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The “2T” ion-electron semi-analytic shock solution
for code-comparison with xRAGE: A report for FY16

1. Introduction

This report documents an effort to generate the semi-analytic “2T” ion-electron shock solution devel-
oped in the paper by Masser, Wohlbier, and Lowrie [1], and the initial attempts to understand how to use
this solution as a code-verification tool for one of LANL’s ASC codes, xRAGE. Most of the work so far
has gone into generating the semi-analytic solution. Considerable effort will go into understanding how
to write the xRAGE input deck that both matches the boundary conditions imposed by the solution, and
also what physics models must be implemented within the semi-analytic solution itself to match the model
assumptions inherit within xRAGE. Therefore, most of this report focuses on deriving the equations for the
semi-analytic 1D-planar time-independent “2T” ion-electron shock solution, and is written in a style that is
intended to provide clear guidance for anyone writing their own solver.

2. Introduction to the physical model and its equations

In this Section, the physical model and subsequent equations used in [1] are collected and briefly compared
with the model developed in xRAGE. In contradistinction to the semi-analytic radiative shock solutions by
Lowrie and Rauenzahn [2], and Lowrie and Edwards [3], these semi-analytic equations do not need to be
nondimensionalized because they do not contain multiple different dimensional scalings (e.g., the speed of
sound and the speed of light), and so nondimensionalizing the equations and redimensionalizing them can be
done without defining any extra parameters. The ion-electron model presented in [1] assumes that the fluid
is a fully-ionized hydrodynamic plasma, with electron heat-conduction (k¢9,Te) and separate temperatures
for the electrons (T¢) and ions (T3), that can be described by Eulerian hydrodynamics in 1D,

Otp + 0z (pu) =0, (1a)
O (pu) + 9, (pu® +p) =0, (1b)
O (;qu + pe) + 0y {u (;qu + pe —|—p>} = Oz (K02 Te) (1c)

along with an internal energy equation for the electrons, which couples the electron and ion temperatures
0 (pe) + Oz (puee) + peOptt = Yei (T; — Te) + 0z (0:Te) (1d)

where k. is the electron thermal-diffusivity, and 7.; is the electron-ion coupling coefficient. All other variables
have their standard hydrodynamic meaning. Variables with either a subscripted “e” or “i” represent the
“electron” or “ion” component for the given variable, and variables without a subscript represent the material
value for the given variable. The material pressure is the sum of the electron and ion pressures, p = p. + p;,
and the material internal energy is the sum of the electron and ion internal energies, e = e. + ¢;. For

convenience, an ideal-gas equation-of-state (EOS) was used in [1]
p=pe(y—1) & e=C,T, (2)
Thus, the separate electron and ion internal energies can be determined

e=C\T = CyTe + CpiT; = ec + ¢4,
S e =0T, & e =CyuT,, (3)



where Cy,. = Z/(Z + 1), Cy; =1/ (Z + 1), Z represents the number of electrons in the fully-ionized plasma,
and the assumption of an ideal-gas EOS makes the bulk specific heat equal to C,, = [y (y — 1)]71. Similarly,
the separate electron and ion pressures can be determined

p=plecte)(y—1)=pe(y—1)+pei(y—1) =pe+pi,
=pe=pec(y—1) & pi=pe;(y—1). (4)

Finally, the sound speed can be written as

cz\/?=\/7(7—1)e=\/7(7—1)CvT=\/Ta (5)

which motivates the following useful expressions for the local Mach number

2 2 2
5 U U Mg

M 2 T pT (6)
The last expression has made use of the definition of the initial Mach number, Mg = pu, which is rederived
below.

3. Some similarities and distinctions between the this physical model and xRAGE

As described in the xRAGE User’s Manual, most EOS data is the for the bulk material properties and
does not apply directly to either the EOS for the electrons and ions separately. In this case a “Z-split” EOS
can be used in xRAGE. The EOS for the bulk material is assumed to be well represented as functions of
the material mass density and the material temperature, such that e = e (p,T) and p = p(p,T), and for a
“Z-split” EOS these relations become

Z 1
€e Z+1e(p7 L) & e Z+1e(p, ;) and | (7a)
Z 1
-2 _p(pT = p(p,Ty) .
pe= P Te) & pi=——p(p.Th) (7b)

The separate electron and ion equations for the internal energy (2) and pressure (2), developed above to
describe the semi-analytic solution, can also be written in the form of a Z-split EOS

o= CoT. = QEOT, = 2e (0 T,) (sa)
pe=pee(1-1) = oo (T (= 1) = 5 (0 TL) (3b)
e; = CyT; = %:Ti = %He (p,T3) , (8c)

pi=pei (= 1) = e (T (= 1) = 52 p (0 T) (54)

However, in addition to the electron internal energy equation and the electron thermal-diffusivity, xRAGE
also solves the ion internal energy equation, includes the ion heat-conduction term where appropriate and
thus also defines an ion thermal-diffusivity. It is not clear yet if the semi-analytic solutions presented in
[1] can be extended to include these terms. Currently, we are at the initial stages of understanding and
building the relevant xRAGE input deck. Other model similarities and distinctions will become evident as
the xRAGE code team is consulted more, especially as it applies to the electron thermal-diffusivity and the
electron-ion coupling parameter.



