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Introduction

¢ Inverse modeling in hydrogeology seeks the characterization of
spatially distributed parameters defined over a model domain
based on observations of state variables.

e We employ a gradient-based numerical optimization method,
Levenberg-Marquardt method, to solve the hydrogeologic inverse
modeling problem.

e The core of the Levenberg-Marquardt algorithm involves the
selection of the damping parameter and the linear solve for the
search direction at every iteration.

e The linear solve can be computationally intensive, which hinders
the applications of LM-algorithm based inverse modeling methods
to large-scale or even moderate hydrogeology models.

o We apply computationally efficient Krylov-subspace-recycled
iterative linear solvers to solve the linear system at every iteration.

Youzuo Lin Inverse Modeling September 24, 2016 2/54



@® Hydrogeologic Inverse Modeling
Forward Problem - Groundwater Flow Equation
Inverse Problem - Damped Least-Squares Problem
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Hydrogeologic Inverse Modeling - lllustration

Wells Sparse Pressure Observations

Tlg= <

ky | P

Unknown ﬁermeability Field

Aquitard

Inverse Permeability Estimate

¢ Input: Measured values (hydraulic heads) at N observation wells.

e Output: Model parameter values (conductivity or transmissivity)
at every grid node of the model.
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Forward Problem

The forward problem of hydrogeologic inverse modeling is governed by
the groundwater flow equation,

Groundwater Flow Equation

V- (TVh)=g
9(x,y)=0
oh oh
— = — = 0
ox ay ox by

h(x,c) =0, h(x,d) =1

where h is the hydraulic head, T is the transmissivity and g is a
source/sink (here, set to zero).
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Forward Problem

Using the operator, the forward modeling problem of the hydrogeologic
inverse modeling can be simplified as,

Groundwater Flow Equation - Operator Form

h = £(T),

where f(-) is the forward operator mapping from the model parameter
space to the measurement space.
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Inverse Problem

Correspondingly, the problem of model calibration can be posed as a
damped least-squares problem,

Hydrogeologic Inverse Modeling

x = argmin {f(x)},

— argmin {[d — f(x)|[% + Allx — Xo|3 } .
X

where d represents a recorded hydraulic head dataset, x is the
calibrated model parameter, xq is the prior model parameters,

|d — f(x)||5 measures the data misfit, || - ||» stands for the L, norm, and
R is the covariance matrix for the data error and Q is the covariance
matrix for the model parameters.
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Numerical Optimization Methods - Fundamental

¢ Line search optimization is an iterative method usually posed as,

Line search optimization

x(k+1) — x(K) 4 (R p(0)

)

where k is the iteration index, the vector p(¥) is the search
direction and o) is the step length.

« Different optimization methods are developed according to the
selection of the descent direction, p(¥).
e First-Order Method: Steepest Descent Method

e Second-Order Method: Newton-Type Methods and
Levenberg-Marquardt (LM) Method.
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Numerical Optimization Methods - Fundamental

e Search direction of Steepest Descent Method, Newton-Type
Methods and Levenberg-Marquardt (LM) Method:

o Steepest Descent Method: pt) = — V),

» Newton-Type Methods: pt) = —((J®))'Jk) 4 S =1y k) where
JW) = J(x(M) is the Jacobian matrix for the model parameter x(¥)
and S is the higher-order term in Hessian.

e Levenberg-Marquardt (LM) Method:
pk) = — [(JWYJW 4 pdiag((JRO)JW)] " VIR, where 1 is the
damping parameter and in the Levenberg version of the LM
method, J&) = /.

¢ We choose Levenberg-Marquardt (LM) Method because:
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e Search direction of Steepest Descent Method, Newton-Type
Methods and Levenberg-Marquardt (LM) Method:

o Steepest Descent Method: pt) = — V),

» Newton-Type Methods: pt) = —((J®))'Jk) 4 S =1y k) where
JW) = J(x(M) is the Jacobian matrix for the model parameter x(¥)
and S is the higher-order term in Hessian.

e Levenberg-Marquardt (LM) Method:
pk) = — [(JWYJW 4 pdiag((JRO)JW)] " VIR, where 1 is the
damping parameter and in the Levenberg version of the LM
method, J&) = /.

