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A dislocation density-based continuum model of the anisotropic shock
response of single crystal α-cyclotrimethylene trinitramine.

D.J. Luschera, F.L. Addessioa, M.J. Cawkwella, K.J. Ramosb

aTheoretical Division
bExplosive Science and Shock Physics Division

Los Alamos National Laboratory
Los Alamos, NM, 87545, USA

Abstract

We have developed a model for the finite deformation thermomechanical response of α-cyclotrimethylene
trinitramine (RDX). Our model accounts for nonlinear thermoelastic lattice deformation through a free
energy-based equation of state developed by Cawkwell et al. (2016) in combination with temperature and
pressure dependent elastic constants, as well as dislocation-mediated plastic slip on a set of slip systems
motivated by experimental observation. The kinetics of crystal plasticity are modeled using the Orowan
equation relating slip rate to dislocation density and the dislocation velocity developed by Austin and
McDowell (2011), which naturally accounts for transition from thermally-activated to dislocation drag limited
regimes. Evolution of dislocation density is specified in terms of local ordinary differential equations reflecting
dislocation-dislocation interactions.

The paper presents details of the theory and parameterization of the model, followed by discussion of
simulations of flyer plate impact experiments. Impact conditions explored within this combined simulation
and experimental effort span shock pressures ranging from 1 to 3 GPa for four crystallographic orienta-
tions and multiple specimen thicknesses. Simulation results generated using this model are shown to be in
strong agreement with velocimetry measurements from the corresponding plate impact experiments. Finally,
simulation results are used to motivate conclusions about the nature of dislocation-mediated plasticity in
RDX.

Keywords: crystal plasticity, dislocations, RDX, shock loading

1. Introduction

Explosives can initiate under impacts whose energy, if distributed homogeneously throughout the mate-
rial, translates to temperature increases that are insufficient to drive the rapid chemistry observed (Bowden
and Yoffe, 1948, 1952). Heterogeneous thermomechanical interactions at the meso-scale (i.e. between single
crystal and homogenized macroscale) lead to the formation of localized hot spots within the material. Direct
numerical simulations of meso-scale responses can contribute to our understanding of the evolution of hot
spots if they include the relevant deformation mechanisms that are essential to the nonlinear thermomechan-
ical response of explosive molecular crystals.

Crystal plasticity modeling is a mature field in the context of applications to quasi-static deformation
problems. Early crystal plasticity models employed phenomenological expressions for the plastic slip kinetics
and hardening relations and did not include an explicit representation of dislocations (e.g. Asaro, 1983;
Mathur and Dawson, 1989; Kalidindi et al., 1992; Bronkhorst et al., 1992). More recent contributions have
introduced dislocation density as an evolving field variable (e.g. Roters et al., 2000; Prasad et al., 2005; Ma
et al., 2006; Lee et al., 2010; Alankar et al., 2011). Most of these works have focused on metallic single
crystals typically comprising cubic or hexagonal crystal symmetry.

There are fewer examples of previous work focused on modeling molecular single crystals, where each
lattice site contains a molecule rather than an individual atom. Energetic composites typically employ

Preprint submitted to Journal of the Mechanics and Physics of Solids September 19, 2016



explosive molecular crystals bonded together with a polymeric adhesive. Thus, meso-scale modeling of
explosives motivates improved dynamical models for the response of energetic molecular crystals.

Winey and Gupta (2006) developed a thermomechanical framework for simulating the shock response of
single crystals that is strongly connected with its incremental update scheme. For example, their nonlinear
thermoelasticity is not based on a governing potential, which could be parameterized from measurement or
finer scale atomistic simulations, and instead uses an incremental update approach based on a set of co-
rotating elastic moduli and constant Grüneisen tensor. Their approach yielded excellent agreement between
measured and simulated velocimetry for impact along the [100] crystallographic direction in single crystal LiF
over a range of specimen thicknesses. They extended their dislocation-based plasticity model for application
to shock response of the energetic molecular crystal PETN by including a crystallographic shear cracking
model. They further extended the incremental linear elasticity to account for nonlinearity by using third-
order elastic constants and showed that the nonlinear extension is critical for correctly capturing shock wave
profiles. Their dislocation theory defines the velocity of dislocations within the drag-limited regime although
it does not restrict dislocation velocity to be less than the shear wave speed. As a consequence, the model
may not perform as well for situations in which the material is dislocation starved (i.e. high dislocation
velocity) nor at lower dislocation velocities when thermally activated motion past dislocation barriers is the
dominant mechanism.

Barton et al. (2009) developed a dislocation-based model for the shock response of the energetic molecular
single crystal HMX and calibrated it against interface velocimetry results from four impacts spanning two
crystal orientations and two specimen thicknesses. Their model accounts for the phenomenology of both ther-
mally activated and drag-limited dislocation motion. Barton et al. (2009) and Austin et al. (2014, 2015) have
applied extensions of this model to predicting the evolving temperature field and coupled thermochemical
reactions in the vicinity of a collapsing pore in single crystal HMX.

Clayton and Becker (2012) have developed a single crystal model for the quasi-static deformation of
α-RDX which they applied to simulating thermomechanical responses during nanoindentation experiments.
They included six slip systems identified from previous indentation experiments (Gallagher et al., 1992;
Ramos et al., 2009). The crystallographic slip rate used in their model is based on a power law dependence
of the resolved shear stress. Simulated results of the indenter force versus applied displacement demonstrate
consistent trends with measurements, although they exhibit discrepancies of approximately 50% with the
experimental data points in some cases. They further demonstrated that the simulation results are sensitive
to elastic moduli and assumed slip system strength parameters over credible ranges in these parameter values.

De et al. (2014) developed a model for the anisotropic single crystal response of RDX to shock loading
conditions, which they calibrated and compared to interface velocimetry data from Hooks et al. (2006) and
Cawkwell et al. (2010) for shock impacts on the (111) and (210) crystallographic planes. Competing mech-
anisms of thermally activated dislocation motion and phonon drag at high velocity are used as motivation
for a phenomenological viscoplastic flow stress applied at a slip system level in their model; however, they
do not explicitly account for the evolving dislocation density field, nor the corresponding velocities of mobile
dislocations. Furthermore, the model of De et al. (2014) only includes three distinct slip systems. Thus while
they were able to capture aspects of the measured velocimetry data for two impact orientations, that model
is unable to reproduce the elastic-plastic two-wave structure observed for impact on (100) orientations as
reported in Hooks et al. (2006, 2011). Furthermore, De et al. (2014) compare their simulation results with
experimental data reported by Hooks et al. (2006) that was superseded by data published in an erratum by
Hooks et al. (2011).

Josyula et al. (2016) applied a variation on the model developed by De et al. (2014) to simulate quasi-
static compression. Whereas Josyula et al. (2016) emphasize the importance of representing dislocation
behavior, they omit some of the dislocation-inspired phenomenology of De et al. (2014) instead employing a
power-law viscoplastic slip rate. While the modified model includes four additional slip systems not included
by De et al. (2014), the results exhibit purely elastic response for compression on (100) planes because the
considered slip systems have zero Schmid factor for that orientation.

Advances in experimental diagnostics under development within the shock physics community, such as in
situ X-ray diffraction and imaging, will provide a better understanding of the mechanisms that accommodate
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deformation imposed through impact loading (Ramos et al., 2014b). In order to simulate, and ultimately
predict, the types of data that will be measured by such diagnostics, models must have a consistent physical
basis that explicitly accounts for the evolution of crystal defects.

A new model for the anisotropic, dynamic response of α-RDX is developed here. The model adopts a mul-
tiplicative decomposition of deformation consistent with classical finite deformation crystal plasticity models.
Nonlinear thermoelasticity is handled in a thermodynamically consistent framework. The thermoelastic de-
formation is decoupled in order to carefully account for contributions to free energy from purely volumetric
deformation based on the equations of state developed by Cawkwell et al. (2016) and parts representing the
coupling between dilatation and isochoric deformation of the lattice. The evolution of plastic deformation is
based on crystallographic slip, in which the slip rates are related to dislocation activity through the Orowan
equation. The velocity of mobile dislocations reflects the natural temporal competition between thermally
activated motion past obstacles impeding dislocation motion and phonon drag-limited dislocation glide using
an expression for dislocation velocity developed by Austin and McDowell (2011). We fit the model to one
plate impact experiment and compare its predictions to multiple impacts on other planes at different shock
pressures and specimen thicknesses collectively representing 28 other plate impact experiments.

There are other available deformation mechanisms which can compete with crystallographic slip in RDX.
For example, under certain loading conditions and deformation rates, RDX is known to cleave along weak
planes enabling subsequent inter-particle slip (Wiegand et al., 1991; Elban et al., 1998; Sharma et al., 2001).
Also, at sufficiently low temperatures, RDX transforms from the α to γ polymorph at shock pressures of
approximately 3.8 GPa (Cawkwell et al., 2016). At higher temperatures, transformation from α to ε or
direct melting to liquid phase can occur. In this work, we do not account for these other deformation
mechanisms. Addessio et al. (2016), Barton et al. (2009), and Winey and Gupta (2010) address solid-solid
phase transformation in RDX, solid-liquid melting in HMX, and shear cracking in PETN, respectively. As
discussed in Section 4, the loading conditions examined in this paper are clearly below the known shock
pressures and temperatures required for phase transformation including melt.

The remainder of this paper is organized as follows. The constitutive framework is presented in Section 2,
which is further divided into parts on kinematics 2.1, thermodynamics 2.2, and thermoelasticity including the
equations-of-state 2.3. The dislocation density-based crystal plasticity theory is presented in Section 3 along
with heuristic arguments drawn from previous experiments to posit seven new slip systems for α-RDX.
Section 4 briefly summarizes previous experiments and discusses model parameterization and simulation
results in comparison with measurements from experiment. Finally, a brief summary closes the paper in
Section 5.