4. The equations used and their results

The solution procedure developed here closely follows the method developed by Lowrie and Edwards [3]
for obtaining semi-analytic radiative shock solutions, and the primary difference is that a different set of
equations representing a different physical model are being solved. The general structure is 1) to determine
the downstream post-shock equilibrium state by using the Rankine-Hugoniot conditions which are the con-
servation of mass, momentum and energy, then 2) linearizing away from these equilibrium states, followed
by 3) integrating the pertinent ODE away from the equilibrium state toward the opposite equilibrium state,
and finally 4) splicing the solutions together somewhere between the two equilibrium states. Lowrie and
Edwards developed the idea of integrating the ODE for the semi-analytic radiative shock problem in Mach
space, starting at a position linearized away from the equilibrium points, and integrating toward the middle
of the shock where the local Mach number is 1. The method presented by Masser, Wohlbier and Lowrie [1]
uses the inverse compression ratio, n = pg/p, as the integration variable, and it is not possible to specify
when to stop integrating away from equilibrium, other than do not integrate past the other equilibrium
state.

4.1. Solving for the downstream equilibrium values

It is straight-forward to derive the Rankine-Hugoniot conditions for this problem using the conservation
equations of mass, momentum and energy. The Rankine-Hugoniot conditions connect the values of the
downstream post-shock equilibrium state to the upstream unshocked equilibrium state. The conservation
equations of mass, momentum and energy connecting these equilibrium states can be written as

puU pu
pu? +p = pu? +p (9)
U [%qu—&—pe +p] 0 u[%qu—i—pe—i—p] 1

Variables with a subscripted-“0” take values from the upstream unshocked equilibrium state, and variables
with a subscripted-“1” take values from the downstream post-shock equilibrium state. Borrowing a result
which is derived in the next subsection, My = pu, equality of the first set of expressions is trivial. Using this
result in the second line to write pu? = M2/p, along with an expression for the pressure, p = pe (y — 1) =
T [y = M3/pM?, results in the following expression for the downstream material density

_ poMp (YMF + 1)

= 1
=M GME T) 1o

Combining these expressions in the equality on the third line results in an expression that is quadratic in
M?, and which can be solved to provide

(YME+1) £/ (GME+ 1) = (3 2MZ—1) + 1) M3 (7 — ) M3 +2)

Mi = F @M - 1)+ 1]

(11)

Interestingly, choosing the positive sign in front of the discriminant yields M; = Mg, and provides a
good check for the code generating the semi-analytic solution. Choosing the negative sign in front of the
discriminant yields the correct value of the downstream post-shock equilibrium Mach number. Given My,
p1 can be determined from equation (10), 77 can be determined from equation (6), and p; and e; can be
determined from equations (2).

4.2. Linearizing away from equilibrium

In equilibrium the ODEs describing the physical model are identically zero, so it is necessary to move to a
state near equilibrium before integrating the ODEs. This can be done by solving the linear Taylor-expansion
of the ODE to determine the appropriate values at the state M, = M., £ €, where € < 1. When leaving



the upstream unshocked state then M. = M., — ¢, and when leaving the downstream postshock state then
M = M4 + €. Then the expression being solved to determine the value of T, appropriate to M. is

dT.

Te (M) =Teqg+ (Meg — M) M

(12)
The expression for dT,/dM is derived in the next Subsection.

4.8. The ODEs and some auziliary equations

It is an important reminder that the equations being solved are time-independent such that all time
derivatives in equations (1) above are neglected. As such, integrating the conservation of mass equation (1la)
produces the standard definition for the initial Mach number, My = pu = poug. Integrating the conservation
of momentum equation (1b) produces an expression for the material density as a function of the local Mach
number

~ poME (M +1)

MEGMEFT) (13)

which is the same as the expression for the downstream post-shock density given in equation (10). Integrating
the conservation of energy equation (1lc) produces an expression for the spatial derivative of the electron
energy

T LMo (M, MY Mo (MG L] »
de ke [ p \ 20  (y—1)pM? po \200 (y=1po/]"

