD)
CHARACTER(*), INTENT(IN) :: ANAME
INTEGER, INTENT(IN) :: PANE_ID
<TYPE>, INTENT(OUT) :: LBND, UBND
INTEGER, INTENT(IN), OPTIONAL :: IS_SOFT

Furthermore, COM also provides functions to check the Dataltems against pre-set bounds.

C: int COM__check_bounds(const char *aName, int pane_id, int nprint=0)

Fortran: INTEGER FUNCTION COM_check_bounds(ANAME, PANE_ID, NPRINT)
CHARACTER(*), INTENT(IN) :: ANAME
INTEGER, INTENT(IN) :: PANE_ID
INTEGER, INTENT(IN), OPTIONAL :: NPRINT

114

A
AVA |llinois Rocstar LLC COM User's Guide

If pane_id is O, then the bounds will be checked on all panes; otherwise, they will be checked only on the
pane with the given pane ID. If there are only soft-bound violations or no violations, then the function returns
the number of soft-bound violations. If the verbose level of COM is 0, then no information will be printed.
If the verbose level is nonzero and nprint is 0, then a summary of soft-bound violations will be printed. If
nprint is greater than O, then the first few (where the number to be printed is nprint) soft-bound violations
for each Dataltem in each individual pane will be printed. A violation of hard bounds will terminate the
execution of the code, and a summary of hard-bound violations will be printed upon termination, along with
information about any soft-bound violations if the verbose level is nonzero.

C.9 Sample Codes

A few sample application codes of COM are provided in the test subdirectories of a few service modules.
In particular, sample codes are available in Simpal/test and SurfMap/test.

115

A
AVA |llinois Rocstar LLC SIM Users Guide

D SIM User's Guide

Simulation Integration Manager
Version 0.1.0 lllinoisRocstar LLC October 25, 2016

License

The software package sources and executables referenced within are developed and supported by Illinois
Rocstar LLC, located in Champaign, Illinois.The software and this document are licensed by the University
of Illinois/NCSA Open Source License (see opensource.org/licenses/NCSA). The license is included
below.

Copyright (c) 2016 Illinois Rocstar LLC
All rights reserved.

Developed by: Illinois Rocstar LLC

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the ‘‘Software’’),
to deal with the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimers.

* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimers in the documentation
and/or other materials provided with the distribution.

* Neither the names of Illinois Rocstar LLC, nor the names of its contributors
may be used to endorse or promote products derived from this Software without
specific prior written permission.

THE SOFTWARE IS PROVIDED ‘‘AS IS’’, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE CONTRIBUTORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS WITH THE SOFTWARE.

For more information regarding the software, its documentation, or support agreements, please contact
Ilinois Rocstar at:

¢ tech@illinoisrocstar.com

» sales@illinoisrocstar.com

116

opensource.org/licenses/NCSA

A
AVA |llinois Rocstar LLC SIM Users Guide

D.1 Overview

The Simulation Integration Manager (SIM) is an orchestrator implementation in the IMPACT suite. It is the
front-end of the code that directly interacts with end-developers and end-users of coupled simulations. SIM
is a higher-level infrastructure, built on top of the COM integration framework, but it is possible to use it
independently of COM. The overall objectives of SIM are to provide high-level abstractions of the oper-
ations in multiphysics coupling, facilitate flexible and easy construction of complex coupling algorithms
from predefined building blocks, and deliver readability of the orchestration module.

D.2 Capabilities

The next-generation of SIM will support the following capabilities, and allow potential extensions:

« different types of applications

— unsteady-state calculations (with time-marching schemes)

— steady-state calculations
* different types of coupling (from simplest to most complex)

— stand-alone fluid or solid

* with or without combustion and flexible control of initial ignition
% with or without surface regression and time zooming

+ thermal boundary conditions, chemical reactions, etc.

+ with or without propagation constraints

— fully-coupled fluid-solid interaction

+ with or without predictor-corrector iterations
+ with or without subcycling
+ flexible execution order (e.g., alternating orders and concurrent executions)

— fully-coupled fluid-solid-combustion interaction

+ all suboptions listed above
* numerical and geometrical capabilities

— mesh modification
— surface propagation

— sliding interfaces
* infrastructure runtime support

flexible, user-friendly control mechanism in choosing different options

concurrent execution of independent tasks, possibly on different sets of processors

exact restart in all coupling modes

asynchronous 1/0 using different file formats, and separation of visualization and restart files

117

A
AVA |llinois Rocstar LLC SIM Users Guide

<<topLevel>> | invokes “nlggelL‘i!brEDr»
Iterators - = - - 7 acace
Coupling
P T
contains .~ | customizes
-
- |
-~
-
g [
-~
-~ |
” i,
L ,
<=modelLibrary=> agaregates <=modelLibrary==| coponijes <<modelLibrary=>
<<gtub>> | T 7T _ _ = <<framework>> | _~ " _ _ _ = <<framewaork>>
Agents Schedulers Actions

Figure D.56: Overview of system architecture of SIM.

D.2.1 Design Features

To facilitate the diverse needs of different applications and coupling schemes, we design a new software
infrastructure for SIM, which has the following features:

* Tiered architecture: the layers are top-level iterations, coupling schemes (with or without predictor-
corrector iterations), agents for physics modules, and manipulation of jump conditions;

* Action-centric specification: coupling schemes are described as actions, with well-defined input and
output to specify the data flow;

* Automatic scheduling: based on the data flow among actions, the control flow is derived automatically
to determine the scheduling of actions by the runtime system, which allows potential concurrent
execution of actions;

* Visual aid: SIM will provide visualization of data flow of actions, to help users comprehend and debug
coupling algorithms.

D.3 System Architecture

SIM contains five types of key components, as depicted in Figure Figure D.56: top-level iterations, coupling
schemes (with or without predictor-corrector iterations), agents for physics modules, schedulers, and actions.
We will explain these components in the following subsections.

D.3.1 Top-level Iterations

Time-marching Schemes For unsteady-state calculations, the time-marching scheme is a simple driver
code, which can be used with different types of coupling schemes. The pseudo-code in Procedure 1 outlines
the time-marching procedure, whose core is the coupling schemes.

Steady-state Iterations Steady-state calculations are sometimes used in fluid-solid interactions and for
stand-alone simulations, and hence are desirable features for SIM. The pseudo-code in Procedure 2 outlines
the top-level iterations of a steady-state calculation, which is very similar to the time-marching scheme.

118

A
AVA |llinois Rocstar LLC SIM Users Guide

Procedure 1 Top-level time-marching scheme.

construct coupling object
invoke input of coupling object
invoke initialization of coupling object
while not yet reached designated time do
invoke time integration of coupling scheme by passing in current time and obtaining new time
if reached time for restart dumps then
invoke restart output (as well as visualization data) of coupling scheme
else if reached time for visualization dump then
invoke visualization output of coupling scheme
end if
end while
invoke finalization of coupling object

Procedure 2 Top-level iteration for steady-state calculations.

construct coupling object
invoke input of coupling object
invoke initialization of coupling object
while not yet converged do
invoke solver of coupling scheme
if reached stage for restart dumps then
invoke restart output (as well as visualization data) of coupling scheme
else if reached stage for visualization dump then
invoke visualization output of coupling scheme
end if
end while
invoke finalization of coupling object

119

A
AVA |llinois Rocstar LLC SIM Users Guide

Scheduler Action @)
+add_action{ act : Action®) +Action{ n :int, atts : char™*, idx :int]], p : void*=0)
+reads(act : Action®, attr . const char®, i :int) +=Action()
+writes(act : Action®, atir : const char®, i :int) | +init{ t : double)
+schedule() aggregates +run(t: double, dt : double }
+init_actions(t: double) +inalize()
+run_actions(t: double, dt : double) +declare(s : Scheduler&)
+inalize_actions() +name() : string
+print{ fname : const char®) % ?

| .
| realizes
DerivedAction Primitive Action
contains [goheduler : Scheduler | realizes -m_natts : int
-m_atts : string[]

Figure D.57: Overview of actions and schedulers.

D.3.2 Actions and Schedulers

As depicted in the class diagram in Figure D.57, actions and schedulers are interdependent on each other.
An action is a functional object. There are two types of actions: primitive actions, which perform some
basic calculations, and derived actions, which are composed of collections of subactions. An action has a
constructor, and three core procedures: init(), run(), and finalize(), for performing initialization, execution,
and finalization, respectively. The constructor typically takes a number of Dataltem names and their corre-
sponding time indices as arguments. The time indices are important to denote whether the Dataltem is from
a previous iteration of the top-level loop. Optionally, the constructor may also take a void pointer as its final
“wildcard” argument, which can point to a specific structure to encapsulate the additional input and output
of the action.

The initialization procedure allocates the intermediate data needed to perform the action, and finalization
deallocates these intermediate data. In general, when the constructor is invoked, the Dataltem names listed
in the arguments may not have been associated with actual Dataltems; when initialization is invoked, they
will have been associated. Depending on whether the action is primitive or derived, its execution procedure
performs some basic calculations, or invokes the execution of subactions. In addition, an action has two pro-
cedures for interacting with schedulers: declare(), which registers the read and write operations performed
on the Dataltems passed into the constructor, and name(), which provides a descriptive name for the action
for visualization.

A scheduler is a container of actions, and is responsible for determining the orders of initialization, exe-
cution, and finalization of its actions. It is also part of a derived action for scheduling the subactions. A
scheduler provides a procedure add_action() to its user for registering actions. The scheduler invokes the
declare() member function of an action when it is being added, and declare() registers data access with the
scheduler by calling the reads() and writes() member functions of the scheduler. After all the actions have
been registered with a scheduler, it then constructs a directed acyclic graph (DAG) for the actions, in which
each edge is identified by a Dataltem name and its corresponding time index. Typically, the pair of Dataltem
and time indices should identify one unique provider, but a Dataltem may be used by multiple actions.

If a Dataltem has multiple providers, the scheduler will try to identify the actual provider using other de-
pendencies, and execution will abort if this identification process fails. The schedule() member function
determines the orders of initialization, execution, and finalization of its actions, and recursively invokes the
scheduling of the derived actions. In a parallel computation, the schedulers on all processes must return
the same orders. The member functions init_actions(), run_actions(), and finalize_actions() invoke the

A
AVA |llinois Rocstar LLC SIM Users Guide

Coupling Of= Agent O
+Coupling(} +Agent{ mod : constchar®, obj : const char®)
+init(t: double) +~Agent(mod : char* } : const char
+inalize(t:d) +init(t : double }
+input(t : double } +inalize()
+output(t: double) +input{ t : double)
+max_timestep(1: double): double +output(t: double)
+solve(t: double, dt: double) : double +max_timestep(t:double }: double

o +solve() : Action®
! +add_bcaction(act: Action®, | :int=0)
+add_gmaction(act : Action* }
#obtain_bc(a : double, | @int=0)
| Scheduler '7 #obtain_gm(da : double }
[1

Figure D.58: Overview of agents and coupling schemes.

corresponding procedures of the actions. Furthermore, the scheduler provides a print() function, for printing
out the DAG and its scheduling for visualization.

In general, an action is present in at least one scheduler, and typically is in only one scheduler. The user
(such as a derived action) of a scheduler should create actions by calling the C++ new operator, but the
owner schedulers of the actions will be responsible for deleting the actions when they are no longer in use.
If an action is used by multiple schedulers, the user must ensure the action is reentrant, in the sense that
its initialization and finalization procedures do not allocate and deallocate intermediate data multiple times,
and it is safe for multiple instances of the action to run concurrently.

D.3.3 Agents and Coupling Schemes

An agent serves a physics module. The most basic task of an agent is to load a physics module Compo-
nentInterface (CI) into COM in the constructor. A more critical set of tasks of an agent is to manage the
persistent buffer data on behalf of the physics module. These data are typically defined on the mesh of the
physics module, may be shared by multiple actions, and need to be saved for visualization or restart. The
constructor of an agent defines the buffer data, and its initialization procedure is responsible for allocating
these buffer data, after invoking the initialization of the physics module.

The finalization of an agent deallocates these buffers and invokes the finalization of the module. Since
these buffer data may need to be read and written along with the data of the physics module, the agent is
responsible for providing the input and output functions, to be called by the coupling schemes.

In addition to providing data services for a physics module, the agent also interacts with scheduler on its
behalf, and and feeds boundary conditions to the physics module. An agent usually provides one action
to coupling schemes, for invoking the solver of the module. It also provides a function for obtaining the
maximum time step constrained by the module.

For supply boundary conditions, it provides two callback procedures to the physics module, one for ob-
taining boundary conditions, and the other for obtaining grid motion. These procedures may be called
by the physics module during its iterations of calculation (such as subcycling or Runge-Kutta iterations)
without returning the control back to the coupling scheme. These callback procedures are implemented as
derived actions in the agent, whose subactions are defined by the coupling schemes and registered by calling
add_bcaction() and add_gmaction(), respectively. The scheduling of these callback procedures should be
performed when the solve action is being scheduled by the main scheduler.

A coupling scheme is composed of a number of agents and a scheduler. Its constructor invokes the con-
structors of the agents and the scheduler to define the coupling algorithm, and then determines the orders
that must be followed for invoking initialization, execution, and finalization. The initialization (init) and

A
AVA |llinois Rocstar LLC SIM Users Guide

Procedure 3 Coupling with predictor-corrector iterations.

for i = 1 to maxiter do
invoke time integration of base coupling scheme
check convergence
if converged then
store current solution
break from loop
else
restore previous solution
end if
end for

if i >maxiter and not converged then
throw exception
end if

finalization (finalize) procedures of the coupling scheme initialize and finalize the agents and actions in the
scheduled order, respectively. Its execution (solve) procedure takes the current time and the pre-determined
time step, runs the actions, and then returns the new time. The coupling scheme also provides interfaces to
the top-level iterators for input, output, and obtaining the maximum time step, which invoke their counter-
parts of the agents.

D.3.4 Predictor-corrector lterations

Coupling with predictor-corrector (PC) iterations generalizes the basic coupling scheme described above.
Besides the standard actions, coupling with PC iterations requires an inner loop to repeat the base coupling
algorithm, until the interface conditions have converged, or a maximum number of iterations have been
reached. Its execution requires some additional services, such as checking convergence and storing and
restoring data. Procedure 3 describe the sequence of such a PC iteration, in which different base coupling
schemes can be plugged.

D.4 Predefined Actions

To support implementations of coupling schemes, we define four types of actions: the execution of a physics
module, interpolation of boundary conditions, manipulation of jump conditions, and operations for support-
ing PC iterations.

D.4.1 Solve

This action is physics dependent, and is defined in an agent. It takes the input and output of the physics
module as the Dataltem lists of the arguments, and takes a pointer to the parent agent as its wildcard argu-
ment.

A
AVA |llinois Rocstar LLC SIM Users Guide

D.4.2 Interpolate

This action in general handles interpolation or extrapolation in time for one Dataltem. Except for time
zooming, it is the sole building block for update_bc() and update_gm() functions of an Agent instance.
There can be different types of interpolation schemes. In general, its constructor takes following arguments:

* The interpolation scheme, passed in as the wildcard argument, which can be one of the EXTRAP_LINEAR,
INTERP_LINEAR, EXTRAP_CENTRAL, INTERP_CENTRAL, INTERP_CONST;

* Three Dataltem names: current data, interpolated data, and old data. The old Dataltem is optional
and needed only for INTERP_CENTRAL and INTERP_LINEAR. For INTERP_LINEAR and EX-
TRAP_LINEAR, the action may construct a gradient Dataltem internally.

D.4.3 Jump Conditions

These are the high-level abstractions of the jump conditions in each type of coupling, such as motion transfer,
load transfer, heat transfer, mass transfer, momentum transfer, etc..

D.4.4 Actions for PCCoupling

PCCoupling requires some special services, including checking convergence and storing and restoring data.
These special services are defined as protected classes within PCCoupling. These actions are manually
scheduled and are called directly by the Procedure 3, instead of by a scheduler.

PCService PCService serves as the base class for the implementation of the other services in this sub-
section. Its constructor takes a list of Dataltem names. The given Dataltems may or may not belong to the
same user window. The init() operation groups the Dataltems received by the constructor based on their
owner windows, and creates one buffer window for each owner window by using the connectivity tables (to
replicate the panes) and then cloning the listed Dataltems in it. The buffer data created will not be saved for
restart. The action provides a protected utility function copy(dir) to help the implementation of subclasses.
The function copies data Dataltems from user windows to buffer windows or vice versa, depending on the
argument.

CheckConvergence The class CheckConvergence is a subclass of PCService, in charge of managing
memory space for backing up user-specified interface quantities, to check whether PC iterations have con-
verged. Besides inheriting the init() operation from PCService, it has two public interface functions:

* set_tolerance(attr, tol, norm): sets the tolerance of a given Dataltem for a specific norm.

* check(ipc) takes the current iteration index of the PC-iterations as input, and compares the norms
of the Dataltems against the preset tolerances. If all tolerances are met, it returns true; otherwise, it
copies the current solution for later comparison and then returns false.

A
AVA |llinois Rocstar LLC SIM Users Guide

Backup The class Backup is also a subclass of PCService, in charge of managing memory space for
backing up user-specified data Dataltems after PC iterations have converged, and recovering data if not yet
converged. Besides inheriting the init() operation from PCService, it has two public interface functions:

* store(): copies the data from CI windows to buffer windows;

* restore(): copies data from buffer windows back to CI windows.

D.5 Schedulers
D.5.1 Sequential

The simplest type of scheduler is to schedule the operations of the actions based on the order of their
registration. It does not require constructing DAGs. It is particularly convenient for implementing simple
derived actions, and should suffice for many simpler coupling schemes.

D.5.2 Concurrent

More sophisticated schedulers can allow execution of multiple independent actions concurrently and on
different sets of processors. The concurrent scheme requires construction of DAGs, and may make use of
sophisticated scheduling algorithms for optimal performance.

D.5.3 Interprocess

The most sophisticated schedulers can allow execution of independent actions to run on different processes,
and potentially allow migration of actions.

D.6 Predefined Agents

Agents represent each of the physics modules which are typically written in a separate library in Fortran
90. Agents provide support to initialize the physics modules and drive their simulations. The base Agent
class implements common features required by all physics modules including file I/O (using SimlO), and
initialization of COM function handles.

In general, a given physics code will present a CI with a set of windows. The functions and data presented in
application-specific CI are, in general, arbitrary. This situation necessitates multiple Agents. An application-
specific Agent derives from a domain-specific Agent and uses the application-specific CI to present the
desired interface to the SIM coupling constructs. Domain-specific agents are discussed below.

D.6.1 Fluid agent

The class FluidAgent is designed to present a computational fluid dynamics (CFD) interface that can be
used in the advanced SIM coupling constructs. An arbitrary CFD application publishes its native data and
functions through the CI window, and an application-specific Agent derives from FluidAgent and massages
the application’s CI so that it conforms. Together, the application-specific Agent and the FluidAgent create
all necessary COM windows for boundary condition data that are used in coupled simulations. It defines the
subroutine to write restart data files using Sim/O/SimOUT. It also creates window for convergence check.

A
AVA |llinois Rocstar LLC SIM Users Guide

D.6.2 Solid agent
The class SolidAgent is designed to present a computational structural mechanics (CSM) interface that can
be used in the advanced SIM. It creates all necessary COM windows for boundary condition data that are

used in coupled simulations. It defines the subroutine to write restart data files using Rocout. It also compute
integrals for conservation check.

D.6.3 Burn agent
The class BurnAgent is designed to work with transient thermal solvers, ignition, and burn-rate providers.

It creates all necessary COM windows for boundary condition data that are used in coupled simulations. It
defines the subroutine to write restart data files using SimlO.

D.7 Predefined Coupling Schemes
The class Couple implements the basic functions of a coupling scheme, which is composed of a number of
agents and a scheduler. The definition of a particular coupling scheme is defined in the constructors of a

derived Couple class. The physics details of each coupling scheme are defined in an (upcoming) manual -
Numerical Coupling Interface in SIM.

D.7.1 Fluid-alone

Fluid alone simulation includes fluid only with or without combustion.

D.7.2 Solid-alone

Solid alone without combustion. It is implemented in derived class SolidAlone.

D.7.3 Fluid-solid interaction

Fluid solid interaction includes both fluid and solid modules, but without combustion. The following derived
classes are implemented: SolidFluidSPC for solid, fluid, no combustion, simple staggered scheme with P-C;
SolidFluidBurnSPC for solid, fluid, combustion and simple staggered scheme with P-C; FluidSolidISS for
fluid, solid and no combustion using improved staggered scheme.

D.7.4 Fluid-solid-combustion interaction

Similar to fluid-solid interaction but with combustion. It is implemented in derived class SolidFluidBurnSPC
for simple staggered scheme with P-C, and SolidFluidBurnEnergySPC with simple staggered scheme with
burn energy.

A
AVA |llinois Rocstar LLC SimlO Users Guide

E SimlO User’'s Guide

SimlO Users Guide
Version 0.1.0 lllinoisRocstar LLC October 25, 2016

License

The software package sources and executables referenced within are developed and supported by Illinois
Rocstar LLC, located in Champaign, Illinois.The software and this document are licensed by the University
of Illinois/NCSA Open Source License (see opensource.org/licenses/NCSA). The license is included
below.

