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Abstract

Accelerated molecular dynamics (AMD) is a class of MD-based methods

used to simulate atomistic systems in which the metastable state-to-

state evolution is slow compared to thermal vibrations. Temperature-

accelerated dynamics (TAD) is a particularly efficient AMD procedure

in which the predicted evolution is hastened by elevating the tempera-

ture of the system and then recovering the correct state-to-state dynam-

ics at the temperature of interest. TAD has been used to study various

materials applications, often revealing surprising behavior beyond the

reach of direct MD. This success has inspired a number of algorithmic

performance enhancements, as well as the analysis of its mathematical

framework. Recently, these enhancements have leveraged parallel pro-

graming techniques to enhance both the spatial and temporal scaling of

the traditional approach. In this paper, we review this ongoing evolu-

tion of the modern TAD method and introduce the latest development:

Speculatively Parallel TAD (SpecTAD).
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1. INTRODUCTION

Molecular dynamics (MD) is a powerful computational modeling method used within many

scientific and engineering disciplines to predict the time evolution of interacting systems of

atoms. By integrating the classical equations of motion, MD directly tracks the dynamical

evolution of the atomic positions, without making any significant approximations beyond

the system-dependent potential energy formulation used to derive the interatomic forces.

Although MD has been used to illuminate many complex phenomena in chemistry,

biology, physics, and materials science, its inherently sequential nature often prevents the

exploration of time-scales longer than a few microseconds. This is because the discrete time

step used to integrate the equations of motion must be small enough to resolve thermal

vibrations, i.e., no larger than a few femtoseconds. Billions of MD steps are therefore

required to reach microseconds of simulation time. Unfortunately, such simulations are

often not long enough to characterize rare-event mechanisms, which are known to govern

the macroscopic behavior of many materials over experimentally relevant timescales.

In the case of atomistic-scale material simulation, the rare event designation does not

imply that a mechanism occurs infrequently relative to human perception, but infrequently

relative to the thermal vibration of atoms. The designation can be more rigorously defined

in terms of the (3N)-dimensional potential energy surface (PES) defined by the instanta-

neous interaction of all N atoms in a canonical system. The PES is typically comprised

of local basins, each corresponding to a separate metastable state if the barriers leading
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to other basins are high enough. Following the assumptions of classical transition state

theory, a system starting off in a state A will transition to an adjacent state B when its

dynamical trajectory passes through the (3N-1)-dimensional dividing surface located along

the potential energy ridgetop between A and B. In a rare-event system, the barrier sepa-

rating adjacent states is typically � kBT, where kB is the Boltzmann constant and T is

the temperature of the system.

Beginning in the late 1990s, with rare-event systems in mind, Voter and coworkers have

been developing a family of methods known as accelerated molecular dynamics (AMD)

to overcome the timescale limitation of MD. There are currently three AMD methods,

each designed to leverage the timescale disparity between thermal vibrations and state-

to-state transitions. The first of the methods, hyperdynamics, accelerates the transition

rates through modification of the potential surface on which the dynamics evolves (1).

The second, parallel replica dynamics (ParRep), accelerates the simulation by parallelizing

the accumulation of time (2). The third, temperature-accelerated dynamics, accelerates

transitions by elevating the temperature of the system. The common themes among these

methods are to (a) reduce the waiting time of a transition from its natural time scale to

the order of picoseconds and (b) let MD find appropriate pathways without relying on

human intuition or the need to find all relevant pathways. The focus of this paper is the

temperature-accelerated dynamics (TAD) method, first presented by Sørensen and Voter

(3). For a more comprehensive introduction to AMD methods in general, the reader is

referred to recent literature reviews (4, 5, 6, 7).

Since its introduction, TAD has become a popular technique for extending simulation

timescales to tackle questions in materials science (8, 9, 10, 11, 12, 13, 14, 15, 16, 17). As a

result of this success, the original procedure has been revisited on many occasions in order

to further optimize its performance. Many of these variations have aimed at enhancing

performance without requiring any parallel computation (18, 19, 20). In addition, three

separate algorithmic extensions have been introduced to leverage the growing availability

of parallel computing systems. Two of these extensions rely on spatial decomposition to

enhance TAD’s relatively poor performance when modeling large systems (21, 22). The most

recent extension uses a speculative parallelization technique to greatly enhance performance

in a way that is even beneficial to small systems.

This paper is intended to review the modern TAD method by introducing the original

procedure and useful extensions. In Section 2, we review the basics of TAD and introduce

the traditional procedure. This introduction includes a brief mathematical analysis, as

well as a description of the kinetic Monte Carlo (kMC) extension to TAD (the so-called

synthetic mode). In Section 3, we review selected applications to demonstrate the types

of systems in which TAD has proven valuable. In Section 4, we review some modifications

that have been made to the TAD formulation in order to improve the serial performance

of the method. In Section 5, we review parallel extensions designed to make the TAD

procedure better equipped for large systems. In Section 6, we discuss the very recent and

ongoing development of Speculatively Parallel TAD (SpecTAD), which uses parallelization

to explore multiple concurrent states. Finally, in Section 7 we summarize the current state

of TAD and draw conclusions about the future of this valuable AMD approach.
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2. TEMPERATURE-ACCELERATED DYNAMICS (TAD) BASICS

The objective of TAD is to hasten the state-to-state evolution of an atomistic system in

the canonical ensemble by running molecular dynamics at an elevated temperature and

using observed transitions to construct an accurate lower-temperature trajectory (3). TAD

assumes that the system of interest obeys the conditions of harmonic Transition State

Theory (hTST) (23). In this regard, it is the most approximate of the three AMD methods.

The critical hTST assumptions are:

(A.1) There are no correlated barrier re-crossings (i.e., the system immediately reaches

equilibrium in a new basin after passing through a saddle plane).

(A.2) The rate law for transitions out of an energy basin along transition path j can be

defined by an Arrhenius law,

kj = ν0,jexp [−Ej/(kBT )] , (1)

where kj is the transition rate along path j, Ej is the height of the energy barrier

along path j, and ν0,j is the temperature-independent pre-exponential factor. In

typical statistical mechanical systems, ν0,j is equivalent to the Vineyard prefactor

(23), defined as the ratio of relevant vibrational modes at the minimum and saddle

states:

ν0,j =

(
3N∏
n=1

νn

)
/

(
3N−1∏
n=1

ν′n

)
. (2)

Here, the use of 3N assumes that there are no zero-frequency modes that need to be

omitted; i.e. full translational and rotational freedom leads to 3N-6. Note that the

original formulation of TAD does not rely on the fact that the Vineyard expression

is accurate, but only that the prefactor is temperature independent.