2. Constitutive Framework

2.1. Kinematics

The total gradient of the deformation field F = x
↼∇ is decomposed multiplicatively by

F = J1/3
e F̂eFp (1)

where x are the deformed positions of material points, ∇ is the gradient operator with respect to reference

configuration positions, the determinant of deformation gradient is Je = detFe, F̂e = J
−1/3
e Fe is the

isochoric part of the elastic deformation, and Fp is the traditional plastic part of the deformation gradient
associated with the accumulation of crystallographic slip. This relationship implies that the traditional
elastic deformation gradient, Fe, is decomposed into two separate maps, a volumetric expansion followed by
an isochoric deformation, i.e.,

Fe = F̂e Fe (2)

where the volumetric expansion is Fe = J
1/3
e I. The conventional elastic Green-Lagrange strain is Ee =

1
2

(
FTe Fe − I

)
. Analogously, we construct isochoric and volumetric measures of Green-Lagrange strain as

Êe =
1
2

(
F̂Te F̂e − I

)
and Ee =

1
2

(
J
2/3
e − 1

)
I, respectively.
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Like the total elastic Green-Lagrange strain, the dilatational Green-Lagrange strain is defined within
the reference configuration. On the other hand, the isochoric Green-Lagrange strain is defined within a
dilatationally expanded configuration, thus we definê̂

Ee = φ
∗ (

Êe

)
= F

T

e ÊeFe (3)

which represents the volumetric pull-back of Êe in order to facilitate the additive decomposition

Ee = Ee +
̂̂
Ee (4)

In this manner,
̂̂
Ee is that part of Ee attributed to the isochoric mapping of F̂e, i.e., under purely dilatational

deformation
̂̂
Ee = 0. Likewise, Ee is that part of Ee attributed solely to the dilatation of material points

by the mapping Fe = J
1/3
e I; under any purely isochoric deformation, Je = 1 and Ee = 0. Note that Ee

is purely volumetric and does not depend upon deviatoric deformation for any deformation mapping Fe.
Correspondingly, Êe is purely isochoric and does not depend upon Je for any deformation mapping Fe.

However, while
̂̂
Ee reflects the deviatoric component of deformation, it is scaled by the dilatational response

(i.e. Je) leading to a kinematic coupling.
The specific volume in the current configuration is defined as V = 1

ρ = detF/ρ0. Restricting our

focus here to isochoric plasticity, this is equivalent to V = Je/ρ0, although in more general cases including
inelastic volumetric deformation, e.g. pore growth, a more careful distinction must be made between the
specific volume of the solid material phase and that of the effective homogenized aggregate.

The velocity gradient, L = ḞF−1, is pulled into the intermediate configuration where it decomposes
additively into elastic and inelastic parts, i.e.,

L̃ = L̃e + L̃p, L̃e = F−1
e Ḟe, L̃p = ḞpF

−1
p (5)

The symmetric rate of deformation tensor in the intermediate configuration is likewise obtained by pull back
of D = sym (L) via Fe resulting in

D̃ = D̃e + D̃p, D̃e =
1
2

(
CeL̃e + L̃Te Ce

)
, and D̃p = 1

2

(
CeL̃p + L̃TpCe

)
(6)

where Ce = FTe Fe is the elastic Cauchy deformation tensor.

2.2. Thermodynamics

The nonlinear thermoelastic behavior of the material is defined via an expression for the Helmholtz free
energy as a state function of the elastic Green-Lagrange strain, Ee, temperature, T , and a set of dislocation
densities, �α ∀α ∈ [1, N ] on N distinct crystallographic slip systems, i.e.,

ψ = ψ̂ (Ee, T, �
α) (7)

Following standard thermodynamic arguments within the context of internal state variable theory leads to
the usual state relations,

S = ρ̃
∂ψ̂

∂Ee
s = −∂ψ̂

∂T
fα = ρ̃

∂ψ̂

∂�α
(8)

where S is the quasi-conservative second Piola-Kirchhoff stress with respect to the intermediate configuration,
s is the entropy, and fα is a thermodynamic force related to the stored energy of dislocations. Consistent
with thermodynamic arguments of Ziegler (1983), we decompose the total stress, Stot into quasi-conservative
and dissipative parts, i.e., Stot = S + Sdiss. The dissipative contribution to total stress, Sdiss, reflects the
departure from thermodynamic equilibrium and conservation of momentum is imposed upon the total stress
field, Stot (Luscher et al., 2013).
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Neglecting heat flux, the rate of temperature change can be expressed as

ρ̃CV Ṫ = Φ̃mec + ρ̃T

(
∂2ψ̂

∂Ee∂T
: D̃e +

∑
α

∂2ψ̂

∂�α∂T
�̇α

)
(9)

where Φ̃mec, is the rate of mechanical dissipation per unit volume (on the intermediate configuration),

Φ̃mec = S : D̃p −
∑
α

fα�̇α + Sdiss : D̃ (10)

and the heat capacity at constant volume is defined as CV = T ∂s
∂T . The first term on the right hand side

of Eq. (10) reflects contributions from the plastic power, the second term reflects the rate energy is stored
to evolve microstructure, e.g. the change in trapped lattice strain energy, and the last term is dissipation
caused by a non-equilibrium transition between two (near) equilibrium states. Equations 8 and 9 are typical
results of the thermodynamical analysis of irreversible processes in the context of finite deformation plasticity
employing a multiplicative decomposition of the deformation gradient and casting the constitutive equations
in the intermediate configuration (Scheidler and Wright, 2001; Clayton, 2005).

2.3. Thermoelasticity

For crystals exhibiting less than cubic symmetry, the free energy cannot be additively decomposed into
purely volumetric and deviatoric parts. Instead, we decompose into a purely volumetric part and a part
that represents the thermoelastic coupling between isochoric and volumetric deformation. The Helmholtz
free energy corresponding to linear thermoelasticity can be extended to finite deformation according to

ρ̃ ψ̂lin =
1

2
Ee : C : Ee −Ee : C : α− Cv

2Tref
(T − Tref)2 + ρ̃ sref (T − Tref) + ρ̃ ψref (11)

where C is the fourth-rank elastic stiffness tensor, α is a second-rank tensor of stress-free thermal expansion
(which can be generalized to include a nonlinear dependence on T ), Tref is a reference temperature, sref and
ψref are the entropy and Helmholtz free energy under reference conditions (T = Tref, Ee = 0), respectively.
We assume that the thermal strains, α, have a small deviatoric component permitting the decomposition
α = α̂ + 1

3αvI, where α̂ and αv are the deviatoric and volumetric parts of the thermal strain tensor,
respectively. Note, our notation here is somewhat nonstandard in that α is the stress-free thermal strain
rather than linear coefficients of thermal expansion, thus C : α in our Eq. 11 is directly analogous to βΔT
in Eq 5.85 of Clayton (2011). We use this nomenclature in order to readily permit a nonlinear relationship
between thermal strain and temperature as measured by Cady (1972).

Substitution of the decomposition from Eq. 4 into Eq. 11 enables a decomposition of the free energy of
quasi-linear thermoelasticity

ψ̂lin = ψ̂vol (V, T ) + ψ̂cpl

(̂̂
Ee, V, T

)
(12)

into a term that only depends upon specific volume, ψ̂vol, and a term, ψ̂cpl, that depends on the volumetric
and isochoric parts of deformation in a coupled manner, where

ρ̃ψ̂vol (V, T ) =
1

2
Kδ2 −Kδᾱ− CV

2Tref
(T − Tref)2 + ρ̃ sref (T − Tref) + ρ̃ ψref (13)

and

ρ̃ψ̂cpl =
1

2
̂̂
Ee : C :

̂̂
Ee +

̂̂
Ee : C : Ee −

[̂̂
Ee : C : α̂+

̂̂
Ee : Gαv +Ee : C : α̂

]
(14)

where we define 1
3δ =

1
2

(
J
2/3
e − 1

)
and K = 1

9I : C : I. The coupled contribution of deviatoric deformation

to free energy can be expressed more simply as

ρ̃ψ̂cpl =
1

2
Ee : C : Ee −Ee : C : α−

[
1

2
Kδ2 −Kδαv

]
(15)
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In order to model the nonlinear thermoelastic response of the material we replace the purely volumetric
contributions to Eq. 11 with a parameterized Helmholtz free energy function representing the pressure-
volume-temperature equation of state (EOS), i.e., ψ̂vol (V, T )← ψ̂eos (V, T ) such that

ψ̂ = ψ̂eos (V, T ) + ψ̂cpl

(̂̂
Ee, V, T

)
+ ψ̂str (�

α, T ) (16)

where ψ̂str represents the free energy stored in the lattice due to evolving density and configuration of dis-
locations. We use the Helmholtz free energy function developed and parameterized for α-RDX by Cawkwell
et al. (2016) to define the equations of state represented by ψ̂eos (V, T ) in Eq. 16. The second Piola-Kirchhoff
stress with respect to the intermediate configuration is obtained from the state relations of Eq. 8 resulting
in a decomposition S = Seos + Scpl. The part of second Piola-Kirchhoff stress associated with the EOS is
computed by

Seos = ρ̃
∂ψ̂eos

∂Ee
= −JePeosCe

−1 (17)

where the pressure evaluated from the EOS is Peos = −∂ψ̂eos

∂V and Ce = FTe Fe is the elastic Cauchy defor-
mation tensor acting as metric on the intermediate configuration.

The part of second Piola-Kirchhoff stress attributed to coupling of isochoric and volumetric deformation
is computed from Eq. 15 by

Scpl = ρ̃
∂ψ̂cpl

∂Ee
= C : (Ee −α)−KJ2/3

e (δ − αv)C−1
e + ρ̃

∂ψ̂cpl

∂P

∂P

∂Ee
(18)

where the last term arises due to the pressure dependence of the elastic constants used to parameterize the
Helmholtz free energy, i.e., C (P, T ). The corresponding partial derivative of the free energy with respect to
pressure (and with elastic deformation held fixed) is

ρ̃
∂ψ̂cpl

∂P
= Ee :

∂C

∂P
:
(
1
2Ee −α

)− ∂K

∂P

[
1

2
δ2 − δαv

]
(19)

The Cauchy stress related to Eq. 18 is obtained by the push forward of Scpl expressed as

σcpl = σo + PcorI+

(
ρ̃
∂ψ̂cpl

∂P

)
J−1
e Fe

∂P

∂Ee
FTe (20)

where σo = J−1
e FeSoF

T
e is the elastic push-forward of the linear thermoelastic second Piola-Kirchhoff stress

(i.e., So = C : (Ee −α)), and Pcor = −KJ−1/3
e (δ − αv).