Copyright (c) 2016 Illinois Rocstar LLC
All rights reserved.

Developed by: Illinois Rocstar LLC

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the ‘‘Software’’),
to deal with the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimers.

* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimers in the documentation
and/or other materials provided with the distribution.

* Neither the names of Illinois Rocstar LLC, nor the names of its contributors
may be used to endorse or promote products derived from this Software without
specific prior written permission.

THE SOFTWARE IS PROVIDED ‘‘AS IS’’, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE CONTRIBUTORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS WITH THE SOFTWARE.

For more information regarding the software, its documentation, or support aggreements, please contact
Ilinois Rocstar at:

¢ tech@illinoisrocstar.com

» sales@illinoisrocstar.com

126

opensource.org/licenses/NCSA

A
AVA |llinois Rocstar LLC SimlO Users Guide

E.1 Functionality

SimIN creates a series of COM windows by reading in a list of files in either HDF or CGNS format. The
files are self-contained in that they contain not only field data but also metadata (such as sizes, data types,
locations, and units), which are needed to create COM windows. SimIN maps the “blocks” in the HDF
files or “zones” in CGNS files into panes in COM windows. SimIN can be called collectively on multiple
processes, or by a single process in a sequential program, in which MPI does not need to be initialized.

E.2 API

SimIN provides a simple API while maintaining the necessary flexibility and efficiency. It provides two sets
of functions: the first set reads in metadata from the files (and can optionally read in array data as well), and
the second set passes the array data from the files (or from COM’s memory space if data are already loaded)
to users memory space. The API are typically called through COM_call_function (see COM Users Guide)
and hence all arguments are passed by pointers (references).

E.2.1 Read Window

o read metadata from files, a user can use one of the following two functions to read a single window or a
series of windows, respectively.

* void read_window(const char *filename_patterns,
const char *window_name,
const MPI_Comm *comm=NULL,
const RulesPtr *is_local=NULL,
char *time_level=NULL,
const char *str_maxlen=NULL);

* void read_windows(const char *filename_patterns,
const char *window_prefix,
const char *material_names=NULL,
const MPI_Comm *comm=NULL,
const RulesPtr *is_local=NULL,
char *time_level=NULL,
const char *str_maxlen=NULL);

The argument filename_patterns specifies a list of zero, one or more patterns (regular expressions) of the
files to be read. Multiple patterns should be separated with empty spaces. If there is no file matching
the patterns in filename_patterns on all processes (where filename_patterns can be empty or not), then a
warning message will be printed, and an empty window (or windows) will be created. If there are matching
files on any process, then a window (or windows) will be created by mapping from the matching files. It
is guaranteed that each window defines all the Dataltems existing in any of the blocks (or zones) of its
corresponding material in the files read by the processes within the given MPI communicator. If a pane has
no data for a particular Dataltem in its corresponding block (or zone), then the array associated with the
Dataltem will not be allocated in the pane.

The argument window_prefix specifies the window name (in the case of read_window()) or a prefix of
the name(s) of the window(s) (for read_windows()) to be created. For read_windows, the argument ma-
terial_names specifies a list of (space-separated) materials to be read from the files, and these strings are

A
AVA |llinois Rocstar LLC SimlO Users Guide

appended to window_prefix to obtain the complete window names. If the material_name is NULL or the
empty string, then it is assumed that the files contain only one type of material, and the window name will
be window_prefix. Note that the windows created by these functions must be deleted by the user by calling
COM_delete_window after usage.

Among the remaining more advanced arguments, comm specifies an MPI communicator. If comm is not
present or is NULL, then the default communicator is MPI_COMM_SELF. The arguments is_local is a
function pointer of type

void (*)(const int &pid, const int &comm_rank, const int &comm_size, int *local),

which determines whether a pane of given block ID (HDF) or zone ID (CGNS) will be read by the current
process. The first three arguments are input-only and the final argument is output-only. The last two argu-
ments are for setting and obtaining the time level of the dataset. If time_level is a nonempty string, it will be
used as an input, and the functions read only those datasets that have the matching time stamp; otherwise,
all datasets are assumed to have the same time stamp, and that of the first dataset read from the files will
be returned by copying up to *str_maxlen characters (including a null terminator) into time_level, if both
time_level and str_maxlen are present and not NULL pointers.

E.2.2 Read by Control File

o allow more flexible user control, SimIN can also obtain HDF/CGNS file names and pane IDs from a
user-provided control file.

* void read_by_control_file(const char *control_file_name,
const char *window_name,
const MPI_Comm *comm=NULL,
char *time_level=NULL,
const char *str_maxlen=NULL);

The control file contains a number of control blocks, each of which has up to four fields (a process rank, a
list of file names, a list of pane IDs, and optionally, a material name), as described shortly, and each filed
in general should be on one line. If present, the material name must be the same in all control blocks.
At runtime, a process obtains the file names and pane IDs from the first control block that has a matching
process rank. If comm is NULL, the default communicator is MPI_COMM_SELF, and the rank for all
processes will be 0; if comm is present and is not MPI_COMM_NULL, then the process rank in the given
MPI communicator will be used; if comm is MPI_COMM_NULL, then the rank of the current MPI process
is replaced by a wild card, and the panes in all the files listed in all the control blocks will be read. In
other words, when comm is MPI_COMM_NULL, all the panes in all the files listed in the control file will
be considered local. This wild-card feature is useful for a serial application to read in all the panes, which
would have been distributed by the control file onto different processes in a parallel run.

©Proc: arks the beginning of a process block, followed by a process’s rank. A process reads in all the
blocks that match the current process rank. A wild card **’ (without quotes) can be used after @Procs: to
match any process. If the rank of the current process is a wild card (i.e., *comm==MPI_COMM_NULL),
then all blocks will match the current process.

A
AVA |llinois Rocstar LLC SimlO Users Guide

©Files: list of zero, one, or more file name patterns separated by empty spaces. A file name can contain
the following place holders:

1. %dp for process rank, where d is an integer indicating the number of digits in the rank. If the
number d is absent, then the default value is 4. If the current process’s rank is a wild card (i.e.,
*comm==MPI_COMM_NULL), then any d digits in a file name will match.

2. %di for pane ID, where d is an integer indicating the number of digits in the pane ID. It maps a file
with a pane ID n onto a process, if n will be mapped onto the current process by the pane mapping.
The default value of d is 4.

3. %db for block ID, where d is an integer indicating the number of digits in the block ID. This option
can only be used in conjunction with the @Block or @BlockCyclic mapping in the next subsection,
which maps a file with a block ID n onto a process, if n*base will be mapped onto the current process
by the mapping. The default value of d is 4.

4. %t for time stamp, which will be replaced by the time_level input argument.

For example, a file name “fluid*_%t_%4p.*” with a time level “00.000000” will be replaced by
“fluid*_00.000000_0000.*” on process 0 and by “fluid*_00.000000_0001.*” on process 1. In general, a file
name may use at most one of %dp, %di or %db. If the listed file names contain no directory path, then the
files are assumed to be in the same directory that contains the control file. If a file name contains a relative
path, then the path is considered to be relative to the current working directory at runtime.

@Panes: pecifies a list of zero, one, or more pane IDs to be read by the process. For convenience, the user
can also specify one of the following mapping rules:

* @AIl (or equivalently a wild card **’ without quotes)
All panes are mapped onto the process.
¢ @Cyclic [<offset>]

A pane is mapped onto a process if

mod(panelD — offset, nprocs)=rank.
* @BlockCyclic <base> [<offset>]

A pane is mapped onto a process if
mod((panelD-offset)/base, nprocs)=rank.

The default value of offset is 0. For example, for four processes, “@BlockCyclic 100 100” for 14 panes
results in the following mapping:

Process 0: 100 500 900 1300
Process 1: 200 600 1000 1400
Process 2: 300 700 1100
Process 3: 400 800 1200

A
AVA |llinois Rocstar LLC SimlO Users Guide

¢ @Block <nblocks> <base> [<offset>]
A pane is mapped onto a process if

(panelID — offset) / (quot x base 4 base) =rank, if rank < rem,
(panelD — offset — rem)/ (quot x base) =rank, otherwise,

where nblocks=quot*nprocs+rem. The default value of offset is 0. For example, for four processes,
“@Block 14 100 100” results in the following mapping:

Process 0: 100 200 300 400
Process 1: 500 600 700 800
Process 2: 900 1000 1100

Process 3: 1200 1300 1400

Note that the @Panes field may be left out if the @Files field is empty. When *comm==MPI_COMM_NULL,
then the @Panes field is immaterial.

©Material: To be implemented.] The keyword is followed by a character string to indicate the name of
the material to be read. This field is optional and typically need not to be present when there is only one
type of material in the files (i.e., when all the data in the files belong to the same window).

Sample Control Files he following is a generic control file specifying each process to read in a rank-
dependent file for a given time stamp, with block cyclic mapping for panes.

O@Proc: *
@Files: fluid*_Y%t_%4p.hdf
Q@Panes: @BlockCyclic 100 1

The following is a specific control file for two processes.

@Proc: O

Q@Files: fluid*_00.00_0000.hdf
@Panes: 1 3 57 9

OMaterial: fluid

@Proc: 1

Q@Files: fluid*_00.00_0001.hdf
@Panes: 2 4 6 8 10

@Material: fluid

Read Parameter File o read parameters from a file into a window, the following function should be
used:

* void read_parameter_file(const char *file_name,

const char *window_name,
const MPI_Comm *comm=NULL);

130

A
AVA |llinois Rocstar LLC SimlO Users Guide

The function reads parameters from the given file and stores them as window Dataltems in the given pa-
rameter window. If the window already exists, then only the Dataltems that already exist in the window are
read from the file. Otherwise a new window is created and all of the parameters are read in. Process 0 of the
communicator should read the parameters, and then broadcast to all the processes. If comm is not specified,
then the communicator of the window is used. If an option is listed more than once in the parameter file, the
last value for that option will overwrite the others.

E.2.3 Obtain Dataltem

o0 obtain array data from files, the following function should be used:

¢ void obtain_dataitem(const Dataltem *Dataltem_in,
Dataltem *Dataltem_user,
int *pane_id=NULL);

This function fills the second (destination) Dataltem from the files using the data corresponding to the first
(source) Dataltem. The destination and source Dataltems can be the same. The Dataltems could be a user-
defined Dataltem, or an aggregate Dataltem, such as “window.conn”, “window.mesh”, “window.pmesh”,
“window.atts”, and “window.all”’, which indicate obtaining connectivity tables only, mesh only (nodal coor-
dinates and connectivity tables), mesh with pane connectivity, Dataltems (everything except for pmesh), and
everything (including pmesh and Dataltems), respectively. If the third argument is present and is nonzero,

then only the pane with the given ID will be copied.

E.2.4 Initialization and Finalization
SimIN provides the following routines for initialization and finalization.
e extern “C” void SimIN_load_module(const char *module_name);

Usually this procedure is invoked by COM_load_module(“SimIN”’, module_name). It creates a window
with name <module_name> in COM and register its functions into the window.

e extern “C” void SimIN_unload_module(const char *module_name);

This procedure is typically invoked by COM_unload_module(“SimIN”, module_name). It unloads the
module from COM by deleting the window created by SimIN_load_module.

E.3 Implementation Notes

n read_window, in general, only metadata are read into memory to create windows. The data buffers of
the windows may or may not be allocated yet. In obtain_dataitem, SimIN obtains data from the files to fill
in user buffers. However, for certain file formats, an implementation of SimIN may read in physical data
during read_window as well. The downside of the latter approach is higher memory requirements.

The function obtain_dataitem can permute memory layout of an Dataltem. In general, an Dataltem in
SimIN can have either staggered or contiguous layout with a stride 1, but the user Dataltem can have either

131

A
AVA |llinois Rocstar LLC SimlO Users Guide

staggered or contiguous layout and can also have a stride other than 1. The function obtain_dataitem support
all these layouts.

The functions in the API can be implemented as C++ static member functions of SimIN, or regular member
functions. In the former case, the functions are registered with COM using COM_set_function; in the latter
case, they are registered using COM_set_member_function. SimIN works even if MPI_Init was not called.
SimIN must be Charm-safe in the sense that there is no global (or static) variable [Current implementation
is not yet Charm-safe].

E.4 SimOUT
E.4.1 Functionality

SimOUT writes a given Dataltem in a COM window into a file in one of the supported formats (HDF and
CGNS), which can be read by application codes through SimIN, and by Rocketeer (and CGNS-compliant
tools, such as Tecplot, for CGNS format) for visualization. SimOUT can support background output by
creating an 1I/O thread to allow overlap computation with I/O.

E.4.2 API

Similar to SimIN, SimOUT API typically should be called through COM_call_function.

E.4.3 Output

* void write_dataitem(const char *filename_pre,
const COM::Dataltem *attr,
const char *material,
const char *timelevel,
const char *mfile pre = NULL,
const MPI_Comm *comm=NULL,
const int *pand_id=NULL);

This function writes an Dataltem of local panes or of the pane with the given Pane ID (*pane_id, if present)
into a file, where the file name is <fname_pre><process_rank>.<suffix>, where <process_rank> is the rank
of the given MPI process, whose number of digits can be controlled by set_option() (see below). This
function will either overwrite the file if the output mode (set by set_option()) is “w” or append to the file if

TP

the mode is “a”.

If mfile_pre is not null and nonempty, then the output file will make a reference to the file <mesh_pre><process_rank>.<suffix
for the pmesh data with the same material name, and write only non-pmesh data into the current file. When

appending data Dataltems into a file that already contains the pmesh, then mfile_pre should be the same as

filename_pre.

When calling write_dataitem multiple times to write several datasets into the same set of HDF files, it is
important that the write operations for different panes must not interleave (i.e., the data for the same pane
must be written out consecutively). In general, different windows can be written into the same set of files,
but these windows must have different material names.

132

A
AVA |llinois Rocstar LLC SimlO Users Guide

Parameters:

1. fname_pre: the prefix of the file name, which can contain the directory part of the file.

2. attr: a reference to the Dataltem to be written. The given Dataltem can be either a user defined
Dataltem, or one of the following aggregate Dataltems: “window.mesh” (coordinates and connectiv-
ity), “window.pmesh” (mesh with pane connectivity), “window.atts” (all the data in the pane except
for pmesh), or window.all” (all the data).

3. material: the material name to distinguish different windows. It is recommended that different win-
dows use different material names, and is required if more than one window is written into the same
HDF/CGNS file.

4. timelevel: a time stamp of the dataset.

5. mfile_pre: the prefix of the name of the file that contains the pmesh data of the given Dataltem. If not
present or is empty, then the pmesh will be written along with the given data Dataltems. If mfile_pre
does not start with “/” (i.e., does not have an absolute path), then the path of the mesh file must
be either relative to the directory for fname_pre (with higher precedence) or relative to the current
working directory (with lower precedence).

6. comm: the MPI communicator in which the process rank should be obtained. If comm is NULL,
then the default value is the communicator of the owner window of the Dataltem (note that the default
value is different from that with SimIN::read_window).

7. pane_id specifies the pane (or panes) to be written. If pane_id=NULL or *pane_id=0, then all panes
will be written. If *pane_id>0, then only that specific pane will be written. It is an error if *pane_id<O0.

Instead of using set_option to control the output mode, a user can also use one of the following two functions,
which correspond to overwrite and append, respectively. [To be implemented.]

* void put_dataitem(const char *filename_pre,
const COM::Dataltem *attr,
const char *material,
const char *timelevel,
const char *mfile pre = NULL,
const MPI_Comm *comm=NULL,
const int *pand_id=NULL);

* void add_dataitem(const char *filename_pre,
const COM::Dataltem *attr,
const char *material,
const char *timelevel,
const char *mfile pre = NULL,
const MPI_Comm *comm=NULL,
const int *pand_id=NULL);

These functions take the same arguments as write_dataitem.

133

A
AVA |llinois Rocstar LLC SimlO Users Guide

E.4.4 Metadata Output

* void write_rocin_control_file(const char *window_name,
const char *file_prefixes,
const char *control_file_name);

This function generates a control file for SimIN for the given window and datafile prefixes. This control file
can be used with SimIN’s read_by_control_file member function.

* void write_parameter_file(const char *file_name,
const char *window_name,
const MPI_Comm *comm=NULL);

This function writes out the parameters defined in the given window to a parameter file. Only process 0 of
the MPI communicator writes the file. If comm is NULL, then the communicator of the window associated
with window_name is used.

E.4.5 Synchronization
* void sync();

Wait for the completion of an asynchronous write operation. It is needed only if the ”async” mode is set to
“on” by set_option, described as follows.

E.4.6 Control

* void set_option(const char *option_name,
const char *option_val);

Set an option for SimOUT, such as controlling the output format. The currently supported option_name and
their potential values are:

“format”: with values “HDF” and “CGNS” (default is “HDF”).

“async”: with values “on” and “off” for enabling/disabling background out, respectively (de-
fault is off).

“mode”: with values “w” and “a” (corresponding to overwrite the file and append to the file),
which control the output mode of write_dataitem (default is “w’”’).

“localdir”: a directory path to prepend to the filename prefixes given to write_dataitem, put_dataitem
and add_dataitem (default is).

“rankwidth”: the width of the process-rank to be appended to the filename_pre and mesh_pre
(default is “4”). If zero, then do not append process rank.

“pnidwidth”: the width of the pane ID to be appended to the filename_pre and mesh_pre after
appending process rank. Default value is 0, for which the pane ID is not appended.

“separator”: the character to use to separate the rank and pane ids in generated filenames (de-
fault is ““_""). A separator is only used if both “rankwidth” and “pnidwidth” are non-zero.

“errorhandle”: with values “abort”, “ignore”, or “warn”.

“ghosthandle”: with values “write” and “ignore”.

134

A
AVA |llinois Rocstar LLC SimlO Users Guide

Option names and values are case-sensitive.
 void read_control_file(const char *filename);

This function allows the user to set SimOUT options by means of a control file. The given file should be a
list of option name/values pairs, separated by an equals sign. For example:

format = CGNS
localdir = /turing/projects/csar/MyDataDir
errorhandle = abort

Any option name supported by set_option may be used.

E.4.7 |Initialization and Finalization

As SimIN, SimOUT provides the following routines for initialization and finalization.
e extern “C” void SimOUT _load_module(const char *module_name);

Usually this procedure is invoked by COM_load_module(“SimOUT”, module_name). It creates a window
with name <module_name> in COM and register its functions into the window.

e extern “C” void SimOUT _unload_module(const char *module_name);

This procedure is typically invoked by COM_unload_module(“SimOUT”, module_name). It unloads the
module from COM by deleting the window created by SimOUT _load_module.

E.4.8 Implementation Notes

The functions in the API can be implemented as C++ static member functions or regular member functions
of SimOUT. In the former case, the functions are registered with COM using COM_set_function; in the
latter case, they are registered using COM_set_member_function. SimOUT works even if MPI_Init was not
called, in which case the rank is assumed to be 0. SimOUT must be Charm-safe in the sense that there is no
global (or static) variable.

E.4.9 Sample Code

Samples codes of SimIN and SimOUT can be found under SimIO/IN/test and SimIO/OUT/test, respectively.
These are built automatically with MPACT.

135

A
AVA \liinois Rocstar LLC Simpal Users Guide

F Simpal User’s Guide

Simpal Users Guide
Version 0.1.0 lllinoisRocstar LLC October 25, 2016

License

The software package sources and executables referenced within are developed and supported by Illinois
Rocstar LLC, located in Champaign, Illinois.The software and this document are licensed by the University
of Illinois/NCSA Open Source License (see opensource.org/licenses/NCSA). The license is included
below.

Copyright (c) 2016 Illinois Rocstar LLC
All rights reserved.

Developed by: Illinois Rocstar LLC

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the ‘‘Software’’),
to deal with the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimers.

* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimers in the documentation
and/or other materials provided with the distribution.

* Neither the names of Illinois Rocstar LLC, nor the names of its contributors
may be used to endorse or promote products derived from this Software without
specific prior written permission.

THE SOFTWARE IS PROVIDED ‘‘AS IS’’, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE CONTRIBUTORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS WITH THE SOFTWARE.

For more information regarding the software, its documentation, or support aggreements, please contact
Ilinois Rocstar at:

¢ tech@illinoisrocstar.com

» sales@illinoisrocstar.com

136

opensource.org/licenses/NCSA

A
AVA \liinois Rocstar LLC Simpal Users Guide

F.1 Overview

Simpal is an IMPACT service module which provides some basic algebraic operations on Dataltems regis-
tered with COM. Written in C++ using COM’s developers interface, Simpal’s interface functions take point-
ers to COM::Dataltem objects or scalar numbers as arguments, and should in general be invoked through
COM using COM_call_function. In the implementation, each process computes on the datasets of its local
panes. Most operations implemented in Simpal are embarrassingly parallel requiring no inter-process or
inter-pane communications.

F.2 Requirements and Conventions
All operations of Simpal share similar requirements and conventions on the operands, listed as follows.

* All operands must have the same base data type.

* All nodal or elemental Dataltems of an operation must be associated with the same set of nodes or
elements.

* At least one of the input operands must be a nodal or elemental Dataltem.

* For functions taking two inputs and without the _scalar suffix (including add(), sub(), mul(), and
div()), all input operands must be Dataltem objects, and one is allowed to be a panel or windowed
Dataltem. In the corresponding functions with the _scalar suffix, the second input argument must be
a scalar number.