¢ We choose Levenberg-Marquardt (LM) Method because:
e LM method can be superior to steepest descent or Newton-type
methods in that it converges much faster than steepest descent and
is more robust to the initial guess than Newton-type methods.
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Numerical Optimization Methods - Fundamental

e Search direction of Steepest Descent Method, Newton-Type
Methods and Levenberg-Marquardt (LM) Method:

o Steepest Descent Method: pt) = — V),

» Newton-Type Methods: pt) = —((J®))'Jk) 4 S =1y k) where
JW) = J(x(M) is the Jacobian matrix for the model parameter x(¥)
and S is the higher-order term in Hessian.

e Levenberg-Marquardt (LM) Method:
pk) = — [(JWYJW 4 pdiag((JRO)JW)] " VIR, where 1 is the
damping parameter and in the Levenberg version of the LM
method, J&) = /.

¢ We choose Levenberg-Marquardt (LM) Method because:
e LM method can be superior to steepest descent or Newton-type
methods in that it converges much faster than steepest descent and
is more robust to the initial guess than Newton-type methods.

e LM method can be more stable than either steepest descent

method or Newton-type method in the cases when the inverse
problem becomes ill-posed.
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Conventional Levenberg-Marquardt Method

e The LM method can be seen as a combination of the steepest
descent method and Newton-type methods.

e The damping parameter of 1 plays an important role in ensuring
the search direction in the parameter space provides an optimal
balance between first-order and second-order optimization steps.

e The heuristic to update the damping parameter, (%),

Bl it p < pq

(k) .
M(k+1) - #T ifp>po

pl) otherwise

and the gain factor, p, can be defined as,

f(x) — f(x + h)
~ T L0)—L(h)
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Conventional Levenberg-Marquardt Method

Algorithm 1 Conventional Levenberg-Marquardt Method - Major Steps

if {Jacobian needs updated} then
Calculate the new Jacobian matrix;
end if
Solve for the search direction p(9);
if {Stopping criterion are satisfied} then
Return with solution x(¥;
else
Obtain the current solution, Xyew = X% + p(9);
if {Damping parameter is appropriate} then
Update the iteration, x(A+1) = x,ey;
else
Update the damping parameter p;
end if
. end if

N aORewh =

_k_;_k_&_k
PO 00
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Conventional Levenberg-Marquardt Method

¢ In most existing hydrogeologic inverse modeling, direct solvers
such as QR decomposition or singular value decomposition (SVD)
based methods are used to solve for p().
e These existing hydrogeologic inverse modeling methods can be
rather computationally expensive for two reasons:
e The Jacobian matrix can be large and sparse, therefore the direct
methods will not appropriate.

e The re-calculation of p%) can be expensive when searching for the
optimal damping parameter.

 How can we improve the computational efficiency?
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LM Method Revisit - Exploring the Matrix Structure

e The Levenberg version of the LM Method:
pk) = — [(JO YY) 4 1] ~1 vk can be posed equivalently as a
matrix form,
J
e We observe that,
 The system matrices consist of two parts: the Jacobian matrix J)

and the diagonal matrix and both of them can be large and sparse
when the measurements and model increases.

Levenberg-Marquardt Method in Matrix Form

JK) k)
o =wgmin || 722 [

e At any iteration, the Jacobian matrix remains the same while the
damping parameter p can vary.
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Efficient LM Method - Krylov Subspace Solvers

¢ Definition of Krylov Subspace,
]Cn(A, ro) = Span {I’o, Arg, A®) fo,. .. ,A(nfdl) ro}

¢ The basic idea of a Krylov solver is to construct a sequence of
approximations getting closer to the exact solution x, such that

Xn € Xo + ICn(A, 1o)

e We select the LSQR method, a type of Krylov Subspace Method,
considering its superior performance of accuracy and efficiency in
solving large-scale ill-posed problems.
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Efficient LM Method - LSQR lterative Method

e The Krylov subspace generated at the k™ step using LSQR
method,

Enl(SO1I0 (SO 740

= span{—(J®)' ), —((JOy I8 1 pur) (SROY )
—((J9) J<k + )2 (JOYr® 3,
= span{— (J( ) —(J (k)) J(k)(J(k))’r(k) (J(k ) r(K)

(JHRYY k)) (J( )Y rK) 24 (JRVY g (g KDY p(K)
+u2(JR) TR,

= span{—(J k)) r(o, —(J k))’J(k)(J(k))’r(k)
(WY JR2IOY 0, 3.
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Efficient LM Method - LSQR lterative Method

e The Krylov subspace for the damped least-squares problem is
independent of the damping parameter . [Lin-2016-WRR],

