
LA-UR-16-27388
Approved for public release; distribution is unlimited.

Title: Visualization and Data Analysis for High-Performance Computing

Author(s): Sewell, Christopher Meyer

Intended for: Guest Lecture for a class at UT-El Paso

Issued: 2016-09-27



Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for
the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396.  By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes.  Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Department of Energy.  Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.



Visualization and Data Analysis for High-
Performance Computing

Christopher Sewell 
October 2016



Outline
• Trends in HPC

• Scientific Visualization
• OpenGL
• Ray Tracing and Volume Rendering
• VTK
• ParaView

• Data Science at Scale
• In-Situ Visualization
• Image Databases
• Distributed Memory Parallelism
• Shared Memory Parallelism
• VTK-m
• “Big Data”
• Analysis Example



Slide Credits
• Trends in HPC

• Francisco Ortega, Structure Parallel Programming Workshop: http://franciscoraulortega.com/ws/lecture-1-overview.pptx

• Ken Moreland, UltraViz Workshop 2015: http://m.vtk.org/images/a/a5/VTKmUltraVis2015.pptx

• Exascale Initiative Steering Committee, SOS 14 2010: http://www.csm.ornl.gov/workshops/SOS14/documents/dosanjh_pres.pdf

• Scientific Visualization

• OpenGL

• Ed Angel and Dave Shreiner, Presentation at SIGGRAPH 2013: https://www.cs.unm.edu/~angel/SIGGRAPH13/An%20Introduction%20to%20OpenGL%20Programming.pptx

• Ray Tracing and Volume Rendering

• Ed Angel, Interactive Computer Graphics 5E, 2009: http://www.cs.utsa.edu/~jpq/Site/teaching/cg-s11/raytracing.ppt

• Joe Michael Kniss, University of Utah: http://www.cs.utah.edu/~jmk/papers/volumeRendering-g.ppt

• VTK

• Robert Putnam, Class Presentation at Boston University, 2010: www.bu.edu/tech/files/2010/10/VTK-Fall-2010.ppt

• Scott Schaefer, Class Presentation at Texas A&M: http://faculty.cs.tamu.edu/schaefer/teaching/645_Fall2015/lectures/volumetric.ppt

• ParaView

• Ken Moreland, Alan Scott, David DeMarle, Li-Ta Lo, Joseph Insley, and Rich Cook, Tutorial at Supercomputing 2015: http://www.paraview.org/Wiki/images/8/8e/ParaView_Tutorial_Slides.pptx

• Data Science at Scale

• In-Situ Visualization

• Ken Moreland, Alan Scott, David DeMarle, Li-Ta Lo, Joseph Insley, and Rich Cook, Tutorial at Supercomputing 2015: http://www.paraview.org/Wiki/images/8/8e/ParaView_Tutorial_Slides.pptx

• Image Databases

• Ken Moreland, Alan Scott, David DeMarle, Li-Ta Lo, Joseph Insley, and Rich Cook, Tutorial at Supercomputing 2015: http://www.paraview.org/Wiki/images/8/8e/ParaView_Tutorial_Slides.pptx

• John Patchett, Presentation at Kaiserlautern University, 2014: https://datascience.lanl.gov/data/KaiserslauternInSituPatchett.pptx

• Distributed Memory Parallelism

• Pavan Balajii and Torsten Hoefler, Presentation at PPoPP 2013: https://htor.inf.ethz.ch/teaching/mpi_tutorials/ppopp13/2013-02-24-ppopp-mpi-basic.pdf

• Elliott Slaughter, Presentation at Oak Ridge National Lab, 2016 :https://www.olcf.ornl.gov/wp-content/uploads/2016/01/Legion_Elliott_Slaughter.pptx

• Shared Memory Parallelism

• Chris Sewell, Guest Lectures at the University of Oregon 2014, and at Programming Models Workshop 2016: https://datascience.lanl.gov/data/Presentation2014Oregon.pdf

• Lars Arge, Presentation at the University of Aarhus, 2013: http://www.slideshare.net/ktoshik/io-efficient-algorithms-and-data-structures-34-lecture-by-lars-arge

• VTK-m

• Chris Sewell, Ken Moreland, and Robert Maynard, Presentation at the GPU Technology Conference 2016: http://m.vtk.org/images/3/36/GTC2016-VTKm.pptx

• Big Data

• David Wheeler, Class Presentation at George Mason University: www.dwheeler.com/essays/hadoop-spark.ppt

• Matei Zaharia, et. al., Tutorial at spark.apache.org: https://spark.apache.org/talks/overview.pptx