* Each Dataltem operand has two versions: a scalar version (with only one entry per entity) and a vector
version (with only one entries per entity). An Dataltem operand can be either one, except that for swap
and copy, the two Dataltem operands must have the same number of components.

* Dataltem operands with more than one data entry per entity (where the entity is a window, pane,
a node, or an element for windowed, panel, nodal or elemental, respectively) must have the same
number of entries per entity.

* Itis legal to use a Dataltem with only one entry per entity in place of a Dataltem with more than one
entry per entity. Simpal will use the value of that single entry to compute against with all entries of
another operand.

* In most cases, it is legal to mix contiguous and staggered layouts of nodal and elemental Dataltems.

* Output arguments are usually the last arguments, except for functions with optional input arguments.

Most of these requirements are checked at runtime by Simpal if possible. A violation will cause a run to
abort. A user, however, can disable error checking at compile time by passing -DNDEBUG to the C++
compiler.

F.3 Simpal Interface
F.4 Supported Operations
The following table lists the operations supported by Simpal, in which we use S, W, P, N, and E to abbreviate

different types of operands.

137

A
AVA \liinois Rocstar LLC Simpal Users Guide

S = scalar pointer

W = windowed Dataltem
P = panel Dataltem

N = nodal Dataltem

E = elemental Dataltem

4+, — X, + N=NoWN=NoPN=NoN;
E=EcW,E=EoPE=ECE
scalar +, —, X, =+ N=NoS,E=E<S
dot W/P/N=(N,N),W/P/E = (E, E)
dot-scalar S=(N,N),S=(E, E)
2-norm W/P/N =|2|,N,W/P/E =|2|,E
2-norm-scalar S=|2],N,S=|2|,E
swap NN, EE
neg N=-NE=-F
copy N=W,N=P,N=N,E=W,E=P,E=E
copy-scalar N=S,E=S
axpy N=WN+N,N=PN+N,N=NN+N
E=WE+E,E=PE+E,E=EE+E
axpy-scalar N=SN+N,E=SE+E

F.5 Simpal API

* void Simpal_load_mudule(const char name)
void Simpal_unload_mudule(const char *name)

Loads/unloads Simpal to/from COM by creating a service CI window of the given name and reg-
ister its functions.

* void add(const Dataltem *x, const Dataltem *y, Dataltem *z)
void sub(const Dataltem *x, const Dataltem *y, Dataltem *z)
void mul(const Dataltem *x, const Dataltem *y, Dataltem *z)
void div(const Dataltem *x, const Dataltem *y, Dataltem *z)

Performs the operation z = xop y, where op is +,—, X, or +. The output argument z must be
nodal or elemental; one of x and y must have the same type as z, and the other can have the same
type or be a windowed or panel Dataltem. If all operands are nodal or elemental, then the operation is
performed node-wise or element-wise, respectively. If one of the operand is windowed, then its value
is used in the operation of every node/element. If one of the operand is panel, then its value in a pane
will be uses in the operations on the nodes/elements of this pane. It is legal to have the same Dataltem
to appear multiple times in the operands.

* void add_scalar(const Dataltem *x, const void *y, Dataltem *z, const char *swap = NULL)
void sub__scalar(const Dataltem *x, const void *y, Dataltem *z, const char *swap = NULL)
void mul_scalar(const Dataltem *x, const void *y, Dataltem *z, const char *swap = NULL)
void div_scalar(const Dataltem *x, const void *y, Dataltem *z, const char *swap = NULL)
Performs the operation z = xop y or z = y op x, if swap is null or not, respectively, where op is
+,—, %X, or . Here, the scalar behaves similar to a window Dataltem in their corresponding functions

138

A
AVA \liinois Rocstar LLC Simpal Users Guide

without _scalar. It is a user’s responsibility to ensure that the data type of the scalar is the same as
the base data types of the Dataltems. Again, it is legal to have the same Dataltem to appear multiple
times in the operands.

* void maxof_scalar(const Dataltem *x, const void *y, Dataltem *z)
Performs the operation z = max(x, y). It is a user’s responsibility to ensure that the data type of the
scalar is the same as the base data types of the Dataltems. Again, it is legal to have the same Dataltem
to appear multiple times in the operands.

* void dot(const Dataltem *x, const Dataltem *y, Dataltem *z, const Dataltem *mults = NULL)

Performs the operation z = (x, y). The inputs x and y must be nodal or elemental. The output z
can be windowed, panel, nodal, or elemental. If z is windowed, then the result is the dot product for x
and y over the whole window. If z is panel, the result is over the each pane. If z is nodal or elemental,
then the results are over each node or element (i.e., the value associated with a node is treated as
vectors).

The optional argument mults specifies the multiplicity of the nodes or elements, i.e., the number
of times a node or pane appears in the window. It is useful only when z is a windowed Dataltem. The
product of of the values associated with a node or element will be divided by its multiplicity before
being summed. When no value is passed for mults, then a multiplicity of 1 is assumed for each node
or element.

Note: An MPI all-reduce is needed for this operation if the solution is a scalar.

* void nrm2(const Dataltem *x, const Dataltem *y, const Dataltem *mults = NULL)

Performs the operation y = || x ||,. This function works the same as dot(), except that it takes only 1
required input argument instead of 2.

* void swap(Dataltem *x, Dataltem *y)

Swaps the contents of x and y. x and y must be nodal or elemental and must have the same number
of entries per entity.

* void neg(Dataltem *x)

Negate the signs of the values of x, where x must be nodal or elemental and must have the same
number of entries per entity.

* void copy(const Dataltem *x, Dataltem *y)

Assigns the value of x to y. The argument y must be nodal or elemental. x can be windowed,
panel, nodal, or elemental. If x is windowed, then its value is assigned to every node or element in
y. If x is panel, then each node or element of y receives the value of x associated with its pane. If x
is nodal or elemental, then each node or element of y receives the value of its corresponding node or
element of x.

* void axpy(const Dataltem *a, const Dataltem *x, const Dataltem *y, Dataltem *z)

139

A
AVA \liinois Rocstar LLC Simpal Users Guide

Performs the saxpy operation z = ax+7y. X, y, and z must be nodal or elemental. The Dataltem
a can be windowed, panel, nodal, or elemental.

* void dot_scalar(const Dataltem *x, const Dataltem *y, void *z, const Dataltem *mults = NULL)
void nrm2_scalar(const Dataltem *x, void *z, const Dataltem *mults = NULL)
void copy_scalar(const void *x, Dataltem *y)
void axpy_scalar(const void *a, const Dataltem *x, const Dataltem *y, Dataltem *z)

Has the same semantics as their corresponding version without _scalar, except that the scalar ar-
gument acts in place of a window Dataltem.

F.6 Building and Testing Simpal

Simpal is integrated and built as a part of IMPACT. Simpal comes with a test program named blastest.C in
the test subdirectory, and the test is built automatically with IMPACT. The test program takes no command-
line arguments. Instead, it will prompt for a user to choose interactively the types and layout of operands
and the operations to be tested.

140

A
AVA |llinois Rocstar LLC SurfX Users Guide

G SurfX User’s Guide

SurfX
Version 0.1.0 lllinoisRocstar LLC October 25, 2016

License

The software package sources and executables referenced within are developed and supported by Illinois
Rocstar LLC, located in Champaign, Illinois.The software and this document are licensed by the University
of Illinois/NCSA Open Source License (see opensource.org/licenses/NCSA). The license is included
below.

Copyright (c) 2016 Illinois Rocstar LLC
All rights reserved.

Developed by: Illinois Rocstar LLC

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the ‘‘Software’’),
to deal with the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimers.

* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimers in the documentation
and/or other materials provided with the distribution.

* Neither the names of Illinois Rocstar LLC, nor the names of its contributors
may be used to endorse or promote products derived from this Software without
specific prior written permission.

THE SOFTWARE IS PROVIDED ‘‘AS IS’’, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE CONTRIBUTORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS WITH THE SOFTWARE.

For more information regarding the software, its documentation, or support agreements, please contact
Ilinois Rocstar at:

¢ tech@illinoisrocstar.com

» sales@illinoisrocstar.com

141

opensource.org/licenses/NCSA

A
AVA |llinois Rocstar LLC SurfX Users Guide

G.1 Overview

SurfX is a service utility for transferring data between surface meshes in a fashion that is numerically accu-
rate and physically conservative. SurfX transfers data in two steps. First, it constructs a common refinement
of two surface meshes using a sophisticated algorithm described in Jiao’s thesis. This step is done sequen-
tially and is typically done off-line. Second, it transfers data using a least squares formulation that minimizes
errors in the L, norm. The user also has the option of using a simple interpolation scheme for the second
step, but it will not be conservative.

SurfX supports both node-centered and face-centered data, and can transfer between these two types of data
in any combination. It supports both multi-block structured meshes and unstructured surface meshes with
mixed elements. For unstructured meshes, both first-order (3-node triangles and 4-node quadrilaterals) and
second-order (6-node triangles and 8- or 9-node quadrilaterals) elements are supported.

SurfX was implemented in C++ using COM’s API. Interprocessor communication is done through MPL.

G.2 SurfX API

SurfX should typically be called through COM by an orchestrator (such as Rocman in Rocstar). An appli-
cation does not interact directly with SurfX, except that they must register CI windows with COM. Note that
SurfX can only take nodal and elemental data attributes with contiguous layouts (i.e., no staggered layout).
See COM Users Guide for how to create CI windows. In this section, we will describe only the function
interface to be called from an orchestration module.

SurfX provides subroutines SurfX_load_module and SurfX_unload_module. Each takes a window name as
an input. Typically, the name is “RFC”. These two routines are the only ones that are not called through
COM_call_function. All the interface functions of SurfX are registered with COM as a member function
of a SurfX object, which encapsulates all the internal context of SurfX. In the following, we omit the SurfX
object in the argument list.

G.2.1 Overlaying Meshes

Construction of Overlay Because the overlay algorithm is sequential, the construction of the overlay is
typically done off-line using the surfdiver utility described in Section G.4. In a sequential run, a user may
want to construct the overlay on-line using the following interface.

overlay(const COM::Attribute *meshl, const COM::Attribute *mesh2, const MPI_Comm
*comm=NULL, const char *path=NULL, const double *tol1=NULL, const double *tol2=NULL)

The first two arguments are two COM objects referring to the mesh data of two windows. Only these two
arguments are mandatory and are sufficient for most cases. The third argument comm is an MPI commu-
nicator, which should be the same as the communicator on which the two input windows are distributed.
The argument path is the path where the output files should go. The remaining two arguments control the
tolerancing schemes used in the overlay algorithm, and they should be left blank.

A user can clean up the memory allocated for an overlay using the following interface.
clean_overlay(const char *winl, const char *win2)

It takes the window names of the two meshes as input.

142

A
AVA |llinois Rocstar LLC SurfX Users Guide

1/0 of Overlay After constructing the overlay, a user can write it out into binary files using the interface
write_overlay_sdv.

write_overlay_sdv(const COM::Attribute *meshl1, const COM::Attribute *mesh2, const char
*prefixI=NULL, const char *prefix2=NULL)

The first two arguments are two COM objects referring to the mesh data of two windows. Only these two
arguments are mandatory and are sufficient for most cases. The third and fourth arguments are the prefixes
that should be used for the output files. The default are the window names.

The overlay files can be read in using the following interface.

read_overlay_sdv(const COM:: Attribute *mesh1, const COM:: Attribute *mesh2, const MPI_Comm
*comm, const char *prefix1=NULL, const char *prefix2=NULL)

It takes an additional argument comm before the prefixes. This routine need to be called in parallel simula-
tions, and comm should be the communicator on which the CI windows are defined.

G.2.2 Data Transfer

After constructing an overlay or loading it in from files, the user can invoke data transfer for two attributes
using the interface least_squares_transfer.

least_squares_transfer(const COM:: Attribute *attl, COM::Attribute *att2, const int *ord=NULL,
double *tol=NULL, int *iter=NULL, const int *v=NULL)

Again, the first two arguments correspond to the source and target attributes, respectively, and only these
two are mandatory. The remaining arguments typically should not be used. The third argument specifies
what order of accuracy COM should use for quadrature rules, and the default is 2. The tol and iter arguments
specify the convergence criteria of the linear solver that SurfX uses. The last argument specifies the verbose
level, and the default is zero.

If a user would like to use interpolation for speed, the following interface can be used instead, whose
argument list is a subset of that of least_squares_transfer.

interpolate(const COM:: Attribute *attl, COM::Attribute *att2, const int *v=NULL)

G.3 Compiling SurfX

SurfX can be compiled using only the C++ compilers that reasonably conform to the ISO/IEC C++ standard
with supports for namespace, template, and STL. SurfX is known to compile with g++-2.91 or later on
various platforms (including Linux, Sun, SGI Origin 2000, IBM SP/2), SGI CC-7.30 and KAI CC-4.0 on
SGI Origin 2000, and the native C++ compiler (xIC) on IBM SP.

SurfX depends on COM, SurfMap, SurfUtil, SimlO, and Simpal, and builds under the CMake build system.
The recommended procedure is to do an “out-of-source” build by creating a build directory and then invok-
ing cmake on the source directory from the build directory. It is highly recommended to set CXX=mpicxx
before building SurfX.

A
AVA |llinois Rocstar LLC SurfX Users Guide

G.4 Surfdiver

Surfdiver is a preprocessor of SurfX for generating a common refinement of two surface meshes. It takes
two ASCII interface meshes files as input and generates binary overlay files for SurfX. These binary outputs
are compatible across all platforms that use either big- or small-endian. Therefore, you can run surfdiver on
any of your favorite platform and then take the output to the any machine.

G.5 Advanced Tuning for Feature Detection

SurfX automatically detects the corners and ridges of a surface mesh. For most models, the default parame-
ters set by SurfX would work. For some complex models, one can control the parameters of feature detection
by providing a control file <window name>.fc. This file should have five lines:

1. The first line contains four parameters for face angle: cosine of the upper bound, cosine of the lower
bound, the signal-to-noise ratio, and cosine of an open-end of a 1-feature.

2. The second line contains three parameters for angle defect: upper bound, lower bound, and signal-to-
noise ratio.

3. The third line contains three parameters for the turning angle: cosine of the upper bound, cosine of
the lower bound, and the signal-to-noise ratio.

4. The fourth line contains four parameters controling the filteration rules: the minimum edge length
for open-ended 1-features, whether to apply the long-falseness filteration rule, whether to apply the
strong-end filtration rule, and whether to snap 1-features of input meshes on top of each other.

5. The fifth line controls the verbosity level. The default value is one. Setting vebosity level to greater
than one will instruct SurfX to write out HDF files “*_fea.hdf”, which contain the feature information
and are very helpful for fine tuning feature detection.

The following is a sample control file containing the default values.

0.76604444 0.98480775 3 0.98480775 # Feature angles

1.3962634 0.314159265 3 # Angle defects
0.17364818 0.96592583 3 # Turning angles
6100 # Filteration rules
2 # Verbosity level

If the control file is missing, then the default values (as shown above) will be used. These default values
should work for most cases. For some other cases, it typically suffices to adjust the signal-to-noise ratios
(the third parameters of the first three lines) and the minimum edge length (first parameter of line 4) should
suffice.

G.5.1 Fine-Tuning Parameters
If it ever becomes necessary to fine-tune the feature-detection parameters, adjusting only the parameters

of feature angles (i.e., the first line of the .fc files) typically suffices. The following procedure is useful in
determining the proper values of feature angles:

144

A
AVA |llinois Rocstar LLC SurfX Users Guide

1. Find the ifluid_fea*.hdf and isolid_fea* .hdf files in the output directory. These files are generated by
surfdiver if the “.fc” files are present and the verbosity level in these files are greater than 1.

2. Convert these HDF files into Tecplot files using the utility hdf2plt. Typically, the commands look like
(note that the quotation marks are important):

(a) hdf2plt “ifluid_fea*.hdf" ifluid.plt
(b) hdf2plt “isolid_fea*.hdf" isolid.plt

3. Load the ifluid.plt and isolid.plt into two separate Tecplot sessions. Look at the contour of “frank”
(stands for feature rank) to eyeball the discrepancies of the detected features in the input meshes.

4. Use the “probe” tool of Tecplot to look at the values of “fangle” (stands for feature angles), and adjust
the feature-angle thresholds based on the values “fangle” of false features. Typically, if some edges
are marked as features in correctly, then one should increase the feature-angle thresholds; if some
feature edges are missing, then one should decrease the feature-angle thresholds.

G.6 Test Problems

SurfX includes a series of test problems in the directory test. These problems are meant to test the robustness
of the mesh overlay algorithm.

145

H SurfMap User’s Guide

146

ILLINOIS ROCSTAR

SurfMap User’s and Developer's Guide

[llinois Rocstar LLC
1800 S. Oak, STE 108
Champaign, IL 61820

SurfMap User's and Developer's Guide
147

12/1/13

SurfMap User's and Developer's Guide Page 1

1.0 Introduction

1.1 SurfMap Overview

SurfMap provides a small set of commonly used functions for communication among mesh
panes in the COM infrastructure. It is implemented in C++ and uses the COM infrastructure.
Typically, SurfMap's static member functions are called from within other COM modules.
Nevertheless, an interface is provided for using SurfMap as a COM module. It builds on all
platforms supported by Rocstar 3.

1.2 Related Documents
The information in this guide is supplemented by the following documents:
« “COM User's Guide”.

o “SimlO User's Guide”.

2.0 Purpose and Methods

SurfMap aids in the development of COM modules dealing with partitioned meshes by providing
commonly required inter-pane communication functions. An API provides access to a few of
these functions when the SurfMap module is loaded into the COM infrastructure. Other
functionality is available at a lower level through C++ classes. See 3.3 discusses SurfMap as a
COM module. The important SurfMap classes are discussed in this section.

2.1 Dual_connectivity

Element connectivity tables are a fundamental piece of a COM mesh. These tables list the nodes
which constitute each particular element. The dual connectivity table is a similar structure which
lists elements contained in a particular node. COM does not require the registration of a dual
connectivity table, but this class is available for compiling and accessing that information.

2.1.1 Constructors

explicit Pane_dual_connectivity(const COM::Pane *p, bool with_ghost = true)

Printed on Date:

12/1/13
148

SurfMap User's and Developer's Guide Page 2

Construct a Pane _dual connectivity for pane p. If with_ghost is true, then include ghost entities
in the construction.

2.1.2 Important Member Functions
void incident_elements(int node_id, std::vector<int>&e elists)

Fills elists with the list of elements containing the node with local id node _id.

2.2 Pane_boundary

Determines which nodes are on pane boundaries and which nodes are isolated. An Isolated node
is one which does not belong to any element. This can happen when a surface mesh is extracted
from a volume mesh. If an element of the volume mesh touches the surface with only a single
node, then that node will be isolated in the surface mesh.

2.2.1 Algorithms

Isolated nodes are determined in a straight forward fashion. The isolated node vector is
initialized to false for every node. Then, a pass is made over the element connectivity table(s)
during which every node seen is marked as not isolated.

Determining which nodes (and facets) are on the border is slightly more complicated.
Conceptually, this algorithm is simply facet matching. Facets which are not on the border are
sandwiched between two elements. If we consider facets as unordered sets of nodes, then these
facets are duplicated on the adjacent elements. Therefore, finding unique facets is equivalent to
finding the border.

Again, a pass is made over the element connectivity table(s). An inner loop iterates through
every facet of the current element. A four-tuple is created from the ids of the facet’s constituent
nodes. If the facet is triangular, then -/ is used as the fourth node id. We compare the four-tuple
to the set of all those already seen. If we find a duplicate, then both four-tuples are discarded.
After the entire element connectivity is processed, we are left with the set of border faces from
which computing border nodes is trivial.

2.2.2 Constructors

Pane_boundary(const COM::Pane *p)

Build a Pane boundary for pane p.

Pane_boundary(const Simple_manifold_& *pm)

Build a Pane boundary for the pane associated with the given manifold.

Printed on Date:

12/1/13
149

SurfMap User's and Developer's Guide Page 3

2.2.3 Other member functions

determine_border_nodes(
std::vector<bool> &is_border,
std::vector<bool> &is_isolated,
std::vector<Facet_ID > *b=NULL,
int ghost_level=0) throw(int)

Sets is_border[node id -1] to #rue if the node assocaited with the id is on the border, and to
false otherwise. Stores similar information for isolated nodes in is_isolated. If b is not NULL,
then it is filled with the set of faces which are on the pane border. The interpretation of
ghost_level is differenrt for structured and unstructured meshes. If the target pane has a
structured mesh, it determines how many ghost layers to include in the calculation. If
ghost_level > 0 and the mesh is unstructured, the all registered ghost entities are considered.

static void determine_borders(
const COM::Dataltem *mesh,
COM::Dataltem* is_border,
int ghost_level = 0)

Determines border nodes for the entire window associated with mesh and stores this information
in is_border. The ghost_level parameter is the same as in determine_border_nodes. Note
that the Dataltem stored is still pane border, and not the border of the mesh as a whole.

2.3 Pane_ghost_connectivity

Adds a single layer of ghost elements to each pane by constructing and registering the complete
5-block pconn for the mesh as defined in the COM User’s Guide. This is a single layer of ghost
elements in the sense that all non local elements incident on a local real node are ghosted as are
any nodes which are contained in these elements but not local to the pane. In Rocflu’s
terminology, this is a second-order mesh.

