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Bounded extremum seeking for angular velocity actuated control
of nonholonomic unicycle

Alexander Scheinker*,†

Los Alamos National Laboratory, Los Alamos, NM, 87545, USA

SUMMARY

We study control of the angular-velocity actuated nonholonomic unicycle, via a simple, bounded extremum 
seeking controller which is robust to external disturbances and measurement noise. The vehicle performs 
source seeking despite not having any position information about itself or the source, able only to sense 
a noise corrupted scalar value whose extremum coincides with the unknown source location. In order to 
control the angular velocity, rather than the angular heading directly, a controller is developed such that the 
closed loop system exhibits multiple time scales and requires an analysis approach expanding the previous 
work of Kurzweil, Jarnik, Sussmann, and Liu, utilizing weak limits. We provide analytic proof of stability 
and demonstrate how this simple scheme can be extended to include position-independent source seeking, 
tracking, and collision avoidance of groups on autonomous vehicles in GPS-denied environments, based 
only on a measure of distance to an obstacle, which is an especially important feature for an autonomous 
agent.
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1. INTRODUCTION

Motivation Extremum seeking (ES) has had many applications [1] with unknown/uncertain [2, 3]
and discrete-time [4] systems, such as enhancing mixing in magnetohydrodynamic channel flows
[5], controlling Tokamak plasmas [6], and recently, utilizing a multivariable Newton-based scheme,
for the power optimization of photovoltaic micro-converters [7].

The work in [8] developed Extremum Seeking for Control (ESC) to stabilize unknown, open-loop
unstable systems by applying the extremum seeker as the controller itself. ESC has been demon-
strated in hardware [9] and studied for inverted pendulum stabilization [10], and in a general form
on manifolds [11]. In [12] a bounded form of ESC was developed, in which the control efforts
and parameter update rates have analytically known bounds, for the simultaneous optimization and
stabilization of systems of the form

Px D f .x; t/C g.x; t/u.y/; (1)

y D  .x; t/C n.t/; (2)

where f .x; t/ is unknown and possibly destabilizing, g.x; t/ is unknown and possible changes
sign as a function of state and time,  .x; t/ is an analytically unknown function to be
minimized, n.t/ is additive noise, and y.t/ is a noise-corrupted measurement of  .x; t/.
The controller

ui D ei
p
˛!i cos .!i t C ky/ ; (3)
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applied to system (1), (2), where ei is the i th basis vector in Rn and !i ¤ !j , results in average
system dynamics

PNx D f . Nx; t/ � g. Nx; t/gT . Nx; t/
k˛

2
.r . Nx; t//T ; Nx.0/ D x.0/; (4)

which, due to the fact that g. Nx; t/gT . Nx; t/ > 0, performs a gradient descent of the unknown function
 .x; t/ without requiring a knowledge of the sign of g.x; t/ or the gradient of  .x; t/, in which the
influence of random noise n.t/ is, on average, removed. The bounded ESC approach is especially
useful for digital implementation and for extremely noisy systems, as was recently demonstrated
in hardware [13] and studied analytically for a large class of non-differentiable and discontinuous
systems [14].

The nonholonomic unicycle is an important nonlinear system, which has been the topic of several
studies, including path following in the presence of parametric uncertainties [15] and time-varying
controllers for exponential tracking for nonholonomic systems in chained form [16]. In this work,
we study an angular velocity actuating controller for a nonholonomic system, providing proof of the
convergence of a bounded ESC approach to unicycle control, which is robust to measurement noise
and un-modeled environmental disturbances.

Results of the paper Consider the autonomous control of a source-seeking vehicle of the form

Px D
p
˛! cos .�/ ; Py D

p
˛! sin .�/ ; (5)

with a controller of the form

P� D ! C k!2. OJ .x; y; t/ � �/; �.0/ D �0 (6)

P� D �!2
�
� � OJ .x; y; t/

�
; �.0/ D �0 (7)

where OJ .x; y; t/ D J.x; y; t/C n.t/ is a noise-corrupted measurement of an unknown scalar func-
tion, J.x; y; t/, to be minimized, �0 is an unknown initial orientation and �0 is an arbitrary initial
state. The closed loop system dynamics are, on average

PNx D �
k˛

2

@J. Nx; Ny; t/

@ Nx
; Nx.0/ D x.0/; (8)

PNy D �
k˛

2

@J. Nx; Ny; t/

@ Ny
; Ny.0/ D y.0/; (9)

a gradient descent of the unknown, time-varying function. This type of controller was conjectured
in [12] without stability analysis.

