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Experimental Determination of Demand Response Control Models and
Cost of Control for Ensembles of Window-Mount Air Conditioners

Drew A. Geller' and Scott Backhaus?

Abstract— Control of consumer electrical devices for pro-
viding electrical grid services is expanding in both the scope
and the diversity of loads that are engaged in control, but
there are few experimentally-based models of these devices
suitable for control designs and for assessing the cost of control.
A laboratory-scale test system is developed to experimentally
evaluate the use of a simple window-mount air conditioner for
electrical grid regulation services. The experimental test bed
is a single, isolated air conditioner embedded in a test system
that both emulates the thermodynamics of an air conditioned
room and also isolates the air conditioner from the real-world
external environmental and human variables that perturb the
careful measurements required to capture a model that fully
characterizes both the control response functions and the cost of
control. The control response functions and cost of control are
measured using harmonic perturbation of the temperature set
point and a test protocol that further isolates the air conditioner
from low frequency environmental variability.

I. INTRODUCTION

Renewable sources of electrical power such as solar and
wind farms may have large output variations over a wide
range of time scales, from minutes to hours to days. In
the case of solar, the temporal variation in solar energy
available is not only due to the daily cycle of the sun but
also due to cloud cover and aerosols in the atmosphere.
The variability from additional renewables combines with the
existing variability of loads to increase the need for power
regulating services for continuously balancing generation
and load over this wide range of time scales. Bulk electri-
cal system (BES) operators already purchase or otherwise
acquire grid ancillary services to provide this real power
regulation. Examples include primary frequency regulation
that operates on time scales from subsecond to ten seconds;
secondary frequency regulation operating on time scales of a
few seconds to ten minutes and spinning reserves or tertiary
frequency regulation operating on time scales of ten minutes
to an hour [1].

Although the time scales of these services are quite wide,
they are for the most part provided by traditional, central
station synchronous generators. However, as the penetration
of renewable resources increases, the energy supply from
traditional generators is needed less and they are operated
less making them unavailable to provide ancillary services
for controlling the electrical grid. Advanced control of the
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renewable generators may be used to restore some of the
controllable capacity [2] [3]. However, new sources of con-
trollable capacity will likely be needed at higher levels of
renewable resource penetration [4].

One concept for providing such regulating service involves
controlling an ensemble of thermostatically controlled loads
(TCLs) such as air conditioners (AC). Because typical build-
ings or offices have relatively large heat capacities compared
to the air contained in these spaces, it should be possible to
make small changes in thermostat settings without affecting
the comfort of the inhabitants of these spaces, at least
over short periods of time. By distributing these set point
changes over a large number of TCLs, a large amount of
power consumption can be controlled for the purpose of
providing grid ancillary services, without strongly impacting
any particular load for a sustained period.

Although TCLs, e.g. large commercial heating, ventilation
and air conditioning (HVAC) systems and ensembles of many
small residential AC systems, are attractive control targets for
providing ancillary services, there are few experimentally-
based models of these devices suitable for control designs
and for assessing the cost of control. A review of both
experimental and simulation-based evaluations of control
models and control for large commercial HVAC systems is
given in [5]. Here, we provide a discussion of the references
in [5] that are most relevant to current work and discuss a
few more recent references that are not included in [5].

Experimental system identification was used in [6] to
determine an open-loop demand response control model that
accounted for the nonlinear response of a large commercial
HVAC system. This model was developed for the entire
HVAC system in a 300,000 ft?> building for time scales
from 15-30 minutes. Its performance was tested [5] against
historical PIM RegA signals [7], which have a typical time
scale of 5 minutes. The control performance was found to
be adequate. This same open-loop control and commercial
HVAC system combination was also used to experimentally
determine the cost of control. Transient testing [8] was used
to determine excess energy consumption to return the HVAC
system to its nominal internal state following a control action.
In [5], the open-loop control and HVAC system tracked a
historical PIM RegA signal [7] for many hours and the
average energy consumption was compared to days when no
control tracking was performed. In both cases, measurements
showed significant excess energy consumption compared to
the power regulation ancillary service provided.

Related experimental work was performed in [9] where
frequency sweep methods were used to extract a plant



transfer function for a single ventilation and supply air fan
that was embedded in a larger commercial HVAC system.
The plant transfer function was used to design a closed-loop
control for tracking both PJM RegA and RegD [7] frequency
regulation signals. In both cases, the experimentally-driven
design provided excellent tracking. However, the authors of
[9] did not attempt to measure the cost of control.