• Analysis Example
• Chris Sewell, Presentation at Supercomputing 2015: http://datascience.dsscale.org/wp-content/uploads/sites/3/2016/06/Large-ScaleCompute-IntensiveAnalysisViaACombinedIn-situAndCo-

schedulingWorkflowApproach.pdf



Trends in HPC
Power Wall, Cost of Data Movement, On-node Parallelism



Top 10 Supercomputers (November 2013)
Different architectures

Introduction to Parallel Computing, University of Oregon, IPCC
Francisco Ortega, Structure Parallel Programming Workshop: 
http://franciscoraulortega.com/ws/lecture-1-overview.pptx



Top 500 – Performance (November 2013)

Introduction to Parallel Computing, University of Oregon, IPCC
Francisco Ortega, Structure Parallel Programming Workshop: 
http://franciscoraulortega.com/ws/lecture-1-overview.pptx



What has happened in the last several years? 

• Processing chip manufacturers increased processor 
performance by increasing CPU clock frequency

• Riding Moore’s law

• Until the chips got too hot!
• Greater clock frequency  greater electrical power
• Pentium 4 heat sink     Frying an egg on a Pentium 4

• Add multiple cores to add performance
• Keep clock frequency same or reduced
• Keep lid on power requirements

Introduction to Parallel Computing, University of Oregon, IPCC

Francisco Ortega, Structure Parallel Programming Workshop: 
http://franciscoraulortega.com/ws/lecture-1-overview.pptx



What’s Driving Parallel Computing Architecture?

power wall

Introduction to Parallel Computing, University of Oregon, IPCC
Francisco Ortega, Structure Parallel Programming Workshop: 
http://franciscoraulortega.com/ws/lecture-1-overview.pptx



What’s Driving Parallel Computing Architecture?

von Neumann bottleneck!!
(memory wall)

Introduction to Parallel Computing, University of Oregon, IPCC
Francisco Ortega, Structure Parallel Programming Workshop: 
http://franciscoraulortega.com/ws/lecture-1-overview.pptx



Exascale Initiative Steering Committee, SOS 14 2010: 
http://www.csm.ornl.gov/workshops/SOS14/documents/dosanjh_pres.pdf



Exascale Design Point

From Marc Snir, Argonne National Laboratory: http://www.slideshare.net/marcsnir/resilience-at-exascale



AMD x86

NVIDIA GPU

Full x86 Core
+ Associated Cache
8 cores per die
MPI-Only feasible

2,880 cores collected in 15 SMX
Shared PC, Cache, Mem Fetches
Reduced control logic
MPI-Only not feasible

1mm

1 x86
core

1 Kepler
core

Ken Moreland, UltraViz Workshop 2015: 
http://m.vtk.org/images/a/a5/VTKmUltraVis2015.pptx



Inter-Node
Parallelism

Intra-Node
Parallelism Ken Moreland, UltraViz Workshop 2015: 

http://m.vtk.org/images/a/a5/VTKmUltraVis2015.pptx



HPC in the Cloud?

From http://www.slideshare.net/AmazonWebServices/transparency-and-control-with-aws-cloudtrail-and-aws-config and 
http://www.slideshare.net/abhijeetdesai/google-cluster-architecture 



OpenGL
Computer Graphics



In the Beginning …
• OpenGL 1.0 was released on July 1st, 1994

• Its pipeline was entirely fixed-function
• the only operations available were fixed by the 

implementation

• The pipeline evolved
• but remained based on fixed-function operation through

OpenGL versions 1.1 through 2.0 (Sept. 2004)

Primitive
Setup and 

Rasterization

Fragment 
Coloring and 

Texturing
Blending

Vertex
Data

Pixel
Data

Vertex 
Transform 

and Lighting

Texture
Store

Ed Angel and Dave Shreiner, Presentation at SIGGRAPH 2013
https://www.cs.unm.edu/~angel/SIGGRAPH13/An%20Introduction%20to%20OpenGL%20Programming.pptx



Beginnings of The Programmable Pipeline

• OpenGL 2.0 (officially) added programmable 
shaders

• vertex shading augmented the fixed-function transform 
and lighting stage

• fragment shading augmented the fragment coloring 
stage

• However, the fixed-function pipeline was still 
available

Primitive
Setup and 

Rasterization

Fragment 
Coloring and 

Texturing
Blending

Vertex
Data

Pixel
Data

Vertex 
Transform 

and Lighting

Texture
Store

Ed Angel and Dave Shreiner, Presentation at SIGGRAPH 2013
https://www.cs.unm.edu/~angel/SIGGRAPH13/An%20Introduction%20to%20OpenGL%20Programming.pptx