2. THEORETICAL BACKGROUND

Recall that a sequence of functions ¹fkº � L2Œ0; 1� is said to converge weakly to f in L2Œ0; 1�,
denoted fk ! f , if

lim
k!1

< fk; g >D lim
k!1

Z 1

0

fk.�/g.�/d� D

Z 1

0

f .�/g.�/d� D< f; g >; 8g 2 L2Œ0; 1�:

Theorem 1 ([14, 17–20])
Consider the vector-valued system

Px D f .x; t/C g.x; t/u.y; t/; y D  .x; t/C n.t/; (10)

where x 2 Rn, and the functions

f W Rn �R! Rn; g W Rn �R! Rn�n;  W Rn �R! R; n W R! R; (11)
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are unknown. Assume that f and g are twice continuously differentiable with respect to x and
assume that the value y of  .x; t/ is available for measurement. Consider a controller u W R�R!
Rn, given by

u.y; t/ D

mX
iD1

ki .y; t/hi;!.t/; ki W R �R! Rn; (12)

where the functions ki .y; t/ are continuously differentiable and the functions hi;!.t/ are piece-wise
continuous. System (10), (12) has the following equivalent closed-loop form

Px.t/ D f .x; t/C

mX
iD1

bi .x; t/hi;!.t/; (13)

bi .x; t/ D g.x; t/ki . .x; t/; t/ : (14)

Suppose that the integrals of the functions hi;!.t/ satisfy the uniform limits

lim
!!1

Hi;!.t/ D lim
!!1

Z t

t0

hi;!.�/d� D 0; (15)

and the weak limits

hi;!.t/Hj;!.t/! �i;j .t/: (16)

Consider also the average system related to (13), (14) as follows:

PNx D f . Nx; t/ �

nX
i;jD1

�i;j .t/
@bi . Nx; t/

@ Nx
bj . Nx; t/; Nx.0/ D x.0/: (17)

For any compact set K � Rn, any t0; T 2 R>0, and any ı > 0, there exists !? such that for each
! > !?, the trajectories x.t/ and Nx.t/ of (13) and (17), satisfy

max
x; Nx2K t2Œt0;t0CT �

kx.t/ � Nx.t/k < ı: (18)

Furthermore, for any x?.t/ 2 K, with bounded derivatives,

lim
t!1

�� Nx.t/ � x?.t/�� D 0 H) lim
t!1

��x.t/ � x?.t/�� < ı:
In other words, uniform asymptotic stability of (17) over K implies the 1

!
-semiglobal practical

uniform asymptotic stability of (13), where the 1
!

term indicates that the region of convergence is
made arbitrarily small by choosing arbitrarily large !, a form of stability studied in [19].

3. 2D ANGULAR VELOCITY ACTUATED VEHICLE

Consider a vehicle in a GPS-denied environment, unaware of its orientation, whose goal it is to reach
the location of the minimum of the analytically unknown function J.x; y; t/, whose noise-corrupted
value, OJ .x; y; t/ D J.x; y; t/ C n.t/ is available for measurement. This formulation is more rep-
resentative of a real world scenario and more challenging than the simpler direct-angle actuation
system as studied in [12], the filtering introduces a third time scale to the problem dynamics. We
begin with a detailed analysis for OJ .x; y/ and then extend the results to OJ .x; y; t/.

Theorem 2
Consider the system shown in Figure 1, with dynamics:

Px D
p
˛! cos .�/ D g!;x.x; y; t/ (19)

Py D
p
˛! sin .�/ D g!;y.x; y; t/ (20)
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Figure 1. Velocity actuated ES control scheme.