2.3.1 Algorithms

The basic idea of this algorithm is that each pane determines which local elements should be
ghosted on other panes, and sends the connectivity information for those local elements to the
appropriate panes. Shared node information is built using the Pane connectivity class, then each
local element is examined. If the local element contains a shared node, then the element is added
to a set of elements which needs to be sent to the pane(s) with which that node is shared. After
all elements have been examined, we can calculate how much information is to be sent to each
adjacent pane. This size information is communicated, followed by the actual connectivity data.
After all connectivity information is received, the pconn is constructed and registered.

COM itself does not use a global order for nodes or elements, however, we need that information
because we will sometimes receive elements from multiple panes which share the same non local
node, and we have to recognize that this is a single ghosted node rather than two separate nodes.

Printed on Date:

12/1/13
150

SurfMap User's and Developer's Guide Page 4

2.3.2 Constructors
Pane_ghost_connectivity(COM::Window *window)

Construct a Pane ghost connectivity for window window.

2.3.3 Important Member Functions

void build_pconn()

This is the highest level function, it builds and registers the pconn.
void init()

The initialization routine builds and registers the shared-node section of the pconn. It also
determines border nodes, obtains a list of communicating panes, and creates data structures for
the total node ordering.

void get_node_total_order()

Obtains a total ordering of nodes in the form of an ordered pair <P,N> where P is the “owner
pane” and N is the node’s local id on the owner pane. The “owner pane” is the pane with highest
id which contains a real copy of the node. For each node, N is initialized to 0 and P is initialized
to the local pane id. Then, the shared node section of the pconn is examined. P is updated each
time a node is found being shared with a pane with a higher pane id than the currently stored
value. At this point, all the owner panes have been determined. Each node owned by the local
pane is now assigned its local node id as the N value. An MPI maximum reduction is performed
on the N values to finalize the total ordering.

void get_ents_to_send(
vector<vector<vector<int> > > &gelem_lists,
vector<vector<map<pair<int,int>,int> > > &nodes_to_send,
vector<vector<deque<int> > > &elems_to_send,
vector<vector<int> > &comm_size)

This function determines the local elements and nodes to be remotely ghosted on communicating
panes. A dual connectivity data structure is built which allows for querying which elements are
adjacent to each node. The list of nodes shared with each communicating pane is examined, and
all elements containing any of these nodes are added to a set to be sent to the communicating
pane. Simultaneously, the eventual size of the element connectivity information to send is
calculated and stored. Each elements type and node list (as <P,N> pairs) will be sent. The actual
information to be send is written to gelem_lists, while the lists of the local nodes and elements to
be remotely ghosted are stored in nodes_to_send and elems_to_send.

COM requires that the elements listed in one pane’s real-elements-to-send list correspond to the
element listed in the same index of the communicating pane’s ghost-elements-to-receive list, and
similarly for the ghost node communication sections. We fulfill this requirement as follows.

Printed on Date:

12/1/13
151

SurfMap User's and Developer's Guide Page 5

Owner panes list real-elements-to-receive in the same order that the elements are placed in the
gelem_lists data structure, and the pane which ghosts the elements maintains this ordering.
Similarly, as element connectivities are written into the gelem_lists structure, the owner pane
checks to see if the node is already shared with the communicating pane. If not, then that node
will need to be ghosted on the remote pane. These nodes are listed in the real-node-to-share list
in the same order that they are first observed. When the remote pane processes the element
connectivity lists, the same method is used.

void process_received_data(
vector<vector<vector<int> > > &recv_info,
vector<vector<int> > &elem_renumbering,
vector<vector<map<pair<int,int>int> > > &nodes_to_recv)

Determines the number of ghost nodes to receive, assigns them local ghost node ids, and maps
<P,N> to those ids. Also determine the number of ghost elements of each type to receive. Ghost
element ids can not be determine as elements arrive if we want to have a single connectivity
table per element type because COM requires that elements in a single connectivity table be
numbered consecutively.

void finalize_pconn(
vector<vector<map<pair<int,int>,int> > > &nodes_to_send,
vector<vector<map<pair<int,int>,int> > > &nodes_to_recv,
vector<vector<deque<int> > > &elems_to_send,
vector<vector<int> > &elem_renumbering,
vector<vector<vector<int> > > &recv_info)

Takes the data we’ve collected, and builds and registers the pconn. The shared node information
is already present, so there are four blocks to build: real-nodes-to-send, ghost-nodes-to-receive,
real-elements-to-send and ghost-elements-to-receive. Data for the first three of these blocks is
available in the correct order from the first three input parameters to the function. Creating the
ghost-elements-to-receive block of the pconn requires combining information in the latter two
data structures.

First, the input data structures are examined to determine the size of each ghost block of the
pconn. Connectivity tables are resized to accommodate the new ghost entries, and the pconn is
resized to accommodate the four new blocks. Next we actually fill in the new sections of the
pconn. We also fill in the ghost element’s connectivity into the correct connectivity table by
taking into account both the element’s type and the order in which it was received. Finally, we
extend the nodal coordinate Dataltem to accommodate the new ghost nodes, and update those
coordinates from their real coordinates using the newly created pconn.

void get_cpanes()

Get the list of communicating panes for each local pane. A communicating pane is any pane with
which this pane shares a node. This data is stored in _cpanes.

Printed on Date:

12/1/13
152

SurfMap User's and Developer's Guide Page 6

void send_gelem _lists(
vector<vector<vector<int> > > &gelem_lists,
vector<vector<vector<int> > > &recv_info,
vector<vector<int> > &comin_sizes)

Send ghost element connectivity lists to the communicating panes.

void send_pane_info(
vector<vector<vector<int> > > &send_info,
vector<vector<vector<int> > > &recv_info,
vector<vector<int> > &comim_sizes)

Sends an arbitrary amount of data to the communicating panes.
void determine_shared_border()
Determines whether or not each local node is shared.

void mark_elems_from_nodes(
vector<vector<bool> > &marked_nodes,
vector<vector<bool> > &marked_elems)

Takes the given Boolean nodal property, and extends that property to elements. An element is
considered to have the property if any of its constituent nodes have the property.

3.0 Building and Running

SurfMap is written in C++ and uses the CMake infrastructure with MPACT. The source and
CMakeLists.txt are found at/ MPACT/SurfMap in the MPACT distribution. The SurfMap module
is built automatically by the MPACT build system as libSurfMap.so

The former contains utility programs automatically built by the makefiles, while the latter
contains all libraries including COM's and SurfMap's.

3.1 Library Dependencies and Building

SurfMap is integrated into MPACT and is built along with it. Because SurfMap links to the COM
library, it may only be built directly from its own directory if the COM library already exists.

3.2 SurfMap Build Targets

The default COM build creates the SurfMap dynamic library as well as a SurfMap utility named
“addpconn”. Several other test programs are included in SurfMap/test, and may be built
individually:

Printed on Date:

12/1/13
153

SurfMap User's and Developer's Guide Page 7

Test Program Description

bordertest hex Demonstrates determination of pane borders through SurfMap on an
unstructured hex mesh.

Builds an unstructured hex mesh and uses SurfMap to determine which
nodes are on the border. Dumps the mesh into an .hdf file, “hexmesh”,
with node border information stored in the Dataltem “borders”.

bordertest struc Demonstrates determination of pane borders through SurfMap on a
structured hex mesh.

Creates a structured hex mesh, determines which nodes are on the pane
border, and dumps the mesh into an .hdf file, “strucmesh”

33 COM Accessible Functions (SurfMap API)

This section describes the set of functions which is available through the COM infrastructure
when SurfMap is registered as a module. All of these functions are static void member function
of the SurfMap class.

compute_pconn(
const COM::Dataltem *mesh,
COM::Dataltem *pconn)

Computes the first block of the pconn Dataltem described in the COM User's Guide. If pconn
hasn't been initialized, then memory is allocated and the computed pconn block is saved.
Otherwise, saves up to the capacity of the Dataltem.

Parameter Description
*mesh The target mesh.
*pconn The target mesh's pconn Dataltem.

pane_border_nodes(
const COM::Dataltem *mesh,
COM::Dataltem *isborder,
int *ghost level=NULL)

Determines which nodes are on the pane border, and saves this information to a COM Dataltem.

Parameter Description

*mesh The target mesh.

Printed on Date:

12/1/13
154

SurfMap User's and Developer's Guide Page 8

Parameter Description
*isborder Dataltem where border information will be saved.
*ghost level If > 0, include ghost nodes and elements as part of the pane.

reduce _average on_shared nodes(
COM::Dataltem *att,
COM::Dataltem *pconn = NULL)

Calculates an average Dataltem value for each shared node across all sharing panes, and sets the
Dataltem value to that average on all sharing panes.

Parameter Description

*att Target Dataltem

*pconn Pconn of the mesh corresponding to the target Dataltem

reduce_maxabs_on_shared _nodes(
COM::Dataltem *att,
COM::Dataltem *pconn=NULL);

Sets the value of each component of an Dataltem to the value of that component of the Dataltem
with the largest magnitude. Note that this is done on a component by component basis, not in the
sense of any norms.

Parameter Description

*att Target Dataltem

*pconn Pconn of the mesh corresponding to the target Dataltem

update_ghosts(
COM::Dataltem *att,
COM::Dataltem *pconn = NULL)

Sets the value of an Dataltem at ghost nodes or cells to the value on the corresponding real nodes
or cells. In the case that a shared node has different values across its incident panes, it is
undetermined which value each ghost node will receive.

Parameter Description

*att Target Dataltem

*pconn Pconn of the mesh corresponding to target Dataltem

Printed on Date:

12/1/13
155

SurfMap User's and Developer's Guide Page 9

3.4 Other Functions (SurfMap API)

SurfMap()

SurfMap's constructor, does not perform any initialization.

static void load(const std::string &mname)
static void unload(const std::string &mname)

These functions are used for loading or unloading SurfMap from COM with the given module
name.

4.0 Input and Output (User Interface)

SurfMap if typically used as a C++ object, though its functions other than the constructor are all
static, so no instantiation is required. It may also be loaded as a COM module, and called through
the standard COM interface.

4.1 SurfMap as a C++ Object
The following code fragment demonstrates the use of SurfMap as a C++ object:

// Assuming that “window” is a pointer to a COM window

// move shared nodes to their average position across all

// incident panes

SurfMap: :reduce average on shared nodes (window->
DataItem(COM::COM NC)) ;

// Update the ghost copies of the nodes with their new positions
SurfMap: :update ghosts (window->Dataltem (COM::COM NC),
window->Dataltem (COM: :COM PCONN)) ;

4.2 SurfMap as a COM Module

SurfMap is typically loaded and invoked through the COM API as illustrated in the following
C++ example:

// Load SurfMap into the COM infrastructure
COM LOAD MODULE STATIC DYNAMIC (SurfMap, “MAP”);

// Get function handle for SurfMap::compute pconn
int MAP compute pconn =
COM get function handle (“MAP.compute pconn”);

Printed on Date:

12/1/13
156

SurfMap User's and Developer's Guide Page 10

// Get the handle for the fluids mesh
int mesh hdl = COM get Dataltem handle (“fluids.mesh”);

// Get the handle for the pconn DataItem of the fluids mesh
int pconn hdl = COM get Dataltem handle (“fluids.pconn”);

// Use SurfMap::compute pconn to create the shared-node section
// of the pconn for the fluids mesh.
COM call function (MAP compute pconn, é&mesh hdl, &pconn hdl);

5.0 Utilities and Test Programs

A default build of SurfMap creates “addpconn”, a utility for building the shared-node section of
pconn for a given .hdf file. Source code for this utility is found in SurfMap/util/addpconn.C .
Four other test programs are available in SurfMap/test/ . The source files for these programs also
have the same name as the programs, but with “.C” appended. Section 3.2 explains how to build
them.

5.1 addpconn

This utility reads in one or more .hdf files using SimIN. It makes a copy of the mesh from which
it removes all mesh Dataltems other than nodal coordinates and connectivity tables. SurfMap is
then used to rebuild the pconn on the new mesh, which is written to file.

addpconn <input filename patters or Rocin control file>
<output file prefix>

To run in parallel, a SimIN control file must be passed as a second argument. If the second
argument ends in “.hdf”, then all panes are written out to a single pane. Otherwise, each pane is
written to a separate .hdf file.

5.2 bordertest_hex

This test program runs without any command line input. It builds an unstructured hex mesh with
4 elements and 18 nodes. SurfMap is used to determine which nodes are on the border, and store
this information in an Dataltem. The mesh is then written out to “hexmesh0000.hdf”.

53 bordertest struc

This program is similar to bordertest hex, except that a much larger mesh is created, and it is a
structured hex mesh. The output file is “strucmesh0000.hdf”.

Printed on Date:

12/1/13
157

A
AVA \liinois Rocstar LLC Physics of Coupling

I Physics of FSI Coupling in ElImerFoamFSI

Physics of Coupling
Version 0.1.0 lllinoisRocstar LLC
October 25, 2016

License

The software package sources and executables referenced within are developed and supported by Illinois
Rocstar LLC, located in Champaign, Illinois.The software and this document are licensed by the University
of Ilinois/NCSA Open Source License (see opensource.org/licenses/NCSA). The license is included
below.

Copyright (c) 2016 Illinois Rocstar LLC
A1l rights reserved.

Developed by: Illinois Rocstar LLC

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the ‘‘Software’’),
to deal with the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimers.

* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimers in the documentation
and/or other materials provided with the distribution.

* Neither the names of Illinois Rocstar LLC, nor the names of its contributors
may be used to endorse or promote products derived from this Software without
specific prior written permission.

THE SOFTWARE IS PROVIDED ‘‘AS IS’’, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE CONTRIBUTORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS WITH THE SOFTWARE.

For more information regarding the software, its documentation, or support agreements, please contact
Illinois Rocstar at:

¢ tech@illinoisrocstar.com

¢ sales@illinoisrocstar.com

158

opensource.org/licenses/NCSA

A
AVA \liinois Rocstar LLC Physics of Coupling

1.1 Fluid-Solid Interaction (FSI)

Fluid-solid interaction (FSI) is a multi-physical phenomenon in mechanics that involves non-linear interac-
tions between a fluid and solid. Many physical problems involve FSI phenomenon, example can be taken
from different time/space scales and from a variety of systems for example deformations of the blood vessels
during blood circulation and the fluctuation of airplane wings during flight both involve FSI. In every FSI
problem, a moving fluid (compressible like air, or incompressible like water) interacts with a deformable
solid. These interactions usually involve energy and momentum transfer between the phases.

Physical balance laws can be resorted to explain an FSI problem, including conservation of mass, energy and
momentum. In some simple configurations these laws can be used to directly develop an analytical solution
for an FSI problem. For more complex problems (most of engineering problems in 2D/3D) an analytical
solution, if not impossible, is very hard to obtain. Laboratory experiments provide a limited scope of the
problem as well and the understanding of the fundamental physics involved in complex interactions between
the phases can only be obtained by numerical simulations.

ST(t,) S (T501)

S*(t,) 5 (tnes)

(a) Monolithic approach

s7(t,) 5 (tpes)

- 5 Interface . Interface

Ss“u) S;[:[,:‘l)

(b) Partitioned approach

Figure 1.59: Different types of numerical solution strategies for FSI problems (Figure taken from Hou et al. (2012)).

Based on Hou et al. (2012), numerical treatment of FSI problems can be broadly classified into two major
approaches: the monolithic approach and partitioned approach, shown in Figure 1.59. In the monolithic
approach the interaction between solid and fluid at their interface is treated simultaneously, using a unified
mathematical model which leads to a single system of equations following a unified discretization strategy.
This approach may result a better accuracy for strong fluid-solid interactions, but it is computationally more
expensive. In the partitioned approach, two separate mathematical models are used to describe fluid and
solid domains. These two models are used to solve for fluid and solid separately, usually with two different
discretization strategies, and they communicate through the common interface. The advantage of this ap-
proach is the possibility of using two separate disciplinary solution strategies, possibly two different legacy
software to reduce the code development effort substantially. The challenge, however, for this approach is
to integrate the two solvers and coordinate them to obtain an accurate and efficient solution with minimal
code modification for each side. A better comparison between the monolithic and partitioned approach is
provided by Michler et al. (2004).

159

A
AVA \liinois Rocstar LLC Physics of Coupling

(a) Conforming mesh. Left: t =#; Right: f=1>.

(a) Non-conforming mesh. Left: t =iq; Right: { = 5.

Figure 1.60: Conformal and non-conformal meshing strategies used in numerical solution of FSI problems (Figure taken
from Hou et al. (2012)).

The position of interface between fluid and solid phases is a part of solution in an FSI problem. With
regards to moving fluid-solid interface, two different strategies can be used: conforming mesh and non-
conforming mesh, shown in Figure 1.60. In the more traditional conformal mesh approach, the position and
motion of the solid-fluid interface is captured sharply. Because of the movements of common interface, this
method requires continuous re-meshing (or mesh updating) during the solution which can be computational
expensive and error-prone. In the non-conformal meshes, also known as immersed-methods, the position of
the interface is captured by applying some constraints to each solver to avoid the need for a sharp disjoint
mesh and the mesh updates. This method is currently constitutes major research efforts in the computational
FSI community.

1.2 Partitioned Approach: Strong vs. Weak Coupling

Following partitioned approach strategy, in order to solve for the coupled unknown structural and fluid quan-
tities, two different algorithms can be applied. Figure 1.61-a illustrates the more traditional weak coupling
(also known as one-way coupling) algorithm. In this algorithm for each time step, the solution for the trac-
tions obtained by the fluid solver is passed to the solid solver to find the new deformations. The output of
the solid solver then will be used as an input to the fluid solver for the next time step. This approach is more
efficient, but its application is limitted to FSI problems with weak fluid-solid interactions. For problems
in which strong fluid-solid interactions are present, strong (two-way) coupling algorithm should be used.
Figure 1.61-b illustrates the outline of this algorithm with more details. The major difference for the strong-
coupling algorithm is the application of an inner-loop within the external time stepping loop that helps to

160

A
AVA |llinois Rocstar LLC Physics of Coupling

capture a converged fluid-solid interface solution in each time step. This method is computationally more
expensive, but it guarantees a more accurate solution for problems in which strong fluid-solid interactions is
expected.

_—
W
S’
a

Next time step

P Solution of sl;rl,n:tur.e_T

i

1
Interpolate forces on
structure mesh

1

i 1
| i
| i
i i
i i
| i
i |
i Solution of fluid i
it If
| i
i i
i i
i i

One-way coupling

Next time step

Interpolate displacement
on fluid boundary
1

"y

1 I I
T
i i :
1 I 1
1 I I :
| p{Solution of structurel | /.. VO I |
: |_) '] |[Displacement)! forming flui |
i I | and forces ' |Deforming fluid mesh |1
I |Interpolate fcbrcels.l onf |\ converged /! I !
! strucl—ur\e mes ! No ; | I; Solution of fluid TIL
1 i | .
T Yds T I J

Time step complete

Strong two-way coupling

Figure 1.61: Strong and weak coupling strategies used in numerical solution of FSI problems (Figure taken from Benra
et al. (2011)).

161

A
AVA \liinois Rocstar LLC Physics of Coupling

1.3 ElmerFoamFSI: A Partitioned Approach
1.4 Overview

ElmerFoamFSI uses a partitioned approach to solve FSI problems. In ElmerFoamFSI, OpenFOAM (a finite-
volume solver *) is used as the fluid solver and Elmer (a finite-element solver) is used as the structural
solver. In ElmerFoamFSI both weak and strong coupling approaches can be used to solve FSI problems.
Currently a weak-coupling algorithm is implemented into ElmerFoamFSI. In the rest of this document, we
briefly explain how to setup and use ElmerFoamFSI to solve a FSI problem.

1.5 Elmer Input

Elmer is an extensive open-source finite element multiphysics code. This software can be used to find
deformation of a solid object (U) subject to different types of loads. ElmerFoamFSI uses Elmer as its
structural solver. At least two different structural solvers (linear and non-linear elasticity) are provided by
Elmer. To capture large deformations of the solid, ElmerFoamFSI uses the non-linear solver. The description
of a finite element problem usually starts with input files. The full description of the problem, including:
geometry, materials, boundaries conditions, type of equations to solve, etc., is usually provided in the input
file(s).

Boundary 3

Boundary 4

Figure 1.62: Elmer mesh and boundary numbers.