The pressure related to the contribution to Cauchy stress in Eq. 20 is

Pcpl = Po − Pcor − 1
3

(
ρ̃
∂ψ̂cpl

∂P

)
J−1
e Ce :

∂P

∂Ee
(21)

where Po = − 1
3J

−1
e Ce : C : (Ee −α). Accordingly, the total quasi-conservative pressure is expressed by

P = Peos + Po − Pcor − 1
3

(
ρ̃
∂ψ̂cpl

∂P

)
J−1
e Ce :

∂P

∂Ee
(22)

which is a nonlinear first-order differential equation in deformation Ee. It is outside the scope of this
paper to assess the relative accuracy of various approximate solutions to Eq. 22 and instead we neglect the
contributions from the pressure derivative of the coupled deviatoric expression for free energy and make the
approximation for the quasi-conservative Cauchy stress expressed as

σ = σo − (Peos − Pcor) I (23)
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3. Crystal plasticity

We assume a field of dislocation density (line length per unit volume) distributed amongstNs slip systems
such that �α is the density of dislocations on the αth slip system. Associated with the αth slip system are
unit vectors normal to the slip plane, nαo , and contained within that plane and aligned with the direction
of slip, sαo . We further assume that the total dislocation density can be decomposed into mobile (�αM ) and
immobile (�αI ) parts, i.e.,

�α = �αM + �αI (24)

In this work we do not track the geometrically necessary component of the dislocation density, nor do we
separately quantify densities of dislocations of specified character, i.e. edge, screw, or mixed. The evolution
of plastic deformation is specified using an expression of Orowan’s equation

ḞpF
−1
p = L̃p =

Ns∑
α=1

bα�αMv
αsαo ⊗ nαo (25)

where bα is the magnitude of the Burgers vector and vα the signed scalar velocity of mobile dislocations on
slip system α.

The dislocation velocity is expressed as a constitutive function, i.e. vα = v̂
(
τα, T, �βM , �

β
I ,
)
, where the

resolved shear stress on slip system α is τα = S : sαo ⊗ nαo and β = [1..Ns], in general. Following Lloyd
et al. (2014) and Luscher et al. (2016), we use the expression developed by Austin and McDowell (2011)
for dislocation velocity, which represents the rate-determined transition between thermal activation, viscous
drag, and relativistic effects that limit the maximum velocity of dislocations to the shear wave speed on a
particular slip system. This model is based on the average velocity at which a dislocation travels between
obstacles computed as

vα =
L̄

tw + tr
sign (τα) (26)

where L̄ is the mean spacing between obstacles. The time a dislocation spends waiting at a barrier, tw,
represents the probability of a dislocation overcoming the barrier and depends on both the stress-assisted
activation energy and the magnitude of thermal fluctuations, i.e.,

tw =
1

fD

(
exp

[
ΔG (τ)

kBT

]
− 1

)
(27)

where fD is the attempt frequency, kB is Boltzmann’s constant, and ΔG is the stress-assisted activation
energy (cf. Alleman et al., 2014, for example). In this case,

ΔGα (τ) = ΔG0

〈
1−

( |τα|
ταr

)q1〉q2
(28)

where 〈x〉 = 1/2 (|x|+ x), ταr is the slip resistance on slip system α, the activation energy is defined ΔG0 =
g0μb

3, and g0 is a dimensionless energy barrier coefficient. The parameters q1 and q2 affect the shape of
the energy barrier consistent with the arguments of Kocks et al. (1975). The slip resistance reflects Taylor
hardening attributed to the interaction of the total dislocation field, i.e.,

ταr = τ0 + μb

√∑
β

Hαβ�β (29)

where τ0 is an intrinsic lattice resistance to slip and Hαβ the slip system hardening interaction matrix, which
represents the interactions of dislocations on each glide plane with dislocations of all other systems (Ma and
Roters, 2004; Devincre et al., 2006; Kubin et al., 2008). Devincre et al. (2006) have used discrete dislocation
dynamics simulations to investigate and characterize the modes of interaction between dislocations on a
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primary slip system and various intersecting forest systems in order to quantify Hαβ for face-centered cubic
metals. Kubin et al. (2008) discuss that such interaction coefficients are dependent on the dislocation density.
Much of the work in this area to date has been focused on metals, for which typical dislocation densities
are much higher than for explosive molecular crystals. Kubin et al. suggest that when “necessary and to a
reasonably good approximation” the detailed interactions represented by a fully populated interaction matrix
can be replaced by an average interaction strength. Without extensive characterization of the orientation-
dependent stress-strain behavior or finer scale calculations pertinent to RDX, we approximate the hardening
interaction matrix as Hαβ = 1/4.

The mean transit time between obstacles for a dislocation, tr, is related to the drag-limited mean free-
running velocity of mobile dislocations, i.e., tr = L̄/vr. Austin and McDowell (2011) compute the mean
free-running velocity by integrating an assumed spatial velocity profile between obstacles to obtain a quasi-
linear viscous drag relationship, i.e.,

vαr =
ταb

B�
(30)

where B� is a viscous drag coefficient that increases without bound as vr approaches the shear wave speed,
cs, according to

B� =
B0 (T )

1− (vr/cs)
2 (31)

In this way, the so-called relativistic effect restricts dislocation velocities to not exceed the shear wave speed
of the material (Austin and McDowell, 2011).

The evolution rates for mobile and immobile fractions of dislocation density are prescribed according
to phenomenology representing local dislocation mechanisms including the possibility of homogeneous nu-
cleation, �̇αnuc, the generation of new dislocations through interactions of mobile dislocations encountering
forest dislocations, �̇αmult, the mutual self annihilation of dislocations associated with the same slip system,
�̇αann, and the demobilization of dislocations, �̇αtrap, according to

�̇αM = �̇αnuc + �̇αmult − �̇αann − �̇αtrap and �̇αI = �̇αtrap, (32)

respectively. While homogeneous nucleation of dislocations was considered in the theoretical development,
our plasticity model for α-RDX does not include such terms, i.e. �̇αnuc = 0. Nanoindentation experiments
conducted by Ramos et al. (2011) correlate the competition between activation of existing dislocation sources
and homogeneous nucleation of new dislocations with intitial defect densities and, ultimately, specimen
preparation techniques. Their results support the possibility of homogeneous nucleation of dislocations at
shear stresses exceeding 800 MPa. Our simulation results (cf. Section 4) suggest that, even with low initial
dislocation density, shear stresses remain below this threshold for all cases considered here. While it is well
accepted that homogeneous dislocation nucleation readily occurs in many metals under shock loading, the
homogeneous nucleation of perfect dislocations has not yet been observed in large scale molecular dynamics
simulations of impacts on oriented RDX single crystals (Cawkwell et al., 2008, 2010; Ramos et al., 2010; Wood
et al., 2015). Therefore, we hypothesize that dislocation sources are generated and activated dynamically
during the experiments.

Relative to many plastically-deformable crystalline materials, the RDX crystals synthesized at the Los
Alamos National Laboratory Explosive Crystal Lab contain few dislocations prior to significant deformation.
Consequently, the rapid generation of dislocations is critical for accommodation of deformation from shock
loading by mechanisms of crystallographic slip. Interactions of dislocations with defects is a typical source
of new dislocations and previous nanoindentation experiments have shown that sample surface preparation
induces significant sources that effect deformation behavior even in crystals with very low bulk dislocation
density from growth (Ramos et al., 2011). Here we consider the interaction of mobile dislocations on one slip
plane encountering forest dislocations to co-operate as a Frank-Read source. The proportion of dislocations
penetrating the αth slip system is computed by assuming an equal proportion of edge and screw character
dislocations on all other slip systems such that

�αfor =
∑
β

Aαβforest�
β (33)
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where

Aαβforest =
1

2

(
nα · sβ + nα · qβ) (34)

and qβ = nβ× sβ is the dislocation line direction for dislocation segments of edge character. The dislocation
evolution rate is prescribed following Ma and Roters (2004); Ma et al. (2006) as

�̇αmult = CM

√
�αfor�

α
Mv

α (35)

According to these expressions, the few initial dislocations are driven to high velocity in order to accommodate
plastic slip. However, the initial density of dislocations is insufficient to accommodate arbitrarily large
deformation rates, especially when the restriction of drag-limited dislocation velocity is considered. Instead,
we assume that cross slip, and double cross slip in particular, is responsible for the rapid generation of new
Frank-Read sources. Thus, the unusually high rates of dislocation multiplication coefficient, CM , used in
our model (cf. Table 5) is consistent with experimental observations of extensive cross slip and/or poorly
defined slip planes in RDX (Elban et al., 1989; Ramos et al., 2009). For instance, dislocations with Burgers
vectors [100] have been observed to glide on (001), {011}, and {021} (Halfpenny et al., 1986; Ramos et al.,
2009).

Barton et al. (2009) avoid making the distinction between mobile and immobile partitions of the dis-
location population. Their decision is reasonable in the context of typically low dislocation densities for
molecular crystals, where hardening effects from the immobile part of the dislocation density field can be
neglected in many cases. Additionally, with low dislocation content and relatively few defects, it is unlikely
that a significant fraction of the population is immobile. However, we include a mechanism for trapping of
mobile dislocations as they encounter forest dislocations to enable exploration of the relative effects of this
mechanism. In our model the rate of trapping is expressed as

�̇αtrap = CT

√
�αfor�

α
Mv

α (36)

where CT is the trapping coefficient. Annihilation of dislocations interacting within the slip system is
especially important in representing a limiting saturation dislocation density. While we do not separately
track dislocation character in the manner of, for example, Luscher et al. (2016) or Mayeur et al. (2016), the
phenomenology considers dislocations of opposite polarity on the same slip system encountering each other
within a capture distance, da, such that they annihilate each other, i.e.,

�̇αann = CAda�
α�αMv

α (37)

3.1. Slip system geometry

The dislocation slip systems of α-RDX have been studied intermittently for over 40 years and yet a
complete catalog of its underlying deformation mechanisms is not yet available. The mechanisms of disloca-
tion mediated plasticity in RDX, and molecular crystals in general, are difficult to quantify owing to their
brittleness and the challenges associated with applying traditional metallurgical characterization techniques
such as transmission electron microscopy to them. Nevertheless, notable progress has been made using X-ray
topography and indentation with surface characterization.

While enlightening, these techniques also have inherent limitations. A single technique applicable to RDX
has not yet been capable of simultaneously identifying both the Burgers vector and slip plane in a single
deformation experiment; therefore, unavoidable ambiguity remains in assigning dislocations with a specific
Burgers vector to a specific glide plane. Researchers have thus proposed slip systems that are consistent
with experimental observations, but they are not necessarily definitive or unique. For example, etch pit
alignment or a slip trace following indentation provides a zone axis contained in the slip plane; whereas, the
invisibility condition for diffraction provides the Burgers vector. Although several techniques are capable
of revealing the slip plane and Burgers vector for a system, interpretation of three-dimensional etch pit
shape (Amelinckx, 1956; Halfpenny et al., 1984), anisotropic indentation hardness (Gallagher et al., 1992),
or post-growth motion of dislocations as observed by X-ray topography (Halfpenny et al., 1986) have not
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enabled the definitive identification of the slip systems for RDX. A brief review of the development of our
current understanding of dislocation slip systems in RDX is given in the remainder of this section.