Although the TAD procedure can usually accommodate systems in which (A.1) is not

always true, (A.2) is crucial. This is because Eqn. 1 leads to an efficient way to project ob-

served transitions at high temperature (THigh) onto a hypothetical low temperature (TLow)

time line. Since the pre-exponential factor is assumed to be temperature independent, it

cancels out when taking a ratio of rates for the same transition path at different tempera-

tures. This leads to a straightforward definition of the transition time along path j at TLow,

tLow,j , given an observed transition time at THigh, tHigh,j :

tLow,j =
kHigh,j
kLow,j

= tHigh,jexp

[
Ej

(
1

kBTLow
− 1

kBTHigh

)]
. (3)

This relationship tells us that we can project a THigh transition onto a hypothetical TLow
timeline if we can determine Ej for the observed transition. It is important to note, though,

that this relationship also tells us that the transition occurring first at high temperature

may not be the most probable at low temperature, since, although all transition rates will

increase with an increase in temperature, the rate of a high-barrier transition will increase

faster than that of a low-barrier transition. Thus, the states visited in a typical high-

temperature MD evolution are often unrepresentative of those visited at low-temperature.

4 Zamora et al.



2.1. The TAD Procedure

Due to the need to correct for this bias towards high-barrier transitions at high temperature,

the basic building block of the TAD procedure is basin-constrained molecular dynamics

(BCMD) (24, 3). In BCMD, a system is placed into an initial state, and then MD is

performed until the system naturally escapes to a neighboring state. When such a transition

occurs, information about the escape path is recorded, and the system is then placed back

into the original basin so that the process can be repeated to find alternative escape paths.

Before the MD trajectory can be continued to find new events, it must first be thermalized

and “blacked-out”, such that it has no memory of the previous transitions, a process that

is usually performed with another block of MD. TAD efficiently predicts an accurate low-

temperature evolution by minimizing the amount of high-temperature BCMD time needed

for each state visit before a statistically accurate low-temperature escape path can be chosen.

The length of BCMD time needed in each visited state depends on two critical param-

eters: The minimum bound on pre-exponential factors expected in the system (νmin), and

the level of uncertainty allowed in the selection of the most probable escape path from each

visited state (δ). These parameters are used to define ν∗, which can be interpreted as a

confidence-corrected lowest possible transition rate at infinite temperature,

ν∗ =
νmin

ln(1/δ)
. (4)

Using ν∗, the so-called stop time at which the high temperature trajectory can be terminated

and the proper escape path (with 1-δ confidence) selected, can be defined as:

tHigh,Stop =
1

ν∗
(ν∗tLow,Short)

TLow/THigh , (5)

where tLow,Short is the shortest extrapolated low-temperature transition time recorded dur-

ing the current BCMD run.

The construction of the high-temperature stop time after one observed transition

can be understood visually by plotting ln(1/t) vs β, where β = 1/(kBT ) such that

βHigh = 1/(kBTHigh) and βLow = 1/(kBTLow). As shown in Fig. 1a, the observation of

transition 1 at high temperature can be represented as a point at (βHigh, ln(1/tHigh,1)).

Following Eqn. 3, the point corresponding to the same transition at low temperature, (βLow,

ln(1/tLow,1)), can be determined by drawing a line with a slope equal to the negative of

the transition energy barrier, -E1. This relationship is shown as a blue line in Fig. 1a.

Once (βLow, ln(1/tLow,1)) is plotted, the ν∗ parameter can then be used to define

the lower bound on the transition energy barrier for any new escape occurring after time

tHigh,1 + ∆t that can replace tLow,1 as the shortest low-temperature transition time. This

lower bound, e(tHigh,1 + ∆t), is simply the negative slope of the line connecting (0,ln(ν∗))

with (βHigh, ln(1/(tHigh,1 +∆t))). Similarly, the upper bound on the energy barrier for any

new escape capable of replacing the shortest low-temperature transition time, E(tHigh,1 +

∆t), is the negative slope of the line connecting (βHigh, ln(1/(tHigh,1 + ∆t))) with (βLow,

ln(1/tLow,1)). These relationships are both drawn as dashed black lines in Fig. 1a, with

the hollow point at the intersection representing an arbitrary amount of time, ∆t, after the

observation of transition 1 at high temperature.

As ∆t is increased in the given scenario, there is a shrinking set of energy barriers capable

of replacing transition 1 as tLow,Short. The point when the upper and lower bounds converge,

shown as a red point at (βHigh, ln(1/tHigh,Stop)) in Fig. 1a, is the high temperature time

www.annualreviews.org • The Modern TAD Approach 5



Figure 1

An Arrhenius-like representation of the high-temperature stop time definition in TAD. (a) The

stop time construction for the first event at high temperature. (b) The stop time construction for

a second high temperature event that would have occurred faster than the first event at low
temperature.

at which it is safe to move the system into the next state associated with transition 1 as

long as it is still the case that tLow,Short = tLow,1. The stop time can be updated using Eqn.

5 each time a new high temperature transition leads to a new tLow,Short. For example, Fig.

1b shows a case in which a second event occurs with tLow,2 < tLow,1 before thigh,Stop is

reached. Once the current stop time is finally reached, there is a < δ probability that an

unobserved pathway could still extrapolate to a time shorter than tLow,Short.

2.1.1. The Basic TAD Algorithm. We are now ready to introduce the basic TAD algorithm,

which predicts the state-to-state evolution of a system at TLow by using thermostated

BCMD to explore the PES at THigh. Although this introduction is self-contained, additional

discussion can be found in references (3, 18, 19, 25, 26).

The TAD procedure starts with the low temperature simulation time for all states (ttad)

equal to zero. The following steps are then iterated on for each state visit:

1. Let tHigh = 0, tHigh,Stop = ∞ and tLow,Short = ∞. Here tHigh is the amount of

high-temperature MD time that has been accumulated in the current state.

2. Place the system into state i by setting the atom coordinates (Xatoms) so that the

energy minimizer (Xatoms
i ) is in the same PES basin.

3. Without advancing tHigh, perform MD at THigh for ∆ttherm. This step is meant to

ensure the system is in proper thermal equilibrium (thermalized) and that the system

has no memory of previous state visits or escape attempts.. Go back to Step 2 if the

system escapes state i during ∆ttherm, otherwise proceed to Step 4.

4. Perform MD at THigh for ∆tMD.

5. Perform a transition check by quenching the system and comparing Xatoms to the

Xatoms
i minimizer. If a transition is detected go to Step 6, otherwise, advance tHigh

by ∆tMD and then go to step Step 10.

6. Compare new escape attempt j to all previous escape attempts made during the

current visit to state i. If the path of the new escape attempt was already observed

at an earlier time, go to Step 10.

6 Zamora et al.



7. Set the transition time for the newly observed escape path, tHigh,j , to be a random

time between tHigh and (tHigh −∆tMD). Advance tHigh to be tHigh,j .

8. Perform a two-ended saddle point finding calculation, such as a Nudged Elastic Band

(NEB) (27), to locate the appropriate saddle point along path j. use Eqn. 3 to

determine tLow,j for the new event.

9. If tLow,j < tLow,Short, set tLow,Short = tLow,j and use Eqn. 5 to update the high-

temperature stop time.

10. If tHigh > tHigh,Stop, go to Step 11. Otherwise, go to Step 4.

11. Increment ttad by tLow,j , move the system into the corresponding state and then go

to Step 1.

After each cycle of these steps, the dynamics of the system are advanced by one state.