A Simplified Pipeline Model

Vertex
Processing

Rasterizer
Fragment 
Processing

Vertex
Shader

Fragment
Shader

GPU Data FlowApplication Framebuffer

Vertices Vertices Fragments Pixels

Ed Angel and Dave Shreiner, Presentation at SIGGRAPH 2013
https://www.cs.unm.edu/~angel/SIGGRAPH13/An%20Introduction%20to%20OpenGL%20Programming.pptx



OpenGL Programming in a 
Nutshell
• Modern OpenGL programs essentially do the 

following steps:
• Create shader programs

• Create buffer objects and load data into them

• “Connect” data locations with shader variables

• Render

Ed Angel and Dave Shreiner, Presentation at SIGGRAPH 2013
https://www.cs.unm.edu/~angel/SIGGRAPH13/An%20Introduction%20to%20OpenGL%20Programming.pptx



Application Framework 
Requirements
• OpenGL applications need a place to render into

• usually an on-screen window

• Need to communicate with native windowing 
system

• Each windowing system interface is different

• We use GLUT (more specifically, freeglut)
• simple, open-source library that works everywhere

• handles all windowing operations:
• opening windows

• input processing

Ed Angel and Dave Shreiner, Presentation at SIGGRAPH 2013
https://www.cs.unm.edu/~angel/SIGGRAPH13/An%20Introduction%20to%20OpenGL%20Programming.pptx



Representing Geometric Objects

• Geometric objects are represented using vertices

• A vertex is a collection of generic attributes
• positional coordinates
• colors
• texture coordinates
• any other data associated with that point in space

• Position stored in 4 dimensional homogeneous 
coordinates

• Vertex data must be stored in vertex buffer objects 
(VBOs)

• VBOs must be stored in vertex array objects (VAOs)

x

y

z

w

 
 
 
 
 
 

Ed Angel and Dave Shreiner, Presentation at SIGGRAPH 2013
https://www.cs.unm.edu/~angel/SIGGRAPH13/An%20Introduction%20to%20OpenGL%20Programming.pptx



OpenGL’s Geometric Primitives

• All primitives are specified by vertices

GL_TRIANGLE_STRIP
GL_TRIANGLE_FAN

GL_LINES GL_LINE_LOOPGL_LINE_STRIP

GL_TRIANGLES

GL_POINTS

Ed Angel and Dave Shreiner, Presentation at SIGGRAPH 2013
https://www.cs.unm.edu/~angel/SIGGRAPH13/An%20Introduction%20to%20OpenGL%20Programming.pptx



Our First Program

• We’ll render a cube with colors at each vertex

• Our example demonstrates:
• initializing vertex data

• organizing data for rendering

• simple object modeling
• building up 3D objects from geometric primitives

• building geometric primitives from vertices

Ed Angel and Dave Shreiner, Presentation at SIGGRAPH 2013
https://www.cs.unm.edu/~angel/SIGGRAPH13/An%20Introduction%20to%20OpenGL%20Programming.pptx



Initializing the Cube’s Data

• We’ll build each cube face from individual triangles

• Need to determine how much storage is required
• (6 faces)(2 triangles/face)(3 vertices/triangle)

const int NumVertices = 36;

• To simplify communicating with GLSL, we’ll use a vec4
class (implemented in C++) similar to GLSL’s vec4 type

• we’ll also typedef it to add logical meaning

typedef vec4  point4;
typedef vec4  color4;

Ed Angel and Dave Shreiner, Presentation at SIGGRAPH 2013
https://www.cs.unm.edu/~angel/SIGGRAPH13/An%20Introduction%20to%20OpenGL%20Programming.pptx



Initializing the Cube’s Data 
(cont’d)
• Before we can initialize our VBO, we need to stage 

the data

• Our cube has two attributes per vertex
• position

• color

• We create two arrays to hold the VBO data

point4  vPositions[NumVertices];
color4  vColors[NumVertices];

Ed Angel and Dave Shreiner, Presentation at SIGGRAPH 2013
https://www.cs.unm.edu/~angel/SIGGRAPH13/An%20Introduction%20to%20OpenGL%20Programming.pptx



Cube Data

• Vertices of a unit cube centered at origin
• sides aligned with axes

point4 positions[8] = {
point4( -0.5, -0.5,  0.5, 1.0 ),
point4( -0.5,  0.5,  0.5, 1.0 ),
point4(  0.5,  0.5,  0.5, 1.0 ),
point4(  0.5, -0.5,  0.5, 1.0 ),
point4( -0.5, -0.5, -0.5, 1.0 ),
point4( -0.5,  0.5, -0.5, 1.0 ),
point4(  0.5,  0.5, -0.5, 1.0 ),
point4(  0.5, -0.5, -0.5, 1.0 )

};