Elmer uses a multiple-part input definition strategy. The description of the geometry of the problem in
Elmer is provided in a GRD file (".grd" file), and the rest of the definitions is described in a SIF file (".sif”
file). If the ELMERSOLVER_STARTINFO is used, upon execution Elmer scans this file to figure out which
input file should be read (the name of the input file). Elmer uses a separate program (ElmerGrid) to read the
GRD file and compile geometry description to a format useful for its internal usage. A proper description
of problem geometry (also called problem mesh) requires a good level of understanding of finite element
method, therefore it is beyond the purpose of the current document ¥. The SIF file uses a Keyword-pair
format to describe the rest of the problem. Each keyword can be thought of as a command to the Elmer
solver which describes certain feature of the problem. Many of these commands require some parameters
to be passed by user. These parameters are defined in front of the command after the "=" symbol. The first

*http://www.extend-project.de/
"https://www.csc.fi/web/elmer/
*http://www.nic.funet.fi/pub/sci/physics/elmer/doc/ElmerGridManual . pdf

162

http://www.extend-project.de/
https://www.csc.fi/web/elmer/
http://www.nic.funet.fi/pub/sci/physics/elmer/doc/ElmerGridManual.pdf

A
AVA \liinois Rocstar LLC Physics of Coupling

section of SIF file defines general settings of the problem as well as the location for geometry file, where to
save simulation results, the type of simulation, time step used etc. This definition of this section of the SIF
file is very straight forward as shown in the following :

Header
CHECK KEYWORDS Warn
Mesh DB n . n n . n

Include Path ""
Results Directory ""

End

Simulation
Max Output Level = 5
Coordinate System = Cartesian
Coordinate Mapping(3) = 1 2 3
Simulation Type = Transient
Timestep intervals = 100
Timestep Size = le-3
Output Intervals =1
Timestepping Method = BDF
BDF Order = 2
Solver Input File = case.sif
Post File = case.vtu

End

Constants
Gravity(4) = 0 -1 0 9.82
Stefan Boltzmann = 5.67e-08
Permittivity of Vacuum = 8.8542e-12
Boltzmann Constant = 1.3807e-23
Unit Charge = 1.602e-19

End

In the next section, the types of equations to be solved and material properties for each constituent is de-
scribed. Depending on what type of solver needed, a series of solver-related parameters should be passed to
the Elmer. *. The following example defines a non-linear elasticity solver for Elmer along with the type of
equation solver and non-linear solution strategies that should be used for the problem.

I Which equation to solve and which materials
Body 1
Target Bodies(1) = 1
Name = "Body 1"
Equation = 1
Material = 1
End
I Solver to use for equation 1
Equation 1
Name = "Elasticity"

*http://www.nic.funet.fi/pub/sci/physics/elmer/doc/ElmerSolverManual .pdf

163

http://www.nic.funet.fi/pub/sci/physics/elmer/doc/ElmerSolverManual.pdf

A
AVA \liinois Rocstar LLC Physics of Coupling

Calculate Stresses = True
Active Solvers(1) =1
End
I Solver 1 definition and the solution strategies
Solver 1
Exec Solver = Always
Equation = Nonlinear elasticity
Variable = Displacement
Variable Dofs = 3
Procedure = "ElasticSolve" "ElasticSolver"
Nonlinear System Convergence Tolerance = 1.0e-4
Nonlinear System Max Iterations = 1
Nonlinear System Newton After Iterations = 3
Nonlinear System Newton After Tolerance = 1.0e-2
Nonlinear System Relaxation Factor = 1.0
Linear System Solver = Iterative
Linear System Iterative Method = BiCGStab
Linear System Max Iterations = 1000
Linear System Convergence Tolerance = 1.0e-6
Linear System Abort Not Converged = True
Linear System Residual Output = 1
Steady State Convergence Tolerance = 1.0e-5
Linear System Preconditioning = Diagonal
Time Derivative Order = 2
End
! Definition of the material 1
Material 1
Name = "blahBlah"
Youngs modulus = 1.4e6
Density = 10
Poisson ratio = 0.4
End

The rest of SIF file defines the boundary conditions for the problem. For a structural problem different types
of boundary conditions can be used, including displacement and force (traction). The boundary condition
definition starts with a Target Boundaries(x) = y statement that specifies how many boundaries are using this
description (x: an integer) and which boundary in the geometry file should be used (y: separated by space
if more than one, look at Figure 1.62). Finally we specify which direction our loads/displacement should
be applied (here 1,2,3 correspond to X, Y and Z directions in a Cartesian grid, respectively). Some of the
boundary conditions require special treatments that are defined by some extra keywords. For example look
at the boundary condition 4 that describes a FSI boundary. In this case, we tell Elmer to apply a variable
force to the sections of the geometry that reside on this boundary. We also specify: 1) which direction
loads should be applied (direction 2 is Force 2), 2) they are variable in time, and 3) Elmer should resort to
function LoadYDirection in LoadFunctionLibrary whenever it is needed. Care most be practiced with the
proper formating. Further definition of the keywords can be found in the Elmer manuals.

164

A
AVA \liinois Rocstar LLC Physics of Coupling

Boundary Condition 1
Target Boundaries(1)
Name = "Wall"
Displacement 3
Displacement 2
Displacement 1

End

Boundary Condition 2
Target Boundaries(1)
Name = "stabilizerl"
Displacement 1 = 0

End

Boundary Condition 3
Target Boundaries(1)
Name = "stabilizer2"
Displacement 1 = 0

End

Boundary Condition 4
Fsi BC = True
Target Boundaries(1)
Name = "FSI"

Force 2 = Variable Time
Real Procedure "LoadFunctionLibrary" "LoadYDirection"
End

]
D

0
0
0

]
N

]
S

]
w

1.6 OpenFOAM Input

ElmerFoamFSI uses OpenFOAM as its fluid solver module to solve for the fluid pressure (p) and velocity
(U). To capture the deformations of the solid/fluid interface, OpenFOAM has to also perform mesh update
and re-meshing procedures in order to maintain the quality of the computational grid during the simulation
(in a fluid problem, gird is equivalent to mesh for solid problems). OpenFOAM uses a finite-volume dis-
cretization scheme to obtain pressures and velocities and a Laplace solver to perform the re-meshing tasks.
User has to specifies proper parameters for these solvers in the input files.

The definition of a problem in OpenFOAM is performed based on a multi-part input file strategy. For
FSI problems, OpenFOAM requires both the definition of the solid and the fluid sections of the grid. In
ElmerFoamFSI, however, the solid definition for OpenFOAM is disregarded and will be replaced with that
of Elmer. Similarly, all other computations for the solid section will be performed solely by Elmer. To
setup a fluid problem in OpenFOAM, we have to follow a strict folder/file hierarchy as OpenFOAM seeks
the definition of a problem in multiple files residing in a set of subfolders. The input files in OpenFOAM
are also called dictionary files. In each dictionary file, a set of keyword-value pairs specify proper settings
for some part of the problem and solution procedure. There should be at-least three major sub-folders
in the main fluid problem definition folder ./fluid/. These sub-folders are 1)./fluid/0/, 2)./fluid/constant/ and
3)./fluid/system/. In the rest we briefly describe each folder and its contents. Readers are strongly encouraged
to resort to OpenFOAM documentation for more details.”

In OpenFOAM, ./fluid/0/ contains initial and boundary conditions for the problem. In this folder, we specify

*valuable information can also be found in http://www.cfd-online.com/

165

http://www.cfd-online.com/

A
AVA \liinois Rocstar LLC Physics of Coupling

initial and boundary conditions for the pressures, velocities and grid deformations in three separate files
with the proper names. Similarly, ./fluid/system/ folder contains a series of input files to specify which
solvers should be used and what solution strategies should be used for them. Finally, .fluid/constant/ folder
contains the description of the grid and material properties. In this folder, a sub-folder exists which contains
all information about the problem geometry, specified in blockMeshDict. These geometric information
will be read by blockMesh, an accessory of OpenFOAM that generates simple block-shaped grids from the
geometric data defined in the dictionary. The overall structure of an example blockMesh file is as following:

Y e Rt et k= C++ —h——mmmmm *\
| ========= | |
I A\\ / F ield | foam-extend: Open Source CFD
[\\ / 0 peration | Version: 3.0
I \\ / A nd | Web: http://www.extend-project.de
| \\/ M anipulation |
\ K *x/
FoamFile
{
version 2.0;
format ascii;
class dictionary;
object blockMeshDict;
}

J/ % k% x %k k% % k % k % k *k k *k k *k k *k k¥ *k kx k *k *k *k *k *k k¥ *k ¥ *k x k x * x *x //
convertToMeters 1;

vertices

(
(0.1 0.1 0.0) // 0
(0.1 0.1 1.0) // 1
(0.1 1.0 1.0) // 2
(0.1 1.0 0.0) // 3
(0.0 0.1 0.0) // 4
(0.0 0.1 1.0) // 5
(0.0 1.0 1.0) // 6
(0.0 1.0 0.0) /7

);

blocks

(
hex (01 23456 7) (50 50 1) simpleGrading (1 1 1)

)

edges

(

)

patches

(
wall left
(

(037 4)

166

A
AVA \liinois Rocstar LLC Physics of Coupling

)
wall right
(
(156 2)
)
wall fsiFace
(
(0 45 1)
)
wall top
(
(3267)
)
empty front
(
(47 6 5)
)
empty back
(
(0123)
)
)3
mergePatchPairs
(
)

The structure and the commands used in this file is fairly easily to understand.” After the OpenFOAM
banner, at the top section of the file blockMesh accessory to be used and the format of the file is specified.
In the vertices section, the coordinates for the vertices of the grid are specified (starting from 0, each line
specifies a vertex coordinate). In the block section, the connectivity for the blocks of the mesh are specified.
In the patches section, we specify boundaries of the domain and their connectivity with respect to the vertex
indices.

1.7 ElmerFoamFSI Input

Currently, ElmerFoamFSI uses a very basic input file (named "test.config"). This file should reside in the
/fluid/ folder where the ElmerFoamFSI executable is called, and it should be passed to the executable as
a command-line parameter. Following example shows the structure of this keyword-value pair file. In this
example the name of fluid and structure solver modules that should be loaded are specified in the first two
lines. The third line specifies the solution transfer module (in this case SurfX which a part of IMPACT). In
the rest of the file the total analysis time and the time step are specified.

FluidSolver=0penFoamFSI
SolidSolver=ElmerCSC

*for more details resort to http://cfd.direct/openfoam/user-guide/

167

http://cfd.direct/openfoam/user-guide/

A
AVA \liinois Rocstar LLC Physics of Coupling

TransferService=SurfX
FinalTime=0.05
TimeStep=2.0e-3

1.8 ElmerFoamFSI Call Procedure

To execute ElmerFoamFSI simulation, Elmer input files and ElmerFoamFSI input file should be copied to
the ./fluid/ folder of the OpenFOAM input hierarchy. Following directions specify steps to take to run a
problem:

* Create a folder and copy Allclean, Allrun (scripts), /fluid/ and /solid/ folders into this folder, make
sure to copy all sub-folders as well.

* Copy elmer SIF, GRD and ELMERSOLVER_STARTINFO files to /fluid/.
* run ./Allclean and ./Allrun to clean-up and prepare input files for the OpenFOAM.

* Go to ./fluid/ and type ElmerGrid 1 2 name where "name" should be replaced with the name of the
GRD file for Elmer.

* Run ElmerFoamFSI the FSI simulation by "elmerformfsi name" where name should be replaced with
the name of ElmerFoamFSI input file.

168

A
AVA \liinois Rocstar LLC Physics of Coupling

References

Allan, B., Armstrong, R., Wolfe, A., Ray, J., and Bernholdt, D. (2002). The CCA core specification in a
distributed memory spmd framework. Concurr. Comput. Practices Exp., 5:323-345.

Allen, G., Dramlitsch, T., Foster, I., Karonis, N., Ripeanu, M., Seidel, E., and Toonen, B. (2001). Supporting
efficient execution in heterogeneous distributed computing environments with Cactus and Globus. In
Proc. Supercomput.

Arienti, M., Hung, P., Morano, E., and Shepherd, J. E. (2003). A level set approach to eulerian-lagrangian
coupling. J. Comput. Phys., 185:213-251.

Bartlett, R. A., Heroux, M. A., and Willenbring, J. M. (2012). Tribits lifecycle model. Technical report,
Sandia National Laboratory.

Bassetti, F., Brown, D., Davis, K., Henshaw, W., and Quinlan, D. (1998). Overture: an object-oriented
infrastructure for high performance scientific computing. In Proc. Supercomput.

Bellavia, S., Bertaccini, D., and Morini, B. (2011). Nonsymmetric preconditioner updates in Newton—
Krylov methods of nonlinear systems. J. Sci. Comput., 33:2595-2619.

Benra, F.-K., Dohmen, H. J., Pei, J., Schuster, S., and Wan, B. (2011). A comparison of one-way and
two-way coupling methods for numerical analysis of fluid-structure interactions. Journal of Applied
Mathematics, 2011:16.

Budge, K. G. and Peery, J. S. (1998). Experiences developing ALEGRA: a C++ coupled physics framework.
In Workshop on Object Oriented Methods for Interoperable Scientific and Engineering Computing.

Chisholm, T. T. and Zingg, D. W. (2009). A Jacobian-free Newton—Krylov algorithm for compressible
turbulent fluid flows. J. Comput. Phys., 228:3490-3507.

Council on Competitiveness (2011). Council on Competitiveness, 2010-2011 Annual Report. Technical
report.

Dick, W. A., Fiedler, R. A., and Heath, M. T. (2006). Building Rocstar: Simulation science for solid
propellant rocket motors. In Proc. AIAA, volume 4590, pages 1-10.

Elmer (2016). Elmer. https://www.csc.fi/web/elmer.

Gerstenberger, A. and Wall, W. A. (2008). An eXtended Finite Element Method/Lagrange multiplier based
approach for fluid—structure interaction. Comput. Methods Appl. Mech. Engrg., 197:1699-1714.

Geubelle, P. H., Jiao, X., Haselbacher, A. C., and Campbell, M. T. (2004). Numerical Coupling Interface in
Rocstar — Rocman (GEN 3) Design Document. PDF.

Heroux, M. A., Bartlett, R., Howle, V., Hoekstra, R., Hu, J., Kolda, T., Lehoucq, R., Long, K., Pawlowski,
R., Phipps, E., Salinger, A., Thornquist, H., Tuminaro, R., Willenbring, J., Williams, A., and Stanley, K.
(2005). An overview of the Trilinos projects. ACM Trans. Math. Software, 31:397—423.

Hou, G., Wang, J., and Layton, A. (2012). Numerical methods for fluid-structure interaction — a review.
Communications in Computational Physics, 12:337-377.

169

A
AVA \liinois Rocstar LLC Physics of Coupling

Jaiman, R. K., Jiao, X., Geubelle, P. H., and Loth, E. (2004). Assessment of conservative load transfer for
fluid-solid interface with nonmatching meshes. International Journal for Numerical Methods in Engi-
neering, pages 1-40.

Jaiman, R. K., Jiao, X., Geubelle, P. H., and Loth, E. (2005). Assessment of conservative load transfer for
fluid-solid interface with nonmatching meshes. Intl. J. Numer. Methods Eng., pages 1-40.

Jiao, X. (2007). Face offsetting: A unified approach for explicit moving interfaces. Journal of Computational
Physics, 220:612-625.

Jiao, X. and Heath, M. T. (2005). Common-refinement-based data transfer between non-matching meshes in
multiphysics simulations. International Journal for Numerical Methods in Engineering, 61:2402-2427.

Jiao, X., Zheng, G., Alexander, P. J., Campbell, M. T., Lawlor, O. S., Norris, J., Hasselbacher, A., and Heath,
M. T. (2006). A system integration infrastructure for coupled multiphysics simulations. Engineering with
Computers, 22:293-309.

Kamakoti, R. and Shyy, W. (2004). Fluid-structure interaction for aeroelastic applications. Prog. Aerosp.
Sci., 40:535-558.

Keyes, D. E., Mclnnes, L. C., Woodward, C., Gropp, W., Myra, E., Pernice, M., Bell, J., Brown, J., Clo,
A., Connors, J., Constantinescu, E., Estep, D., Evans, K., Farhat, C., Hakim, A., Hammond, G., Hansen,
G., Hill, J., Isaac, T., Jiao, X., Jordan, K., Kaushik, D., Kaxiras, E., Koniges, A., Lee, K., Lott, A., Lu,
Q., Magerlein, J., Maxwell, R., McCourt, M., Mehl, M., Pawlowski, R., Randles, A. P, Reynolds, D.,
Riviere, B., Riide, U., Scheibe, T., Shadid, J., Sheehan, B., Shephard, M., Siegel, A., Smith, B., Tang, X.,
Wilson, C., and Wohlmuth, B. (2013). Multiphysics simulations: Challenges and opportunities. In#l. J.
High Perform. Comput. Appl., 27:5.

Knoll, D. A. and Keyes, D. E. (2004). Jacobian-free Newton—Krylov methods: a survey of approaches and
applications. J. Comput. Phys., 193:357-397.

M. A. Heroux et al. (2012). Trilinos. http://trilinos.sandia.gov.

Michler, C., Hulshoff, S., van Brummelen, E., and de Borst, R. (2004). A monolithic approach to fluid-
structure interaction. Computers and Fluids, 33(5-6):839-848. Applied Mathematics for Industrial Flow
Problems.

OpenFOAM Extend Project (2016). OpenFOAM Extend Project. http://www.extend-project.de.

Pawlowski, R., Bartlett, R., Belcourt, N., Hooper, R., and Schmidt, R. (2011). A theory manual for multi-
physics code coupling in LIME. Technical report, Sandia National Laboratory.

Poppendieck, M. and Poppendieck, T. (2003). Lean Software Development: An Agile Toolkit. Addison-
Wesley.

Reynders, J. V. W., Hinker, P. J., Cummings, J. C., Atlas, S. R., Banerjee, S., Humphrey, W. F., Karmesin,
S. R., Keahey, K., Srikant, M., and Tholburn, M. (1996). POOMA: A infrastructure for scientific simu-
lations on parallel architectures. In Wilson, G. V. and Lu, P, editors, Parallel programming using C++,
pages 547-588. Massachusetts Institute of Technology.

Schafer, M. and Turek, S. (1996). Flow simulation with high-performance computers ii. dfg priority research
program results 1993-1995. In Hirschel, E., editor, Notes in Numerical Fluid Mechanics, number 52,
pages 547-566. Vieweg Weisbaden.

170

A
AVA \liinois Rocstar LLC Physics of Coupling

Schieffer, G., Ray, S., Bramkamp, F. D., Behr, M., and Ballmann, J. (2010). An adaptive implicit finite
volume scheme for compressible turbulent flows about elastic configurations. In Schroder, W., editor,
Flow Modulation & Fluid-Structure Interaction, volume 109, pages 25-51. Springer-Verlag.

Slotnick, J., Khodadoust, A., Alonso, J., Darmofal, D., Gropp, W., Lurie, E., and Mavriplis, D. (2013). Cfd
vision 2030 study: A path to revolutionary computational aerosciences. Technical report, NASA Langley
Research Center, Hampton, Virginia 23681-2199.

Stewart, J. R. and Edwards, H. C. (2004). A infrastructure approach for developing parallel adaptive multi-
physics applications. Finite Elem. Anal. Des., 40:1599-1617.

Turek, S. and Hron, J. (2006). Fluid-Structure Interaction: Modelling, Simulation, Optimisation, chap-
ter Proposal for Numerical Benchmarking of Fluid-Structure Interaction between an Elastic Object and
Laminar Incompressible Flow, pages 371-385. Springer Berlin Heidelberg, Berlin, Heidelberg.

171

A
AVA \liinois Rocstar LLC Mathematics of Coupling

J Mathematics of FSI Coupling

Mathematics of Coupling
Version 0.1.0 lllinoisRocstar LLC
October 25, 2016

License

The software package sources and executables referenced within are developed and supported by Illinois
Rocstar LLC, located in Champaign, Illinois.The software and this document are licensed by the University
of Ilinois/NCSA Open Source License (see opensource.org/licenses/NCSA). The license is included
below.

Copyright (c) 2016 Illinois Rocstar LLC
A1l rights reserved.

Developed by: Illinois Rocstar LLC

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the ‘‘Software’’),
to deal with the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimers.

* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimers in the documentation
and/or other materials provided with the distribution.

* Neither the names of Illinois Rocstar LLC, nor the names of its contributors
may be used to endorse or promote products derived from this Software without
specific prior written permission.

THE SOFTWARE IS PROVIDED ‘‘AS IS’’, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE CONTRIBUTORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS WITH THE SOFTWARE.

For more information regarding the software, its documentation, or support agreements, please contact
Illinois Rocstar at:

¢ tech@illinoisrocstar.com

¢ sales@illinoisrocstar.com

172

opensource.org/licenses/NCSA

A
AVA \liinois Rocstar LLC Mathematics of Coupling

J.1 Interaction of Fluids and Structures — An Introduction by Keyes

Numerical simulations that model the interactions between incompressible laminar flows and elastic struc-
tures require coupling a description of the fluids with a description of the structures. The unknowns of the
involved equations (velocities and pressure for the fluid, displacements for the structure) are associated with
different locations in the overall computational domain, resulting in a surface-coupled problem.

FSI can be simulated in at least two ways. One approach is to solve a large system of equations for all
fluid and structure unknowns as a single system — typically ill-conditioned. Alternatively, in a partitioned
approach, one has separate solvers for the fluid and the structure, together with a suitable coupling method.
In the latter case, boundary conditions for both single-physics problems at the coupling surface have to
be defined. The respective interface values are passed from one solver to the other. This approach requires
mapping methods for physical variables between (in general) non-matching solver grids at coupling surfaces.
Important features desired of such mappings are accuracy, consistency, and conservation of energy and
momentum. Two main classes of mapping methods can be identified: interpolation methods, based on
geometric relations between the involved grid points; and mortar methods, in which boundary conditions
are formulated in weak form by using Lagrange multipliers.