2.1.2. The TAD Boost. One of the key purposes of using any AMD method is to simulate

a longer period of time than MD in the same amount of wall clock time (WCT). Therefore,

the performance of TAD is often discussed in terms of a computational boost factor, BTAD,

defined as the increase in the computational speed with respect to the typical performance

of MD. For TAD, this boost factor metric is given by

BTAD ≡
WCTMD(tTAD)

WCTtad(ttad)
≤ t̄Low
t̄High,Stop

. (6)

For a generic system, an upper bound on the TAD boost can be written as (18)

BTAD ≤
[

ν∗

(Σiki,Low)

]1−βHigh/βLow
1

Γ (1 + βhigh/βLow)
, (7)

where Σiki,Low is the total escape rate at low temperature, and Γ is the Euler gamma

function. In this definition, the right-hand side corresponds to t̄Low/t̄High,Stop, where the

overhead caused by detecting transitions and calculating energy barriers is ignored.

2.2. Mathematical Analysis of TAD

Now that we have outlined the basic TAD procedure, we can briefly discuss some modifica-

tions recently suggested by Aristoff and Lelievre to generalize the mathematical rigor of the

approach (25). Although the reader should refer to the original work for the complete math-

ematical treatment in terms of quasi-stationary distributions (QSD), the general message

is that modifications can be introduced to either partially or completely relax assumptions

(A.1) and (A.2).

In an ideal method, rigorous beyond the scope of hTST, additional steps would be

needed to relax (A.2). Also, a de-correlation phase would be necessary to ensure the

system is in thermal equilibrium at TLow before any state is explored at THigh, avoiding

(A.1). Although Aristoff and Lelievre present a specific Ideal TAD procedure that can be

used to predict the exact metastable dynamics of a general stochastic system obeying over-

damped Langevin dynamics, they caution that this ideal method would require too much

computational work to be used in practice. Instead, they show that only three modifications

are needed to produce Ideal TAD in the limit that βLow, βHigh →∞ and τcor →∞, where

τcor is the correlation time which will be explained below. The resulting TAD procedure,

which achieves a balance of generality and performance, is equivalent to the basic procedure

given above, aside from the following modifications:

www.annualreviews.org • The Modern TAD Approach 7



(M.1) A de-correlation step is accomplished by performing low-temperature MD for τcor
before beginning the standard TAD procedure for a new state visit. This is not a

BCMD step, because the system is allowed to move into a new state immediately if

a state transition occurs before τcor.

(M.2) Redefine the high-temperature stop time as tHigh,Stop = tLow,Short/C, where C is a

lower bound on exp[−Ei(βHigh − βLow)] over all paths leaving the current state1.

Upon closer inspection of these recommended modifications, it is apparent that only

(M.1) can be introduced without requiring any previous PES knowledge. As for (M.2), the

authors note that the primary motivation for redefining tHigh,Stop is to avoid the uncertainty,

δ, inherent in the traditional ν∗ parameter. This modification is already used in the Emin-

TAD and Dimer-TAD methods, discussed in Sections 4.2 and 4.3. However, it is not

generally the case that C can be known.

It is certainly clear that (M.1) can be used to relax the assumptions associated with

(A.1). However, a the proper implementation of (M.1) requires additional low temperature

MD time and transition checks. Most importantly, it is a challenge to efficiently prepare an

accurate low-temperature trajectory given the corresponding high-temperature trajectory.

For these reasons, this modification is most advisable when modeling systems in which

assumption (A.1) is expected to introduce significant error. Otherwise, the inevitable re-

duction in the TAD performance boost may not be worth the limited improvement in the

accuracy of the TLow prediction.

2.3. Synthetic Mode Extension

The basic TAD procedure discussed so far assumes that any information collected during

a specific state visit (total tHigh accumulated, Ej for the different observed pathways, etc.)

is thrown away once the system moves on to the following state. This practice can be

particularly inefficient when exploring a potential energy landscape best characterized as a

superbasin of low-barrier states. In such a scenario, the system may revisit the same state

many times before moving into a different superbasin. Fortunately, repetitive events can

be handled efficiently in TAD by treating them in so-called synthetic mode (3, 21). This

useful extension to TAD, inspired by kinetic Monte Carlo (kMC), provides a framework for

progressively decreasing the amount of BCMD time needed during each revisit to a state.

In contrast to the MD-based approach used in basic TAD, kMC predicts the evolu-

tion of an interacting system of atoms by assuming that all transition rate constants, ki,j ,

are known a priori (28, 29). Using such information, the state-to-state evolution can be

stochastically generated. The synthetic extension to TAD assumes that we can use the

kMC approach for some of the observed pathways. That is, if the rate of the event is known

at low temperature, the event can be treated synthetically. This rate can be extracted

from a dynamic estimation of the temperature-independent prefactor, using the rate of ob-

served high-temperature events, or a direct Vineyard calculation of Eqn. 2 (23). Although

the original TAD paper introduces a synthetic mode extension (3), the specific procedure

explained next was first described in Ref. (21).

The general synthetic approach, explained graphically in Fig. 2, works as follows:

Assume that the system of interest has just entered a state that has been visited before

1In the original work (25), this modification is labeled (M.3), while (M.2) corresponds to step 3
in the basic procedure.
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(with the previous stop time corresponding to the dashed blue line). During the previous

visit, the total amount of accumulated high-temperature MD time had been recorded, as

well as the number of attempts and energy barriers for observed escape paths. At this

point, it is possible that there is enough information to determine a rate constant for one

or more of the previously seen events. If this is so, we can put these events into the so-

called synthetic mode by placing stochastic transition times along these pathways on the

low-temperature timeline before performing any high-temperature MD. From this point on,

we can ignore any transitions observed along the synthetic paths in the THigh MD, because

we already have low-temperature predictions.

Figure 2

A graphical representation of the kMC-like synthetic mode used in TAD. The solid blue line

corresponds to the usual temperature extrapolation of an event observed at high temperature

during the first visit to a state (visit 1). The blue dashed line is the usual stop-line corresponding
to Eqn. 5, where S1 corresponds to ln(1/tHighStop). Here, we assume that this first event is

eventually accepted and that its rate-constant can be known before the next visit. Therefore,
when the state is revisited, the high and low temperature MD clocks can begin accumulating time

at the blue dashed line, rather than at zero. The act of continuing the accumulation of time in this

way is sometimes called sweeping. This sweeping is allowed because we can use the rate constant
from the previously chosen event to predict its next occurrence on the βLow axis (this prediction is

shown as a blue tick mark). When the rate constant is used to place a tick mark in this way, the

event is said to be in synthetic mode, because MD is no longer needed to predict its occurrence at
low temperature. For the second visit to this state, the stop line is shown as a black dashed line.

Although this stop line was constructed from a synthetic prediction rather than an MD event, the
hypothetical temperature extrapolation is shown as a dotted black line. From here, the synthetic
sweeping procedure can be continued indefinitely as long as every accepted event corresponds to a

synthetic event (examples shown as grey tick marks on the right-hand axis). At some eventual

visit N, the hypothetical high-to-low extrapolation (green dotted line) will predict that a synthetic
event should need to run past the sweeping stop line (green dashed line) to actually observe the

event using MD. This illustrates why the event time tick mark must be generated synthetically.