The work in [6][8][5] and in [9] was performed on large
commercial HVAC systems of similar configuration. They
are comprised of a central chiller plant and chilled water
loop that supplies air-to-water heat exchangers in a few
air handling units (AHU). Large fans in the AHUs supply
air to variable air volume controllers that ultimately supply
cooling air to the individual conditioned spaces. This HVAC
configuration is one of several typical layouts used in large
commercial HVAC systems.

Related experimental work has also been performed on
residential-scale HVAC systems [10][11], although the con-
figuration of the tested HVAC systems may not be represen-
tative of those found in the existing residential building stock.
In [10], independent models of the thermal behavior of the
residential building and the ventilation fans are formulated
and fit to experimental data. These models are then incorpo-
rated into a model predictive control (MPC) framework that
enables both long time-scale energy and frequency regulation
capacity scheduling and short time-scale control to provide
frequency regulation control. Experimental testing of the
controls is performed in [11], and the tracking of fast PIM
RegD signals [7] was found to be excellent.

The authors of [11] did try to measure the cost of control
while tracking PIM RegD signals. In contrast to [8] and
[5], they did not find any measurable effect. However, there
are several potentially important differences between these
experiments. First, the RegD reference signal used in [11] has
a much faster time scale (= 10 seconds) as compared to the
RegA reference signal used in [5]. If the extra losses induced
by frequency regulation control of the HVAC system are time
scale dependent, they may be more sensitive to the slower
variations in the RegA reference signal used in [5]. Second,
the configuration of the HVAC system in [11] is not typical
of residential HVAC systems and includes a large thermal
mass in the cooling water loop (which is also not typical
of residential systems). These differences make it difficult to
translate the results to HVAC systems in the existing building
stock. Finally, the authors of [11] executed a very limited
number of experiments where they attempted to measure
the cost of control. Although the experimental system in
[11] includes side-by-side HVAC systems to simultaneously
measure the energy consumption with and without control,
our recent experimental experience (described later in this
manuscript) suggest that careful experimental methods and
procedures are required to accurately determine the cost of
control.

The work described in this manuscript attempts to remedy
many of the issues discussed above. First, we utilize a
very typical, low-cost window-mount AC purchased from
a local retailer. Other than replacing the standard bulb-type

thermostat with a remotely controlled relay and flexible logic
programmed into the data acquisition system, the window-
mount AC is used as purchased. Second, the window-
mount AC is embedded in a test system that both emulates
the thermodynamics of an air conditioned room and also
isolates the AC from the real-world external environmental
and human variables that perturb the careful measurements
required to capture a model that fully characterizes both
control response functions and the cost of control. Third, the
control response functions and cost of control are measured
using harmonic perturbation of the temperature set point and
are explored over a wide range of perturbation time scales.
Finally, the test protocol is cycled on and off to continually
extract power consumption baselines from the same window-
mount AC that is under test, which further isolates the AC
from low frequency environmental variability.

The remainder of this manuscript is organized as fol-
lows. Section II describes the experimental test bed and the
necessary experimental precautions and procedures required
to make accurate measurements of the control response
functions and cost of control. Section III describes the
measurements and the analysis methods and presents the
main experimental results. Section IV discusses the results,
places them in the context of previous work, and describes
the implications of using window-mount ACs for demand
response frequency regulation. Finally, Section V draws
conclusions and discusses a path forward for future work.

II. EXPERIMENTAL TEST BED

The experimental test bed for this work is a physi-
cally emulated, single-room office as shown in Fig. 1. The
test bed consists of two roughly cubic, nested enclosures.
The inner and outer enclosures are constructed from Dow
Scoreboard[12] insulating foam sheets. The inner enclosure
is roughly 1.3 m on a side and includes a plywood floor to
distribute the weight of equipment so as not to damage the
foam insulating floor. Inside the inner enclosure is a 20 gal-
lon, point-of-use water electric heater. The water in the tank
comprises most of the heat capacity in the inner enclosure
and emulates the heat capacity of the solid materials typically
found in an office or room. Although the water heater is rated
to 1000 W, it is driven with a programmable solid state relay
(SSR) to provide 200 W on average, which is about half of
the total heat dissipated in the inner enclosure. The other heat
dissipation is contributed by the electrical loads of a fan and a
pump, both described below. The heat generated in the inner
enclosure is in turn removed by a simple window-mount AC
that is located with its grille nearly flush with one wall in the
inner enclosure. A cardboard baffle is placed perpendicular
to the face of the air conditioner between the cool air supply
louvers and the return flow vents to ensure that the cool air
flow is effectively mixed with the rest of the air in the inner
enclosure and is not “short-circuited” to the return by the
small dimensions of the inner enclosure.