Surface indentation followed by etching, where material is preferentially dissolved in the vicinity of the
sites where dislocations meet the surface, has been the most common technique for characterizing plastic
deformation in molecular crystals. Elban and Armstrong (1982) and Elban et al. (1984, 1989) indented the
{210}, {120}, and (010) surfaces and observed etch pit alignments that they attributed to glide of dislocations
with Burgers vector [100] on {021} and (001). Halfpenny et al. (1984) indented the (210), (111), and (001)
surfaces and observed well-defined rows of etch pits attributed to the glide of dislocations with Burgers
vector [001] gliding on (010). Slip on {011} and/or {021} by dislocations with Burgers vector [100] was also
inferred, but overlapping etch pits prevented an unambiguous determination of which slip plane is dominant.

Subsequent work from the same group (Gallagher et al., 1992) using Knoop indentation on the (210)
surface found that the {021}[100] slip system best accounts for the measured anisotropic hardness; however,
Elban et al. (1989) previously noted the ambiguity of analyzing such hardness tests for RDX because of
anisotropic cracking and the possibility of cross-slip. Ramos et al. (2009) performed nano-indentation on
(210), (021), and (001) surfaces and used atomic force microscopy to analyze deformation around inden-
tation impressions rather than etch pit analyses. This work identified not only homogeneous nucleation of
dislocations under the indenter, but also evidence supporting several additional slip systems. The slip traces
imaged using atomic force microscopy were consistent with the {011}[100] and (010)[100] systems. Hence,
six slip systems had been identified by mechanical measurements (i.e., indentation), five of which involve
dislocations with Burgers vector [100]. These six slip systems have been used in previous crystal plasticity
simulations of the indentation experiments on RDX by Clayton and Becker (2012). A smaller subset of three
slip systems (i.e. {021}[100] and (010)[001]) formed the basis of the plasticity model developed for RDX by
(De et al., 2014) with application to plate impact scenarios.

The six slip systems identified from indentation tests provide an incomplete description of the deformation
mechanisms of RDX. This is best illustrated by the observation of a well defined elastic-plastic response from
plate impacts on (100) RDX surfaces by Hooks et al. (2006, 2011) even though the resolved shear stress on
the six known slip systems for this orientation is zero. Evidently, additional slip systems are required to
account for plastic deformation during impacts on (100) planes. Furthermore, calculations of impacts on
(210) conducted as part of this work, indicate that the previously recognized six slip systems are insufficient
to fully account for the corresponding relaxation observed in the wake of the elastic precursor.

The published indentation and nano-indentation experiments have studied only a small set of surface
planes (those facets exhibited by solution-grown crystals) and other slip systems may be activated by indents
on other crystallographic planes. Furthermore, it is possible that indentation may lead to cracking before
the activation of certain slip systems, especially in pristine samples with low densities of dislocations and
sources. High-rate plate impact experiments generate large shear stresses and can suppress fracture by
inertial confinement. Consequently, some slip systems that might be inactive during quasi-static indentation
experiments can be activated under high rate loading encountered during plate impact experiments.

X-ray topography has been widely used to determine the Burgers vectors of dislocations in pristine
molecular crystals. Whereas indentation experiments inferred only dislocations with [100] and [001] Burgers
vectors, the X-ray topography studies by McDermott and Phakey (1971) and Halfpenny et al. (1986) addi-
tionally observed dislocations in as-grown RDX crystals with Burgers vectors 〈110〉, 〈011〉, and [010]. All of
the dislocations, except the single dislocation with Burgers vector 〈011〉, displayed evidence of post-growth
motion, indicating that they are glissile. We have added dislocations with Burgers vectors 〈110〉, 〈011〉,
and [010] observed by X-ray topography to the set of dislocations inferred from indentation experiments to
extend the set of slip systems employed within our crystal plasticity model.

X-ray topography does not directly provide information on the slip planes of the dislocations. Therefore,
we propose slip planes for the dislocations seen in X-ray topography based mainly on geometric arguments
and the observation that dislocations tend to glide on low index planes. Hence, we assume that dislocations
with Burgers vector b = 〈110〉 glide on {11̄0} and (001), b = 〈011〉 glide on {011̄}, and b = [010] glides on
(001). The latter system is consistent with the observation of partial dislocation loops with Burgers vector
parallel to [010] gliding on (001) in large-scale molecular dynamics simulations of impacts on the (111) and
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Table 1: Description of slip systems used in crystal plasticity model for α-phase RDX.

Slip Crystal. Slip Supporting
System Plane Direction References

1 (021) [100] 1, 2, 5-8
2 (02̄1) [100] 1, 2, 5-8
3 (011) [100] 1, 3, 7, 8
4 (01̄1) [100] 1, 3, 7, 8
5 (010) [100] 1, 3, 5, 7, 8
6 (010) [001] 1, 3, 6-8

7 (001) [010] 4
8 (001) [110] 4
9 (001) [11̄0] 4
10 (110) [11̄0] 4
11 (11̄0) [110] 4
12 (011) [011̄] 4
13 (011̄) [011] 4

1McDermott and Phakey (1971)
2Elban and Armstrong (1982); Elban et al. (1984)
3Halfpenny et al. (1984)
4Halfpenny et al. (1986)
5Elban et al. (1989)
6Gallagher et al. (1992)
7Ramos et al. (2009)
8Clayton and Becker (2012)

(021) planes (Cawkwell et al., 2010; Ramos et al., 2010).
The entire set of slip system geometry employed in our model is listed in Table 1. Slip system identification

numbers are provided for the discussion of simulation results in Section 4. The slip system plane is described
by the corresponding normal vector in reciprocal lattice coordinates and the slip directions are specified with
respect to lattice coordinates. Coefficients of the corresponding vectors in a Cartesian crystallographic basis
are obtained using the unit cell parameters measured under ambient conditions as reported by Choi and
Prince (1972), i.e. a = 13.182Å, b = 11.574Å, c = 10.709Å.

4. Simulations of plate impact experiments

4.1. Summary of previous experiments

Several series of plate impact experiments have been conducted on single crystal RDX specimens using
a single-stage light gas gun at Los Alamos National Laboratory (Hooks et al., 2006, 2011; Cawkwell et al.,
2010; Ramos et al., 2010, 2014a, 2016). The typical flyer plate impact experimental configuration is depicted
in Figure 1a. The flyer plate strikes the anvil imparting a compressive wave into the anvil. The impact wave
continues and eventually reaches the crystal-to-window interface, whose velocity time history is measured
using velocimetry. The single crystal RDX gas gun shots used different materials, as denoted in Table 2,
for anvil and window depending upon the desired peak shock pressure. In some shots, an outer epoxy
potting was used (as indicated in Fig. 1a), while in several shots it was omitted; all the experiments were
designed with sufficiently large crystals that release waves from free surfaces do not affect the measured
interface velocity during the reported time intervals. Three representative velocity time histories measured
at the RDX crystal-to-window interface are plotted in Figure 1b. For these particular shots, a two-wave
structure associated with the arrival of an elastic precursor wave followed by a slight relaxation during plastic
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Figure 1: Illustration of plate impact experiment and diagnostics. At left (a) diagram of specimen configuration used within
gas gun experiments and simulations discussed in this work. On right (b) are representative velocity time histories measured
at the crystal-to-window interface using VISAR (Hooks et al., 2006, 2011).

deformation and subsequent arrival of the shock wave is evident in the velocity time history. The Hugoniot
elastic limit (HEL) is related to the maximum particle velocity associated with the elastic precursor (i.e.
the first wave). Table 2 summarizes 29 single crystal RDX plate impact experiments conducted at LANL.
These shots collectively span peak shock pressures ranging approximately 1.1-3.0 GPa, thicknesses from
under 1 mm to over 2 mm, and impacts on (100), (111), (210), and (021) crystallographic planes.

RDX can undergo solid-solid phase transformations or melt at sufficiently high pressure or temperature.
Dreger and Gupta (2010) determined the location of the triple point between α, γ, and ε polymorphs of RDX
at a pressure of 3.7 GPa and a temperature of 466 K using Raman spectroscopy and optical imaging. At
ambient pressures, the melting temperature of RDX is approximately 477 K (Gibbs, 1980). At temperatures
and pressures below the α-γ-ε triple point, RDX is stable in its α polymorph. There is no indication of
a phase change in the velocimetry data for experiments investigated here. Moreover, our model predicts
temperatures behind the shock wave for the lower (1.1-1.3 GPa) and higher (2.7-3.1 GPa) pressure impacts
as 330-335 K and 370-375 K, respectively. Thus, for the experiments considered here, the material appears
to remain within the solid α phase.

4.2. Numerical implementation of constitutive model

All simulations discussed here were conducted in the commercial finite element software Abaqus/Explicit
and the constitutive theory has been implemented in a user subroutine (VUMAT) developed for that purpose.
The implementation of the model consists of a hyperelastic stress update consistent with Eqs. (8, 15, 16),
Using subscripts n and n + 1 to indicate the value of a quantity at the end of the previous and current
time increment, respectively, the time step size for a full time step is Δt = tn+1 − tn. To limit the error
accumulated in an update across time steps with a large change in deformation, a sub-incrementation scheme
is used over a potentially smaller time step Δt� = tk+1 − tk where tk+1 ≤ tn+1 and tk ≥ tn. A constant
velocity gradient across a time step is assumed such that L = ln

[
Fn+1F

−1
n

]
/Δt. The deformation gradient at

any time within the full time step is computed using the exponential map F|t=ti = Fi = exp [L (ti − tn)]Fn
in order to compute Fk,Fk+1/2,Fk+1.