P� D ! C k!2. OJ � �/; �.0/ D �0 (21)

P� D �!2
�
� � OJ

�
; �.0/ D �0 (22)

where �0 is an unknown initial orientation, and �0 is an arbitrary initial state. Consider also the
average system

PNx D �
k˛

2

@J

@ Nx
; Nx.0/ D x.0/; (23)

PNy D �
k˛

2

@J

@ Ny
; Ny.0/ D y.0/: (24)

When satisfying all necessary continuity and differentiability requirements of Theorem 1, for any
compact set K � Rn, any t0; T 2 R>0, and any ı > 0, there exists !? such that for each ! > !?,
the trajectories .x.t/; y.t// and . Nx.t/; Ny.t// satisfy

max
.x;y/;. Nx; Ny/2K t2Œt0;t0CT �

k.x.t/; y.t// � . Nx.t/; Ny.t//k < ı: (25)

Remark 1
In the analysis that follows, it becomes apparent that the values of the arbitrary initial conditions �0
and �0 are irrelevant, when we make the simplification:

sin2
�
k OJ C �0 C k�0

�
C cos2

�
k OJ C �0 C k�0

�
D 1;

therefore for notational convenience, and without loss of generality, from now on we set both
to 0. Furthermore, in the averaged dynamics, all of the surviving terms containing OJ are of the
form r OJ .x; y; t/ D r .J.x; y; t/C n.t// D rJ.x; y; t/; therefore, we work with J instead of OJ
throughout the proof.

Proof
Combining (21) and (22) we can expand � as follows:

� D !t C k!2e�!
2t

Z t

0

e!
2�J.x.�/; y.�//d�„ ƒ‚ …
I1

C�0 C k�0: (26)
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Integrating the term I1 by parts gives

I1 D kJ.t/ � kJ.0/e
�!2t � ke�!

2t

Z t

0

e!
2� @J

@x

p
! cos.�/d�„ ƒ‚ …

I1;1

� ke�!
2t

Z t

0

e!
2� @J

@y

p
! sin.�/d�„ ƒ‚ …

I1;2

:

(27)
Therefore, on the compact set K, the term I1 has bound

jI1j 6 k
�
jJ.t/j C jJ.0/j C

����@J@x
����C

����@J@y
����
�
p
!t: (28)

By considering the time-scale � D
p
!t; we can rewrite � as

� D
p
!� C I1; (29)

jI1j 6 k
�
jJ.t/j C jJ.0/j C

����@J@x
����C

����@J@y
����
�
�; (30)

with the bound on jI1j independent of !. Therefore, by the Riemann-Lebesgue lemma, the term

g!.x; y; t/ D

�
g!;x.x; y; t/

g!;y.x; y; t/

�
; (31)

whose components, on the � time scale, can be expanded in the form

cos
	p
!�



cos .I1/ � sin
	p
!�



sin .I1/ ; (32)

weakly, uniformly converges to zero, which implies that

lim
!!1

G!.x; y; t/ D lim
!!1

Z t

0

g!.x; y; �/d� D 0 (33)

uniformly, which satisfies requirement (15) of Theorem 1. By the same argument, the terms I1;1
and I1;2 uniformly converge to zero as ! approaches infinity, clearly so does the term kJ.0/e�!

2t .
Therefore, in order to consider the limit of the type (16) in Theorem 1, we consider the equivalent
limiting representation of G! as follows:

lim
!!1

G!.x; y; t/ D lim
!!1

Z t

0

�p
˛! cos .�/p
˛! sin .�/

�
d� D lim

!!1

Z t

0

�p
˛! cos .!� C kJ.�//p
˛! sin .!� C kJ.�//

�
„ ƒ‚ …

A!

d�:

(34)
Applying trigonometric identities we expand A! as

A! D

�p
˛! cos .!�/ cos .kJ / �

p
˛! sin .!�/ sin .kJ /p

˛! cos .!�/ sin .kJ /C
p
˛! sin .!�/ cos .kJ /

�
: (35)

Therefore, to calculate the average system, as in (17), we need to find a function h.x; y; t/ such that

lim
!!1

Z t

0

DG!.x; y; �/g!.x; y; �/d� D �

Z t

0

h.x; y; �/d�; (36)

uniformly with !, where D D @
@x

. By the previous arguments, the limit we are taking is equal to
the limit

lim
!!1

Z t

0

�Z �

0

DA!.x; y; s/ds

�
A!.x; y; �/d�: (37)
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Note that we were free to pass the derivative through the integral because all of the functions
considered are continuous. Direct calculation shows that