In a typical office, there are numerous solid objects,
including the drywall bounding the space, that have substan-
tial surface area and heat capacity such that the total heat



capacity that the air conditioner works to cool in each cycle
is much larger than that just of the air itself. The thermal
resistance between the air and these solids creates a second-
order heat transfer model [13] where the air cools faster
than the surrounding solids and the solid-to-air heat transfer
coefficient determines the rate at which the solids cool. Since
the water tank is insulated and of compact shape, it was
necessary to provide sufficient thermal contact between the
water and the air in order to emulate the solid-to-air heat
transfer in a typical room. The heat transfer is controlled
by using a hydronic loop and pump to circulate the warm
water from water tank through a metal-fin heat exchanger.
A fan (separate from two fans in the AC) is mounted on
one face of the heat exchanger and vigorously circulates
the inner enclosure air through it, providing thermal contact
between the heated water and the air. This fan also stirs
the air in the office sufficiently to prevent hot or cold
spots from developing due to stagnation. Initially, the power
consumption of the water pump (75 W) and the fan (133 W)
were assumed to be dissipated directly to the air. Subsequent
modeling and system identification showed that the heat
generated in these solid objects can be treated approximately
as if all the heat were deposited in the water instead.

To explore the dynamic effects of thermostatic control on
the AC, the built-in, bulb-type mechanical thermostat was
replaced with instrumentation monitored and controlled by
a computer running custom LabView software. In addition
to acting as a smart thermostat, the software extracts and
logs temperature measurements from thermistors attached to
the apparatus, and it allows the operator to specify several
parameters including the temperature set point, the dead
band, and independent time-dependent modulation of the
set point and dead band edges. The software also enables
direct control over the on/off state of the AC, but this
capability is not used in this work. One thermistor monitors
the air temperature inside the inner enclosure and is used
as the input to the LabView-based thermostatic control.
The software uses this reading to turn on or off the AC’s
compressor through a relay. Other thermistors are used to
measure the temperature of the laboratory, the temperature
of the water in the hydronic loop, and various environmental
temperatures surrounding the office.

The AC itself is set to a mode in which its fan runs con-
tinuously, which helps mix the air inside the inner enclosure
and simultaneously ensures a continuous flow of constant-
temperature air across the AC’s hot heat exchanger. The total
power consumed by the AC’s refrigerant compressor and fans
is monitored by a Hameg Model HM 8115-2 autoranging
power meter, and the power data are read by the LabView
software through a USB interface.

In early experimental trials, we observed that the 2 in.
thick styrofoam insulation of the inner enclosure was not
sufficient to eliminate effects from the diurnal cycle of
temperature in the laboratory, which could be as large as
8 °C over a single day. A second outer enclosure, the
”shell” of Fig. 1, was built surrounding the experiment
in order to control the temperature outside the walls of

the inner enclosure as well. Air from the laboratory is
first precooled by a chilled water loop and then passed
through an air heater that is controlled by the computer. The
computer monitors temperature on three sides of the shell
and modulates the electrical heat following the intake air
precooler. This technique maintains the average temperature
measured by the three thermistors in the shell space constant
to less than 0.3 °C. The temperature in the shell is chosen
to be equal to the air temperature set point in the inner
enclosure so that, on average, the heat flow through the
inner enclosure walls is minimized. We also note that the
intake air for the AC’s hot heat exchanger is drawn from
the temperature regulated shell space. This configuration
stabilizes the “external environmental” conditions for the AC
operation. By stabilizing the conditions for heat flow into the
inner enclosure and for AC operation, the time-dependent
power consumption of the AC can be studied without the
environmental variabilities that plague such measurements
on real buildings.

Even with these efforts to create a well stabilized thermo-
dynamic control volume around the inner enclosure, there are
still some sources of systematic error from the environment
and from the off-the-shelf equipment itself. For example,
there is a residual effect of the ambient temperature of the
laboratory on the AC behavior (both the duty cycle and
the average power consumption), which may be due to the
finite flow rate of the temperature regulated air in the shell
through the hot heat exchanger of the AC. In order to reduce
these residual nuisance effects over the multiple weeks of
measurements required to fully map the control response
functions and cost of control, the data acquisition software
alternates intervals of set point modulation with intervals of
fixed set point. This experimental procedure continually re-
establishes the baseline power consumption of the AC and
provides a differential measurement of AC natural period and
power consumption. An example chart of the temperature
data for such an experiment is shown in Fig. 2.