We define the mth estimate of the plastic velocity gradient used within a Runge-Kutta scheme as

L̃p,m =
∑
α

γ̇αmsαo ⊗ nαo (38)
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Table 2: Summary of experimental gas gun shots used for comparison of velocimetry with simulation results in this work.

target flyer peak axial stress
shot ID orientation thickness velocity ∗experiment ∗∗model anvil window ref.

mm m/s GPa GPa

1303 (210) 0.818 638.0 3.0 2.9 kel-F 81 LiF 1
1302 (210) 1.483 630.0 2.9 2.8 kel-F 81 LiF 1
1304 (210) 2.083 632.0 3.0 2.8 kel-F 81 LiF 1
1309 (111) 0.902 638.0 2.8 2.9 kel-F 81 LiF 1,2
1310 (111) 1.450 639.0 2.9 2.9 kel-F 81 LiF 1,2
1311 (111) 2.019 633.0 2.9 2.8 kel-F 81 LiF 1,2
1308 (100) 0.904 631.0 2.9 2.8 kel-F 81 LiF 1
1305 (100) 1.321 639.0 3.1 2.9 kel-F 81 LiF 1
1306 (100) 2.098 633.0 2.9 2.8 kel-F 81 LiF 1
1312 (100) 2.789 636.0 3.0 2.9 kel-F 81 LiF 1
1419 (021) 0.945 635.0 2.7 2.8 kel-F 81 PMMA 3
1420 (021) 1.938 637.0 2.7 2.8 kel-F 81 PMMA 3

1355 (210) 1.002 297.7 1.4 1.3 Quartz PMMA 4
1385 (210) 1.483 301.0 1.3 1.3 Quartz PMMA 4
1354 (210) 1.507 291.8 1.4 1.3 Quartz PMMA 4
1374 (210) 1.950 301.9 1.3 1.3 Quartz PMMA 4
1353 (210) 2.035 293.3 1.4 1.3 Quartz PMMA 4
1356 (111) 1.015 - 1.3 1.2 Quartz PMMA 3
1358 (111) 1.547 295.6 1.2 1.2 Quartz PMMA 5
1384 (111) 1.586 296.2 1.3 1.3 Quartz PMMA 5
1357 (111) 2.149 290.8 1.1 1.2 Quartz PMMA 3
1322 (100) 0.869 292.0 1.3 1.2 Quartz PMMA 5
1337 (100) 0.924 297.0 1.5 1.3 Quartz PMMA 5
1338 (100) 1.370 294.0 1.3 1.3 Quartz PMMA 5
1323 (100) 1.455 295.5 1.3 1.3 Quartz PMMA 5
1324 (100) 1.915 291.4 1.2 1.2 Quartz PMMA 5
1339 (100) 1.944 297.6 1.2 1.3 Quartz PMMA 5
1417 (021) 0.995 294.5 1.3 1.2 Quartz PMMA 3
1418 (021) 1.930 296.3 1.2 1.2 Quartz PMMA 3

∗Approximate magnitude of peak axial compressive stress, |σ11|, estimated from experimental velocimetry using impedance

matching as reported in literature.
∗∗Magnitude of peak axial compressive stress, |σ11|, obtained from simulation results using the model developed in this work.

References: 1Hooks et al. (2006, 2011), 2Cawkwell et al. (2010), 3Ramos et al. (2010), 4Ramos et al. (2014a), 5Ramos et al.

(2016)
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Using this expression, we compute the mth estimate of the elastic deformation at time ti

Fe,m (t = ti) = FiF
−1
p,k exp

[
−L̃p,m (ti − tk)

]
(39)

Corresponding to Fie,m is a hyperelastic estimate of stress σim consistent with the nonlinear thermoelastic
description of the material. A fourth-order Runge-Kutta scheme is used to evaluate the slip and dislocation
evolution rates at the mid-point of the subincrement, i.e.,

γ̇
k+

1
2
=

1

6
(γ̇1 + 2 (γ̇2 + γ̇3) + γ̇4) and �̇

k+
1
2
=

1

6
(�̇1 + 2 (�̇2 + �̇3) + �̇4) (40)

where the intermediate rates are evaluated according to a standard 4th order Runge-Kutta scheme. The
error in slip rates associated with the integration over a subincrement is estimated as the difference between
the fourth-order Runge-Kutta estimate and a third-order estimate of the slip rates,

Error ≈
∣∣∣∣γ̇k+1

2
− γ̇RK3

k+
1
2

∣∣∣∣ / ∣∣∣∣γ̇k+1
2
+ ε

∣∣∣∣ (41)

where ε is a small number and the third-order estimate of slip rate is evaluated according to γ̇RK3 is obtained
from a standard 3rd order Runge-Kutta scheme. If the estimated error associated with the subincrement is
less than 10−3, then the update over the subincrement is computed according to

Fp,k+1 = exp

[
Δt�L̃

p,k+
1
2

]
Fp,k and Fe,k+1 = Fk+1F

−1
p,k+1 (42)

where L̃
p,k+

1
2
is evaluated by substituting γ̇αm = γ̇αk+1/2 into Eq. 38. If the error is larger than the specified

tolerance, the subincremental time step Δt� is reduced and the subincrement is attempted again. The
sub-incrementation scheme is repeated until an update across the entire time step Δt is complete.

The temperature is held fixed at T = Tn for the sub-incremental update of crystal plasticity and then
explicitly integrated over a full time step using according to Tn+1 = Tn+ ṪΔt where Ṫ is evaluated according
to Eq. 9 assuming adiabatic conditions, i.e., zero heat flux. Note that the energy storage due to evolving
dislocation fields within Eq. 10 is approximated as

∑
α f

α�̇α = βPp using a constant energy storage coeffi-
cient, β. The fraction of plastic work converted to heat during deformation of RDX has not been previously
investigated; in the absence of detailed investigation, we assign the value β = 0.05 in these calculations. The
specific heat at constant volume is evaluated from the free energy at the current state, i.e., CV = T ∂s

∂T .

4.3. Finite element model of one-dimensional plate impact problem

Simulations of one-dimensional (1D) plate impact were conducted by using a 1D array of three-dimensional
hexahedral elements (employing linear interpolation of displacement field and reduced integration) along the
shock direction. In “full” geometry calculations, the flyer plate is directly included and is discretized into
1,000 elements along its thickness. Only 4 mm of the entire 12 mm thick window is included in these calcu-
lations, since that travel distance provides sufficient time for a shock wave to transit from the RDX-window
interface to a free surface (and return as rarefaction wave) without affecting the interface velocity. The
anvil and window are resolved using 1,000 and 800 elements, respectively, while the number of elements
throughout the RDX specimen was varied in order to attain an element size of approximately 5 μm. The
constitutive behavior of the flyer, anvil, and window materials was specified using Mie-Grüneisen equations
of state and perfect plasticity, where applicable, in accordance with parameters tabulated by Steinberg et al.
(1996). A Mie-Grüneisen equation of state was also used for the polymethyl methacrylate (PMMA) windows,
along with a tabulation of a cubic fit to shock velocity, Us, versus particle velocity, Up, data over the range
0 < Up < 540 m/s previously reported by Schuler (1970) and Schuler and Nunziato (1974).

Contact was modeled between the flyer plate and anvil impact interface, although separation of the flyer
from anvil occurs sufficiently late in the experiment that it does not affect the window interface velocity
during the recorded interval. Relative transverse slip is allowed at both the anvil-to-specimen and specimen-
to-window interfaces in order to enable transverse components of waves in the RDX without accounting
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for friction nor more general constitutive behavior to capture shearing within the anvil or window materi-
als. Periodic displacement boundary conditions are enforced along the length of the model to enable both
longitudinal and transverse components of deformation associated with generalized 1D plane waves. Initial
conditions consist of the anvil/target/window at rest while nodes of the flyer plate are assigned an initial
velocity based on the experimentally measured flyer velocity for each shot. All simulations use a uniform
initial temperature of T = 300 K.

We note here several important aspects of these calculations that are necessary to correctly compute RDX
crystal-to-window interface velocity consistent with the measurements in contrast with a previous approach
by De et al. (2014). Firstly, accounting for the anvil material is important to translate the measured flyer plate
impact velocity into the appropriate particle velocity time history at the anvil-to-RDX interface. Instead of
directly modeling the propagation of the compressive wave throughout the experimental configuration, De
et al. (2014) directly applied a pressure to the surface of the RDX specimen. However, pressure was not
directly measured in any of the experiments, thus De et al. (2014) specified a ramp from zero to the estimated
peak shock pressures as reported by Hooks et al. (2006) over a time interval of 1 μs. Note, the characteristic
time associated with the actual interface pressure between anvil and RDX is much lower, e.g. O(5-50 ns).
Presumably, this slow ramp in pressure could be a contributor to the diffuse nature of the elastic precursor
observed in their previous simulations (cf. De et al., 2014, Figs. 3-5) when compared with experiment.

Secondly, we note the importance of including the window in these calculations in order to correctly
compute RDX crystal-to-window interface velocity consistent with the measurements. Previous work by De
et al. (2014) omitted the window, instead modeling a 3 mm thickness of RDX specimen (i.e. larger than that
for any of the actual experiments). Rather than computing RDX-to-window interface velocity results by
modeling each shot separately, they apparently conducted a single simulation and extracted particle velocity
time histories at several locations corresponding to the measured specimen thicknesses. This approach
effectively treats the window as though comprised of RDX rather than the representing the differing shock
impedance of the actual window material.

Details of the nodal boundary conditions employed in De et al. (2014) along the faces orthogonal to the
direction of loading are unclear from that manuscript. We note that in our simulation results suppressing
transverse displacements affects the precursor magnitude for lower-pressure (≈ 1.25 GPa) impact on (111).

Finally, the previous work by De et al. (2014) produces simulation results that seem to be in reasonable
agreement with velocimetry obtained at a crystal-to-window interface from the data published by Hooks et al.
(2006). However, Hooks et al. (2011) published an erratum to correct the velocity time histories previously
published by Hooks et al. (2006); the latter source should not be used for quantitative comparisons since the
window correction factor was inadvertently applied twice during analysis of the raw data. The simulation
results of De et al. (2014) do not match the corrected velocimetry results appearing in Hooks et al. (2011).

4.4. Calibration of model parameters

Parameter values used within our single crystal model for RDX are listed in Tables 3-5. Many ther-
moelastic properties of explosive molecular crystals have been measured and calculated using a variety of
techniques near room temperature conditions (cf. Hooks et al., 2015; Bolme and Ramos, 2014; Taylor, 2014).
We use parameters for the free energy-based EOS for α-RDX from Cawkwell et al. (2016), values for the
elastic constants and their temperature derivatives reported by Haussühl (2001) and the corresponding pres-
sure derivatives calculated by Sewell and Bennett (2000) for α-RDX, as included in Table 3. Table 4 lists
coefficients for a quadratic variation of stress-free thermal strain obtained by fits to temperature dependent
coefficients of thermal expansion presented by Cady (1972). Note, the elastic moduli reported here and
used in this work are obtained from measurements and simulations that are more nearly isentropic rather
than isothermal. The difference between isothermal and isentropic moduli for RDX are on the order of
500 MPa at room temperature (cf. Clayton and Becker, 2012), which is smaller than the discrepancy in the
reported parameters from several sources as discussed by Bolme and Ramos (2014). For this reason, we do
not distinguish between isentropic and isothermal elastic constants in this work.

