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Core Surveillance is comprehensive preventative
maintenance for nuclear weapons

« All components of nuclear weapons are examined annually
- Design Agency issues clear directives

» Tests are prescribed and well-established

They’re well-kept,
but will they run?

(and where will you get leaded gas?)
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SBSS: Science-Based Stockpile Stewardship

+ Assessment & certification without nuclear testing
« Sustainment of weapons-in-being (at the next plateau / near-term)
* Responsiveness / adaptation to new requirements — could be

weapons security, more margin, or a military effect not already
stockpiled.

(Both the 1993 and 2001 Nuclear Posture Reviews
required that the Complex be
capable of new design “if required.”)
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Enhanced Surveillance examines materials in depth

=— Lattice oxygen

Identify and characterize aging signatures ——
- Stockpile aging (CS) & artificial aging studies el
- Provide science-based understanding (mechanisms)

10" L H,0

Develop and implement age-aware predictive models
- Long-term materials behavior
- Material lifetime estimates

* Improve future stockpile through LEP support
- Replacement & reuse materials

* Resolve unanticipated results B
- Establish cause and effect R

inding energy in el (ev)

 Determine and communicate engineering and physics impacts
- Delivery and Performance
- Lifetime estimation

* Produce innovative diagnostics
- New tools for core and enhanced surveillance programs

« Maintain (and exercise) nuclear weapon subject matter expertise
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RTG The Radioisotope Thermoelectric Generator
Is a self-contained, long-lived battery
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RTG The Radioisotope Thermoelectric Generator
is a self-contained, long-lived battery

Medtronic heart pacemaker 1973-1985

As of 2011, these units were still in use
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A range of isotopes serve to power RTGs

Balance power and lifetime, power and shielding

238py o 0.54 W/gram 87.7 years

90Sr B(y) 0.46 W/gram 28.8 years

210pg o 140 W/gram 138 days (0.5 g to 500 C)
241Am a(y) 0.13 W/gram 432 years

also 244Cm, 147Pm, 137CS, 144Ce, 106RU, GOCO, 2420m, 171Tm, 235U

Aneva Light, °0Sr

Beta-M battery

\ TN ol Sakhalln Light
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Silicon-Germanium Thermopile
Converts Heat to Electricity

April 3 1965

RCA Laboratory New Jersey
Stable to 1000 C

High electric conductivity

Low thermal conductivity
measurement was difficult

Co-located n-type and p-type . £ :
semiconductors (60% Si) - i Ry

.\

Ben Aeles and George Cody
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Other designs for heat sources have been proposed

"subcritical multiplicator” or “Advanced Subcritical Assistance” RTG
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P . .
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a-particle =$He \ : ¥ I
238Py produces | AR

alpha particle %

006
. OQ
about 6MeVv  Alpha-n reaction
produces neutrons

Neutrons promote
subcritical reaction
fission energy 200 MeV
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The Seebeck effect generates the electrical current

Electron mobility increases with increasing temperature

Voltage differential can be converted to current at a junction
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233py Oxide gives off heat

238Pu oxide pellet

87.7 year half life
Alpha decay
0.4 Watts/gram output
Converted to electricity

using a thermopile
with 3% to 7% efficiency
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Our RTGs are very robust

Text .
sSpring

Min-K

] heat
insulator

source
thermopile

isolation

connector
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Several Required Tests are Performed

* Electrical tests
+ Disassembly “D-test” (destructive testing)
* Recovery of all parts

« Heat source tests

« Gas pressure, helium generated by decay of 238Pu

* Weld integrity

Fuel is recovered, sieved, and re-used
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Four electrical tests are performed

Si-Ge RTG simulation

AC Impedance 6.00
E 5.50 assuming BOL: 4W heat input
N o
Open-circuit voltage | . -
E ~f=-55C
Loaded Voltage £ 450
o
) ] ] G 4.00
Baseplate isolation resistance §5
& 3.50
3.00