With a constant heating rate into the water, the experimen-
tal system locks to a specific phasing with respect to the im-
posed temperature modulations, in the absence of any other
perturbations to the inner enclosure. This is an unrealistic
situation and may lead to locally stable states that are highly
dependent on the particular heat transfer characteristics of
the experiment and the specific temperature trajectory of
the experiment at startup. In addition, in physically relevant
residential or commercial spaces the heat load in the space
is randomized by the time variation of occupancy, by the
time variation of the activities inside the space, and by the
environment. Therefore, to find the most robust state of the
system, the heat input to the water was randomized by adding
zero-mean noise to the time-averaged heating rate of the
water heater. For the experiments shown, this noise consists
of random step changes between =100 W to the water heater,
applied for random intervals averaging to about 15 minutes.
The software allows control of the heating rate, the deviation
from the mean rate, and the reset time; and it controls the
physical heater via an output voltage to a circuit that converts
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A schematic drawing of the experimental apparatus. Thermistor temperature sensors are indicated by a “T” inside of a black circle. The insulated

walls of the inner enclosure and the components inside the inner enclosure physically emulate the thermodynamics, heat transfer, and air conditioning of a
small room. The water in the water heater emulates the solid heat capacity of the room’s walls and floor and other material in the room. The electrical heater
in the water heater emulates the heat leak through the room’s walls. Circulating the water through a heat exchanger with fan-driven room air emulates the
heat transfer from the room’s walls and floor and is tuned to provide a realistic air conditioner (AC) duty cycle. The shell space created by the insulated
outer enclosure is fed from the lefthand side with temperature regulated air to shield the inner enclosure from temperature variability in the laboratory.
The air flow in the shell is exhausted though the AC’s hot heat exchanger and provides constant temperature intake air to isolate the AC operation from
the temperature variability in the laboratory. The AC’s thermostat is replaced with a software controlled relay that enables modulation of the AC set point

temperature or other advanced control functions.
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Fig. 2. A sample of the raw temperature data for the inner enclosure air
temperature Tyir, the circulating water temperature Tiwater, and the upper
and lower dead band limits, Tsp4 and Tsp_, respectively. The temperature
set point (and dead band limits) is modulated sinusoidally for an interval
of about 90 minutes. The modulation period and amplitude are parameters
defining the experiment. The modulations are cycled on and off every 90
minutes to allow for frequent reassessment of the AC baseline operation.

the signal to 4-20 mA for programming the SSR. The SSR
itself passes 120 V AC power, stepped down by a variac, to
the heater element.

III. RESULTS

Using the test bed described above, we systematically map
out the electrical power response of the window-mount AC

to sinusoidal perturbations of the set point and dead band
edges of the form

Tsetpoint (t) = Tavg + AT sin (27t /7). (1)

Experiments are performed with temperature modulation am-
plitudes from AT'=0.0625 to 0.5 °C and modulation periods
ranging from 7=3 to 40 minutes per cycle. Although not all
experiments are the same length, most experiments were run
for about 3.5 days—Ilong enough to ensure that any transients
at the beginning of the experiment have settled (1-3 hours
for starting a new experiment) and do not significantly affect
the overall results. This duration provides a large number
of modulation cycles, 62 even for the longest 7=40-minute
modulation period.

For each experiment at a given AT and 7, the beginning
of each modulation cycle is identified and the AC’s electrical
power at each time point in the cycles is averaged to develop
a single, average electrical power response to the sinusoidal
set point perturbation. The AC’s electrical power response
for several experimental conditions are shown in Fig. 3. The
columns in Fig. 3 are each for a single value of amplitude,
AT = 0.0625, 0.125, and 0.25 °C from left to right. The
plots in each row have nearly the same modulation period,
7 = 20, 10, and 3 minutes from top to bottom. (The actual
values for the leftmost column are 24, 12, and 4 minutes.
These data were taken in an earlier set of experiments on
the same apparatus.)
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Fig. 3. Cycle-averaged AC electrical power during modulation of the temperature set point by three different amplitudes, A7=0.0625, 0.125, and 0.25

°C, and three different periods, 7=3, 10 and 20 minutes. The periods in the first column (A7'=0.0625 °C') are slightly different from those in the next
two columns due to changes in the experiment implemented between these data sets.