Quantities of Interest

* Fluid velocities and pressures (loads)

* Structural displacements

u, p d’

Qf Fi Q S

Figure J.63: Problem setup: Fluid field Q¢, structural field €, and the conjoined interface I;. Here i is the fluid velocity,
p is the pressure, and d* are the structure displacements. Figure taken from [Gerstenberger and Wall (2008)].

J.1.1 Comments on a Few Common Coupling Approaches

The coupling itself can be done with different methods, leading to more loosely or more tightly coupled
timestepping methods. The loosest coupling is a one-way coupling, where the flow solver computes a
force exerted on the structure using a rigid-structure geometry, and structural movements are computed in
a postprocessing-like manner based on these forces. This strategy is obviously applicable only for small

A
AVA \liinois Rocstar LLC Mathematics of Coupling

and static structure deformations. The most widely used class of iteration schemes is Gauss—Seidel-like
coupling iterations, with variants ranging from a single iteration loop per timestep to repeated iteration-
to-convergence within each timestep, with or without (Aitken) underrelaxation, to interface quasi-Newton
methods that efficiently compute approximate Newton iterations based on sensitivities resulting from Gauss—
Seidel iterations. To account for what are usually moderately different timescales in the fluid and the struc-
ture, a subcycling in the flow solver can be used. In the absence of turbulence, spatial scales are essentially
the same throughout fluid and structure domains.

The choice of coupling implementation can lead to development of numerical instabilities in multiphysics
codes. For incompressible fluids, the so-called “added-mass” effect induces instabilities in loosely coupled
simulations and in Gauss—Seidel-like iterations. The force exerted by the fluid on a moving structure can
be interpreted as a virtual added mass of the structure. For an incompressible flow, each acceleration or
deceleration of the structure causes an immediate change in this added mass (whereas the added-mass change
for a compressible flow increases continuously over time). If this change is too large, both loosely and tightly
coupled Gauss—Seidel-like coupling schemes become unconditionally unstable; in other words, a reduction
of the timestep does not cure the instability. In the case of a massless structure, a reduction of the timestep
even worsens instabilities. Typically, only a few low-frequency Fourier modes of interface displacements
or velocities are unstable. Interface quasi-Newton methods rapidly capture the unstable Fourier modes and
thus lead to stable coupling iterations. However, standard multigrid techniques, with Gauss—Seidel-like
iterations as a smoother, do not work for incompressible flows. Although they smooth high frequencies,
they are unstable for low frequencies. In addition, the convergence rate for low-frequency modes does not
improve on spatially coarser grids.

Since Gauss—Seidel-like coupling iterations, including the interface quasi-Newton method, are inherently
sequential in execution order of flow and structure solver, and since the structure solver is usually much less
costly than is the flow solver, alternative Jacobi-like methods are desirable on massively parallel systems.
These avoid processor idle time during the execution of the structural solver and the coupling numerics.

Many of these problems feature multiple spatial and temporal scales. In all of them, the fluid domain can be
occupied by one or multiple interacting fluids, the structure can be linear or nonlinear with self-contact, and
the FSI occurs at physical interfaces.

J.1.2 Example Multiphysics FSI Software Package — AERO

As a practical application of FSI, we consider examples in high performance, high fidelity analysis, which
finds application in modeling the flow of airstreams over aircraft and vehicles as well as fluid flow over
underwater structures. Airflow problems necessitate the solution of nonlinear compressible FSI problems.
Specific examples include the parametric identification of an F-16 Block-40 fighter aircraft in clean wing
configuration and subsonic, transonic, and supersonic airstreams; the aeroelastic analysis of an F/A-18 5.6
Hz limit-cycle oscillation configuration; the flutter clearance of the laminar flow wing of a supersonic busi-
ness jet concept; and the aeroelastic tailoring of a Formula 1 car. Examples of incompressible FSI problems
include the study of intense implosive collapses of gas-filled underwater structures and their effects on
nearby structures.

The AERO code is an example of a multiphysics FSI software package that considers these issues. The
functional modules of the AERO code include some of the most important considerations for producing
accurate models:

1. The structural analyzer AERO-S

174

A
AVA \liinois Rocstar LLC Mathematics of Coupling

2. The compressible turbulent flow solver AERO-F

3. The auxiliary module MATCHER that enables the discretization of fluid—structure transmission con-
ditions at nonmatching, discrete fluid—structure interfaces

4. The auxiliary module, SOWER that manages all parallel input/output (I/O) associated with this soft-
ware

AERO-F can operate on unstructured body-fitted meshes as well as fixed meshes that embed discrete repre-
sentations of surfaces of obstacles, around and/or within which the flow is to be computed. The body-fitted
meshes and the embedded discrete surfaces can be fixed, move, and/or deform in a prescribed manner, or
can be driven by interaction with the structural analyzer AERO-S.

In the case of body-fitted meshes, the governing equations of fluid motion are formulated in the arbitrary
Lagrangian—Eulerian (ALE) framework. In this case, large mesh motions are handled by a corotational
approach, which separates the rigid and deformational components of the motion of the surface of the
obstacle, and robust mesh motion algorithms that are based on structural analogies. In the case of embedded
surfaces that can have complex shapes and arbitrary thicknesses, the governing equations of fluid motion
are formulated in the Eulerian framework, and the wall boundary or transmission conditions are treated by
an embedded boundary method.

Both AERO-F and AERO-S feature explicit and implicit time integrators with adaptive timestepping. Both
modules are coupled by a family of partitioned analysis procedures that are loosely coupled but exhibit ex-
cellent numerical stability properties and are provably second-order time-accurate. AERO-F and AERO-S
communicate via runtime software channels, for example, using MPI. They exchange aerodynamic (pres-
sure) and elastodynamic (displacement and velocity) data across non-matching, discrete fluid and structure
mesh interfaces using a conservative method for the discretization of transmission conditions and the data
structures generated for this purpose by MATCHER.

[Keyes et al. (2013)]

J.2 Computational Aeroelastic Models

Computational aeroelasticity (CAE) can be classified broadly under three major categories: fully coupled,
closely coupled, and loosely coupled analyses. Before looking at the various CAE models in detail, it is
useful to look at the generalized equations of motion to better explain CAE methodologies.

(M{G(0)} + [Cl{q(0)} + [KI{q(0)} = {F (1)}, d.7

N

w(x,y,z,1) = ZQi(t){(Pi(x,y,Z)}- (J.8)

i=1

Here, {w(x,y,z,t)} is the structural displacement at any time instance and position, and {g(¢)} is the gen-
eralized displacement vector. The matrices [M], [C], [K] are the generalized mass, damping, and stiffness
matrices, respectively, and ¢; are the normal modes of the structure, with N being the total number of modes
of the structure.

The term on the rhs of Eq J.7, {F ()}, is the generalized force vector, which is responsible for linking the
unsteady aerodynamics and inertial loads with the structural dynamics. Eq J.7 shows that there are distinct

175

A
AVA \liinois Rocstar LLC Mathematics of Coupling

terms representing the structures, aerodynamics, and dynamics disciplines, which gives us the flexibility in
choosing different methods for any particular system.

In fully coupled models, the governing equations are reformulated by combining fluid and structural equa-
tions of motion, which are then solved and integrated in time simultaneously. While using a fully coupled
procedure, one must deal with fluid equations in an Eulerian reference system, and structural equations in
a Lagrangian system. This leads to the matrices being orders of magnitude stiffer for structure systems as
compared to fluid systems, thereby making it virtually impossible to solve the equations using a monolithic
computational scheme for large scale problems.

In loosely coupled models, unlike the fully coupled analysis, the structural and fluid equations are solved
using two separate solvers. This can result in two different computational grids (structured or unstructured),
which are not likely to coincide at the boundary. This calls for an interfacing technique to be developed,
to exchange information back and forth between the two modules. The loosely coupled approach has only
external interaction between the fluid and structure modules; or the information is exchanged after partial
or complete convergence. This approach is like a multidisciplinary computing environment, where one
effectively controls the interaction between two commercial codes for each of the modules by means of
interfacing techniques. This gives us the flexibility of choosing different solvers for each of the modules, but
the coupling procedure leads to a loss in accuracy as the modules are updated only after partial or complete
convergence. A typical block diagram comprising of different solvers for fluid and structure models as well
as the interfacing methodologies is shown in Figure J.64. This kind of a loosely coupled approach is limited
to small perturbations and problems with moderate nonlinearity.

FLUID MODELS INTERFACE METHODS STRUCTURE MODELS
LINEAR INFINITE PLATE MODAL
ANALYTICAL SPLINE APPROACH]
8
g FULL THIN PLATE LINEAR =z
2 POTENTIAL SPLINE ANALYSIS =
2 =
-
§ TRANSONIC SMALL MULTI-QUADRATIC- NONLINEAR =
=< DISTURBANCE BIHARMONIC ANALYSIS Z
Z Q
© g
= EULER FINITE PLATE EQUIVALENT S
w

5 APPROACH SPLINE BEAM ;,‘
© =

THIN-LAYER APPROX| NON-UNIFORM B- 2-D FINITE

TO NAVIER-STOKES SPLINES ELEMENTS

NAVIER SI%OKES NTEIE“ ION&A%ON“’ ELDEJSIIE;IE

‘ 3 EXTRAPOLATION

Figure J.64: Sample fluid and structure solvers along with select interfacing methodologies for aeroelastic simulation.
Figure taken from [Kamakoti and Shyy (2004)].

Closely coupled models are some of the most widely used methods in the field of CAE as it not only paves
the way for the use of different solvers for fluid and structure models but also couples the solvers in a tight
fashion thereby making it an efficient method for complex nonlinear problems. In this approach, the fluid
and structure equations are solved separately using different solvers but are coupled into one single module
with exchange of information taking place at the interface or the boundary via an interface module thereby
making the entire CAE model tightly coupled. The information exchanged here are the surface loads, which
are mapped from CFD surface grid onto the structure dynamics grid; and the displacement field, which are
mapped from structure dynamics grid onto CFD surface grid. The transfer of surface displacement back
to the CFD module implies deformation of the CFD surface mesh, and this calls for a moving boundary

176

A
AVA \liinois Rocstar LLC Mathematics of Coupling

technique to enable remeshing of the entire CFD domain as we march in time. This can cause potential
problems for multiblock grids with complex geometries.

For descriptions of fluids and structures solvers, including the governing equations and overview of different
solution algorithms, see [Kamakoti and Shyy (2004)].

J.3 Keyes’ Prototype Algebraic Forms and Nomenclature

The two simplest systems that exhibit the crux of a multiphysics problem are the coupled equilibrium prob-
lem,

0
Fz(ul,ug) =0 (J.9)

and the coupled evolution problem,

dur = fi(ur,uz)
duy = fo(ur,uz). (J.10)

where dyu; represents the time derivative of u;, i.e., du;/dt. Here u refers generically to a multiphysics
solution, which has multiple components indicated by subscripts u = (uj,...,uy,); the simplest case of
N, = 2 components is indicated here.

Noting this, we will generically use the notation in eq (J.9) to refer to either a coupled equilibrium problem
or a single timestep of a coupled evolution problem.

When eq (J.10) is semi-discretized in time, the evolution problem leads to a set of problems that take the
form of eq (J.9) and are solved sequentially to obtain values of the solution u(z,) at a set of discrete times.

We assume initially, for convenience, that the Jacobian,

d(F1,F,)

J=5—",
d(uy,up)

J.11)
is diagonally dominant in some sense and that the partial derivatives, dF;/du; and dF>/du;, are non-
singular. These assumptions are natural in the case where the system arises from the coupling of two
individually well-posed systems with legacies of being solved separately.

In the equilibrium problem, eq (J.9), we refer to F] and F;, as the component residuals; in the evolution
problem, eq (J.10), we refer to f; and f> as the component fendencies.

The choice of solution approach for these coupled systems relies on a number of considerations. From
a practical standpoint, existing codes for component solutions often motivate operator splitting as an ex-
peditious route to a first multiphysics simulation capability making use of the separate components. This
approach, however, may ignore strong coupling between components and give a false sense of completion.
Solution approaches ensuring a tight coupling between components require smoothness, or continuity, of
the nonlinear, problem-defining functions, F;, and their derivatives. Any potential discontinuities must be
identified and addressed before putting confidence in these approaches.

177

A
AVA \liinois Rocstar LLC Mathematics of Coupling

Classic multiphysics algorithms preserve the integrity of the two uniphysics problems, namely, solving the
first equation for the first unknown, given the second unknown, and the second equation for the second
unknown, given the first. This represents the reductionist approach of science, and software generally exists
to do this. Multiphysics coupling is taken into account by iteration over the pair of problems, typically
in a Gauss—Seidel manner (see Algorithm 4), linear or nonlinear, according to context. Here we employ
superscripts to denote iterates.

Procedure 4 Gauss—Seidel multiphysics coupling.

Given: Initial iterate {u?,ud}

for k =1,2,..., (until convergence) do
| Solve for vin Fi(v,us ") ;s setuk =v Solve for win F>(uk,w) ; set uf = w
end

When this iteration converges, the accuracy with which the discrete equations are solved can be improved
by continuing the iterations. The largest implicit aggregate is the largest of the uniphysics problems; we
refer to this iteration as “loosely coupled.” A Jacobi-like iteration can be similarly defined. This further
decoupling exposes more parallelism, albeit possibly at the cost of a slower convergence rate.

The simplest approach to the evolutionary problem likewise employs a field-by-field approach in a way
that leaves a first-order-in-time splitting error in the solution. Algorithm 5 gives a high-level description
of this process, which produces solution values at time nodes #y < t; < ... < ty. Here, we use notation
u(ty),...,u(ty) to denote discrete timesteps. An alternative that staggers solution values in time is also
possible.

Procedure 5 Multiphysics operator splitting.

Given: Initial values {u; (to),u2(t0)}

forn=1,2,...,Ndo
Evolve one timestep in dyu; + fi(u1,uz(t,—1)) = 0 to obtain u;(f,) Evolve one timestep in dyus +
fz(ul (tn), uz) = 0 to obtain uz(l‘n)

end

The individual component evolutions in Algorithm 5 can be implicit or explicit and performed with or
without subcycles. However, there is no point in their being of high order unless a higher-order coupling
scheme than this is used, such as Strang splitting or temporal Richardson extrapolations for higher order.

An inner loop may be placed inside each timestep in which the coupling variables are updated to satisfy
implicit consistency downstream while still preserving the legacy software for each component.

For example, this loosely coupled evolution is depicted in the context of aeroelasticity, where the
first component consists of fluid velocity and pressure and the second component of structural
displacements. This is an interface transmission form of coupling in which structural displace-
ments provide boundary conditions for the fluid, and fluid pressures provide boundary conditions
for the structure in the context of a dynamic mesh.

178

A
AVA \liinois Rocstar LLC Mathematics of Coupling

If the residuals or tendencies and their derivatives are sufficiently smooth and if one is willing to write a
small amount of solver code that goes beyond the legacy component codes, a good algorithm for both the
equilibrium problem and the implicitly time-discretized evolution problem is Jacobian-free Newton—Krylov
(JENK). Here, the problem is formulated in terms of a single residual that includes all components in the
problems,

_(F(u,u) \
Flu) = < sy > —0 (1.12)

where u = (uy,u;). The basic form of Newton’s method to solve eq (J.12), for either equilibrium or transient
problems, is given by Algorithm 6. Because of the inclusion of the off-diagonal blocks in the Jacobian, for
example,

oF R
J=| g0 98 |, a.13)
du; dup

Newton’s method is regarded as being “tightly coupled.”

Procedure 6 Newton’s method.
Given: Initial iterate u°

for k =1,2,..., (until convergence) do
| Solve J(u*~"éu= —F(u*~') Update u* = u*~" + Su
end

The operator and algebraic framework described here is relevant to many divide-and-conquer strategies in
that it does not “care” (except in the critical matter of devising preconditioners and nonlinear component
solvers for good convergence) whether the coupled subproblems are from different equations defined over a
common domain, the same equations over different subdomains, or different equations over different subdo-
mains. The general approach involves iterative corrections within subspaces of the global problem. All the
methods have in common an amenability to exploiting a “black-box™ solver philosophy that amortizes ex-
isting software for individual physics components. The differences are primarily in the nesting and ordering
of loops and the introduction of certain low-cost auxiliary operations that transcend the subspaces.

Not all multiphysics problems can easily or reliably be cast into these equilibrium or evolution frameworks,
which are primarily useful for deterministic problems with smooth operators for linearization. In formu-
lating multiphysics problems, modelers first apply asymptotics to triangularize or even to diagonalize the
underlying Jacobian as much as possible, pruning provably insignificant dependencies, but bearing in mind
the conservative rule of coupling: “guilty until proven innocent.” One then applies multiscale analyses to
simplify further, eliminating stiffness from irrelevant mechanisms. Because of significant timescale and
resolution requirement differences, these activities often reveal justifications for splitting some physics or
models from others. In these cases, an operator-splitting approach should be applied. However, caution is
warranted to ensure that temporal or spatial scales do not overlap between split physics as the simulation
progresses. If this happens, a more coupled approach is generally required [Keyes et al. (2013)].

179

A
AVA \liinois Rocstar LLC Mathematics of Coupling

J.4 Comments on Transfer Functions

There now exists an extra set of requirements for transferring the parameter information between codes.
These transfer functions can be simple postprocessing that uses solution and parameter values from the
other applications, or it can be something as complex as a complete nonlinear solve.

Strategies on how to aggregate the evaluation of the transfer operators are usually dictated by software
design constraints, data transfer requirements for the multiple code couplings supported, and efficiency
considerations.

In terms of software implementation, there are many ways to handle transfers of information between codes.
The transfer functions are only a mathematical concept that explicitly demonstrates the transfers. Software
implementations could implement this directly.

An alternative and equally valid way to transfer information is to directly write the transfer functions into the
residual operator F'. We typically do this when the code already does the postprocessing during the solution
step.

Yet another way to implement transfers is to treat the transfer operator as an entirely new single physics
application by implementing an additional F. In this case, simple transfer mappings are used to copy the
data between residual functions.

In our experience, we usually reserve the transfer operators for simple mappings, and for anything that
requires a linear or nonlinear solver, we implement the transfer as an additional physics application F.

In practice, the sets for a particular transfer function are very sparse. They usually take the solution and
parameters from one physics application and generate values for another physics application.

The union of all transfer operators defines an implicit dependency graph between the coupled physics ap-
plications. Explicitly exposing this information can help determine nonzero sensitivity blocks for implicit
solution techniques [Pawlowski et al. (2011)].

J.5 Discussion of Some FSI Coupling Strategies

In interfacial coupling we have two or more physical domains each containing different physical processes,
but which share a common interfacial surface. The physical processes are independent in each domain apart
from the interaction at the interface.

One example is the modeling of a re-entry vehicle as it travels through the atmosphere. The flight of the
vehicle through the atmosphere creates a pressure load on the shell of the vehicle which in turn affects the
structural dynamics of the interior of the vehicle. Here the two domains are the fluid exterior to the vehicle
(compressible, turbulent fluid flow) and the interior of the vehicle (structural dynamics) coupled through the
shell of the vehicle (interface).

In systems of this type the physics in each domain is typically modeled as a set of partial differential equa-
tions that are coupled through boundary conditions. Although the applications share a common interfacial
surface, the interface could have different spatial discretizations for each. Here the transfer functions rep-
resent the interfaces between fluid and structure systems and typically map their argument to a much lower
dimensional space

This section describes the basic algorithms used to solve a general multiphysics model, assuming that it is
composed of nonlinear equations. The goal is not to present an exhaustive list of solution strategies, but to
describe the typical requirements that a physics code must support for a particular solution method. The

180

A
AVA \liinois Rocstar LLC Mathematics of Coupling

information in this section should be used to help determine the best coupling strategy for a particular set of
applications or to select the most practical approach given current legacy software constraints.

The equations that compose the general model can be generated from any number of sources. For example,
it could be a set of ordinary differential equations (ODEs), a discretized set of partial differential equations
(PDEs), a set of algebraic equations, or a set of differential algebraic equations (DAEs).

J.5.1 Picard lteration

The first solution method we mention is a stationary iterative method whose variants are known by multiple
names: Picard iteration, nonlinear Richardson iteration, successive substitution or fixed-point iteration. Here
we do not discuss differences among these variants and will refer to them collectively as Picard iteration
methods.

Picard iteration, also known as successive substitution, is a simple numerical method for approximating the
solution to a fully coupled system. It works by solving each component in the coupled system for its solution
variables, treating the other variables as fixed quantities. This is repeated in a round-robin fashion until some
measure of convergence is achieved (typically when the size of the change is small for the solution variables
from iteration to iteration, and/or the size of the residual of each component evaluated at the most current
solution values). For example, an algorithm for applying this technique to the two-component interfacially
coupled system is displayed in Algorithm 7, where r; ; is the transfer function between components i and ;.

Procedure 7 Picard iteration for the two-component interfacially coupled system.

Require: Initial guesses ”(1) and ”(2) for uy and up

k =0 while not converged do
| k=k+1 Solve Fi(uf,r1(ub~1)) =0 for uk Solve Fy(u§,ra 1 (uk)) = 0 for uf
end

The problem with this approach is that the convergence rate is slow (linear) and needs additional require-
ments on F; and F, to converge. Picard methods are attractive when the different components are only
weakly coupled or when there is a very good initial guess and/or only an approximate solution is needed.
For example, a Picard method would tend to work well to solve for the implicit timestep update in a transient
predictor/corrector method (where the explicit predictor gives a good initial guess and the implicit corrector
system only needs to be converged a little to guarantee stability).