0 10 20 years 30 40 50

Test at ambient (25° C) and at
upper and lower temperature limits
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Results of electrical testing reflect radioactive decay

Voltage output decreases with time
V = VO e—(t/7)

Si-Ge RTG simulation
assuming BOL: 4W heat input

Years

pas
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Measured voltage varies with quantity of fuel
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Subtraction of initial voltages reduces scatter in data

Voltages were recorded at manufacture

Voltage difference, Volts
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Scatter in data is reduced by normalization to initial values

Scatter reduced:

Voltage difference, Volts
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40

Slopes of linear fits unchanged for loaded
voltage (LV) measurements

Scatter due to variable fuel charge removed

LVat25C

R2 =0.88
without
subtraction,
R2 =0.59

Voc at 25 C

R2 =0.91
without
subtraction,
R2 = 0.61
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Measured performance is better than
predicted performance

5 A measured Voc
® measured LV .
A predicted Voc Ope ratl ng
® predicted LV tem pe rature

===predicted Voc line 25 C

e==predicted LV line

3 - e==measure Voc line

e==measured LV line

0 T T T )
20.00 25.00 30.00 35.00 40.00

Unit age, years

Initial and measured voltages fit with known decay rate s
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Correcting each data point for initial voltage tightens
the distribution

1
40.00 measured Voc
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The case is cut in half on a lathe

The parts are embedded in fibrous Min-K thermal insulation

All parts are recovered and examined

s
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Many of the heat sources were made at LANL

Manufacture was
originally done

at Mound

Laboratory
Manufacture ; :PI & 18
moved to Los e
Alamos in 1989 B 2/23/80

pas
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The unit is cut in half and the components measured

The parts are archived so that
future questions can be
addressed

The heat source
is examined further

A
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Gas pressure and composition in heat source measured

Helium is a product of radioactive decay,
measured with mass spectroscopy done on fill gas

1.80E-05

1.60E-05

1.40E-05

4.00E-06

2.00E-06

0.00E+00

(4.2, He

20 40 60 80 100
M/z

The expected pressure can be calculated from the age of the unit
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The container is sectioned and welds examined

The granular fuel is emptied out the drilled hole

A5
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Examination of the weld shows pristine sound welds

Welds are examined for
evidence of change

Metallography shows
grains in the weld

s
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Electron micrographs of the strength member weld

Weld overlap region
is beautifully clean

- A Sy et . -y - -gs o

Galling is sometimes seen
from metal-metal contact

Tmm
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Pressure data yields interesting science

Helium is evolved from Pu-238 oxide—
will there be sufficient gaseous helium at advanced age
to deform the capsule?

\
> < Helium
- —>@
Y 4

Plutonium ‘

Uranium

Helium release from oxide studied in 1970s
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Pressure is about 26% of expected

Pressure observed is about 4 to 1/3 of helium produced over time

Pressure measurements in heat sources
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pressure gauge with error larger than advertised 2
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Helium is captured in the oxide matrix

Early work indicated that helium is

captured in the oxide lattice even at high temperatures (900-1400°C)

Arrhenius plots for He diffusion:
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RNR Mulford, LASL, 1973
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Amount of gas calculated
assuming diffusion in radial geometry

dC d

Diffusion: Fick’ slaw P=-D—= Pisflux and =—=—concentration

C
dX dX
Equation in spherical geometry for radial diffusion
F=1=0 Z_i exp (-n272 Dt/ a?)
n
for fraction F of gas escaping
D’ is D/a? a rate, eliminating radius a
Tis f D’ dt

t to account for
continuous decay

A5
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Rate of diffusion of helium assumes Arrhenius kinetics

D' =D’ exp (-E,/RT)

LogD’ =-E,/R [=—] +1ogD’,

T
Activation energy O
Ea 1: \\ E, = 87.2 kcal/mole ¢ o
inital 2_20 e, -
’s E, =21.1 kcal/mole
final
Activation Energy E, derived from slope ﬂ;
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Arrhenius plot obtained in 1970
shows low-temperature diffusion (800-1100°C)