Values for parameters in the plasticity model, listed in Table 5, are motivated by physical arguments
and/or simplifying approximations in most cases. For example, rather than computing the shear modulus for
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each slip system, we assign an effective value that coarsely applies to all slip systems. While the magnitude
of the Burgers vector is different across families of slip systems, we employ a single order-of-magnitude
approximation for Burgers vector magnitude pertaining to all slip systems as 10Å. The attempt frequency
for thermally-activated fluctuations past obstacles to dislocation motion is related to the frequency of the
lattice phonons. We approximate this attempt frequency using the Debye temperature of the lattice phonons
consistent with the equation of state, i.e. fD = kBTD,1/h, where h is the Planck constant and TD,1 = 188.8K
is the Debye temperature corresponding to lattice phonons (Cawkwell et al., 2016), which gives approximately
fD = 4 THz.

The seven plasticity parameters appearing below the horizontal line in Table 5 were calibrated to bring
simulated velocity results into agreement with velocimetry data measured in a plate impact experiment.
Results from a single experimental shot (i.e. 1302) producing an approximately 2.9 GPa shock pressure
with impact on the (210) crystallographic plane on an approximately 1.5 mm thick target specimen were
used for the calibration. Parameter sensitivities were investigated in order to develop an understanding of
the effects of the various plasticity parameters in producing changes in various features of the velocimetry
response. An initial simulation of shot 1302 included the ‘full’ problem geometry described previously in
Section 4.3. Velocity time history results at the anvil-to-crystal interface were computed and stored for a
nominal selection of parameters with trial values for the undetermined plasticity parameters. Subsequent
calibration simulations of shot 1302 were conducted using only ‘partial’ geometry by omitting the flyer
plate and anvil mesh and instead specifying the previously simulated anvil-target interface velocity as a
boundary condition at that location. While the effective impedance between anvil and target depends
on the details of the plasticity model, parameter variations were not observed to significantly modify the
simulated particle velocity time history at this interface. Note, the window was retained in these calculations
to ensure their effect on interface velocity was included for comparison with the experimental observation.
Since we parameterize the plasticity model to one plate impact experiment, we are truly able to assess its
ability to predict the response of crystals of different thicknesses and orientations under different impact
conditions. If we had used all available data sets to parameterize the model and included more detailed
descriptions, for example of system specific slip resistances, it would be more difficult to assess the predictive
capabilities of the model.

Parameter values for initial athermal slip resistance and initial density of mobile dislocations identified
through our calibration are consistent with experimental measurements. Ramos et al. (2009, 2011) measured
deformation consistent with dislocation source activation and nucleation at maximum resolved shear stresses
ranging from 400 to 900 MPa. Halfpenny et al. (1984) measured dislocation densities ranging from 10 to
103 cm−2 in RDX grown from acetone, and it is reasonable to expect that the density would increase by
a few orders of magnitude during the cutting and polishing of our samples that were similarly grown from
acetone.

The effects of varying the initial mobile dislocation density and the dislocation multiplication coefficient
on the resulting simulated RDX specimen-to-window interface are illustrated in Figure 2. Increasing the
initial dislocation density decreases the height of the elastic precursor by enabling deformation to be more
readily accommodated through plastic slip upon arrival of the stress wave. Likewise, increasing the disloca-
tion multiplication rate allows dislocations to be generated more rapidly early on thus reducing the elastic
precursor magnitude. On the other hand, lower values of dislocation multiplication coefficient increase the
plastic rise time and the separation between elastic precursor and plastic wave. We note that, in comparison
with typical ranges of 0.01 < CM < 0.1 used for metallic single crystals (cf. Ma and Roters, 2004; Ma et al.,
2006; Austin and McDowell, 2011), the calibrated value of CM = 4 is quite large. As discussed in Section
3, we propose that the multitude of available slip planes for dislocations of Burgers vector [100] in α-RDX
facilitates easy cross slip, and double cross slip in particular, thus leading to the rapid generation of prolific
Frank-Read sources accounting for our relatively large coefficient.

An approximate saturation value of dislocation density is related to the multiplication and annihilation
coefficients via Equation 32. Figure 3 illustrates the effects of varying this approximate saturation value for
mobile dislocation density as well as the ratio of the trapping coefficient to multiplication coefficient. The
shot at higher pressure (i.e. 1302) shows less sensitivity to variations in these parameters than does the shot
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Table 3: Elastic coefficients and their temperature and pressure derivatives used in simulations. Note, the values reported by
(Haussühl, 2001) and (Sewell and Bennett, 2000), measured under conditions more nearly isentropic than isothermal, are used
directly in this work.

component Cref
ij

∂Cij

∂T
∂Cij

∂P

(i, j) GPa MPa-K−1 -

(1, 1) 24.98 -37.22 15.74
(2, 2) 19.58 -30.35 17.87
(3, 3) 17.89 -33.63 13.17
(4, 4) 5.15 -9.79 4.09
(5, 5) 4.06 -5.85 2.72
(6, 6) 6.90 -10.28 4.23
(2, 3) 5.90 -6.49 7.35
(3, 1) 5.80 -6.96 6.25
(1, 2) 8.19 -2.46 6.93

Table 4: Coefficients used for quadratic expression of thermal strain, i.e. α = αa(T − T ref) + αb(T − T ref)2 obtained from
measurements of Cady (1972) where T ref = 300K

component (i, j) αa
ij (K−1) αb

ij (K−2)

(1, 1) 2.80 ×10−5 4.24 ×10−8

(2, 2) 8.66 ×10−5 2.57 ×10−8

(3, 3) 8.47 ×10−5 12.78 ×10−8

at lower pressure (i.e. 1338). It is clear from the latter cases that decreasing the approximate saturation
value for mobile dislocation density decreases the slope of the plastic rise. Increasing the dislocation trapping
coefficient has a similar effect on the slope of the plastic rise, but also increases the magnitude of the elastic
precursor height, because fewer of the initially mobile dislocations remain mobile to accommodate early
plasticity.

(a) Shot 1302, �M,0 (b) Shot 1338, �M,0 (c) Shot 1302, CM (d) Shot 1338, CM

Figure 2: Relative effects of varying (cf. a,b) initial mobile dislocation density and (cf. c,d) the dislocation multiplication rate
coefficient on simulated RDX/window interface velocity.
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Table 5: Parameter values for plasticity model used in this work. The seven parameters below the horizontal line were varied
in order to fit model results to experiment for shot 1302.

Parameter Value Unit Description

μ 6.0 GPa effective shear modulus
|b| 10 Å Burgers vector length
L̄ 10|b| Å mean barrier spacing
fD 4×106 MHz attempt frequency
q1 0.33 - barrier shape parameter
q2 1.66 - barrier shape parameter
Ye 6|b| Å dislocation capture distance
Hαβ 0.25 - dislocation-dislocation interaction matrix

B0 3×10−4 MPa-μs dislocation phonon drag viscosity
CM 4 - dislocation multiplication coefficient
CA 0 - dislocation annihilation coefficient
CT 0 - dislocation trapping coefficient
τ0 540 MPa initial athermal slip resistance (Peierls stress)
�0 0.05 μm−2 initial density of mobile dislocations
g0 0.025 - dislocation energy barrier coefficient

(a) Shot 1302, �sat (b) Shot 1338, �sat (c) Shot 1302, CT (d) Shot 1338, CT

Figure 3: Relative effects of varying (cf. a,b) the saturation value of dislocation density and (cf. c,d) the dislocation trapping
coefficient on simulated RDX/window interface velocity.
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4.5. Comparison of simulation results with plate impact experiments

Plots comparing the simulated RDX/window interface velocity with corresponding measurements from
all flyer plate impact experiments listed in Table 2 are presented in Figures 4-7. In these plots, red and black
lines correspond to simulation and experimental results, respectively. These figures are arranged such that
the lower shock pressure cases are included in subfigure (a) on the left and higher shock pressures in subfigure
(b) on the right. The experiment and simulation results are plotted with respect to the time the compression
wave reaches the anvil/RDX interface; time axes have not been shifted to achieve a better alignment or to
de-clutter the figures. Arrival times from simulation are typically in agreement with experiment to within
25 ns, but up to 50 ns in a few cases. This is likely an artifact of experimental uncertainties (Ramos et al.,
2016). Table 6 identifies the active slip systems based on simulation results for each crystal orientation
considered here.

All shots with impacts on (210) are represented in Figure 4. Considering that the parameters in the
plasticity model were adjusted to calibrate simulation results with shot 1302, i.e. the intermediate thickness,
higher-pressure case with impact on (210), it is reassuring that the simulation results for all three higher-
pressure cases are in good agreement with the experimental data for this orientation. The model captures
the elastic and plastic wave speeds as evidenced by the increase in separation of elastic and plastic waves
for thicker specimens. The model also captures the magnitude of the elastic precursor wave and its decrease
with increasing specimen thickness. The lower pressure shots exhibit a slower, more gradual rise associated
with the plastic wave and the model captures this effect also. There are two lower-pressure shots that were
conducted at the (similar) thickest target dimensions. The magnitudes of elastic precursor waves observed
in simulation results of these larger specimen thicknesses are between those observed from the corresponding
experimental results.

Experiments with line imaging velocimetry (Ramos et al., 2014a) recorded similar spatial variations in
velocity histories for single samples in a single experiment that were attributed to spatially inhomogeneous
dislocation densities. Because of the large sensitivity of the simulation results to the initial dislocation
density and early dislocation generation, we speculate that experimental observations would likely exhibit
some variability that may be attributed to spatial and/or specimen-to-specimen variations of initial defect
densities. Based partly on this speculation, extensive efforts to improve these fits are deemed unwarranted
prior to in the absence of further experimental insight.