Treating repeated events in this way becomes particularly advantageous when a syn-

thetic event is chosen for tLow,Short, and then the same state is visited again. In this

case we can modify Step 1 in the basic TAD procedure by setting the initial tHigh to the

high-temperature time reached during previous visit and by offsetting any low-temperature
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events by the previously accepted synthetic transition time. Cumulatively tracking the high

and low-temperature timelines in this way is often called sweeping. In this sweeping mode,

as similar amounts of time are accumulated at the high temperature, increasingly greater

amounts of time are “simulated” at the low temperature.

When using synthetic mode in a given state, it is safe to continue sweeping to a longer

time upon each revisit, provided that the negative slope of the sweeping line never exceeds

any known activation barriers that are not yet in synthetic mode. This requirement is jus-

tified in the last two sentences of the Fig. 2 caption. As the sweeping procedure is allowed

to progress, the amount of high-temperature MD time needed to reach tHigh,Stop becomes

shorter and shorter with every revisit to the state. Eventually a single MD step at high

temperature may correspond to enough low-temperature time to accept many sequential

events into the future, providing TAD with kMC-like efficiency.

3. SELECTED APPLICATIONS

TAD has been extensively applied to a number of problems in materials science and nearly

every case has revealed surprising behaviors that significantly altered our understanding of

the material. A few examples are highlighted here to demonstrate the types of insights that

can be gained from such simulations, and the types of systems that can be studied.

3.1. Annealing of Nanotube Fragments

t=0 s t=0.6 +s t=4.6 +s t=4.8 +s t=5.3 +s t=5.3 +s

axial perspective

radial perspective
Figure 3

Evolution of a 60-atom fragment of a (7,7) carbon nanotube at T=1500 K as viewed from both an

axial and a radial perspective. Relatively quickly in the evolution of the fragment, one of the open
ends “zips” closed, which induces strain in the other open end, driving the fragment to flatten

further. After 5.3 microseconds, the fragment has formed a graphene-like fragment that is

primarily comprised of 6-member rings, but still has a few 5 and 7-member rings within the
network.

Inspired by experiments in which buckyballs were found in the soot of laser-ablated

carbon nanotubes, TAD was used to examine the annealing of idealized nanotube fragments

(17). The goal was to understand how buckyballs might form from small fragments of

nanotubes, and what mechanisms at the atomic scale induced this behavior. Fig. 3 shows

an example of one of the simulations (the simulation in the last frame of Fig. 2 in Ref. (17))

in which a 7x7 nanotube fragment, originally cylindrical in shape, flattens over the course

of microseconds at T=1500 K into a small graphene fragment. In this particular case, one
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end of the original nanotube first closes through a zipper-like mechanism. However, once

that happens, the curvature induced by this closure creates tension in the outer edge of

the fragment, causing it to further flatten, ultimately leading to the graphene fragment

illustrated in the last frame of Fig. 3. While these types of graphene fragments are much

higher in energy than a closed C60 buckyball, the transition from this particular nanotube

fragment to a buckyball necessarily passes through these graphene-like states that act as

kinetic bottlenecks for the full transformation to a buckyball.

3.2. Cation Dynamics in Complex Oxides
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Figure 4

Evolution of a Ti Frenkel pair in Lu2Ti2O7 pyrochlore. Immediately, first the Ti vacancy and

then the Ti interstitial transform into Lu defects and corresponding antisites. As the Lu
interstitial diffuses and then recombines with the Lu vacancy, instead of perfect recombination,

two more antisites are formed. Thus, the net result of the recombination of a Ti Frenkel pair is

two antisite pairs. The scheme is red for Lu defects and green for Ti defects, and circles for
interstitials, squares for vacancies, and triangles for antisites, as determined by comparing the
structure to the perfect pyrochlore structure.

Since the first AMD simulations on oxides, involving TAD to examine defect clustering

dynamics in MgO (11), TAD has also been used to study defect behavior in complex oxides

(30, 31, 32, 33). Understanding cation dynamics in these materials is important for pre-

dicting performance in radiation environments, during sintering, and in other applications

where degradation is linked to cation evolution. Fig. 4 shows a typical result of these sim-

ulations, this one originally presented in Ref. (34). Under irradiation, defects are inevitably

created and it is the evolution of those defects that dictate the ultimate fate of the material.

In a simple material, such as Cu or MgO, the most likely result of such a simulation would

be that the interstitial diffuses around until it feels an elastic interaction with the vacancy

and it would then simply recombine, leading to a defect-free system. In complex oxides such

as pyrochlore, TAD simulations reveal more complicated behavior. Two important results
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are evident from Fig. 4. Result 1: the very first event evolving either the Ti interstitial

or the Ti vacancy involves an immediate transformation to an antisite defect and a Lu

defect. This implies that B cation defects (B=Ti in this case) are kinetically unstable and

transform into other defects. Result 2: as Lu Frenkel pairs recombine, instead of perfect

annihilation, even more antisites are created. This implies that perfect recombination is not

possible in such materials; antisite disorder will always be generated. This has important

ramifications for our understanding of radiation damage evolution in complex oxides.

3.3. Defect Interactions with Grain Boundaries

GB Plane

Figure 5

Interaction of collision-cascade defects near a grain boundary in Cu, as simulated by TAD. In the

initial state, representative of the defect structure after a collision cascade, interstitials (blue
circles) are packed into the grain boundary plane while an excess of vacancies (red squares)

remain in the grain interior. Through complex concerted events involving one relatively low

barrier (0.17 eV in this case), interstitials can “emit” from the grain boundary and annihilate
some of those vacancies (central panel). The green circles highlight atoms that moved more than 1

angstrom and are superimposed on the initial structure. The resulting defect structure, as
illustrated in the last frame, contains fewer bulk vacancies and fewer interstitials within the grain

boundary. The “interstitial emission” mechanism has led to substantial healing of defects.

As a final example, TAD has been used to understand how irradiation-induced defects

interact with grain boundaries, using Cu as a model system (35, 36). These simulations have

revealed several surprises, not least of which is the so-called interstitial emission mechanism.

When collision cascades occur near grain boundaries, the typical result is that the fast

moving interstitials quickly diffuse to the boundary, leading to a damage state in which there

is a high concentration of interstitials at the boundary and an excess number of vacancies

in the grain interior (more than would form if there were no grain boundary) (37). Starting

from such a configuration, as illustrated in Fig. 5, TAD simulations revealed that GB

and bulk interstitials could still interact. Through highly concerted mechanisms with lower

barriers than vacancy migration, the interstitials can emit from the boundary and directly

annihilate the vacancies; in the case shown in Fig. 5, three vacancies are annihilated

by such a mechanism. This highlights the complex defect behavior that can occur near

microstructural features. More recent simulations (both TAD and adaptive kMC) have

revealed that as interstitials cluster in boundaries, their mobility dramatically decreases

(35). Together, these results have significantly altered the theory of defect evolution in

nanostructured materials.
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4. SERIAL TAD EXTENSIONS

Although the TAD procedure in its basic form still enjoys popularity today, researchers

have been developing ways to increase the available boost factor ever since the method was

first introduced. In more recent years, these modifications have aimed to parallelize the

traditionally serial method. However, significant improvement can be achieved using serial

modifications alone. We discuss these first.