DA!.x; y; s/ D

"
@Ax
@x

@Ay
@x

@Ay
@x

@Ay
@y

#
; (38)

where

@Ax

@x
D �k

@J

@x

p
˛! cos.!s/ sin.kJ / � k

@J

@x

p
˛! sin.!s/ cos.kJ /; (39)

@Ax

@y
D �k

@J

@y

p
˛! cos.!s/ sin.kJ / � k

@J

@y

p
˛! sin.!s/ cos.kJ /; (40)

@Ay

@x
D k

@J

@x

p
˛! cos.!s/ cos.kJ / � k

@J

@x

p
˛! sin.!s/ sin.kJ /; (41)

@Ay

@y
D k

@J

@y

p
˛! cos.!s/ cos.kJ / � k

@J

@y

p
˛! sin.!s/ sin.kJ /: (42)

Integrating, by parts, the cos.!s/ term of (39), givesr
˛

!
sin.!�/

�
�k

@J

@x
sin.kJ /

�
C

Z �

0

p
˛k

�
@2J

@2x
C

@2J

@y@x

�
cos.�/ sin.kJ /ds

C

Z �

0

p
˛k2

@J

@x

�
@J

@x
sin.�/C

@J

@y
cos.�/

�
sin.kJ /ds:

(43)

By the previous arguments, all of the integral terms in (43) uniformly, weakly converge to 0.
Furthermore, integrating, by parts, the sin.!s/ part of (39), gives (neglecting the integral terms):0

BBB@
r
˛

!
cos.!�/ �

r
˛

!„ƒ‚…
�

1
CCCA
�
k
@J

@x
cos.kJ /

�
: (44)

In what follows, we will see that only the combination of terms of the form cos2.!t/ and sin2.!t/,
will survive and all those with mixed or only single cos.!�/ or sin.!�/ dependence, will, by the
Riemann Lebesgue lemma, converge to zero, so from now on, we neglect terms such as � as well.
Performing integration by parts on all of the components of DA!.x; y; s/ and keeping only those
as described previously, we end up with the matrix B!.x; y; �/, where

B1;1 D �

r
˛

!
sin.!�/

�
k
@J

@x
sin.kJ /

�
C

r
˛

!
cos.!�/

�
k
@J

@x
cos.kJ /

�
; (45)

B1;2 D �

r
˛

!
sin.!�/

�
k
@J

@y
sin.kJ /

�
C

r
˛

!
cos.!�/

�
k
@J

@y
cos.kJ /

�
; (46)

B2;1 D

r
˛

!
sin.!�/

�
k
@J

@x
cos.kJ /

�
C

r
˛

!
cos.!�/

�
k
@J

@x
sin.kJ /

�
; (47)

B2;2 D

r
˛

!
sin.!�/

�
k
@J

@y
cos.kJ /

�
C

r
˛

!
cos.!�/

�
k
@J

@y
sin.kJ /

�
: (48)
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Before we perform the matrix multiplication B!.x; y; �/A!.x; y; �/; we consider the fact that
mixed terms of the form cos.!t/ sin.!t/ weakly converge to zero; therefore, we omit all but the
cos2.!t/ and sin2.!t/ terms, which weakly converge to 1

2
. Thus, we may break up the vector A

and the matrix B as:

A D
p
˛! sin.!t/As C

p
˛! sin.!t/Ac ; B D

r
˛

!
sin.!t/Bs C

r
˛

!
cos.!t/Bc (49)

and consider only the products

˛ cos2.!t/BcAc C ˛ sin2.!t/BsAs; (50)

which weakly converge to

˛

2
.BcAc C BsAs/ : (51)

The matrix multiplication gives

BcAc D

"
k @J
@x

cos2.kJ /C k @J
@y

cos.kJ / sin.kJ /

k @J
@x

cos.kJ / sin.kJ /C k @J
@y

sin2.kJ /

#
; (52)

BsAs D

"
k @J
@x

sin2.kJ / � k @J
@y

cos.kJ / sin.kJ /

�k @J
@x

cos.kJ / sin.kJ /C k @J
@y

cos2.kJ /

#
: (53)

After cancelation and simplification based on the trigonometric identity sin2.�/C cos2.�/ D 1, we
are left with