Kk = span {(J(k))'J(k) + pul, —(J(k))/r(k)} ,
= span {(J(k))’J(k), —(J(k))’r(k)} :
e This gives us the hint to generate a common subspace using a

initial damping parameter and project the remaining damping
down-to the generated subspace.
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Efficient LM Method - Recycled LSQR Method

e Krylov Subspace Generate Step
e The Golub-Kahan-Lanczos (GKL) bidiagonalization technique
g ykig) — p.
AV = ylk+1) k)
A Uk+1) — V(k)(B/)(k) + a(k+1)v(k+1)e/(k+1)’
where the unit vector () has value 1 at the i location and zeros
elsewhere, i.e., e = [0,...,1,...0].
e The GKL bidiagonalization procedure also generates a subspace,
which is spanned by the column vectors in V4, i.e.,

Kk = span( V) = K4 (A A A'b).
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Efficient LM Method - Recycled LSQR Method

e Subspace Projection and Recycling Step

« A three-term-recursion to update the solution x(¥) at each iteration
step can be obtained,

x(K) = x(k=1) 4 4(0z(),
1
(k) — __(yk) _ glk=1)5(k=1)
z\" = EQ) (v 0 z ).

e The major computational cost is the GKL recursion procedure in
generating the Krylov subspace. The three-term-recursion
procedure to update the solution by projection is computationally
efficient in comparison.
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Efficient LM Method - Summary

Algorithm 2 Efficient Levenberg-Marquardt Method - Solution of
Search Direction
1: if {Initial damping parameter} then
2:  Generate the Krylov subspace;
3: else
4:  Recycle the subspace generated previously;
5
6

. end if
. Solve the search direction p(¥) by projection;

Youzuo Lin Inverse Modeling September 24, 2016 18/54



Efficient LM Method - Marquardt’s Version

o Extension to Marquardt’s version of the LM method - Variable
Substitution

P = argmin { [ 96— () + 3]

where J&) = JK) D=1 and D = diag ((J)'Jk)),

o Benefits
e Transform Marquardt’s formulation to Levenberg’s.

e Computationally efficient
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Computational Cost Analysis - Setup

e Assume that the number of model parameter is m, the number of
observations is n, hence the size of the Jacobian matrix 1 x m.

¢ As a reference method, we choose the linear solver via the most
often used QR decomposition to solve the LM search directions,
denoted as “LM-QR”.

e We denote our new LM method as “LM-RLSQR” and “R” stands
for “recycled”.

o We report both the computational costs using the initial damping
parameter as well as using the rest of the damping parameters.
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Computational Cost Analysis - LM-QR Method

e Given an initial guess of the damping parameter, the associated
computational costs are

COST m—aR— it = O(R x 1P) + O(M®) + O(h x ) + O(AP),

where the first term is associated with forming the normal
equation, the second term associating with the QR factorization,
the third term associating with forming the right hand-hand side,
and the fourth term associating with the back-substitution for the
solution.

¢ Once the damping parameter is updated, some of the calculation
can be saved and reused. However, the expensive QR
factorization and the back-substitution cannot be avoided,
therefore the costs for the updated damping parameter will be,

COST.m—qR-Rest = O(M°) + O(11 x ) + O(/F).
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Computational Cost Analysis - Efficient LM

Method

¢ Assuming the dimension of the Krylov subspace to be k, the cost
associated using the initial damping parameter is,

COSTm—RLSQR—Initial = K1 - O(M x n),

e The computational cost for solving for the search directions of the
rest of the damping parameters is,

COST m—RLSQR—Rest = ki(n—1) - O(m).

where n is the number of i values that are being used.

o To compare the total computational costs associated with the
LM-QR and LM-RLSQR, we conclude that the cost associated
with LM-QR is much more expensive than the one with
LM-RLSQR.
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Computational Cost Analysis - Conventional

Marquardt’s Formulation

¢ Conventional Marquardt’s Formulation

mingio { | P — (=r®)||7 -+ u)| DR 2}

- m'“w{H[fD] -5

¢ A direct employment of the GKL bidiagonalization to the classical
Marquardt’s formulation costs,

COSTjassical = ko - O(M x (N + 7))7

where ko is the dimension of the Krylov subspace.
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Performance on Benchmark Testing Functions

Problem || Function Name Reference
1 Dixon-Price Dixon and Price, 1989
2 Griewank Locatelli, 2003
3 Powell Powell, 1964
4 Rosenbrock Dixon and Szego, 1978
5 Rotated Hyper-Ellipsoid | Molga and Smutnicki, 2005
6 Sphere Picheny et al., 2013
7 Sum Squares Hedar, 2013