4.1. Learning From the Past

The earliest modification to the basic TAD procedure, sometimes referred to as learning

from the past TAD (LFP-TAD), provides a simple way to reduce the amount of BCMD time

needed in a state that has been previously visited (18). LFP-TAD acts as an intermediate

step between the basic TAD procedure and the synthetic mode extension, because it does

not require the calculation of rate constants. Instead, LFP-TAD provides an alternative

way to calculate tHigh,Stop. The key point is that the usual definition of tstop is often too

conservative and can be reduced when the minimum energy barrier leading out of the state,

or a lower bound on it, is known.

Recall from Fig. 1 in Section 2.1 that the traditional stop time can be defined for event

1 as the high-temperature time at which e(tHigh,1 + ∆τ) converges with E(tHigh,1 + ∆τ).

In this construction, e represents a lower bound on the energy barrier of a path that did

not yet occur, while E is the upper bound on the energy barrier of an event that can still

redefine tLow,Short. Now assume that, when revisiting a given state, τprev has already been

accumulated at high temperature. Therefore, we can reformulate e to be the minimum

possible barrier for an event that did not already occur at tHigh,1 + τprev + ∆τ . Since e

cannot be allowed to exceed Emin, where Emin is the minimum energy barrier observed so

far in the current state, it becomes

e(t) = min

[
Emin,

ln(tν∗)

βHigh

]
. (8)

By defining e this way, the stop time can be constructed by finding the the time ∆τ when

e(tHigh,1 + τprev + ∆τ) = E(tHigh,1 + ∆τ). It can be shown that this reformulated equation

converges at a stop time given by

tHigh,Stop = tHighexp [(Ei − Emin)(βLow − βHigh)]. (9)

For a generic system used to define BTAD in Eqn. 7, an upper bound on the ratio, Rnew,

between the total MD time required by the traditional TAD procedure and that by LFP-

TAD can be written as

Rnew =

[
ν∗

(Σiki,Low)

]βHigh/βLow−1

Γ

(
1 +

βhigh
βLow

)
exp [Emin(βLow − βHigh)] . (10)

Although the LFP-TAD procedure cannot achieve the full kMC-like synthetic mode

efficiency available for highly repetitive events inside a superbasin, the method does have the

potential to provide a near-Rnew improvement upon the traditional TAD method during the

first few revisits to a state (18). For this reason, a modern TAD implementation generally

incorporates the LFP-TAD stop-time definition until one or more events have been seen

enough times that the synthetic mode performance becomes more advantageous.

www.annualreviews.org • The Modern TAD Approach 13



It is also interesting to recognize that during the first few revisits, the LFP-TAD method

is actually equivalent to the sweeping of time in synthetic mode, in the following sense.

The LFP-TAD does not require the direct computation of a pre-exponential factor to

define the low-temperature rate, relying instead on extrapolated times. However, if the

system is perfectly harmonic (as assumed in TAD), so that the temperature-extrapolated

times are statistically equivalent to the synthetic-mode kMC times, the amount of high-

temperature MD time needed to accept each new event is equivalent in the two methods

up until the time at which the slope of the sweeping synthetic stop line saturates at the

minimum-barrier value Emin. For revisits after that, the boost of the synthetic mode sweep-

ing method continues to increase (see Fig. 2), while the LFP-TAD boost becomes constant

at exp[Emin(βLow − βHigh)]. While this makes the synthetic mode more powerful for large

numbers of revisits, this minimum-barrier limiting boost characteristic of the LFP-TAD

method turns out to be a valuable concept that can be exploited in other ways, as we

discuss next.

4.2. Minimum-barrier TAD

As just discussed, in the LFP-TAD approach, once the increasingly negative slope of the

stop line reaches the value of the minimum barrier for escape from the state, its slope

is fixed from then on. Graphically, the stop criterion for all future revisits is found by

drawing a line, with slope −Emin, that connects the low-temperature event time with the

high-temperature time line. For example, this stop time would correspond to the hollow

point in Fig. 1a if it were hypothetically true that the E(tHigh,1 + ∆t) shown happen to

be Emin.

As pointed out in (18, 38), that the stop time can be defined in this way has some inter-

esting consequences. While Emin is automatically discovered in LFP-TAD after revisiting

a state multiple times, the Emin-based stop criterion can be employed from the very first

visit if the minimum barrier is somehow known in advance. We are thus free to consider

ways to determine Emin externally and supply that value to the TAD algorithm. We refer

to this as minimum-barrier TAD (Emin-TAD) (18, 38).

In Emin-TAD, the boost factor is a simple function of THigh, TLow, and Emin. The

direct dependence on νmin and δ has been eliminated (although an indirect dependence

may remain, depending on how Emin is determined). We also note that the boost factor is a

constant; if the minimum barrier remains unchanged as the system size N is increased, then

for a short-ranged interatomic potential, Emin-TAD becomes an N-scaling computational

method, the same as direct MD. One can imagine various ways to determine, or approx-

imate, the minimum barrier for escape from a state. For example, one can use physical

intuition or prior results in similar materials. A particularly powerful approach is to take

the lowest barrier found in a set of saddle searches, as discussed in the next section.

Finally, we mention that one can even employ a “gambling” approach, as was done in a

study by Montalenti et al(38) of “surface shuffling” behavior on a perfect Ag(100) surface.

A defect-free metal surface, left alone, will occasionally create a Frenkel pair (an adatom

and a surface vacancy), usually via a two-atom exchange event. Before the adatom and

vacancy annihilate to recover the perfect surface state again, there can be intervening surface

diffusion events such as hopping or exchange of the adatom or vacancy. This leads to a

shuffling of the atom ordering in the perfect-surface state, something that in principle could

be measured in an experiment with isotopically labeled atoms. An obstacle to studying
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this phenomenon with TAD is that the rate constant for the initial step, the formation of

the Frenkel pair from the perfect-surface state, is extremely low, with a barrier height of

1.3 eV. Using a suitably high temperature, such an event can be observed relatively easily,

but the stop time required to accept the event is extremely long.

To circumvent this problem, a gamble was made. By speculating that the lowest-barrier

pathway out of the perfect-surface state was indeed this 1.3 eV exchange mechanism (ob-

served in a quick preliminary study), Emin-TAD was used, setting Emin=1.3 eV. This gave

dramatically increased boost for the perfect-surface state. For all other states, LFP-TAD

was employed. Because the study examined the long-time evolution of the Ag(100) surface

at various temperatures, by the end of the study, the total amount of high-temperature

time spent in the perfect-surface state during all the simulations was great enough to assess

whether 1.3 eV was indeed the lowest barrier, using Eq. 9. This assertion was indeed

confirmed (no lower-barrier pathway out of the perfect state was observed), thus validat-

ing the complete study. If a lower barrier had been discovered, all the TAD simulations

up to that point would have had to be redone with the lower value. This novel approach

enabled characterization of an interesting and previously unstudied (probably unknown)

surface phenomenon on time scales ranging from milliseconds (at TLow=600K) to months

(at TLow=300K).