˛

2
.BcAc C BsAs/ D

k˛

2
.rJ /T : (54)

Summing up, we have

lim
!!1

Z t

0

.DG!.x; y; �// g!.x; y; �/d� D lim
!!1

Z t

0

�Z �

0

DA!.x; y; s/ds

�
A!.x; y; �/d�

D

Z t

0

˛

2
.BcAc C BsAs/ d� D

Z t

0

k˛

2
.rJ /T d�:

(55)
Therefore, by Theorem 1 the trajectory .x.t/; y.t// of system (19)–(22) uniformly converges to the
trajectory . Nx.t/; Ny.t//, of the system

PNx D �
k˛

2

@J

@ Nx
; Nx.0/ D x.0/; (56)

PNy D �
k˛

2

@J

@ Ny
; Ny.0/ D y.0/: (57)

We now return to the dynamics of �.t/ as in (22). We define the error �e D � � J and consider

P�e D �!
2�e C PJ ; (58)

which we expand as

P�e D �!
2�e C

@J

@x

p
˛! cos.�/C

@J

@y

p
˛! sin.�/: (59)



A. SCHEINKER

We consider the time scale � D !t , and rewrite the �e dynamics as

@�e

@�
D �!�e C

r
˛

!

�
@J

@x
cos.�/C

@J

@y
sin.�/

�
; (60)

which uniformly converge to the dynamics of @ N�e
@�
D �! N�e; therefore, as .x.t/; y.t// converges to

.x?; y?/, �.t/ converges to J.x?; y?/. �

The previous result can be easily extended to the same system tracking a time-varying source
based on a scalar measurement of the form J.x; y; t/ and also experiencing external disturbances.
We consider a function f .x; y; t/ D

	
fx.x; y; t/; fy.x; y; t/


T
, over a compact set .x; y/ 2 K �

R2, which is continuous with respect to t and Lipschitz continuous with respect to .x; y/. If the
function J.x; y; t/ has a global minimum at .x?.t/; y?.t// 2 K 8t , such that the location of the
minimum point has bounded velocity j Px?.t/j ; j Py?.t/j < M , and

rJ j.x?.t/;y?.t// D 0; (61)

rJ ¤ 0; 8.x.t/; y.t// ¤ .x?.t/; y?.t//: (62)

We consider a system like the one previously, with external disturbances, of the form

Px D fx.x; y; t/C
p
˛! cos .�/ ; (63)

Py D fy.x; y; t/C
p
˛! sin .�/ : (64)

We define the error variables ex.t/ D x.t/�x?.t/ and ey.t/ D y.t/�y?.t/ and show, by the same
proof as the previous example, that the the trajectory of the error system of (63)–(64) uniformly
converges to the trajectory of

PNex D fx. Nex C x
?; Ney C y

?; t / �
k˛

2

@J

@ Nex
C Px?.t/; (65)

PNey D fy. Nex C x
?; Ney C y

?; t / �
k˛

2

@J

@ Ney
C Py?.t/: (66)

Because the velocities j Px?j and j Py?j are bounded, and the function f .x; y; t/ is bounded on the
compact set K, for any ı > 0, by choosing arbitrarily large values of k˛ and !, we may ultimately
bound . Nx; Ny/ within a ı neighborhood of .x?; y?/.

3.1. Source tracking and obstacle avoidance

In practice, especially in electronics, there are many circumstances in which various parameters
must maintain distinct values, such as, for example, switching time settings for the transistors of an
H-bridge, whose coincidence would result in a short circuit. Another, more intuitive example is in
automatic collision avoidance between autonomous vehicles, or between vehicles and obstacles [21,
22]. Here, we briefly consider the application of Theorem 1 for collision avoidance between multiple
parameters. We simulate the simple case of two vehicles, each seeking a separate source, while
avoiding collisions with one another. Towards this goal, we utilize the ability of the ES approach to
minimize measurable, but analytically unknown navigation functions, such as V D kx.t/ � r.t/k,
where r.t/ is an a priori unknown trajectory we wish to track, to whom we can detect the distance
V . We consider two vehicles, with trajectories v1.t/ D .x1.t/; y1.t// and v2.t/ D .x2.t/; y2.t//,
whose dynamics are as follows:

Pxi D
p
˛i!i cos .�i / ; x1.0/ D �2; x2.0/ D 2; (67)
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Pyi D
p
˛i!i sin .�i / ; y1.0/ D y2.0/ D 0; (68)

P�i D !i C ki!
2
i .
OJi � �i /; (69)

P�i D �!
2
i �i C !