The responses to the harmonic modulations are not simple
sinusoids, even for the lowest amplitude in Fig. 3, as the
finite temperature dead band creates significant nonlinearity.
The nonlinearity becomes more pronounced for larger set
point modulation amplitudes. Near the natural period of the
unperturbed system (about 9 minutes), the response function
at high modulation amplitudes almost resembles a square
wave. The square wave is a result of saturation because the
AC cannot provide greater peak-to-peak changes in power
than the maximum power it consumes. At longer modulation
periods, the nonlinearity also generates frequency doubling
with the AC’s electrical power response having significant
variability at half the modulation period.

The responses in Fig. 3 are in contrast to those from an
HVAC in a large commercial building [8]. In those systems,
damper levels and fan speeds are continuously adjusting
to regulate around the temperature set point. The simpler
controls on a window-mount AC unit can only turn the
compressor on or off and cannot regulate temperature at all
within the dead band.

For each plot Fig. 3, the magnitude of the variation in
consumed power is a measure of the amount of power that
the individual ACs can provide for regulation services with a
given timescale and an allowed temperature excursion in the
room. Although the response is not purely sinusoidal, it is
cyclic and can be characterized by extracting the magnitude
and phase of the first harmonic of cycle-averaged electrical
power waveform. These modulation amplitude-dependent
response functions are shown in Fig. 4 as functions of
modulation frequency.

Modulation of the set point of the window-mount AC
unit does not only modulate the electrical power, but it
also creates an increase in the average electrical power
consumption reflecting the cost of control. The increase in
consumption is difficult to measure because, at least for the
lower temperature modulations studied (AT < 0.125 C), the
loss is comparable to other sources of noise in the system.
By alternating periods of modulation with quiescent periods,
as shown in Fig. 2, it is possible to reduce these systematic
errors and obtain values reproducible to less than 5 W. The
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Fig. 4.  Frequency response of the AC electrical power for set point
modulation amplitudes of AT'=0.125, 0.250, 0.375, and 0.500 °C : (a)
Amplitude response (b) Phase shift.

extra AC electrical power consumption AP is calculated
from

AP = (Pmod - Qw,mod/n) - (PO - QW,O/n) (2)

where P,,,q and P, are the time-averaged AC power with
and without modulation, respectively; Qw’mod and ng are
the time-averaged electrical heat applied to the water heater
with and without modulation, respectively; and 7 is the
coefficient of performance of the air conditioner.

The extra AC electrical power consumption is shown
in Fig. 5 as a function of temperature amplitude for a
modulation period of 20 minutes. In Fig. 5, AP extrapo-
lates to a value less than zero, which cannot be consistent
with definition of AP. This inconsistency may be due to
unresolved systematic errors in our experimental methods.
Alternatively, A P may actually be zero for AT <0.125 °C.

IV. DISCUSSION

The results up to this point have been presented in terms
of the response of a single window-mount AC subject to set
point modulation. However, the thermal noise discussed in
Section II allows our results to be interpreted as the response
of a large ensemble of window-mount ACs. The thermal
noise applied to the circulating water inhibits the dynamical
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Fig. 5. The excess power consumption AP of the air conditioner
attributable to temperature set point modulation of amplitude AT. The
period of the modulation is 7=20 minutes.

response of the single AC from locking onto the perturbation
frequency and forces the single AC to more fully explore the
phase space of temperatures and on/off states. Over many
cycles for a modulation amplitude and period pair, the single
AC starts each cycle in a different state. We can then interpret
cycle averaging of the individual modulation cycles as being
equivalent to ensemble averaging over a large number of ACs
that start each modulation cycle at a random point in their
duty cycle. Interpreted in this way, the results in Figs. 3-5
are more broadly applicable to large ensembles of window-
mount AC units.

The shape of the frequency response in Fig. 4 is in
many ways similar to the H; response in Fig. 8 of [9],
but the physical causes of the response are often different.
Considering the lower amplitude modulations of AT =
0.125 or 0.250 °C, the results in Fig. 4 show a similar
peak at a mid range of frequency with a roll off at both
higher and lower frequencies. The peak at approximately 1
minute and high frequency rolloff in [9] is a result of the
dynamics of the AHU fan, which may be natural dynamics
or acceleration limiters in the variable frequency drive that
ultimately controls the fan speed. This peak is not expected to
move as the conditions in the building or the environmental
conditions change.