Ed Angel and Dave Shreiner, Presentation at SIGGRAPH 2013
https://www.cs.unm.edu/~angel/SIGGRAPH13/An%20Introduction%20to%20OpenGL%20Programming.pptx



Cube Data (cont’d)

• We’ll also set up an array of RGBA colors

color4 colors[8] = {
color4( 0.0, 0.0, 0.0, 1.0 ),  // black
color4( 1.0, 0.0, 0.0, 1.0 ),  // red
color4( 1.0, 1.0, 0.0, 1.0 ),  // yellow
color4( 0.0, 1.0, 0.0, 1.0 ),  // green
color4( 0.0, 0.0, 1.0, 1.0 ),  // blue
color4( 1.0, 0.0, 1.0, 1.0 ),  // magenta
color4( 1.0, 1.0, 1.0, 1.0 ),  // white
color4( 0.0, 1.0, 1.0, 1.0 )   // cyan

};

Ed Angel and Dave Shreiner, Presentation at SIGGRAPH 2013
https://www.cs.unm.edu/~angel/SIGGRAPH13/An%20Introduction%20to%20OpenGL%20Programming.pptx



Generating a Cube Face from 
Vertices
• To simplify generating the geometry, we use a convenience function quad()

• create two triangles for each face and assigns colors to the vertices

int Index = 0;  // global variable indexing into VBO arrays

void quad( int a, int b, int c, int d )
{

vColors[Index] = colors[a]; vPositions[Index] = positions[a]; 
Index++;

vColors[Index] = colors[b]; vPositions[Index] = positions[b]; 
Index++;

vColors[Index] = colors[c]; vPositions[Index] = positions[c]; 
Index++;

vColors[Index] = colors[a]; vPositions[Index] = positions[a]; 
Index++;

vColors[Index] = colors[c]; vPositions[Index] = positions[c]; 
Index++;

vColors[Index] = colors[d]; vPositions[Index] = positions[d]; 
Index++;
}

Ed Angel and Dave Shreiner, Presentation at SIGGRAPH 2013
https://www.cs.unm.edu/~angel/SIGGRAPH13/An%20Introduction%20to%20OpenGL%20Programming.pptx



Generating the Cube from Faces

• Generate 12 triangles for the cube
• 36 vertices with 36 colors

void colorcube()
{

quad( 1, 0, 3, 2 );
quad( 2, 3, 7, 6 );
quad( 3, 0, 4, 7 );
quad( 6, 5, 1, 2 );
quad( 4, 5, 6, 7 );
quad( 5, 4, 0, 1 );

}

Ed Angel and Dave Shreiner, Presentation at SIGGRAPH 2013
https://www.cs.unm.edu/~angel/SIGGRAPH13/An%20Introduction%20to%20OpenGL%20Programming.pptx



Vertex Array Objects (VAOs)

• VAOs store the data of an geometric object

• Steps in using a VAO
• generate VAO names by calling glGenVertexArrays()

• bind a specific VAO for initialization by calling 
glBindVertexArray()

• update VBOs associated with this VAO

• bind VAO for use in rendering

• This approach allows a single function call to specify all 
the data for an objects

• previously, you might have needed to make many calls to 
make all the data current 

Ed Angel and Dave Shreiner, Presentation at SIGGRAPH 2013
https://www.cs.unm.edu/~angel/SIGGRAPH13/An%20Introduction%20to%20OpenGL%20Programming.pptx



VAOs in Code

• Create a vertex array object

GLuint vao;

glGenVertexArrays( 1, &vao );

glBindVertexArray( vao );

Ed Angel and Dave Shreiner, Presentation at SIGGRAPH 2013
https://www.cs.unm.edu/~angel/SIGGRAPH13/An%20Introduction%20to%20OpenGL%20Programming.pptx



Storing Vertex Attributes

• Vertex data must be stored in a VBO, and associated 
with a VAO

• The code-flow is similar to configuring a VAO
• generate VBO names by calling glGenBuffers()
• bind a specific VBO for initialization by calling

glBindBuffer( GL_ARRAY_BUFFER, … )

• load data into VBO using 

glBufferData( GL_ARRAY_BUFFER, … )

• bind VAO for use in rendering glBindVertexArray()

Ed Angel and Dave Shreiner, Presentation at SIGGRAPH 2013
https://www.cs.unm.edu/~angel/SIGGRAPH13/An%20Introduction%20to%20OpenGL%20Programming.pptx



VBOs in Code

• Create and initialize a buffer object

GLuint buffer;
glGenBuffers( 1, &buffer );
glBindBuffer( GL_ARRAY_BUFFER, buffer );
glBufferData( GL_ARRAY_BUFFER, 

sizeof(vPositions) + 
sizeof(vColors), 

NULL, GL_STATIC_DRAW );
glBufferSubData( GL_ARRAY_BUFFER, 0,

sizeof(vPositions), vPositions
);
glBufferSubData( GL_ARRAY_BUFFER, 
sizeof(vPositions), 

sizeof(vColors), vColors );