2
i
OJi ; (70)

where

OJ1 D .x1 � 1/
2 C y21„ ƒ‚ …

stabilization

C kpe
�ka..x1�x2/2C.y1�y2/2/„ ƒ‚ …

collision avoidance

C n.t/„ƒ‚…
noise

;

OJ2 D .x2 C 1/
2 C y22„ ƒ‚ …

stabilization

C kpe
�ka..x1�x2/2C.y1�y2/2/„ ƒ‚ …

collision avoidance

C n.t/„ƒ‚…
noise

;

and !1 D 50; !2 D 77; ˛1 D ˛2 D 1; k1 D k2 D 1
2
; kp D 2; ka D 2; n.t/ D sin.20t/Csin.130t/.

Note that in the absence of the exponential term, and the noise, the two functions J1.x; y/ and
J2.x; y/ have global minimums at .1; 0/ and .�1; 0/, respectively. The exponential term, which
quickly decays and has no influence on system dynamics for large values of .x1�x2/ and .y1�y2/
comes into effect only when the systems are close together. This exponential term creates a local
maximum as the vehicles come together. The result is that the two vehicles avoid collision as they
each approach the global minimums of their functions J1 and J2. The simulation results are shown
in Figure 2, first with the collision avoidance part of the function off .kp D 0/ and then on .kp D 2/,
with and without the noise term n.t/.

We also consider a system, whose trajectory, x.t/ D .x1.t/; x2.t//, is to follow one trajectory,
r1.t/ D .cos.t/; sin.t// while avoiding another, r2.t/ D r1.t/ C f .t/.sin.50t/; cos.50t//, where
f .t/ is a function whose value starts around 1, quickly decreases to 0.1, and then returns near 1,
resulting in a trajectory which starts far from r1.t/ and then quickly approaches, pushing x.t/ away
to avoid collision. The system dynamics are the following:

Px1.t/ D
x21.t/

4
C
p
˛! cos .�/ ;

Px2.t/ D
x22.t/

4
C
p
˛! sin .�/ ;

where the � dynamics are as the previous example, the x2i =4 terms are external disturbances, and
the function being minimized contains information about a moving source to be tracked as well as
local maxima for collision avoidance

Figure 2. When kp D 0, the trajectories of the vehicles pass through each other on the way towards their
respective sources, as shown on top. With kp D 2, the vehicles reach the sources that they are seeking while

avoiding a collision on the way. Top two results without noise, bottom with noise.



A. SCHEINKER

Figure 3. The trajectory x.t/ (blue), is chasing the trajectory r1.t/ (black), while avoiding collision with both
r1.t/ and r2.t/ (red). We see that a non-zero distance between trajectories, kx.t/�r1.t/k and kx.t/�r2.t/k,

is always maintained.

J.x; t/ D k1kx � r1k
2„ ƒ‚ …

tracking

C k2e
��kx�r1k

2

C k3e
��kx�r2k

2„ ƒ‚ …
collision avoidance

:

The simulation is shown with system parameters as follows: ! D 151, ˛ D 1, k1 D 2, k2 D 20,
k3 D 40, and � D 30. Simulation results are shown in Figure 3.

4. CONCLUSIONS

We studied the dynamics of a system which by design has multiple time scales because of filters
which are required in order to enable actuation of the rate of change of the vehicle’s heading direc-
tion rather than its instantaneously value. Such an approach is more realistic for actual in-hardware
implementation. The result is a simple ES control scheme for autonomous vehicles performing
source seeking while avoiding collisions with other vehicles or obstacles, in noisy, GPS denied envi-
ronments. Control is performed despite a lack of location information, all goals are accomplished
by sensing noisy scalar functions
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