In Fig. 4, the peak in the response magnitude at approx-
imately 9 minutes is associated with the natural duty cycle
of the AC unit. If the set point and dead band limits are
modulated much faster than the natural duty cycle, the set
point explores the high and low extremes of its modulation
many times during an AC duty cycle. The AC unit will
always switch on/off states at these “inner” extremes of the
dead band modulation rendering the control input ineffective
in modulating the average power consumption. This effect
results in the roll off of the response at high frequency in
Fig. 4. We note that the natural duty cycle and the location
of the peak (and ~ 180° phase shift) in Fig. 4 is expected to
move as conditions change creating challenges for designing
a closed loop controller for an ensemble of window-mount



ACs.

The low-frequency roll off in the response in Fig. 4 is
caused by the natural adjustment of the average air and
solid (i.e. water) temperature to slow modulations in set
point. Under these slow modulation conditions, the average
temperature quickly adjusts to the new set point and the ef-
fective “error” between the set point and average temperature
is reduced. Without significant temperature error, the AC’s
electrical consumption tends toward its baseline consumption
and the control signal does not provide significant modula-
tion of AC electrical power. Related slow adjustments of the
system state in [9] occur to reduce the level of electrical
power modulation.

The experiments in [9] purposefully limited the range of
the control inputs to avoid possible damage to the fan and
connected ductwork, and therefore system identification may
not have encountered significant nonlinearities. In contrast,
the present work encounters nonlinearities even at relatively
small set point modulations. The gradual reduction in the
peak of the magnitude response at the fundamental frequency
in Fig. 4 is caused by the saturation in the response of the
AC unit. This can be seen in the middle row of Fig. 3. There
is an associated impact on the phase shift at the fundamental
frequency in Fig. 4. The presence of significant nonlinearity
at even AT =~0.250 °C' is important because the set point
temperature resolution for most thermostats is at best 0.1°C'".

The frequency response functions in Fig. 4 may be used
to design a control that accurately tracks a frequency reg-
ulation reference signal. However, the extra time-average
power consumption in Fig. 5 is key to understanding if
providing ancillary services such as frequency regulation is
economically viable. In Fig. 5, a modulation of AT'=0.250
°C at a 7=20 minute period would cause about 10 Watts of
extra energy consumption. One could estimate from Figure 3
that this same set point modulation would generate roughly
100 Watts of zero-to-peak response in the cycle-averaged
power. Assuming that the AC owner pays retail for energy at
$200/MW-hr and is paid an optimistic frequency regulation
market clearing price of $40/(MW/hr), the ratio of cost of
energy to frequency regulation income is 1:2. Fifty percent
of the AC owners’ ancillary service revenue is lost to extra
energy consumption. The relatively close balance of income
and cost of providing the ancillary service clearly points to
the need for more extensive measurements of A P under ideal
settings, as performed here, and under realistic settings using
historical frequency regulation signals.

V. CONCLUSION

In this manuscript, we have demonstrated experimental
methods to characterize the frequency response and cost
of control of window-mount air conditioning units. These
methods are extensible to characterization of many other
forms of thermostatically controlled loads (TCL). By in-
jecting noise into the system under test, we have made a
preliminary demonstration of how to measure the frequency
response of an ensemble of TCLs using a single TCL.
The value of these methods is twofold. First, experimental

response functions capture crucial unmodeled behavior of
loads and other distributed energy resources before deploying
control systems to manage them in real power grids. Second,
they enable the exploration of response functions of large
ensembles without having to incur the expense of building
or deploying large numbers of devices.

There are many directions for future work using the same
methods, including:

« Further investigation of the noise injection method used
in this work to understand the accuracy of the recovered
response function for ensembles of devices

« Extending the frequency domain of the window unit air
conditioner characterization to better capture the control
response for faster time scale ancillary services like
RegD in the PJM market[7]

o Improving and expanding the excess energy measure-
ments to better characterize the economic viability of
providing frequency regulation from an ensemble of
small thermostatically controlled loads

e Devising related measurement schemes to isolate and
understand loss mechanisms in thermostatically con-
trolled loads to better identify control methods that
minimize the losses

o Extending the measurements performed here to include
characterization of the state probability distribution
functions, a characterization potentially more useful to
more advanced control algorithms

Finally, it is not possible to test control algorithms for
ensembles of thermostatically controlled loads using these
methods on a single TCL. The time averaging used to capture
the ensemble behavior does not allow for observation of the
ensemble response in real-time. To test any control algorithm
developed using these experimental methods requires signifi-
cantly scaling up the number of these test beds to adequately
represent ensemble behavior in real time.
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