Ed Angel and Dave Shreiner, Presentation at SIGGRAPH 2013
https://www.cs.unm.edu/~angel/SIGGRAPH13/An%20Introduction%20to%20OpenGL%20Programming.pptx



Connecting Vertex Shaders with 
Geometric Data
• Application vertex data enters the OpenGL pipeline 

through the vertex shader

• Need to connect vertex data to shader variables
• requires knowing the attribute location

• Attribute location can either be queried by calling 
glGetVertexAttribLocation()

Ed Angel and Dave Shreiner, Presentation at SIGGRAPH 2013
https://www.cs.unm.edu/~angel/SIGGRAPH13/An%20Introduction%20to%20OpenGL%20Programming.pptx



Vertex Array Code

• Associate shader variables with vertex arrays 
• do this after shaders are loaded

GLuint vPosition = 
glGetAttribLocation( program, “vPosition" );

glEnableVertexAttribArray( vPosition );
glVertexAttribPointer( vPosition, 4, GL_FLOAT,

GL_FALSE, 0,BUFFER_OFFSET(0) );

GLuint vColor = 
glGetAttribLocation( program,"vColor" );

glEnableVertexAttribArray( vColor );
glVertexAttribPointer( vColor, 4, GL_FLOAT, 

GL_FALSE, 0,BUFFER_OFFSET(sizeof(vPositions)) );

Ed Angel and Dave Shreiner, Presentation at SIGGRAPH 2013
https://www.cs.unm.edu/~angel/SIGGRAPH13/An%20Introduction%20to%20OpenGL%20Programming.pptx



Drawing Geometric Primitives

• For contiguous groups of vertices

glDrawArrays( GL_TRIANGLES, 0, NumVertices );

• Usually invoked in display callback

• Initiates vertex shader

Ed Angel and Dave Shreiner, Presentation at SIGGRAPH 2013
https://www.cs.unm.edu/~angel/SIGGRAPH13/An%20Introduction%20to%20OpenGL%20Programming.pptx



Simple Vertex Shader for Cube 
Example

#version 430

in vec4 vPosition;
in vec4 vColor;

out vec4 color;

void main()
{

color = vColor;
gl_Position = vPosition;

}

Ed Angel and Dave Shreiner, Presentation at SIGGRAPH 2013
https://www.cs.unm.edu/~angel/SIGGRAPH13/An%20Introduction%20to%20OpenGL%20Programming.pptx



The Simplest Fragment Shader

#version 430

in vec4 color;

out vec4 fColor; // fragment’s final color

void main()

{

fColor = color;

}

Ed Angel and Dave Shreiner, Presentation at SIGGRAPH 2013
https://www.cs.unm.edu/~angel/SIGGRAPH13/An%20Introduction%20to%20OpenGL%20Programming.pptx



Getting Your Shaders into OpenGL
• Shaders need to be 

compiled and linked to 
form an executable 
shader program

• OpenGL provides the 
compiler and linker

• A program must contain
• vertex and fragment 

shaders
• other shaders are 

optional

Create
Shader

Load Shader 
Source

Compile 
Shader

Create 
Program

Attach Shader 
to Program

Link Program

glCreateProgram()

glShaderSource()

glCompileShader()

glCreateShader()

glAttachShader()

glLinkProgram()

Use Program glUseProgram()

These 
steps need 
to be 
repeated 
for each 
type of 
shader in 
the shader 
program

Ed Angel and Dave Shreiner, Presentation at SIGGRAPH 2013
https://www.cs.unm.edu/~angel/SIGGRAPH13/An%20Introduction%20to%20OpenGL%20Programming.pptx



Determining Locations After 
Linking
• Assumes you already know the variables’ names

GLint loc = glGetAttribLocation( program, 
“name” );

GLint loc = glGetUniformLocation( program, 
“name” );

Ed Angel and Dave Shreiner, Presentation at SIGGRAPH 2013
https://www.cs.unm.edu/~angel/SIGGRAPH13/An%20Introduction%20to%20OpenGL%20Programming.pptx



Initializing Uniform Variable 
Values
• Uniform Variables

glUniform4f( index, x, y, z, w );

GLboolean transpose = GL_TRUE;  

// Since we’re C programmers

GLfloat mat[3][4][4] = { … };

glUniformMatrix4fv( index, 3, transpose, mat );

Ed Angel and Dave Shreiner, Presentation at SIGGRAPH 2013
https://www.cs.unm.edu/~angel/SIGGRAPH13/An%20Introduction%20to%20OpenGL%20Programming.pptx