All shots with impact on (100) are included in Figure 5. The six slip systems used in earlier studies
have zero resolved shear stress for impacts on (100) and cannot account for the elastoplastic behavior seen
in the experimental velocimetry results. Using the additional slip systems proposed in Section 3.1, which
have non-zero resolved shear stresses for this orientation, the model represents plasticity during impact
on (100) reasonably well. The elastic and plastic wave arrival times and plastic rise times observed in
simulation and experimental results coincide for the lower pressure shots. The simulation results are in
strong agreement with experimental results for the thinnest and intermediate thickness specimens subjected
to lower shock pressures. The thickest specimens under lower shock pressure exhibit a larger magnitude
of elastic precursor wave than the simulation results. Furthermore, the magnitude of the elastic precursor
evident in experimental data is larger for the thickest than for any of the thinner specimens. In this case, the
model is consistent with the typically observed trend of decaying magnitude of elastic precursor wave with
increasing propagation distance. The larger precursor magnitude (for thickest specimens) is observed in the
two shots at approximately the same specimen thickness; thus, it is plausible that this is not an anomaly.
The agreement between simulation and experimental results for the higher pressure impacts normal to (100)
show reasonable agreement. Note, the experimental results for shots with impact along (100) were not used
for calibrating model parameters.

All shots with impact on (111) are presented in Figure 6. In this case, we see similar agreement between
experiment and simulation. For the lower pressure cases, the model exhibits a faster plastic rise (i.e. a
steeper slope for the secondary wave) than the experiment. Based on model parameter sensitivity studies,
it is plausible that this discrepancy may correspond to saturation of the evolving dislocation density in
experiment. Simulation results for the higher pressure (111) shots match experimental results exceptionally
well. There is a 50 ns discrepancy in the arrival time of the wave for the thinnest specimen that is consistent
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with experimental uncertainty.
For both the (111) and (021) (cf. Figure 7) orientations, the distinct two-wave structure evident at lower

pressures is overdriven into a single shock wave for the higher pressure shots. Our single crystal plasticity
model accurately predicts both the distinct elastic and plastic waves for (100) and (210) oriented RDX single
crystals and the overdriven response of the (111) and (021) oriented crystals at 3 GPa, respectively.

Previous work proposed that the overdriven responses observed for P ≈ 3 GPa impacts on (111) and (021)
arise from an orientation-dependent hardening mechanism (Cawkwell et al., 2010; Ramos et al., 2010). Large-
scale molecular dynamics simulations showed that partial dislocation loops with Burgers vectors parallel to
[010] homogeneously nucleate and expand on (001) in the vicinity of the shock front during impacts on (111)
above a threshold shock pressure. These expanding partial dislocation loops rapidly generate a high density
of stacking faults that were anticipated to plastically harden the material, thus potentially explaining the
previously unexpected, ‘anomalous’ response observed experimentally. Based on the orientation dependence
of the [010](001) slip system it was predicted that impacts on (021) would give rise to the same response,
i.e., a two-wave response at low pressure and an apparently overdriven response at pressures around 3 GPa
(Cawkwell et al., 2010). The predicted response was confirmed experimentally (Ramos et al., 2010). Our
model does not include this hardening mechanism. Thus, the results in Figures 6b and 7b provide for a more
satisfactory explanation of the ‘anomalous’ response as being, instead, a natural consequence of the elastic
and plastic anisotropy of the material.

Our single crystal plasticity model shows that the [010](001) slip system is active for impacts on (111) and
(021), but with perfect lattice dislocations rather than partial dislocations. We performed highly accurate
density functional theory calculations to assess the stability of the stacking faults seen in the earlier large-
scale MD simulations. These calculations verified the determination from previous MD simulations (Cawkwell
et al., 2010), namely that the stacking fault on (001) is stabilized by a change in the conformation of the
molecules at the fault plane when the stress normal to (001) is sufficiently large. Hence, the stacking faults
seen in Cawkwell et al. (2010) should not be dismissed as being unphysical artifacts of the Smith-Bharadwaj
potential used in those calculations. We instead suggest that the stacking faults may play a role in the
dissociation of [010] dislocations into partials on (001).

The slip systems included in our single crystal plasticity model evidently provide a good description of
the anisotropic elastic-plastic response of RDX. We have tried to establish a minimal set of slip systems
that is capable of representing the shock response of RDX by removing from the model some of the seven
additional slip systems proposed here. However, in every attempt, the agreement between the predictions of
the model and experiment became worse with respect to the full model with 13 slip systems. However, we
have no external justification that our set of slip systems is either complete or unique since the slip planes
for the dislocations identified by X-ray topography were proposed based on geometric arguments. Further
experiments including indentation, X-ray topography, and in situ X-ray diffraction will be necessary to assess
the validity of the set of slip systems proposed here for high strain rate deformation.

RDX is a brittle material characterized by relatively easy fracture under certain loading cases (Elban
et al., 1989; Sharma et al., 2001). Nevertheless, fracture can be suppressed in shock and well-controlled
indentation experiments owing to the compressive loading combined with inertial confinement. While fracture
is a plausible mechanism, it is evident from our simulation results that the shock responses of RDX crystals
are captured well without including fracture in the framework. We note that the velocimetry data do not
exhibit large stochastic variation from the model that one might expect if the actual deformation process
were dominated by fracture.

4.6. Evolution of material state across shock wave

Figures 8-12 depict the spatial distribution of several state and driving force variables across the shock
wave. In each of these plots, the position axis is measured with respect to the wave front, i.e., negative position
values indicate the distance behind the leading edge of the stress wave. In Figure 8, the accumulated slip for
each active slip system is plotted for (a) shot 1357 and (b) shot 1311 with impact normal to (210) crystal
planes. In the (a) lower pressure shot (i.e. 1357), the plastic deformation does not begin to accumulate
substantial slip until approximately 200 μm behind the wave front. Also, the timing of plastic evolution on
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(a) shock pressure ≈ 1.3GPa (b) shock pressure ≈ 3.0GPa

Figure 4: Comparison of RDX crystal-window interface velocity time history results from simulation (shown in red) with those
measured in corresponding experiments (shown in black) for impact normal to (210) crystallographic planes.

(a) shock pressure ≈ 1.3GPa (b) shock pressure ≈ 3.0GPa

Figure 5: Comparison of RDX crystal-window interface velocity time history results from simulation (shown in red) with those
measured in corresponding experiments (shown in black) for impact normal to (100) crystallographic planes.
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(a) shock pressure ≈ 1.3GPa (b) shock pressure ≈ 3.0GPa

Figure 6: Comparison of RDX crystal-window interface velocity time history results from simulation (shown in red) with those
measured in corresponding experiments (shown in black) for impact normal to (111) crystallographic planes.

(a) shock pressure ≈ 1.3GPa (b) shock pressure ≈ 3.0GPa

Figure 7: Comparison of RDX crystal-window interface velocity time history results from simulation (shown in red) with those
measured in corresponding experiments (shown in black) for impact normal to (021) crystallographic planes.
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Table 6: Dominant slip system activity observed in simulations for crystal orientations impacted during experiments.

Active Slip Systems
Orientation (210) (100) (111) (021)

(010)[100] (110)[11̄0] (021)[100] 2(001)[010]
(110)[11̄0] (11̄0)[110] (001)[110] (110)[11̄0]
(011)[011̄] (011)[011̄] 1,2(010)[001] (11̄0)[110]
(011̄)[011] (011̄)[011] 1(001)[010] (011)[011̄]

1(011)[100]
1 Slip systems with non-negligible, but much smaller cumulative slip activity
2 Slip systems associated with previous hypotheses on anomalous hardening

different slip systems is not coincident; slip on {011} 〈011̄〉 initiates at least 50 μm behind slip on (010)[100]
and (110)[11̄0]. At the (b) higher shock pressure of shot 1302, substantial plastic slip accumulation occurs
approximately 100 μm behind the leading edge of the wave. The distance between significant slip activity on
{011} 〈011̄〉 and (010)[100] plus (110)[11̄0] is similarly compressed in comparison with the (a) lower pressure
shot. The spatial profiles of the (a) projected shear stress and (b) dislocation velocity corresponding to
shot 1302 at the same time as Figure 8b for the relevant slip systems are compared in Figure 9. Again,
there is a delay in dislocation activity on {011} 〈011̄〉 attributed to temporary relaxation and subsequent
reloading, and in correspondence with delayed accumulation of slip on that plane, evident in Fig. 8. As
discussed below, the early slip activity on (010)[100] plus (110)[11̄0] relaxes the stresses on {011} 〈011̄〉 until
further deformation is not accommodated by plasticity on the former systems and stress on the later systems
continues to rise. While there is significant driving stress and initially significant dislocation velocity on
{021} [100], an insufficient number of dislocations are generated to cause appreciable slip on these systems,
thus the dotted lines in Figure 8 indicate negligible activity for these systems under impact normal to (210).

There are three possible causes of a shift in the dominantly active slip system like that exhibited in Fig.
9: i. Delayed arrival of stress components that have a higher projection onto {011} slip planes due to the
difference in wave mode velocities (i.e. longitudinal, transverse, or quasi modes depending upon orientation),
ii. reorientation of slip systems or iii. evolution of stress due to slip activity on primary systems.

Assuming small deformation and linear elastic behavior facilitates an approximate analysis of the charac-
teristics of propagating elastic waves. Eigenvalue solutions of the Christoffel equation,

(
Iρc2 − n · C · n)u =

0, for impacts on RDX are listed in Table 7. The direction of wave propagation, n, is along the specimen
X-axis and the coefficients of the polarization vector, p = u/|u|, are with respect to the global specimen
Cartesian basis. Of the impacts considered in this work, only impact on (100) results in propagation of a pure
longitudinal wave. In all cases, the quasi- or pure-longitudinal wave has a wave speed that is approximately
twice that for quasi- or pure-shear waves. In the case of impact on (210), the arrival time of the quasi-shear
wave is sufficiently late that it cannot account for the delayed slip activity observed in Fig. 9.

The delayed activation of secondary slip systems might also be explained by reorientation of slip systems
or stress due to slip activity on primary systems. Consider the slip-system resolved shear stress expressed
as τα = sα · σ · nα. An eigenvalue decomposition of the Cauchy stress into σ =

∑
k λkvk ⊗ vk enables the

resolved shear stress to be expressed in terms of the alignment between eigenvectors of the applied loading
and the slip system geometry, i.e.