J.5.2 Newton Methods (Review)

The primary alternative to the Picard iteration class of methods are various methods based on Newton’s
method. The basic algorithm for a Newton method is described by Algorithm 6, where J(u*) is the Jacobian
matrix, J = dF /du, evaluated using the state variables u* at iterate k.

The advantages of Newton methods include a g-quadratic convergence rate in the error norm and the stability
of the algorithm. Although robustness issues can arise, these can be addressed by leveraging globalization
techniques such as linesearch and trust region methods. The primary drawback to Newton’s method is the
cost and difficulty of computing the full Jacobian matrix. The diagonal blocks are typically non-singular
matrices (but may not always be), but the non-diagonal blocks are typically rectangular matrices. Note that

181

A
AVA \liinois Rocstar LLC Mathematics of Coupling

even if each individual application were to implement a Newton-based solve, this would only supply the
Jacobian diagonal blocks. The off-diagonal sensitivities provided by the transfer functions would still be
missing.

One way to address the off-diagonal blocks is to leverage an approximate Newton-based method called
the Newton—Krylov approach. When using Newton—Krylov solvers, we avoid the cost of constructing an
explicit Jacobian. Newton—Krylov solvers build up an approximation to the solution of the Newton system
by applying Jacobian-vector products to construct a Krylov subspace. By requiring only the Jacobian-vector
products to solve the Newton system, the Jacobian need not be explicitly formed. While an explicit Jacobian
matrix could be used, the Jacobian-vector product can be computed to machine precision using automatic
differentiation or approximated by directional differences using only residual evaluations. This method
eliminates the burdensome and error-prone procedure of hand coding an analytic Jacobian and reduces the
runtime memory footprint, since the Jacobian is not explicitly stored.

J.5.3 Nonlinear Elimination

The disadvantage of the full Newton approach is that it requires forming and solving the fully-coupled
Newton systems, making it very difficult to use nonlinear solvers, linear solvers, and preconditioners that
are specialized to each system component. An alternative approach that maintains the quadratic convergence
of Newton’s method, but allows for greater flexibility in the choice of solver for each system component is
nonlinear elimination [Pawlowski et al. (2011)].

J.6 Simple Coupling Strategy for Aeroelastic Problems Using Rocstar

The purpose of this section is to describe, in detail, the coupling algorithm and information transfer between
the various components (fluids solver, structures solver, and orchestrator) of the Rocstar integrated code.

J.6.1 Variables Definitions and Nomenclature

& general (discrete) coordinates in geometric space (e.g., x,y,z or r, 0, ¢)
t time

system timestep

timestep index

local time index, (t —")/At" € [0...1]

2

[SIIRS

structure
fluid
interface
orchestrator

o = - »

displacement field
velocity field
acceleration field
traction field

=L <lo=y

pressure
density

mass flux (set to zero in absence of burning)

7, burning rate (set to zero in absence of burning)

3o

182

A
AVA |llinois Rocstar LLC

Mathematics of Coupling

undeformed location
deformed location
deformed surface normals (measured positive into structure)

21 S|l =y

undeformed surface normals (measured positive into structure)

value computed at nodes of the structure interface
value computed at faces of the structure interface
value computed at nodes of the fluid interface
value computed at faces of the fluid interface

5 4 g

>

bl Lo
=) 2

value associated with particles
value associated with mesh
solutions of previous system timestep (for interpolation or extrapolation)

AN NN N N S

—

No-slip boundary condition: V¢-f = Vs -f, where 7 denotes surface tangents.
Conservation of velocity: Vi = V.
Conservation of momentum: . = .

Continuity of displacement: iy = i.

u, p d da?
Qf I o

Figure J.65: Three-field setup: fluid field Q¢, interface I'j, and structural field Qg along with respective domain normals
and variables. It is important to note the position of I is obviously varying with time and is only defined through the

interaction of both fields. Figure taken from [Gerstenberger and Wall (2008)].

J.6.2 Subcycling Scheme

The individual component codes, fluid (f) and structure (s), proceed at their respective timesteps (Afy and
At, respectively), i.e., they are allowed to subcycle based on their respective stability and precision criteria.
However, information is transferred between these component codes only at every “system timestep” (At),

which is greater than or equal to the largest of the “component timesteps.”

Interpolation and extrapolation During subcycling, a physical component can request boundary con-

ditions from Rocman at any time ¢ € [t","*!] using a local time index, :

o= (IA_;) eo..1].

Rocman interpolates or extrapolates values using the following schemes to obtain values at time n + «.

A
AVA \liinois Rocstar LLC Mathematics of Coupling

First, if it has values at times n and n + 1, the interpolation takes the form of

Yo —yn + a(vn+1 _ V”).

Second, if it has values at times n — 1 and #n, and the extrapolation takes the form of

n__ ,n—l1

V
n+o __ .n n
VTR =V oAt AT

Note that we may also simplify them and have v'*% = V", Using interpolated/extrapolated values might
deliver higher order accuracy and allow use of larger system timesteps (i.e., more solver subcycles).

Subcycling without and predictor-corrector iterations Figure J.66a shows a schematic overview of
the coupling among the physical modules as they march in time from " to t"*! without predictor-corrector
iterations. The lhs of the figure indicates how three physical modules march at their own timesteps to meet
the user-specified system timestep. The rhs of the figure depicts variations of some of the interface quantities
in time. Interface quantities associated with the combustion code are shown in red, a solid interface quantity
is shown in green, and some fluid interface variables are indicated in blue.

At the beginning of a system timestep, the combustion solver takes as many steps as required to meet the
specified system timestep. Since the fluid solver has not yet marched to its solution from " to t"*!, the
combustion solver receives time-extrapolated values for the fluid temperature and heat flux at the interface
from the orchestrator. The extrapolated variations are indicated by dashed blue lines, and the values passed
to the combustion solver are marked by the cross symbols.

The extraction of the combustion solver from the fluid solver and the use of extrapolated values in the
coupling algorithm leads to two important benefits. First, it increases the modularity of the coupled code
and hence the ease with which plug-and-play may be performed. Second, and perhaps more importantly, the
variation in time of each interface quantity is now uniquely defined by the orchestrator, which means that it

should be possible to rigorously enforce mass conservation even when a simulation employs subcychng
A schematic overview of the coupling among the physical modules as they march in time from ¢ to #**! with

predictor-corrector steps is shown in Figre J.66b. In contrast to Figure J.66a, dashed lines indicate variations
of interface quantities during previous predictor-corrector steps. Thus the orchestrator can provide, for
example, the combustion code with a fluid temperature and heat flux at the interface based on the variation
of these quantities from the last predictor-corrector step. Only during the first predictor-corrector step is it
necessary to use extrapolation.

J.6.3 Communication Mechanism

All components communicate with each other through the orchestrator. Each component owns some buffers
for storing incoming or outgoing messages, which are registered to the orchestrator. The orchestrator copies
data from outgoing buffers to respective incoming buffers, and performs algebraic manipulations for the
buffered data as necessary. In this parlance, “send” indicates putting data into outgoing buffers. The or-
chestrator also provides subroutines to manipulate interface data. The prerequisite of these subroutines is
that the data in the outgoing buffers are up-to-date. The output of these subroutines are stored in incoming
buffers of the physical components.

184

A
AVA |llinois Rocstar LLC

Mathematics of Coupling
1 — - o e+t . . . e]
A & BB < = =
{ = & & ® ® 5
i 8 B B 8-t

(a) Coupling without predictor-corrector steps.

(b) Coupling with predictor-corrector steps.

Figure J.66: Schemata of the relationship between solutions without (J.66a) and with (J.66b) predictor-corrector steps

used during system timestepping from 1" to

solver are shown in red, structure solver in green, and fluid solver in blue.

t"+1

In both cases, interface quantities associated with the combustion
Dashed lines indicate data extrapolation in

(J.66a) and variations in interface quantities during previous predictor-corrector steps in (J.66b). (Only during the first
predictor-corrector step is it necessary to use extrapolation.) Values passed to the different solvers are marked by cross

symbols.

particle displacement
parameterized velocity

parameterized acceleration

mesh displacement
mesh velocity
mesh acceleration
particle velocity

deformed location

Data transfer parameters:

Interface quantities to be stored

i(8,1) = d(X(&,1),1)

5 dx(€,
V(& 1) = ZG
5 92%(E,
Q(81) = 5"
H(F, 1) = 2 —F V.5

* mode of load transfer (pressure or tractions)

* order of interpolation in time

* p; (solid density for fluid-only simulations)

A
AVA \liinois Rocstar LLC Mathematics of Coupling

Structure domain

* Qutgoing data to orchestrator (fluid)

— Defined on interacting surface patches:

1
* (ps ’:f+

)

* (‘_"’S)fol

A\ nt+1

« (d) = -R
sn

« (Ad) !

— Defined on both interacting and noninteracting patches: (x)"Jrl

sn
* Incoming data from orchestrator (fluid)

— Defined on interacting surface patches: (?s)':: *

— Defined on both interacting and noninteracting surface patches: (\3) ::a

Fluid domain

* Qutgoing data to orchestrator (structure)

— Defined on interacting surface patches:

1
* (pr)?f+

x (fg)f * (outwards normal)
n+o

* (pr)gr

* (?f) ?fH

— Defined on both interacting and noninteracting surface patches: ()‘z’)?n+ !

* Incoming data from orchestrator (structure)

— Nodal displacement vector of grid points due to boundary motion: (Aﬁ)g:r “

— Defined on interacting surface patches: (p)f *

Orchestrator

¢ Intermediate data for structure solver

— For surface propagation/deformation, defined on both interacting and noninteracting surface
patches:

« ()
« (%),

N\ n+l
- (V)
sf

— Defined on interacting surface patches:

+ (B)g

186

A
AVA \liinois Rocstar LLC Mathematics of Coupling

Jaor
*
* (
*

¢ Intermediate data for fluid solver

- (@) GOR R and ()

— Helpers for computing (Ai), or transferring from structure to fluid (see Step (4) in Section J.6.4)

(A,

(Vo)

(Fo)in

(Vo) n

i

— For convergence check if including predictor-corrector iterations:

—\ pre

(1)
s« (W)

x (Au)f

*

*

*

*

*

J.6.4 Controlling Program Flow — FSI Coupling Scheme

Starting point: Assume the solution is known everywhere in the fluid and structure domains at time #".

(0) Imitialization: To be called only at time 0.

(0.1) Fluid solver sends the following information to the orchestrator:

(PO

0
* (Pt
[] 7 0
(tf) ff
0
* (y)fn
N
o (Hie)g
(0.2) Structure solver sends the following information to the orchestrator:

* (pS)(s)f

0
- (@)

sn

»0

* (sn

0

sn

(0.3) Orchestrator computes (¥)°. = (¥)2 + (ﬁ')

sn

(1) Orchestrator updates data to structure solver: Transfers (7). to (%) . The time index is 7 if using
PC iterations and n + 1 otherwise.

187

A
AVA \liinois Rocstar LLC Mathematics of Coupling

(2) Interface code invoked by orchestrator: Propagate undeformed boundary (on solid interface mesh)
using Huygens’ construction due to only burning. In this first implementation, the connectivity of
the surface elements is assumed to remain unchanged (i.e., no interface nodes or elements are added
or removed during the burning process). The reasoning is that Huygens’ construction is only valid
for burning, not for structural displacements, and that 7}, is defined on the deformed configuration,
whereas the solid code applies mesh motion to the undeformed configuration.

(2.1) Assigns propagated interface to be undeformed (structure or fluid) interface
A\ n+l
(2.2) Computes normals (N) e of propagated interface using (X);, 4. [see Step (0.2) and Step (3.4)]

(2.3) Propagates burning faces using mesh motion velocities (V)face = 0, where ¥ is V for structure and
V, for fluid [see Step (3.4)]

(2.4) Transfers mesh motion from faces to nodes by geometric construction
(2.5) Interpolates mesh motion to nonburning nodes

(2.6) Sends (V)mde to owner of propagated interface to be used as boundary condition for mesh motion
in volume in Step (3.3) or Step (5.4)

(3) Structure displacements: Solver subcycles by repeating steps

(3.1) Obtains (ts) by extrapolation and () o by interpolation [see Step (2.6)] from orchestrator

(3.2) Solves for mesh motion, i.e., computes '** and then @+ over the volume

(3.3) Solves for structural motion, i.e., computes V,it, and @ using (ts) e

RN E!
(3.4) At the end of subcycling, computes (¥)""' and sends (p;)"%", (ﬂ) , (@)™ (total displace-

sn

ment), (V)" and (¥)"'to orchestrator

(4) Orchestrator updates data to fluid solver: Computes and transfers quantities of interest

(4.1) Computes () = (@) + (u)nH

sn
(4.2) Transfers (i)"+1 to (i);’Jl and (V,)nn+l to (VS)?f+l

(4.3) Computes (Aii)f, " = ((y)?nJr(i)t ‘) — ()}, [see Step (2.6)]

(5) Fluid displacements: Solver subcycles by repeating the steps

(5.1) Computes (pr)fi * and sends (pg)f * and (7if)f; * to orchestrator
(5.2) Obtains injection velocity at fluid faces from orchestrator, which were computed as (pf_/’f)?;”a =

(pr)ie * (W)

(5.3) Obtains (A#)f."* from orchestrator [see Step (4.3)]
(5.4) Solves for mesh motion at fluid nodes and ﬁeld variables at face centers

(5.5) At the end of subcycling, sends (pf)?fHa (?f) ,and (¥) ! to orchestrator
(6) Orchestrator updated by fluid solver: Data transferred and convergence checked

(6.1) Conserves linear momentum by enforcing (f;)ff = (f})ff [see Step (0.1) and Step (5.5)]

188

A
AVA \liinois Rocstar LLC Mathematics of Coupling

(6.2) With PC iterations, checks convergence of t., Aii, and v, on fluid faces
(6.3) If converged ...
e Backs up (?;)Zf, (\3);1“, (Aid)g,, and (V)

fn?
* Advances system timestep (At)

Remark: With PC iterations, the orchestrator always uses interpolation for obtaining values at n + « if
iPredCorr > 1 (i.e., after the first PC iteration). At time ¢°, the orchestrator sets values at n + ¢ to the most
recent values (i.e., uses constant extrapolation), which avoids requiring an initial guess for all quantities at
: 0
time 7-.

[Geubelle et al. (2004)]

J.7 JFNK Coupling Strategy for Aeroelastic Problems

Jacobian-free Newton—Krylov (JFNK) methods are becoming increasingly popular in many branches of
computational physics. They cite numerous examples in fluid dynamics, plasma physics, reactive flows,
flows with phase change, radiation diffusion, radiation hydrodynamics, and geophysical flows. It is interest-
ing to note, however, that JFNK methods have not become the approach of choice in the numerical solution
of the compressible Navier—Stokes equations in computational fluid dynamics and aerodynamics. The major
NASA flow solvers typify the algorithms that are most popular in the computational aerodynamics commu-
nity. OVERFLOW and CFL3D are both based on implicit approximate factorization methods, TLNS3D and
CART3D utilize multistage explicit schemes with multigrid, and FUN3D, although it includes a Newton—
Krylov option, is usually run using either a point implicit procedure or an implicit line relaxation scheme.
All of these approaches are more mature than JFNK methods.

The lack of broad acceptance of JFNK methods in the computational fluid dynamics community stems from
several factors. Although the Jacobian matrix is not required, some sort of matrix is typically formed to
precondition the linear system. Together with the Krylov subspace, this can lead to higher memory use
than some of the more popular methods. In addition, formation of this matrix can require programming
effort, e.g., hand linearization of the discrete residual equations. Completely matrix-free algorithms avoid
these issues by using a solver as preconditioner but are typically slower and often inherit the shortcomings
of solver used. Moreover, a JENK method often involves a number of parameters, and there some effort
involved in ensuring that suitable values are chosen for specific classes. Poorly chosen parameter values can
lead to inefficient and unreliable algorithms. Other algorithms require some parameter selection as well, but
often somewhat fewer, and optimal values for specific problem classes are better established than for the
relatively newer JFNK algorithms. Furthermore, efficient globalization is sometimes difficult to achieve;
the highly nonlinear behavior of some field-equation turbulence models can be particularly problematic.
Finally, there are some subtle aspects of Newton—Krylov methods that are not often reported and can also
lead to inefficient and unreliable performance if handled improperly.

The above issues notwithstanding, JENK methods also offer many compelling potential advantages in the
solution of compressible flows. They can be the most efficient option for extremely stiff problems, where
stiffness can be introduced by multiple scales associated with complex physics, such as chemical reactions,
or stiff source terms, such as those introduced by some turbulence models. In addition, Newton-like con-
vergence properties of JFNK methods are ideal when deep convergence is needed. Consequently, they are
very effective in the context of aerodynamic shape optimization. Moreover, their convergence tends to be
insensitive to the properties of the mesh. For example, JENK methods converge well on meshes with high
aspect ratios. Also, high order methods can lead to reduced stability bounds for explicit iterative methods;

189

A
AVA \liinois Rocstar LLC Mathematics of Coupling

hence JFNK methods can be appropriate in this context. Furthermore, JENK methods can be a very efficient
means of solving the nonlinear problem that arises at each time step of a time-accurate implicit algorithm.
Finally, the parameters involved in JFNK methods can be used to advantage to tune the algorithm to be very
efficient for specific problem classes or to adjust the algorithm for particularly difficult problems.

[Chisholm and Zingg (2009)]

J.7.1 Introduction to JFNK Method

It is our observation that solution strategies for nonlinearly implicit PDEs have evolved along somewhat
different trajectories in the applied mathematics community and the computational physics community. In
discussing solution strategies for boundary value problems (BVPs), the applied mathematics community
has emphasized Newton-based methods. Outside of finite element practitioners, the computational fluid
dynamics (CFD) community has emphasized Picard-type linearizations and splitting by equation or splitting
by coordinate direction. The difference in predominating approach (Newton versus Picard) seems stronger
for implicit initial value problems (IVPs).

Again, the applied mathematics community has focused on Newton-based methods and on converging the
nonlinear residual within a timestep. In the computational physics community, operator splitting (time split-
ting, fractional step methods) has been the “bread and butter” approach, with little attention to monitoring
or converging the nonlinear residual within a timestep, often allowing a splitting error to remain in time. In
both IVP and BVP contexts, the concept of splitting (a form of divide-and-conquer at the operator level)
has been motivated by the desire to numerically integrate complicated problems with limited computer re-
sources. This tension does not vanish with terascale hardware, since the hardware is justified by the need
to do ever more refined simulations of more complex physics. One can argue that the stakes for effective
methods become higher, not lower, with the availability of advanced hardware.

Recent emphasis on achieving predictive simulations has caused computational scientists to take a deeper
look at operator splitting methods for IVPs and the resulting errors. As a result, the computational physics
community is now increasingly driven towards nonlinear multigrid methods and Jacobian-free Newton—
Krylov methods. These nonlinear iterative methods have grown out of advances in linear iterative methods,
multigrid methods, and preconditioned Krylov methods

An advantage of JFNK is that the code development curve is not steep, given a subroutine that evaluates
the discrete residual on the desired (output) grid. Furthermore, inexpensive linearized solvers can be used
as preconditioners. Developing effective preconditioners may be a challenge, and the storage required for
the preconditioner and Krylov vectors may be a limitation. An important feature of JFNK is that the overall
nonlinear convergence of the method is not directly affected by the approximations made in the precondi-
tioning. The overall framework, making use of multiple discrete approximations of the Jacobian operator,
has a polymorphic object-oriented flavor that lends itself well to modern trends in software design and soft-
ware integration. In many cases, JENK has been used to retrofit existing BVP and IVP codes while retaining
the most important investments (in the physics routines) of the original code.

[Knoll and Keyes (2004)]

J.7.2 Fundamentals JFNK Methods
The Jacobian-free Newton—Krylov method is a nested iteration method consisting of at least two, and usually

four, levels. The primary levels, which give the method its name, are the loop over the Newton corrections
and the loop building up the Krylov subspace out of which each Newton correction is drawn. Interior to

190

A
AVA \liinois Rocstar LLC Mathematics of Coupling

the Krylov loop, a preconditioner is usually required, which can itself be direct or iterative. Outside of the
Newton loop, a globalization method is often required. This can be implicit timestepping, with timesteps
chosen to preserve a physically accurate transient or otherwise, or this can be some other form of parameter
continuation such as mesh sequencing.