Table: Set of benchmark testing functions

e The results of the following are reported [Lin-2016-IP],
e Linear Solver Time V.S. Total Time
¢ Number of Gradient Evaluation V.S. Number of Total Iteration
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Performance on Benchmark Testing Functions

Gradient Evaluation V.S. Total Iteration on Rosenbrock function

« Significant amount of trials are needed for the optimal damping
parameters at every LM iteration.
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Performance on Benchmark Testing Functions
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Time Profiles on the Rosenbrock function

e The “LM-QR” (red circle) wins the most when problem size is
small.

e The “LM-RLSQR” (green box) dominates for most of the testing
cases.
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Performance on Benchmark Testing Functions

Number of Wins
wi

Es
2
2 2
| I_‘ | J_‘
0 0
100 400 100

700
Problem Size Problem Size

Linear System Overall
Counts of Wins on the Computational Time Costs

The “LM-QR?” (in blue) wins the most when problem size is small.

As the size of the problem increases, “LM-LSQR” ( ) wins
occasionally and “LM-RLSQR” ( ) wins most of times.
When the size of the problem becomes large, “LM-RLSQR”
dominates the other two methods.
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Model Calibration in Hydrology - True Model
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e Synthetic transmissivity field.

¢ Hydraulic conductivity and hydraulic head observation locations
are indicated with circles.

¢ Model dimension, 69 x 69, (a total of 9660 model parameters)
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Model Calibration in Hydrology - Inversion Results

1.0

0.8

0.2 0.4 0.6 0.8 1.0

Inversion Time Profile
Results of LM-QR Method

¢ A total number of 10 iteration steps are needed before a full
convergence.

o At iteration step of 4 and 5, there are multiple trials needed to
search for the damping parameter.
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Model Calibration in Hydrology - Inversion Results

1.0

0.8

0.2 0.4 0.6 0.8 1.0

Inversion Time Profile
Results of LM-LSQR Method

o At every iteration step, the length of the blocks at the first trial are
mostly shorter than those obtained using LS-QR method.

e Each extra trial for an acceptable LM descent direction yields less
computational time by comparing to LS-QR method.
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Model Calibration in Hydrology - Inversion Results

1.

0.8

%80 0.2 0.4 0.6 0.8 1.0

Inversion Time Profile
Results of LM-RLSQR Method

e At iteration steps 4 and 5, the same number of trials for an
acceptable LM damping parameter are needed.

¢ The time costs are significantly saved, even though they are hard
to visualize because of the small time costs associated.
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Model Calibration in Hydrology - Time Costs
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Overall
o Five different model sizes including 1300, 2520, 4140, 6160, and

¢ Both time costs on linear solver and the total time using our
LM-RLSQR method are always less than the time costs of the
other two methods for these problems.
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O Efficient Parallel Hydrogeologic Inverse Modeling Method
Parallel Levenberg-Marquardt Method
Numerical Results
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A Parallel Levenberg-Marquardt Method

o We employ both coarse- and fine-grained parallelism to the LM
algorithm.
Coarse Grained

| |
MLIJ u(z}

Fine Grained

. . . Interconnect . . .

System Measurements Systemn Measurements

Parallelism lllustration
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A Parallel Levenberg-Marquardt Method

e The coarse-grained level is implemented by using multiple
damping parameter at each iteration.

Coarse-grained parallelism

p=po x 107,

where y = —n/2,—n/2+1,...,n/2 —1,n/2 and nis the number of
the damping parameters which are being used.

¢ The fine-grained level is implemented by employing parallelism to
the local BLAS routines.
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A Parallel Levenberg-Marquardt Method

¢ Jobs on master node - “Coarse-Grained Parallelism”
e Generation of the Krylov subspace

o Obtain the potential solutions with different damping parameters

e Jobs on slave nodes - “Fine-Grained Parallelism”
e All the BLAS (Basic Linear Algebra Subprograms)
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Efficient Parallel LM Method - Summary

Algorithm 3 Efficient Parallel LM Method (Search Direction)
1: fori=0 TOn-1 do

2. %This is a parallel-for loop in a multi-core computing environment
3:  Generate the /" damping parameter, ugk);
4: if {i=0} then

5 Calculate the new Jacobian matrix;

6: Generate the Krylov subspace;
7

8

9

0

1:

Solve for p using the first damping parameter of u(()k);
else

Solve for p by recycling the subspace;
end if

end for

10:
1
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Model Calibration in Hydrology - Setup

e Test Setup [Lin-2016-WRR]

e Test 1: test on the efficiency of linear solvers

o Test 2: test on the scalability and heterogeneity of model
parameters

e Test 3: a 3D problem from the real setting

e Methods

e Our method: denoted as “LM-RLSQR” and “R” stands for
“recycled”.