Finishing the Cube Program

int main( int argc, char **argv )
{

glutInit( &argc, argv );
glutInitDisplayMode( GLUT_RGBA | GLUT_DOUBLE |GLUT_DEPTH 

);
glutInitWindowSize( 512, 512 );
glutCreateWindow( "Color Cube" );

glewInit();
init();

glutDisplayFunc( display );
glutKeyboardFunc( keyboard );
glutMainLoop();

return 0;
}

Ed Angel and Dave Shreiner, Presentation at SIGGRAPH 2013
https://www.cs.unm.edu/~angel/SIGGRAPH13/An%20Introduction%20to%20OpenGL%20Programming.pptx



Cube Program’s GLUT Callbacks

void display( void )
{

glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT 
);

glDrawArrays( GL_TRIANGLES, 0, NumVertices );
glutSwapBuffers();

}

void keyboard( unsigned char key, int x, int y ) 
{

switch( key ) {
case 033: case 'q': case 'Q':

exit( EXIT_SUCCESS );
break;

}
}

Ed Angel and Dave Shreiner, Presentation at SIGGRAPH 2013
https://www.cs.unm.edu/~angel/SIGGRAPH13/An%20Introduction%20to%20OpenGL%20Programming.pptx



Camera Analogy

• 3D is just like taking a photograph (lots of 
photographs!)

camera

tripod model

viewing
volume

Ed Angel and Dave Shreiner, Presentation at SIGGRAPH 2013
https://www.cs.unm.edu/~angel/SIGGRAPH13/An%20Introduction%20to%20OpenGL%20Programming.pptx



Transformations

• Transformations take us from one “space” to 
another

• All of our transforms are 4×4 matrices 

Model-View

Transform

Projection

Transform

Perspective

Division

(w)

Viewport

Transform

Modeling

Transform

Modeling

Transform

Object Coords.

World Coords. Eye Coords. Clip Coords.
Normalized

Device
Coords.

Vertex 
Data

2D Window
Coordinates

Ed Angel and Dave Shreiner, Presentation at SIGGRAPH 2013
https://www.cs.unm.edu/~angel/SIGGRAPH13/An%20Introduction%20to%20OpenGL%20Programming.pptx



Camera Analogy and 
Transformations
• Projection transformations

• adjust the lens of the camera

• Viewing transformations
• tripod–define position and orientation of the viewing 

volume in the world

• Modeling transformations
• moving the model

• Viewport transformations
• enlarge or reduce the physical photograph

Ed Angel and Dave Shreiner, Presentation at SIGGRAPH 2013
https://www.cs.unm.edu/~angel/SIGGRAPH13/An%20Introduction%20to%20OpenGL%20Programming.pptx























151173

141062

13951

12840

mmmm

mmmm

mmmm

mmmm

M

• A vertex is transformed by 4×4 matrices
• all affine operations are matrix multiplications

• All matrices are stored column-major in OpenGL
• this is opposite of what “C” programmers expect

• Matrices are always 
post-multiplied

• product of matrix and 
vector is 

3D Transformations

vM

Ed Angel and Dave Shreiner, Presentation at SIGGRAPH 2013
https://www.cs.unm.edu/~angel/SIGGRAPH13/An%20Introduction%20to%20OpenGL%20Programming.pptx



Specifying What You Can See

• Set up a viewing frustum to specify how much of 
the world we can see

• Done in two steps
• specify the size of the frustum (projection transform)

• specify its location in space (model-view transform)

• Anything outside of the viewing frustum is clipped
• primitive is either modified or discarded (if entirely 

outside frustum)

Ed Angel and Dave Shreiner, Presentation at SIGGRAPH 2013
https://www.cs.unm.edu/~angel/SIGGRAPH13/An%20Introduction%20to%20OpenGL%20Programming.pptx



Specifying What You Can See 
(cont’d)
• OpenGL projection model uses eye coordinates

• the “eye” is located at the origin

• looking down the -z axis

• Projection matrices use a six-plane model:
• near (image) plane and far (infinite) plane

• both are distances from the eye (positive values)

• enclosing planes
• top & bottom, left & right

Ed Angel and Dave Shreiner, Presentation at SIGGRAPH 2013
https://www.cs.unm.edu/~angel/SIGGRAPH13/An%20Introduction%20to%20OpenGL%20Programming.pptx



Specifying What You Can See 
(cont’d)