4.3. Dimer TAD

Modern saddle-point search methods offer a good way to find escape pathways out of a

state. The dimer method search approach developed by Henkelman and Jónsson (39), which

requires only first derivatives of the potential, is a good example of such an approach; other

methods with good efficiency have been developed as well (40, 41, 42). The dimer method

searches uphill along the lowest-eigenvalue mode of the Hessian and downhill along all other

directions until a stationary point is found. Henkelman and Jonsson showed that by starting

a number of dimer searches at configurations randomly displaced from the basin bottom of

the state, they could efficiently generate a list of saddle points that could be used to define

the set of escape pathways for an adaptive kMC (AKMC) procedure (43).

In the context of TAD, by preceding the TAD simulation for each new state with a

dimer-search stage, the lowest barrier height from the set of found saddles can then be

supplied to the Emin-TAD algorithm. In addition to the shorter TAD stop time that

results from specifying Emin, the saddle points found during the dimer searches can be

used to eliminate some of the expensive NEB calculations for escapes encountered during

the BCMD at THigh. This dimer-TAD approach was first applied to study the evolution

of small interstitial clusters in MgO (11). This is a good example of a system for which

dimer-TAD is powerful; the barriers are particularly high, so the stop time is significantly

reduced by knowing Emin. This speedup allowed discovery of new mechanisms, relevant to

radiation damage annealing, that occur on the time scale of seconds.

As noted above, once Emin is specified, the uncertainty arising from δ, and from the

required specification of νmin, is eliminated. In dimer-TAD, the new approximation becomes

the uncertainty that the set of dimer searches did not find the lowest barrier. While this is an

important issue, as it is difficult or impossible to absolutely guarantee that the lowest saddle

will be found, dimer-TAD has some interesting characteristics that make it an appealing

approximation. For example, if there are multiple pathways with the same lowest barrier

(as often happens), it is sufficient to find just one of these, and it may even be good enough
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to find only the second- or third-lowest barrier, if that barrier is very similar to the lowest

barrier. Moreover, if the dimer search procedure is not reliable, so that lowest barrier is

being routinely missed, it will not be long before this becomes evident, as a pathway with

a lower barrier than Emin will show up during the Emin-TAD high-temperature BCMD.

Finally, we note that the dimer searches can be completely parallelized, as they begin from

independently randomized starting points, so the additional wall-clock time to implement

dimer-TAD in a parallel environment need not be longer than the time to complete one

dimer search.

4.4. Adaptive High Temperature

Following ideas suggested in the original TAD paper (3), additional modifications have

been recently proposed to improve the serial performance of TAD by adaptively seeking an

optimal high-temperature setting (19). Although it may be expected that a general increase

in the THigh/TLow ratio will produce a general increase in BTAD, the relationship between

the two quantities is generally non-monotonic. As the BCMD temperature is increased,

an increasing number of high-barrier transitions that have a negligible probability of being

accepted at the low temperature will be observed before the stop time is reached. When

THigh/TLow becomes too large, the time needed to characterize these irrelevant transitions

can strongly reduce the overall performance. The adaptive TAD procedures provide a

practical means to search for an optimal value of THigh at run-time. Algorithms allowing

for adaptive THigh-learning can be very useful extensions to implement in practice. Such

approaches have also proven useful within other simulation methods related to TAD (44);

and we note that other parameters, such as the MD block time δtMD, can be optimized in

this way. Next, we discuss the use of parallel computing techniques within TAD.

5. PARALLEL TAD EXTENSIONS: EXPLORING LARGE SYSTEMS

Following the analysis in reference (21), the computational cost of a traditional TAD sim-

ulation scales approximately as N3+1/3−γ , where γ = TLow/THigh and N is the number of

moving atoms in the system. This scaling law emerges from multiplying N2−γ by N4/3. As

shown in Ref. (4), N2−γ is the approximate scaling of both the high-temperature MD time

as well as the number of activated high-temperature events per unit of low temperature

simulated time, and N4/3 is the approximate lumped scaling of the NEB calculations typi-

cally used to find transition saddle points for each of the activated events. For the scaling of

saddle point searches, the 4/3 term assumes that the work per convergence iteration scales

as N, while the the number of iterations increases due to the presence of long-wavelength

modes. Even if transition checks were free and localized saddle point search were imple-

mented (20), the method would still approximately scale as N2−γ , e.g., leading to N3/2

when THigh = 2TLow.

Although the serial TAD procedure can give extremely large boost factors, e.g., exceed-

ing 109 in some cases, its poor scaling performance generally prevents the method from

being used to explore systems with more than a few thousand moving atoms. Since many

more atoms are often needed to capture long range stress fields and to avoid periodic bound-

ary condition effects, recent efforts have been made to improve the N2−γscaling of the serial

TAD procedure by exploiting spatial decomposition-based parallelization.
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5.1. Spatially Parallel TAD (ParTAD)

The earliest spatial decomposition-based parallelization of TAD, developed by Shim and

coworkers, is known as Spatially Parallel TAD (ParTAD) (21). The basic idea of this

method is to decompose the system into overlapping spatial domains, and to concurrently

run serial TAD within each of these domains on different cores. Although the reader should

consult the original reference for a comprehensive explanation of the ParTAD method, here

we will briefly review the sublattice algorithm at the heart of the method.

Figure 6

Illustration of the sublattice algorithm used in ParTAD for a surface simulation.

The ParTAD method uses a quasi-2D domain decomposition in combination with the

semirigorous synchronous sublattice (SL) algorithm (45). When used to parallelize the kMC

simulation of multilayer growth and island coarsening, the SL approach was found to predict

accurate results as long as the governing parameters were chosen appropriately. As shown

in Fig. 6, the approach works by dividing the geometry into np domains, where np is the

number of processors (np = 4 in the illustration). Within each of the domains, the local

geometry is then further divided into subdomains. For a two-dimensional decomposition,

there will be ns = 4 subdomains (A,B,C,D), as shown in the figure.

With the SL decomposition defined, the ParTAD algorithm works by allowing each of

the np processors to perform concurrent TAD procedures in their own distinct domains. In

order to ensure that neighboring domains are dynamically synchronized, this procedure is

broken into ns sequential steps. First, all processors will perform TAD in the A subdomain

until they have all reached ∆ttad ≥ τ ; the same procedure is then repeated in subdomains

B through D. At the end of this 4-step cycle, the system has advanced by a time τ . As

illustrated with solid and dashed blue lines in Fig. 6 for subdomain C2, the simulation

cell used to perform TAD contains atoms from all neighboring subdomains. Referring to

this illustration, all atoms within the dashed blue box are allowed to move within the TAD

simulation, while only events centered within the solid blue box are allowed to be accepted

at low temperature. All remaining atoms in the neighboring subdomains are held fixed to

avoid unrealistic boundary effects.

Although ParTAD provides a stable and fairly scalable approach to parallelize the tra-
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ditional TAD procedure, some limitations still remain. One limitation is that the method

is incapable of capturing concerted events spanning multiple sub-lattice domains. For this

reason, ParTAD typically would only be applied to the simulation of small-scale diffusion

processes. The second limitation is that a growing system size may result in a growing prob-

ability that a very fast low barrier event is experienced somewhere in the system during a

unit of MD time. Since the total ParTAD boost is highly sensitive to the lowest boost being

achieved within all subdomains, the typical presence of low-barrier superbasin mechanisms

is likely to dominate the long-range scaling behavior.