τα =

3∑
k=1

λk (s
α · vk) (vk · nα) (43)

From this expression it is evident that, under loading with one non-zero eigenvalue, maximal values of resolved
shear stress occur for slip systems favorably oriented such that the normal and slip direction are aligned 45◦

away from the eigenvector, thus leading to the classical definition of Schmid factor for uniaxial stress states.
For the more general case, there are contributions from each eigenvalue weighed by the alignment of the
corresponding eigenvector with the slip system geometry. Using this expression, we examine the potential
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Table 7: Estimated infinitesimal elastic wave speeds and polarization vector for impacts on single crystal RDX with orientations
considered in this work.

wave speed polarization vector
id (m/s) p1 p2 p3 description

Impact on (100):
1 3725.3 1.000 0.000 0.000 pure longitudinal
2 1957.9 0.000 1.000 0.000 pure shear
3 1501.9 0.000 0.000 1.000 pure shear

Impact on (210):
1 3624.0 0.997 -0.073 0.000 quasi longitudinal
2 1960.3 0.073 0.997 0.000 quasi shear
3 1550.4 0.000 0.000 1.000 pure shear

Impact on (021):
1 3195.6 0.997 0.000 -0.075 quasi longitudinal
2 1820.6 0.075 -0.000 0.997 quasi shear
3 1864.6 0.000 1.000 0.000 pure shear

Impact on (111):
1 3180.5 0.992 -0.028 -0.126 quasi longitudinal
2 1975.4 -0.123 -0.487 -0.864 quasi shear
3 1783.9 0.037 -0.873 0.487 quasi shear

contributors to the delayed activation of secondary slip systems in (210) impact. Firstly, a reorientation
of sα and nα by Fe or reorientation of the stress direction, vk, as plasticity evolves could promote slip on
additional slip systems. Alternately, for fixed orientations of sα, nα , and vk during loading, it is possible
that the evolution of λk can also shift the slip activity from one set of slip systems to another.

The plot in Fig. 10 depicts the pole normal to each of the relevant slip planes (for shot 1302) and
the corresponding slip direction vectors. In this plot, red and blue markers indicate slip plane normal and
slip directions, respectively, while black markers indicate specimen axes. The (210) pole is aligned with the
impact direction, X, consistent with shot 1302. Distinct marker shapes are used for each slip system, e.g. blue
and red circles correspond to slip system 5, (010)[100], and are labeled by ID number consistent with Table
1. Repeated symbols correspond to the same vector computed at three different times in correspondence
with the red circle markers in Fig. 9a, viz. prior to the arrival of the elastic wave, at the peak in τ5, and
finally at the peak in τ12 and τ13. There is no appreciable reorientation of the slip system geometry; the
largest reorientation angle is less than 2◦ as apparent from Fig. 10 by the nearly identically overlapping
symbols representing different times in deformation process. The purple markers on this plot indicate the
eigenvectors of the Cauchy stress at two times. There is a slight reorientation of the dominant stress axes
about the Z-axis by approximately 2.7◦.

In this case, we conclude that the cause of delayed activation of secondary slip systems observed in Figs.
8 and 9 is that the rate of plastic deformation associated with slip on (010)[100] and (110)[11̄0] (IDs 5 and
10, respectively) is not coaxial with the Cauchy stress. Consequently, the decrease in projected shear stress
on those systems is accommodated by inelastic strains which generate an increase in the components of
elastic strain and stress more closely aligned with v3. In other words, while the eigenvectors of the stress
state do not significantly reorient, there is a significant reduction and increase in the eigenvalues associated
with v2 and v3, respectively, as listed in Table 8. This shift of stress toward v3 eventually favors slip on
α = 12, 13 over α = 5, 10. This behavior is a consequence of the low symmetry of the material that would
not otherwise be expected; in higher symmetry crystals, there are sufficient slip systems such that plastic
deformation is approximately co-axial with the applied stress regardless of loading direction. Quasistatic
deformation studies of RDX have also exhibited this same effect (cf. Ramos et al., 2009, Fig 6.).

Figures 11a and 11b illustrate the spatial distribution of mobile dislocation density across the shock wave

24



Table 8: Shift in eigenvalues of deviatoric part of Cauchy stress during passage of shock wave for shot 1302.

Distance (mm) from wavefront (cf. Fig 9) λ1 (MPa) λ2 (MPa) λ3 (MPa)

+0.050 0.000 0.000 0.000
−0.025 −306.9 117.1 189.8
−0.125 −319.1 34.31 284.8

for shot 1354 (1.4 GPa) and 1302 (2.9 GPa), respectively. For the lower pressure shot (i.e. 1354), dislocations
evolve most rapidly on {021} [100], but saturate to approximately 5×1010 cm−2, while dislocations on other
active systems continue to evolve and accommodate a significant portion of the plastic deformation. Note, for
the model parameters used in these simulations, there is no explicit saturation value of dislocation density,
i.e. CA = 0. The lag between activity on {011} 〈011̄〉 behind that for (010)[100] plus (110)[11̄0] is consistent
with Figures 8 and 9.

Figure 12 depicts the spatial distribution of accumulated plastic slip on systems active for impact along
(111) orientation from simulations of (a) shot 1357 (1.1 GPa) and (b) shot 1311 (2.9 GPa), respectively.
The transition from a well-separated two wave structure at the lower shock pressure to the overdriven single
shock wave observed in Figure 6 is also evident by the simultaneous slip system activity exhibited near the
shock front in Figure 12b for the higher pressure case, but not in Figure 12a for the lower pressure case
where there is clear separation amongst slip activity on different systems 0.2 mm behind the shock front.

5. Summary and Conclusions

We have developed a dislocation density-based model for the anisotropic response of RDX crystals under
shock loading conditions that accounts for nonlinear thermoelastic lattice deformation through a free energy-
based EOS (Cawkwell et al., 2016) in combination with temperature and pressure dependent elastic constants,
as well as crystallographic slip associated with dislocation motion on several distinct slip systems. The six
slip systems used in earlier models of α-RDX are unable to completely account for plastic deformation
inferred from interface velocimetry of plate impact experiments; therefore, we have included seven new slip
systems, comprising three families, based on Burgers vectors observed in X-ray topography by Halfpenny
et al. (1986). These new slip systems evidently provide a good description of the anisotropic elastic-plastic
response of RDX. While we tried to further reduce this set of slip systems, the agreement between model
and experiment was degraded for every subset of the full thirteen systems that was considered. Further
experiments including indentation, X-ray topography, and in situ X-ray diffraction are necessary to assess
the validity of the set of slip systems proposed here.

The evolution kinetics of plastic deformation incorporate the expression for dislocation velocity developed
by Austin and McDowell (2011), which accounts for the transition from thermally-activated to drag-limited
regimes of dislocation motion, and dislocation evolution behavior including generation from the interaction
of mobile dislocations with forest obstacles, annihilation amongst co-planar dislocation segments of opposite
polarity, and the demobilization of dislocations as they encounter forest obstacles. Many of the model
parameters have a physical basis and, accordingly, their values are determined from physical properties of
RDX observed experimentally or quantified from atomistic calculations. The remaining model parameters
were calibrated by fitting to velocimetry measurements from a single experiment corresponding to a 2.9 GPa
shock wave normal to the (210) planes of an approximately 1.5 mm thick target specimen of α-RDX. After
calibrating the model to data from this single experiment, the same model parameters were used to simulate
a total of 29 experiments comprising four crystallographic orientations, a range of shock pressures, varying
anvil and window materials, and several specimen thicknesses. The simulations produced results in strong
agreement with the experimental data considering both the observed experimental variability and the range
of experimental configurations.

There are several conclusions we make based on this work. Firstly, the proposed slip systems and
dislocation-density based slip kinetics are sufficient to capture features of velocimetry consistent with plas-
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(a) shock pressure ≈ 1.3GPa (b) shock pressure ≈ 3.0GPa

Figure 8: Spatial profiles of accumulated slip on slip systems for impact along (210) for (a) lower and (b) higher pressure shots.
Position is with respect to shock front (i.e. x = 0). Significant accumulation of slip develops approximately 0.2 mm and 0.1 mm
behind the shock front for the ≈ 1.3 GPa and ≈ 3 GPa shocks, respectively.

(a) (b)

Figure 9: Spatial profiles of (a) projected shear stress on each slip system and (b) the corresponding dislocation velocity as
shock wave progresses through specimen for shot 1302. Position is with respect to shock front (i.e. x = 0). There is an apparent
delay in dislocation activity on {011̄} < 011 > attributed to temporary relaxation and subsequent reloading on that plane and
in correspondence with delayed accumulation of slip evident in Fig. 8.

26



Figure 10: Pole figure illustrating that only negligible re-orientation of slip planes or stress occur during the passage of shock
wave along (210). Red and blue symbols indicate slip plane normal and slip direction, respectively, while purple markers indicate
eigenvectors of Cauchy stress. The figure is oriented such that the shock direction is at the center.

(a) shock pressure ≈ 1.3GPa (b) shock pressure ≈ 3.0GPa

Figure 11: Spatial profiles of dislocation density with respect to shock front for impact along (210). For the lower pressure shock
(a) dislocations on {021}[100] initially evolve at a higher rate than other slip systems, although this evolution is suppressed and
the associated slip activity on the system is negligible in comparison with other systems.

27



(a) shock pressure ≈ 1.3GPa (b) shock pressure ≈ 3.0GPa

Figure 12: Spatial profiles of accumulated slip on slip systems for impact along (111) for (a) lower and (b) higher pressure shots.
Position is with respect to shock front (i.e. x = 0). Significant accumulation of slip develops approximately 0.2 mm behind the
shock front for the (a) lower (i.e. ≈ 1.3 GPa) pressure shock; whereas, the overdriven nature of the (b) 3.0 GPa shock wave is
evident from the near coincidence of wave front and plastic deformation.

ticity of RDX in several crystallographic orientations. Also, because of the low initial dislocation density in
these crystals, rapid dislocation generation is critical to accommodate impact deformation through plastic-
ity. The low initial dislocation density and rapid generation of dislocations needed in the model results in a
transition from drag-limited dislocation velocity in the immediate wake of the elastic precursor to a slower
thermally-activated regime throughout the plastic wave front.

The model is applicable to simulating the response of RDX in shock-loading or impact environments such
that the RDX remains in its ambient α polymorph. For conditions including solid-solid phase transformations
(e.g. α to γ or ε polymorphs) or melting, kinematics and kinetics of phase transformation such as that
developed by Addessio et al. (2016) or Barton et al. (2009), respectively, must be added to the model
developed here. As discussed in Section 4, the loading conditions examined in this paper are clearly below
the known shock pressures and temperatures required for phase transformations, including melt. We envision
application of this model to simulating the evolution of heterogeneous plasticity and temperature fields in
polycrystalline explosive materials caused by weak shock events.
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