skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effects of Initial Condition Spectral Content on Shock Driven-Turbulent Mixing

Journal Article · · Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics
 [1];  [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

The mixing of materials due to the Richtmyer-Meshkov instability and the ensuing turbulent behavior is of intense interest in a variety of physical systems including inertial confinement fusion, combustion, and the final stages of stellar evolution. Extensive numerical and laboratory studies of shock-driven mixing have demonstrated the rich behavior associated with the onset of turbulence due to the shocks. Here we report on progress in understanding shock-driven mixing at interfaces between fluids of differing densities through three-dimensional (3D) numerical simulations using the RAGE code in the implicit large eddy simulation context. We consider a shock-tube configuration with a band of high density gas (SF6) embedded in low density gas (air). Shocks with a Mach number of 1.26 are passed through SF6 bands, resulting in transition to turbulence driven by the Richtmyer-Meshkov instability. The system is followed as a rarefaction wave and a reflected secondary shock from the back wall pass through the SF6 band. We apply a variety of initial perturbations to the interfaces between the two fluids in which the physical standard deviation, wave number range, and the spectral slope of the perturbations are held constant, but the number of modes initially present is varied. By thus decreasing the density of initial spectral modes of the interface, we find that we can achieve as much as 25% less total mixing at late times. This has potential direct implications for the treatment of initial conditions applied to material interfaces in both 3D and reduced dimensionality simulation models.

Research Organization:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Organization:
USDOE National Nuclear Security Administration (NNSA)
Grant/Contract Number:
AC52-06NA25396
OSTI ID:
1329556
Alternate ID(s):
OSTI ID: 1194831
Report Number(s):
LA-UR-15-20646
Journal Information:
Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, Vol. 92, Issue 1; ISSN 1539-3755
Publisher:
American Physical Society (APS)Copyright Statement
Country of Publication:
United States
Language:
English
Citation Metrics:
Cited by: 8 works
Citation information provided by
Web of Science

Similar Records

Physics of reshock and mixing in single-mode Richtmyer-Meshkov instability
Journal Article · Wed Dec 13 00:00:00 EST 2006 · Physical Review E, vol. 76, N/A, May 1, 2007, pp. 026319-1-026319-28 · OSTI ID:1329556

Large-eddy simulations of Richtmyer Meshkov instability in a converging geometry
Journal Article · Fri Jan 01 00:00:00 EST 2010 · Physics of Fluids · OSTI ID:1329556

Influence of initial conditions on turbulence and mixing in Richtmyer-Meshkov flows in presence of re-shock
Conference · Mon Nov 15 00:00:00 EST 2010 · OSTI ID:1329556