-5 *  Angelini 74u
B Angelini SN p
10 \ ® Angelinil77up
+  Angelini, selected low T p
- = Angelini selected low T
3&15 \ Angelini high T p

20 *‘\‘\
\ E, =21.1 kcal/mol

-25 \

-30

0 5 10 15 20
1/T *1074 in 1/Kelvin

Static data from Mound microspheres 3 years old .
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Arrhenius plot with 2011 data
shows low-temperature diffusion exactly like 1970
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Static data from microspheres 23-34 years old .
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Plot with all available data gives same conclusion

D/a2 mueller

Tau, Mueller high T

*Tau, low T

D/a2, RNRM sph

RNRM PuO2 line

-2
Higher temperatures, J—
\ different mechanisms mueller, RNRM, skip 17
8

p
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4

4
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4

-6 D/a2,RNRM Pu02
Q Tauv. low T p
oo ’
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p
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Angelini high T
4~ 3l our points
-12 - all low T line
() 5 10 15 2(') all RNRM, mueller
a RNRM Pu0O2
_ 14 . mixed low T pts

1/T *1074 in 1/Kelvin . mixed low T line
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Arrhenius rates indicate mechanism is similar to previous

kcal/mole

E., 21.06 for Angelini at low temperature (800°C, 1000°C, 1100°C)

E. 18.70 for our measurement at low temperature (~350°C)
plotted with Angelini’ s data

E. 18.49 for our measurement (~350°C)
plotted with Mueller 1397°C and Mueller 900°C
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Activation energies reasonable for high T diffusion

E

a

123-150 Peterson high T diffusion of bubbles in grains

87.09 Mueller Tau at high T diffusion of bubbles to grain
boundaries

82.0 RNRM PuO, high activation energy,

C above 80 kcal/mole
87.2 Angelini high T

69.2 RNRM microspheres activation energy

49.9 — 52.9 Peterson medium temp consistent with
diffusion of

49.9 movement of oxygen vacancies in ThO, point defects
Ando, Oishi, et. al. J. Chem. Phys,65(7) 2751(1976)
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Plutonium matrix can absorb all helium produced

Helium is retained
In holes
in the lattice,

most likely
tetrahedral holes
from geometric
arguments

The fluorite structure has
exactly as many tetrahedral holes as plutonium atoms

AN
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Open lattice allows helium diffusion at low energies

E_, = 18.70 kcal/mol

E, =20.3 kcal/mol

concerted
He movement in ErH,
Wixom, et. al., JAP (2008)

E_ = 50 for point defect

Movement between holes requires only energy of site change
No energy of ion or point defect movement

Concerted He movement minimizes energy

» Los Alamos



Morphology of the fuel may change

Rapid helium evolution pressurizes grain boundarles
Resulting in fracturing of microspheres | T~

What is our morphology now?
CEA has seen fracturing of oxide:

Depleted zone at the edge of each grain: Roudil (08)

If the grains get smaller, eventually the He will come out CEA oxide
30 years old

A
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Conclusion: no change in helium release from fuel

Current data indicates NO CHANGE in the mechanism of
Helium release from plutonia at ages of up to 34 years.

The rate has NOT CHANGED appreciably in 34 years.

Preservation of chemistry: still all helium

A
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Core surveillance: critical mission
and a good reason for doing science

They’re well-kept,
but will they run?

(and where will you get leaded gas?)

If every part works,
it’s a reasonable expectation
that the entire assembly will work




DPA: Displacements Per Atom

Calculated atomic ppm helium is about 2000-2950 ppm
depending on unit age,
or about 0.0020 to 0.0029 grams helium per gram oxide.

Assuming 1500 defects per reaction in the ceramic”
the displacements per atom (DPA) in the solid
calculated to be between 3 dpa and 4.42 dpa.

Majority of units about 4 dpa of accumulated damage.

*Roudil et al, J. Nucl. Mats. 378, pp. 70-78 (2008.)
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