5.2. Extended TAD for Large Systems (XTAD)

More recently, the Extended TAD method (XTAD) was introduced with the intention of

mitigating the scaling limitations present in ParTAD (22). In XTAD, full-scale parallel

MD is used to perform the typical BCMD steps used in TAD. In contrast to the SL pro-

cedure discussed above, the use of parallel MD allows for large-scale concerted events to

occur across the entire simulated system. When transitions are detected during quenching,

XTAD applies an adaptive algorithm to produce localized simulation cells to perform NEB

calculations using a reduced number of atoms.

The XTAD approach to partially mitigate the low-barrier scaling limitation is to allow

for the low-temperature acceptance of multiple escape events from a given state, as long as

the events are spatially independent and there is no direct evidence that a faster event is

likely to prevent a subsequent event from occurring. This is enforced in practice by accepting

all events with a low-temperature waiting time less than t∗cut. Here, t∗cut is set equal to the

shortest low temperature time for that state visit, plus the shortest low-temperature event

observed so far. Unfortunately, this choice of t∗cut is somewhat arbitrary, as it is not always

true that the rate of future events can be accurately predicted from experience in other

states, especially in the early stages of a simulation.

Even with the t∗cut issue in mind, the aggressive approach used by XTAD is a valuable

step in the quest to study large material systems with TAD. Unfortunately, it is also im-

portant to note that the spatial scaling is still likely to break down for very large systems

unless accuracy is further sacrificed. For example, given a fixed transition check frequency,

∆tMD, there will be a system size at which it is most likely that multiple events will oc-

cur at tHigh < ∆tMD. Although XTAD has mechanisms to deal with this scenario, the

high probability of observing a transition quickly means that a large number of thermaliza-

tion/blackout steps will be needed to ensure that the system is in proper equilibrium prior

to performing BCMD. In such a scenario, the waiting time for fastest event ever seen in

the system can quickly approach zero, barring the possibility of accepting multiple events

at once.

6. CURRENT STATE OF DEVELOPMENT: SPECULATIVE
PARALLELIZATION OF STATES

So far, we have summarized the parallel computing strategies recently used to improve the

spatial scaling of TAD, but we have yet to mention any ways that parallelism has been used

to improve the TAD algorithm itself. The search for such strategies is on the leading edge

of AMD development, so all such implementations are very new. In order to start exploring

for the possibility of such a parallel algorithm variation, Mniszewski and coworkers recently
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used a discrete event simulation (DES) framework to perform rapid sampling of parallel

TAD variations (26). More specifically, they performed a parametric investigation with the

most critical algorithm modifications being the spawning (parallel offloading) of transition

checks, the spawning of saddle point searches, and the parallelization of the either spawned

or in-line NEB saddle searches.

Although the initial DES investigation came up short of finding an extension offering

both scalability and dramatically improved performance, it did inspire promising follow-on

work. For example, the same approach has since been used to demonstrate that signifi-

cant performance gains can be achieved by using ParRep to perform accelerated BCMD

within TAD and/or speculatively running concurrent TAD processes in distinct states (to

be published) (46). The latter of these promising approaches, which is at the leading edge

of ongoing development, has been coined Speculatively Parallel TAD (SpecTAD).

Figure 7

Illustration of SpecTAD tree representation.

The general idea of SpecTAD is to parallelize the BCMD exploration of states by spawn-

ing (offloading) a new TAD process to explore the next state as soon as its corresponding

escape path is first observed. This approach can be represented through the dynamic con-

struction of a tree, as shown in Fig. 7, where each node represents a TAD process exploring

a single state and each edge represents a speculation. When a TAD process observes a tran-

sition that redefines tLow,Short, that TAD process can immediately spawn a new speculative

branch and prune any branches it may have spawned earlier. In Fig. 7, the numbering

(1-5) represents the number of sequential states visited, while the lettering (a, b, c) repre-

sents the order of observed events resulting in the redefinition of tLow,Short. As illustrated,

a TAD process may end up accepting the first event (see state 1a), but it may also need

to spawn and then prune multiple branches before spawning a process in the correct next

state (see state 4b). Either way, it is likely that many sequential states can be explored

concurrently, resulting in a parallel speedup relative to serial TAD.

6.1. The Basic SpecTAD Procedure

Although some aspects of asynchronous parallel programing can be complex in practice,

the basic SpecTAD procedure can be formally described as a minor extension to the basic

TAD procedure presented in Section 2.1.1. As with TAD, SpecTAD starts with the total

low-temperature simulation time (tTAD) equal to zero. However, there is now a separate

manager process involved which must activate a free core to begin the execution of a TAD
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process in an initial state. This TAD process executes the steps listed in Section 2.1.1, with

the following modifications:

(S.1) The usual Step 12 is not performed. When the TAD process has finished exploring

a state, it cleans up its memory and waits for the manager to assign it a new state.

(S.2) Instead of performing Step 10 as usual, the following is executed: If tLow,j >

tLow,Short, do nothing and continue to the next step. Otherwise, set tLow,Short =

tLow,j and use Eqn. 5 to update tHigh,Stop. If tLow,Short was updated, spawn a new

TAD process to explore the state corresponding to path j by sending a spawn request

to the manager process. Once the manager process activates the new child process,

it will begin at the usual Step 1, but with tTAD = tparentLow,j + tparentTAD .

(S.3) If the manager process receives a spawn request, it must also kill (prune) any previ-

ously activated ancestors of the initiating process.

6.2. Basic SpecTAD Performance

When applied to the basic TAD procedure, the speculative parallelization technique can be

expected to use approximately t̄High,Stop/t̄High,Short cores efficiently, where the t̄ quantities

represent average values. Since this ratio is highly sensitive to the ν∗ parameter, it is clear

that the parallel scaling is better when conservative values of νmin and δ are chosen. In

this sense, SpecTAD offers both a means to accelerate the serial TAD boost, as well as a

means to improve the accuracy of a TAD simulation given a fixed simulation time.

It is important to note that the total number of accepted transitions can have a sig-

nificant effect on parallel scaling. Clearly, the number of cores used at any given time in

a SpecTAD simulation cannot exceed the maximum height of the speculative tree gen-

erated during the entire simulation. For this reason, the available performance boost

(WCTMD(tsim)/WCTSpecTAD(tsim)) must typically increase until the height of the tree

has exceeded some number on the order of t̄High,Stop/t̄High,Short. At this point, how-

ever, the boost will still continue to grow, because the time needed to reach t̄High,Stop
(WCT (t̄High,Stop)) will become a smaller and smaller fraction of the total simulation time

(WCTSpecTAD(tsim)). As WCT (t̄High,Stop)/WCTSpecTAD(tsim)→ 0, the boost converges

to the limiting SpecTAD boost

BLimSpecTAD ≤
t̄Low,Short
t̄High,Short

. (11)

Although it has been shown that speculative parallelization can offer more than an

order of magnitude improvement over the traditional TAD performance (46), the SpecTAD

procedure just introduced is not optimized for the exploration of superbasin systems in

which many repetitive low-barrier events are likely. Next, we discuss how the synthetic

SpecTAD extension can be used to treat such systems.