Returning to the conservation of momentum equation, allowing the derivative operator to act on the indi-
vidual terms, and collecting results produces an expression relating dp/dz and dM/dx:

dp 2p dM

de = MEMET D) da (15)

Returning to the conservation of energy equation, allowing the derivative operator to act on the individual
terms on the left-hand side, and collecting results produces a simplified expression for the electron thermal
diffusivity:

a dle _ 2MG (M? — 1) aM (16)
dz \"dr ) = (vy=1)pPM3 (yM2 +1) dz

Considering the electron internal energy equation (1d), it is convenient to rewrite ye; (T; — Te) in terms of
T =T (T., M) and T,. Returning to equations (2), T; can be solved for in terms of T and T,

T,=(Z+1)T-ZT, (17)
so that
Ti_Te:(Z'i'l)(T_Te)' (18)

The electron internal energy equation (??) consists of four terms, and the two terms on the right-hand side
have already been written as functions of T, and M, and the two terms on the left-hand side may similarly
be written as functions of T, and M:

d dT,
. (pue.) = MOC’M% , (19)

dr ~ MEM2+1) da
4
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(a) An electron-ion shock for My = 1.4 and Z = 1, using (b) An electron-ion shock for My = 1.7 and Z = 1, using
constant values for 7¢; and ke; as specified in [1]. constant values for 7¢; and ke; as specified in [1].

Using equations (16) and (18) - (20) in the electron internal energy equation (??) produces an expression
for dM/dz:

M 1i(Z+1) (T = T) - MoCe U (21)
dr — __2M MGM2-1)
z M('yMngl) (’ygl)p2/\/l2 + CveTe (’7 - 1)]
Finally, equations (14) and (21) form an expression for dT,/dM,
dT., dT. dx
- = — 22
dM  dx dM (22)

which can be integrated in Mach space from the state M, toward M = 1, for both the upstream unshocked
region and the downstream post-shock region. If this shock is continuous then the results from the two sides
will not overlap but the values at their endpoints will be close. If the shock is discontinuous then the results
will overalp and must be connected appropriately, which is the subject of the next subsection.

4.4. Connecting the upstream and downstream shock regions

As stated in [1], at a shock discontinuity the jump in 7, is proportional to the jump in T; according to
the following relationship

AT, ~ ATy, (23)

m;

which can be derived by considering that the dominant effect of a discontinuous shock is to transform
kinetic energy, %mu2, into thermal energy, kg7, and by noticing that separate velocities for electrons and
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ions have not been described herein so they are expected to slow down by the same amount when crossing

the discontinuous shock. Since the mass ratios is at most 1/2000 in the case of hydrogen, AT, will usually

be negligibly small such that 7, can be assumed to be continuous across the shock discontinuity. This

difference at the shock discontinuity, where AT, is considered to be negligibly small while AT; remains

finite, motivates the idea that the electron-ion coupling, ~.;, is also negligible at the shock discontinuity. It

is worth noting that while T, is assumed to be continuous across the shock discontinuity d7./dz is not.
The electron internal energy equation is related to the electron entropy equation,

DS,
Dt

= Yei (Tz - Te) + aa: (Kea:z:Te) P (24)
where

Se == Cve 1Og (Pe/ﬂv) (25)

is appropriately the electron entropy for an electron ideal-gas with a gamma-law EOS, and D/Dt = 0; +u0,,
is the material or substantive derivative. Comparing the electron internal energy equation (?7) and the
electron entropy equation (24) it can be seen that puT, (dS./dx) = d (pue.) /dx + pedu/dx. In the case of
negligible electron-ion coupling the following expression holds across the shock discontinuity:

T
puTedSe d ( d e) . (26)

dr  dz \"“dz

As a reminder, at the shock discontinuity T, is continuous while dT, /dz is discontinuous, so the expression
above can be rewritten as
d

T
% |:pUTeSe - "ﬁe(fi';] =0, <27)

and integrated across the shock discontinuity, which is assumed to be infinitesinally thin, so that the following
expression must be continuous

dTe

puTeSe — Al (28)

Results from the semi-analyic solution method described herein are presented in Figures 4.3.

5. Continuing work

The primary thrust for future work will be to develop an input deck for xRAGE that runs this electron-ion
steady-state shock problem and to modify the solution method so as to match the physical assumptions made
by xRAGE. This will require considerable effort and consultation with the xRAGE code-development team.
A secondary thrust is to investigate how the solution method responds when solving the model equations
in a coordinate bases that is different than (7., M); in [1] the coordinate bases is (T¢,n). Currently, the
(T., M) coordinate bases is not producing continuous shock solutions which were presented in [1].
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