2

2

2

0 0

0 0

0 0

0 0 0 1

r l
r l r l

t b
t b t b

f n

f n f n

O

+
- -

+
- -

+-
- -

æ ö
ç ÷
ç ÷=
ç ÷
ç ÷ç ÷
è ø

Orthographic View Perspective View

2

2

( ) 2

0 0

0 0

0 0

0 0 1 0

n r l
r l r l

n t b
t b t b

f n fn

f n f n

P

+
- -

+
- -

- + -

- -

æ ö
ç ÷
ç ÷=
ç ÷
ç ÷ç ÷-è ø

Ed Angel and Dave Shreiner, Presentation at SIGGRAPH 2013
https://www.cs.unm.edu/~angel/SIGGRAPH13/An%20Introduction%20to%20OpenGL%20Programming.pptx



Viewing Transformations

• Position the camera/eye in the scene
• place the tripod down; aim camera

• To “fly through” a scene
• change viewing transformation and

redraw scene

• LookAt( eyex, eyey, eyez,
lookx, looky, lookz,
upx, upy, upz )

• up vector determines unique orientation

• careful of degenerate positions

tripod

Ed Angel and Dave Shreiner, Presentation at SIGGRAPH 2013
https://www.cs.unm.edu/~angel/SIGGRAPH13/An%20Introduction%20to%20OpenGL%20Programming.pptx



Creating the LookAt Matrix

n̂ = look-eye

look-eye

û = n̂´up

n̂´up

v̂ = û´ n̂

Þ

ux uy uz -(eye ×u)

vx vy vz -(eye × v)

-nx -ny -nz -(eye ×n)

0 0 0 1

æ

è

ç
ç
ç
ç
ç

ö

ø

÷
÷
÷
÷
÷

Ed Angel and Dave Shreiner, Presentation at SIGGRAPH 2013
https://www.cs.unm.edu/~angel/SIGGRAPH13/An%20Introduction%20to%20OpenGL%20Programming.pptx



Translation

÷
÷
÷
÷
÷
÷

ø

ö

ç
ç
ç
ç
ç
ç

è

æ

=

1000

100

010

001

),,(

z

y

x

zyx

t

t

t

tttT

• Move the origin to a new 
location

Ed Angel and Dave Shreiner, Presentation at SIGGRAPH 2013
https://www.cs.unm.edu/~angel/SIGGRAPH13/An%20Introduction%20to%20OpenGL%20Programming.pptx



Rotation

• Rotate coordinate system about an axis in space

Note, there’s a translation applied here 
to make things easier to see

Ed Angel and Dave Shreiner, Presentation at SIGGRAPH 2013
https://www.cs.unm.edu/~angel/SIGGRAPH13/An%20Introduction%20to%20OpenGL%20Programming.pptx



Rotation (cont’d)

÷
÷
÷

ø

ö

ç
ç
ç

è

æ

¢¢-

¢-¢

¢¢-

=

0

0

0

xy

xz

yz

S

( )

( )zyxu

zyxv

v

v ¢¢¢==

=

SuuIuuM tt )sin())(cos( qq +-+=

( )

÷
÷
÷
÷
÷
÷

ø

ö

ç
ç
ç
ç
ç
ç

è

æ

=q

1000

0

0

0

vR M

Ed Angel and Dave Shreiner, Presentation at SIGGRAPH 2013
https://www.cs.unm.edu/~angel/SIGGRAPH13/An%20Introduction%20to%20OpenGL%20Programming.pptx



Vertex Shader for Rotation of 
Cube

in vec4 vPosition;
in vec4 vColor;
out vec4 color;
uniform vec3 theta;

void main() 
{

// Compute the sines and cosines of theta for
// each of the three axes in one computation.
vec3 angles = radians( theta );
vec3 c = cos( angles );
vec3 s = sin( angles );

Ed Angel and Dave Shreiner, Presentation at SIGGRAPH 2013
https://www.cs.unm.edu/~angel/SIGGRAPH13/An%20Introduction%20to%20OpenGL%20Programming.pptx



Vertex Shader for Rotation of 
Cube (cont’d)

// Remember: these matrices are column-
major

mat4 rx = mat4( 1.0,  0.0,  0.0, 0.0,
0.0,  c.x,  s.x, 0.0,
0.0, -s.x,  c.x, 0.0,
0.0,  0.0,  0.0, 1.0 );

mat4 ry = mat4( c.y, 0.0, -s.y, 0.0,
0.0, 1.0,  0.0, 0.0,
s.y, 0.0,  c.y, 0.0,
0.0, 0.0,  0.0, 1.0 );

Ed Angel and Dave Shreiner, Presentation at SIGGRAPH 2013
https://www.cs.unm.edu/~angel/SIGGRAPH13/An%20Introduction%20to%20OpenGL%20Programming.pptx