Review of Newton methods The Newton iteration for F (i) = 0 derives from a multivariate Taylor
expansion about a current point ii*:

F@@*) = F@@) + F'(a°) (@ — @) + HOTs. (J.14)

Setting the rhs to zero and neglecting the terms of higher-order curvature yields a strict Newton method,
iteration over a sequence of linear systems

J(@)§i* = —F @), ™ =i+ 8, k=0,1,... (J.15)

given ii. Here, F (ii) is the vector-valued function of nonlinear residuals, J = F is its associated Jacobian
matrix, # is the state vector to be found, and k is the nonlinear iteration index. The Newton iteration is
terminated based on a required drop in the norm of the nonlinear residual

Fa)|
=1 < tOlpes, J.16)
JFa
and/or a sufficiently small Newton update
|52]
T < tolypdate- J.17)

For a scalar problem, discretized into n equations and » unknowns, we have

F(id)={F,F,....F,....F} (J.18)

and

ﬁ:{ul,ug,...,ui,...,un}, (J19)

where i is the component index. In vector notation, the (i, j)th element (ith row, jth column) of the Jacobian

matrix is

JF;(id)
du j '

Jij = J.20)
In this scalar example there is a one-to-one mapping between grid points and rows in the Jacobian. Forming
each element of J requires taking analytic or discrete derivatives of the system of equations with respect to
i. This can be both error-prone and time consuming for many problems in computational physics. Never-
theless, there are numerous examples of forming J numerically and solving eq (J.15) with a preconditioned
Krylov method. J can also be formed using automatic differentiation.

191

A
AVA \liinois Rocstar LLC Mathematics of Coupling

Krylov methods Krylov subspace methods are approaches for solving large linear systems introduced as

direct methods in the 1950s, whose popularity took off after Reid reintroduced them as iterative methods

1n 1971 They are projection (Galerkln) or generalized projection (Petrov—Galerkin) methods for solving
=b using the Krylov subspace, K;

= — — —

K; = span(7y,AFy, (A)*Fo, ..., (A) " '7y),

where 7y = b — AXy. These methods require only matrix-vector products to carry out the iteration (not the
individual elements of A), and this is key to their use with Newton’s method.

The widely used Generalized Minimal RESidual method (GMRES) is an Arnoldi-based method. In GMRES
the Arnoldi basis vectors form the trial subspace out of which the solution is constructed. One matrix—vector
product is required per iteration to create each new trial vector, and the iterations are terminated based on
a by-product estimate of the residual that does not require explicit construction of intermediate residual
vectors or solutions — a major beneficial feature of the algorithm. GMRES has a residual minimization
property in the Euclidean norm (easily adaptable to any inner-product norm) but requires the storage of all
previous Arnoldi basis vectors. Full restarts, seeded restarts, and moving fixed-sized windows of Arnoldi
basis vectors are all options for fixed-storage versions.

As a result of numerous studies, we tend to use GMRES (and its variants) almost exclusively with JFNK.
The resulting pressure on memory has put an increased emphasis on quality preconditioning. We believe
that it is only through effective preconditioning that JFNK is feasible on large scale problems. It is in the
preconditioner that one achieves algorithmic scaling and also in the preconditioner that one may stand to
lose the natural excellent parallel scaling enjoyed by all other components of the JFNK algorithm as applied
to PDE:s.

Jacobian-free Newton—Krylov methods The origins of the Jacobian-free Newton—Krylov method
can be traced back to publications motivated by the solution of ODEs and publications motivated by the
solution of PDEs. The primary motivation in all cases appears to be the ability to perform a Newton it-
eration without forming the Jacobian. Within the ODE community these methods helped to promote the
use of higher order implicit integration. The studies on PDE problems focused on the use of nonlinear pre-
conditioning, preconditioners constructed from linear parts of the PDEs, and the addition of globalization
methods.

In the JFNK approach, a Krylov method is used to solve the linear system of equations given by eq (J.15).
An initial linear residual, 7y, is defined, given an initial guess, diy, for the Newton correction,

Fo = —F (i) — Jilo. dJ.21)

Note that the nonlinear iteration index, &, has been dropped. This is because the Krylov iteration is performed
at a fixed k. Let j be the Krylov iteration index. Since the Krylov solution is a Newton correction, and
since a locally optimal move was just made in the direction of the previous Newton correction, the initial
iterate for the Krylov iteration for &1 is typically zero. This is asymptotically a reasonable guess in the
Newton context, as the converged value for 8ii should approach zero in late Newton iterations. The jth
GMRES iteration minimizes ||J8i; + F (if) | > within a subspace of small dimension, relative to n (the number

192

A
AVA \liinois Rocstar LLC Mathematics of Coupling

of unknowns), in a least-squares sense. ⅈ is drawn from the subspace spanned by the Krylov vectors,
{Fo,J70, (J)?70,...,(J)?" "%}, and can be written as

Jj—1)
8ii; = Siig+ Y Bi(J)'Fo, (4.22)
i=0
where the scalars f; minimize the residual. (In practice, 0i; is determined as a linear combination of the
orthonormal Arnoldi vectors produced by GMRES.)

Upon examining eq (J.22) we see that GMRES requires the action of the Jacobian only in the form of
matrix—vector products, which may be approximated by

i~ [ﬁ(m £v) —F(ﬁ)] Je, (1.23)

where € is a small perturbation.

Eq (J.23) is simply a first-order Taylor series expansion approximation to the Jacobian, J, times a (Krylov
subspace) vector, V. For illustration, consider the two coupled nonlinear equations, Fj(u;,u;) = 0 and
F>(uy,uz) = 0. The Jacobian matrix is

IF IR
T _ Jdu du
T=19n on

Jug duy

JENK does not require the formation of this matrix; we instead form a result vector that approximates this
matrix multiplied by a vector. Working backwards from eq (J.23), we have

(

Approximating F (i + €V) with a first-order Taylor series expansion about i, we have

ﬁ(ﬁ—i— 8‘—}») _ ﬁ(ﬁ) Fi(uy+€vy,up+€va)—Fy (ug,uz)

S

£
23 (Ll] +€vy 7142+18\12)7Fz (u1 ,le)
€

IF JF,
Fi (u1 ,M2)+€V1 ﬁ#‘&‘\@ﬁ*[’ﬂl (M1 ,uz)

Fii+ev) — F (@)
t

~

IF

€
OF
F>(uy,uz)+€vy ﬁ+8\/2%

€

(578>

The error in this approximation is proportional to €. This matrix-free approach has many advantages. The
most attractive is Newton-like nonlinear convergence without the costs of forming or storing the true Jaco-
bian. In practice one forms a matrix (or set of matrices) for preconditioning purposes, so we eschew the
common description of this family of methods as fully “matrix-free.” However, the matrices employed in
preconditioning can be simpler than the true Jacobian of the problem, so the algorithm is properly said to be
“Jacobian-free.”

—F(uy,u2)

which simplifies to

JdF
V1 ?
96
Vl 1914]

IR
duy
o

duy

+v
+v2

193

A
AVA \liinois Rocstar LLC Mathematics of Coupling

A convergence theory has been developed for JENK. Conditions are provided on the size of € that guar-
antee local convergence. Issues regarding convergence are often raised with Newton-based methods, and
Jacobian-free Newton—Krylov are no exception. Two specific situations known to cause convergence prob-
lems for JFNK are sharp nonlinear solution structure, such as a shock or a reaction front, and discontinuities
in the nonlinear function, such as one might see in higher order monotone advection schemes. Issues of
non-convergence tend to be seen more in boundary value problems and less in initial value problems.

For more information on JFNK, such as choosing the perturbation parameter € and discussions on precon-
ditioners, the reader is referred to [Knoll and Keyes (2004)]. [Bellavia et al. (2011)] also has some useful
information on nonsymmetric preconditioner updates in NK methods.

J.7.3 Computational JFNK Algorithm for Aeroelastic Problems

Newton—Krylov methods require only the product of the Jacobian matrix with a given vector, rather than
explicit access to the elements of the Jacobian. Krylov subspace methods do not require the system matrix

J(u) in an explicit form but only the product of J(u) with a Krylov subspace vector ¥ [Schieffer et al.
(2010)].

194

A
AVA \liinois Rocstar LLC Mathematics of Coupling

References

Allan, B., Armstrong, R., Wolfe, A., Ray, J., and Bernholdt, D. (2002). The CCA core specification in a
distributed memory spmd framework. Concurr. Comput. Practices Exp., 5:323-345.

Allen, G., Dramlitsch, T., Foster, I., Karonis, N., Ripeanu, M., Seidel, E., and Toonen, B. (2001). Supporting
efficient execution in heterogeneous distributed computing environments with Cactus and Globus. In
Proc. Supercomput.

Arienti, M., Hung, P., Morano, E., and Shepherd, J. E. (2003). A level set approach to eulerian-lagrangian
coupling. J. Comput. Phys., 185:213-251.

Bartlett, R. A., Heroux, M. A., and Willenbring, J. M. (2012). Tribits lifecycle model. Technical report,
Sandia National Laboratory.

Bassetti, F., Brown, D., Davis, K., Henshaw, W., and Quinlan, D. (1998). Overture: an object-oriented
infrastructure for high performance scientific computing. In Proc. Supercomput.

Bellavia, S., Bertaccini, D., and Morini, B. (2011). Nonsymmetric preconditioner updates in Newton—
Krylov methods of nonlinear systems. J. Sci. Comput., 33:2595-2619.

Benra, F.-K., Dohmen, H. J., Pei, J., Schuster, S., and Wan, B. (2011). A comparison of one-way and
two-way coupling methods for numerical analysis of fluid-structure interactions. Journal of Applied
Mathematics, 2011:16.

Budge, K. G. and Peery, J. S. (1998). Experiences developing ALEGRA: a C++ coupled physics framework.
In Workshop on Object Oriented Methods for Interoperable Scientific and Engineering Computing.

Chisholm, T. T. and Zingg, D. W. (2009). A Jacobian-free Newton—Krylov algorithm for compressible
turbulent fluid flows. J. Comput. Phys., 228:3490-3507.

Council on Competitiveness (2011). Council on Competitiveness, 2010-2011 Annual Report. Technical
report.

Dick, W. A., Fiedler, R. A., and Heath, M. T. (2006). Building Rocstar: Simulation science for solid
propellant rocket motors. In Proc. AIAA, volume 4590, pages 1-10.

Elmer (2016). Elmer. https://www.csc.fi/web/elmer.

Gerstenberger, A. and Wall, W. A. (2008). An eXtended Finite Element Method/Lagrange multiplier based
approach for fluid—structure interaction. Comput. Methods Appl. Mech. Engrg., 197:1699-1714.

Geubelle, P. H., Jiao, X., Haselbacher, A. C., and Campbell, M. T. (2004). Numerical Coupling Interface in
Rocstar — Rocman (GEN 3) Design Document. PDF.

Heroux, M. A., Bartlett, R., Howle, V., Hoekstra, R., Hu, J., Kolda, T., Lehoucq, R., Long, K., Pawlowski,
R., Phipps, E., Salinger, A., Thornquist, H., Tuminaro, R., Willenbring, J., Williams, A., and Stanley, K.
(2005). An overview of the Trilinos projects. ACM Trans. Math. Software, 31:397—423.

Hou, G., Wang, J., and Layton, A. (2012). Numerical methods for fluid-structure interaction — a review.
Communications in Computational Physics, 12:337-377.

195

A
AVA \liinois Rocstar LLC Mathematics of Coupling

Jaiman, R. K., Jiao, X., Geubelle, P. H., and Loth, E. (2004). Assessment of conservative load transfer for
fluid-solid interface with nonmatching meshes. International Journal for Numerical Methods in Engi-
neering, pages 1-40.

Jaiman, R. K., Jiao, X., Geubelle, P. H., and Loth, E. (2005). Assessment of conservative load transfer for
fluid-solid interface with nonmatching meshes. Intl. J. Numer. Methods Eng., pages 1-40.

Jiao, X. (2007). Face offsetting: A unified approach for explicit moving interfaces. Journal of Computational
Physics, 220:612-625.

Jiao, X. and Heath, M. T. (2005). Common-refinement-based data transfer between non-matching meshes in
multiphysics simulations. International Journal for Numerical Methods in Engineering, 61:2402-2427.

Jiao, X., Zheng, G., Alexander, P. J., Campbell, M. T., Lawlor, O. S., Norris, J., Hasselbacher, A., and Heath,
M. T. (2006). A system integration infrastructure for coupled multiphysics simulations. Engineering with
Computers, 22:293-309.

Kamakoti, R. and Shyy, W. (2004). Fluid-structure interaction for aeroelastic applications. Prog. Aerosp.
Sci., 40:535-558.

Keyes, D. E., Mclnnes, L. C., Woodward, C., Gropp, W., Myra, E., Pernice, M., Bell, J., Brown, J., Clo,
A., Connors, J., Constantinescu, E., Estep, D., Evans, K., Farhat, C., Hakim, A., Hammond, G., Hansen,
G., Hill, J., Isaac, T., Jiao, X., Jordan, K., Kaushik, D., Kaxiras, E., Koniges, A., Lee, K., Lott, A., Lu,
Q., Magerlein, J., Maxwell, R., McCourt, M., Mehl, M., Pawlowski, R., Randles, A. P, Reynolds, D.,
Riviere, B., Riide, U., Scheibe, T., Shadid, J., Sheehan, B., Shephard, M., Siegel, A., Smith, B., Tang, X.,
Wilson, C., and Wohlmuth, B. (2013). Multiphysics simulations: Challenges and opportunities. In#l. J.
High Perform. Comput. Appl., 27:5.

Knoll, D. A. and Keyes, D. E. (2004). Jacobian-free Newton—Krylov methods: a survey of approaches and
applications. J. Comput. Phys., 193:357-397.

M. A. Heroux et al. (2012). Trilinos. http://trilinos.sandia.gov.

Michler, C., Hulshoff, S., van Brummelen, E., and de Borst, R. (2004). A monolithic approach to fluid-
structure interaction. Computers and Fluids, 33(5-6):839-848. Applied Mathematics for Industrial Flow
Problems.

OpenFOAM Extend Project (2016). OpenFOAM Extend Project. http://www.extend-project.de.

Pawlowski, R., Bartlett, R., Belcourt, N., Hooper, R., and Schmidt, R. (2011). A theory manual for multi-
physics code coupling in LIME. Technical report, Sandia National Laboratory.

Poppendieck, M. and Poppendieck, T. (2003). Lean Software Development: An Agile Toolkit. Addison-
Wesley.

Reynders, J. V. W., Hinker, P. J., Cummings, J. C., Atlas, S. R., Banerjee, S., Humphrey, W. F., Karmesin,
S. R., Keahey, K., Srikant, M., and Tholburn, M. (1996). POOMA: A infrastructure for scientific simu-
lations on parallel architectures. In Wilson, G. V. and Lu, P, editors, Parallel programming using C++,
pages 547-588. Massachusetts Institute of Technology.

Schafer, M. and Turek, S. (1996). Flow simulation with high-performance computers ii. dfg priority research
program results 1993-1995. In Hirschel, E., editor, Notes in Numerical Fluid Mechanics, number 52,
pages 547-566. Vieweg Weisbaden.

196

A
AVA \liinois Rocstar LLC Mathematics of Coupling

Schieffer, G., Ray, S., Bramkamp, F. D., Behr, M., and Ballmann, J. (2010). An adaptive implicit finite
volume scheme for compressible turbulent flows about elastic configurations. In Schroder, W., editor,
Flow Modulation & Fluid-Structure Interaction, volume 109, pages 25-51. Springer-Verlag.

Slotnick, J., Khodadoust, A., Alonso, J., Darmofal, D., Gropp, W., Lurie, E., and Mavriplis, D. (2013). Cfd
vision 2030 study: A path to revolutionary computational aerosciences. Technical report, NASA Langley
Research Center, Hampton, Virginia 23681-2199.

Stewart, J. R. and Edwards, H. C. (2004). A infrastructure approach for developing parallel adaptive multi-
physics applications. Finite Elem. Anal. Des., 40:1599-1617.

Turek, S. and Hron, J. (2006). Fluid-Structure Interaction: Modelling, Simulation, Optimisation, chap-
ter Proposal for Numerical Benchmarking of Fluid-Structure Interaction between an Elastic Object and
Laminar Incompressible Flow, pages 371-385. Springer Berlin Heidelberg, Berlin, Heidelberg.

197

	Executive Summary
	Introduction
	Significance
	Public Benefits
	A Note about Language
	Technical Objectives
	Community Goals
	Approach
	Products
	Environment
	Scrum
	Automated Build and Testing
	Customer Team
	Test-driven Development
	TriBITS Lifecycle

	Infrastructure Development

	IMPACT
	Overview
	Design Philosophy
	Abstraction
	Software Integration Layer
	Services
	User Applications
	Orchestration
	Multiphysics Infrastructure
	Multiphysics Services
	Multiphysics Orchestrator

	Infrastructure Implementation
	SIT
	Publishing Native Data
	Publishing Native Methods
	Inter-Component Communication

	Multiphysics Services
	Service Adapters
	Service Applications

	Multiphysics Orchestrator

	Implementation and Application
	IMPACT-enabling Process
	ElmerFoamFSI
	Overview
	Development Process

	Rocstar
	Overview
	Rocstar Modules
	IMPACT-enabled Rocstar

	Stand-alone Module Testing
	OpenFOAM Stand-alone Testing
	Elmer Stand-alone Testing

	ElmerFoamFSI Testing
	Verification: Static Problem
	Verification: Dynamic
	Verification: Hron-Turek Problem
	ElmerFoamFSI Scaling Study

	Rocstar Multiphysics Testing
	Rocflo/Elmer Combination
	Rocfrac/OpenFOAM Combination

	Community Involvement and Usage
	Community Development
	Interactions
	Follow-on IMPACT Projects

	Publications and Presentations
	Website(s) or other Internet site(s)
	Inventions, patent applications, and/or licenses
	Other products

	Conclusions and Path Forward
	Accomplishments
	IMPACT
	ElmerFoamFSI
	Rocstar Multiphysics
	Documentation

	Next Steps

	IMPACT Core Domain Model
	Introduction
	Language, Terminology, and Color Usage
	Background
	Motivation

	Overview of IMPACT
	In-Depth Look at IMPACT
	Software Integration Toolkit
	Orchestration
	Applications and Services

	Modules, Coupling, and Infrastructures
	Integrating Applications as Modules
	Serial vs Parallel Applications
	Relationship to Other Infrastructures

	Rocstar Multiphysics Example

	IMPACT User's Guide
	Overview
	How to Get IMPACT
	Build IMPACT
	Prerequisites and TPLs
	Run CMake
	Use IMPACT

	COM User's Guide
	Introduction
	Overview
	Object-Oriented Interfaces
	Functions
	Inheritance
	Data Integrity

	Architecture of COM
	COM API
	C++ Class Interfaces
	COM Runtime System

	Module Requirements
	COM API
	Initialization and Finalization
	Data and Function Registration
	Creation of CI Window
	Functions
	Example Code

	Procedure Calls
	DataItem and Function Handles
	Invocation
	Call Tracing
	High-Level Profiling
	Calling System Calls in Fortran
	Calling AtExit and Exit Functions In Fortran

	Advanced Window Management
	Memory Management
	Pointer DataItems
	Inheritance
	Deletion of Entities

	Information Retrieval
	Window and panes
	DataItem and Connectivity
	Sizes
	Arrays
	Bounds

	Sample Codes

	SIM User's Guide
	Overview
	Capabilities
	Design Features

	System Architecture
	Top-level Iterations
	Actions and Schedulers
	Agents and Coupling Schemes
	Predictor-corrector Iterations

	Predefined Actions
	Solve
	Interpolate
	Jump Conditions
	Actions for PCCoupling

	Schedulers
	Sequential
	Concurrent
	Interprocess

	Predefined Agents
	Fluid agent
	Solid agent
	Burn agent

	Predefined Coupling Schemes
	Fluid-alone
	Solid-alone
	Fluid-solid interaction
	Fluid-solid-combustion interaction

	SimIO User's Guide
	Functionality
	API
	Read Window
	Read by Control File
	Obtain DataItem
	Initialization and Finalization

	Implementation Notes
	SimOUT
	Functionality
	API
	Output
	Metadata Output
	Synchronization
	Control
	Initialization and Finalization
	Implementation Notes
	Sample Code

	Simpal User's Guide
	Overview
	Requirements and Conventions
	Simpal Interface
	Supported Operations
	Simpal API
	Building and Testing Simpal

	SurfX User's Guide
	Overview
	SurfX API
	Overlaying Meshes
	Data Transfer

	Compiling SurfX
	Surfdiver
	Advanced Tuning for Feature Detection
	Fine-Tuning Parameters

	Test Problems

	SurfMap User's Guide
	Physics of FSI Coupling in ElmerFoamFSI
	Fluid-Solid Interaction (FSI)
	Partitioned Approach: Strong vs. Weak Coupling
	ElmerFoamFSI: A Partitioned Approach
	Overview
	Elmer Input
	OpenFOAM Input
	ElmerFoamFSI Input
	ElmerFoamFSI Call Procedure

	Mathematics of FSI Coupling
	Interaction of Fluids and Structures – An Introduction by Keyes
	Comments on a Few Common Coupling Approaches
	Example Multiphysics FSI Software Package – AERO

	Computational Aeroelastic Models
	Keyes' Prototype Algebraic Forms and Nomenclature
	Comments on Transfer Functions
	Discussion of Some FSI Coupling Strategies
	Picard Iteration
	Newton Methods (Review)
	Nonlinear Elimination

	Simple Coupling Strategy for Aeroelastic Problems Using Rocstar
	Variables Definitions and Nomenclature
	Subcycling Scheme
	Communication Mechanism
	Controlling Program Flow – FSI Coupling Scheme

	JFNK Coupling Strategy for Aeroelastic Problems
	Introduction to JFNK Method
	Fundamentals JFNK Methods
	Computational JFNK Algorithm for Aeroelastic Problems