6.3. Synthetic SpecTAD

Since the SpecTAD procedure requires little deviation from the traditional TAD procedure,

it is straightforward to perform a synthetic treatment of repetitive events as long as a fairly

robust approach is used to share state information across all computational resources. This

can be achieved, for example, by requiring all TAD processes to occasionally synchronize

their list of official states and transition rate constants with the SpecTAD manager process.
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Figure 8

Synthetic SpecTAD results for 0.01s (∼340,000 transitions) of a spinning trimer on a (100) Ag
surface at 200K. The dashed red line corresponds to linear scaling, implying super-linear scaling

for SpecTAD. As explained in the text, the super-linear scaling is a result of an early
over-accumulation of BCMD time relative to serial TAD, leading to an earlier onset of

state-to-state kMC skipping. Note that the core count leaves out two manager processes used to

minimize communication overhead in the current implementation.

The SpecTAD analogue of synthetic TAD works exactly as explained in Section 2.3, but

with the following advantage. Upon entering a previously visited state, a typical synthetic

TAD simulation will quickly check if any events are already in synthetic mode, or can be

promoted into synthetic mode. In SpecTAD, the neighboring state corresponding to the syn-

thetic event with the shortest low-temperature waiting time can be spawned immediately.

This means that a very large core count, potentially much larger than t̄High,Stop/t̄High,Short,

can be used to escape from the suberbasin, because t̄High,Short becomes effectively negli-

gible. Once a complete set of rate-constants is known for the enclosed set of states, every

TAD process will simply draw synthetic waiting times and then spawn a new process to

explore the next expected state. For the synthetic SpecTAD implementation discussed be-

low, direct Vineyard calculations are used to determine rate constants following the first

observation of each event.

Once a superbasin has been explored for long enough to accumulate significant high-

temperature time, unnecessary communication can be avoided by skipping through any

states in which a synthetic event can be accepted using BCMD time already accumulated

by running past the a previous stop time to complete an MD block (∆tMD). That is, a

single TAD process can be allowed to move from state-to-state, without spawning a new

process, until it lands in a state where additional BCMD time is needed. Although SpecTAD

and TAD should both approach kMC performance in the limit that the number of intra-

superbasin transitions is infinite, the parallel accumulation of high-temperature time in

SpecTAD can result in a kMC-like performance much more quickly.
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The advantage of synthetic SpecTAD is illustrated in Fig. 8, where various available

core counts have been used to simulate the spinning of a Ag trimer on a (100) surface at

200K. At this temperature, the Ag trimer is effectively contained within a superbasin of

12 symmetrically identical states, with two symmetrically identical escape paths leading

out of each state. For such a system, a preliminary implementation of synthetic SpecTAD

exhibits super-linear parallel scaling (note that the red dashed line in Fig. 8 denotes linear

scaling).

The apparent super-linear scaling of SpecTAD has two main causes: First, the current

implementation requires a computational overhead to thermalize a new trajectory before

performing BCMD. Second, for simplicity, the current implementation requires that the

stop time is reached by a given TAD process before its accumulated BCMD time can be

used in later visits to the same state. For this reason, sometimes concurrent TAD processes

simultaneously sweep from the same reference point, leading to an over-accumulation of

BCMD time compared to the serial case, in which the states are explored sequentially. While

this means that SpecTAD will accumulate more BCMD time than necessary during early

revisits, it also means that kMC-skipping can begin sooner. When SpecTAD skips through

states in this way, it avoids the thermalization overhead that can sometimes dominate the

performance. We note that this thermalization overhead can be reduced in both SpecTAD

and serial TAD, but such steps have yet to be implemented. By eliminating all significant

overhead, SpecTAD performance should improve for low core counts, leading to a more

linear scaling.

6.4. Example Application: Surface Deposition at Experimental Rates

Figure 9

SpecTAD results for the deposition of Cu on a (100) Ag surface at T=77 K and a deposition rate

of 0.04 ML/s. Two separate trials were performed to 1.0ML of Cu coverage; the faster of the two

is shown. The initial simulation geometry was composed of seven 98-atom (100) layers of Ag, with
the top four layers free to move. The simulation details were designed to match Ref. (10).

SpecTAD can offer significant performance enhancements when simulating many types

of systems, but the method is particularly well suited to surface deposition simulations.

Since a TAD process can speculate from a list of known escape paths, a deposition event

can be added to this list by drawing a random waiting time, relative to the last deposition

event, from a Poisson distribution. This speculative deposition can then be spawned at any

point, and then pruned if or when it is replaced by a faster event.

As an example, we used SpecTAD to simulate the deposition of Cu on a (100) Ag surface

at T=77 K, with an experimental deposition rate of 0.04 ML/s. When previously modeling

the same system with synthetic TAD, Sprague et. al. needed months of wall clock time
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to reach 1.0ML of Cu coverage (10). By providing 144 cores, the same was achieved by

SpecTAD in 12 and 25 hours for the two trials considered (see Fig. 9). Although part of

the speedup relative to reference (10) can be attributed to faster computational resources,

much of the improved performance is clearly the result of parallel speedup. In both trials,

for example, concurrent TAD processes were already exploring at least fifty to-be-accepted

sequential deposition events by the time the initial process had reached its stop time. As

low-barrier mechanisms became more dominant at higher ML coverages, the maximum

available core count was consistently used to accelerate the synthetic mode treatment of

repetitive events.

Although SpecTAD can deliver significant performance boosts over the traditional MD

and TAD procedures, there is still room for improvement. For example, we estimate that

more than an order of magnitude of further speedup can be obtained by using ParRep

to perform BCMD within SpecTAD. This future step of SpecTAD development is still in

progress, as an adaptive procedure for optimizing the allocation of computational resources

is still under exploration.

7. CONCLUSION

The modern TAD method comprises a broad set of statistical mechanics-based insights that

can be used to predict low-temperature evolution using high-temperature MD. Whether the

system of interest contains many distinct states separated by high barriers, or it contains a

collection of low-barrier superbasins, each extension has its own strengths and weaknesses.

In any case, the goal is to push the simulations toward longer and longer timescales, so

that new physical behaviors can be identified. Given the growing availability and reliability

of parallel computing systems, the leading edge of TAD development is now focusing on

the incorporation of advanced parallel computing concepts. Although there is room for

further improvement, this trend has already led to significant gains in performance, and

will undoubtably lead to new scientific understandings.
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42. Béland LK, Brommer P, El-Mellouhi F, Joly JF, Mousseau N. 2011. Kinetic activation-

relaxation technique. Phys. Rev. E 84:046704

43. Xu L, Henkelman G. 2008. Adaptive kinetic monte carlo for first-principles accelerated dynam-

ics. J. Chem. Phys. 129:114104

44. Divi S, Chatterjee A. 2014. Accelerating rare events while overcoming the low-barrier problem

using a temperature program. J. Chem. Phys. 140:184115

45. Shim Y, Amar JG. 2005. Semirigorous synchronous sublattice algorithm for parallel kinetic

monte carlo simulations of thin film growth. Phys. Rev. B 71:125432

46. Zamora RJ, Voter AF, Perez D, Santhi N, Mniszewski SM, et al. To be published. Discrete

event performance prediction of speculatively parallel TAD

www.annualreviews.org • The Modern TAD Approach 25