¢ Reference methods: Parallel LM method with QR-based linear
solver (“LM-QR”) and SVD-based linear solver (“LM-SVD”)

e Computing Environment

e A Linux desktop with 40 cores of 2.3 GHz Intel Xeon E5-2650
CPUs, and 64.0 GB memory
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Test 1: Efficiency Test on the Linear Solver

0.8 1.0

True Model

¢ Hydraulic conductivity and head observation locations are
indicated with “0”.

o A total of 5100 model parameters (50 x 51 log-transmissivities
along X-axis, 51 x 50 log-transmissivities along Y-axis)
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Test 1: Efficiency Test on the Linear Solver

ime (Sec)

Ti
4

Damping Parameter Index
© @ v o o s w N -

3

-16 2 4 6 8 10
0.6 0.8 1.0 Iteration Index

Inversion Time Profile
Results of LM-QR Method

¢ Right Plot: The X-axis represents the LM iteration step. The
Y-axis represents index of the damping parameter.

e The color-bar stands for the computational time.
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Test 1: Efficiency Test on the Linear Solver

Tine (sog)

0.0 02 0.4 0.6 0.8 1.0 eration Index

Inversion Time Profile
Results of LM-RLSQR Method
e Our method obtains a good result, representing both the high- and
low-permeability regions.
e Our new method is more efficient in solving the linear system than
the “LM-QR” method.

Youzuo Lin Inverse Modeling September 24, 2016 40 /54



Test 1: Efficiency Test on the Linear Solver
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Average and Total Time Cost

o Left Plot: The average time cost in solving the linear systems of
every damping parameter for three methods

¢ Right Plot: The total computational time in solving the linear
systems of all three methods at each iteration step
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Test 2: Scalability and Heterogeneity Test

« Two variables of variance o3, and fractal field 5m to characterize
the heterogeneity of the model

e The larger the variance of ¢2,, the more divergent the value of the
model parameter
e The larger the value of 5, the more heterogeneous the model
becomes.
¢ The sizes of the testing problem: 364, 1300, 2964, 5100, 9384,
10512 and 12324

¢ The heterogeneities of three largest model parameter:
(02, Bm) = (0.25,-3.5), (0.4, -3.2), and (1.6, —2.9)
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Test 2: Scalability and Heterogeneity Test

Model 3

True Models

o Model 1: 9384 model parameters and (o2,, fm) = (0.25, —3.5)
e Model 2: 10512 model parameters and (02,, Sm) = (0.4, —3.2)
e Model 3: 12324 model parameters and (¢2,, fm) = (1.6, —2.9)
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Test 2: Scalability and Heterogeneity Test
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Inversions

e Our method obtains a good result, representing both the high- and
low-permeability regions.
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Test 2: Scalability and Heterogeneity Test
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e The relative-model-error (RME) of the inversion,
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where m is the inversion and m, is the ground truth.
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Test 2: Scalability and Heterogeneity Test
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e Speed-up ratio,

Fo Time+
Times’
where Timeq corresponds to the computational time of the
reference method and Time, corresponds to the computational
time of our method.
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Test 2: Scalability and Heterogeneity Test
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e The largest speed-up ratio in inversion is about 16 times opposed
to “LM-QR” method and 216 times opposed to the “LM-SVD”
method.
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Test 3: 3D Problem from the Real Setting

e The steady-state groundwater equation on a domain of
500 [m] x 200 [m] x 10 [m]

¢ 10 gallons per minute of groundwater extracted from a well near
the middle of the domain

e The inverse analysis concerns 11,052 parameters, 10,926 of
which are hydraulic conductivities and 126 of which correspond to
the fixed head boundary conditions on the east and west
boundaries

e The observations were taken from 17 wells distributed throughout
the domain
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Test 3: 3D Problem from the Real Setting
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Test 3: 3D Problem from the Real Setting
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Test 3: 3D Problem from the Real Setting
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Conclusions

¢ We have developed two approaches to hydrogeologic inverse
modeling employing our new computationally efficient
Levenberg-Marquardt algorithms.

o we recycle the Krylov subspace in-between linear systems sharing
the same Jacobian matrix, but different damping parameters.

e Through our numerical results, we show that our new LM methods
yields an improved computational efficiency in both sequential and
parallel computing environment.
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