Vertex Shader for Rotation of 
Cube (cont’d)

mat4 rz = mat4( c.z, -s.z, 0.0, 0.0,

s.z,  c.z, 0.0, 0.0,

0.0,  0.0, 1.0, 0.0,

0.0,  0.0, 0.0, 1.0 );

color = vColor;

gl_Position = rz * ry * rx * vPosition;

} 

Ed Angel and Dave Shreiner, Presentation at SIGGRAPH 2013
https://www.cs.unm.edu/~angel/SIGGRAPH13/An%20Introduction%20to%20OpenGL%20Programming.pptx



Sending Angles from Application

• Here, we compute our angles (Theta) in our mouse callback

GLuint theta;  // theta uniform location
vec3  Theta;   // Axis angles

void display( void )
{

glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT 
);

glUniform3fv( theta, 1, Theta );
glDrawArrays( GL_TRIANGLES, 0, NumVertices );

glutSwapBuffers();
}

Ed Angel and Dave Shreiner, Presentation at SIGGRAPH 2013
https://www.cs.unm.edu/~angel/SIGGRAPH13/An%20Introduction%20to%20OpenGL%20Programming.pptx



Lighting Principles

• Lighting simulates how objects reflect light
• material composition of object

• light’s color and position

• global lighting parameters

• Usually implemented in
• vertex shader for faster speed

• fragment shader for nicer shading

Ed Angel and Dave Shreiner, Presentation at SIGGRAPH 2013
https://www.cs.unm.edu/~angel/SIGGRAPH13/An%20Introduction%20to%20OpenGL%20Programming.pptx



Modified Phong Model

• Computes a color for each vertex using 
• Surface normals
• Diffuse and specular reflections
• Viewer’s position and viewing direction
• Ambient light
• Emission

• Vertex colors are interpolated across polygons by 
the rasterizer

• Phong shading does the same computation per pixel, 
interpolating the normal across the polygon

• more accurate results

Ed Angel and Dave Shreiner, Presentation at SIGGRAPH 2013
https://www.cs.unm.edu/~angel/SIGGRAPH13/An%20Introduction%20to%20OpenGL%20Programming.pptx



Fragment Shaders

• A shader that’s executed for each “potential” pixel
• fragments still need to pass several tests before making 

it to the framebuffer

• There are lots of effects we can do in fragment 
shaders

• Per-fragment lighting

• Texture and bump Mapping

• Environment (Reflection) Maps

Ed Angel and Dave Shreiner, Presentation at SIGGRAPH 2013
https://www.cs.unm.edu/~angel/SIGGRAPH13/An%20Introduction%20to%20OpenGL%20Programming.pptx



Shader Examples

• Vertex Shaders
• Moving vertices: height fields

• Per vertex lighting: height fields

• Per vertex lighting: cartoon shading

• Fragment Shaders
• Per vertex vs. per fragment lighting: cartoon shader

• Samplers: reflection Map

• Bump mapping

Ed Angel and Dave Shreiner, Presentation at SIGGRAPH 2013
https://www.cs.unm.edu/~angel/SIGGRAPH13/An%20Introduction%20to%20OpenGL%20Programming.pptx



Texture Mapping

s

t

x

y

z

image

geometry screen

Ed Angel and Dave Shreiner, Presentation at SIGGRAPH 2013
https://www.cs.unm.edu/~angel/SIGGRAPH13/An%20Introduction%20to%20OpenGL%20Programming.pptx



Texture Mapping and the OpenGL 
Pipeline
• Images and geometry flow through separate 

pipelines that join at the rasterizer
• “complex” textures do not affect geometric complexity

Geometry 
Pipeline

Pixel Pipeline

Rasterizer

Vertices

Pixels

Fragment 
Shader

Ed Angel and Dave Shreiner, Presentation at SIGGRAPH 2013
https://www.cs.unm.edu/~angel/SIGGRAPH13/An%20Introduction%20to%20OpenGL%20Programming.pptx



Applying Textures

• Three basic steps to applying a texture
1. specify the texture

• read or generate image

• assign to texture

• enable texturing

2. assign texture coordinates to vertices

3. specify texture parameters
• wrapping, filtering

Ed Angel and Dave Shreiner, Presentation at SIGGRAPH 2013
https://www.cs.unm.edu/~angel/SIGGRAPH13/An%20Introduction%20to%20OpenGL%20Programming.pptx



Ray Tracing and Volume 
Rendering
Advanced Graphics



Angel: Interactive Computer Graphics 

5E © Addison-Wesley 2009

Introduction

• OpenGL is based on a pipeline model in which 
primitives are rendered one at time

• No shadows (except by tricks or multiple renderings)
• No multiple reflections

• Global approaches
• Rendering equation
• Ray tracing
• Radiosity

• Commercial Ray Tracing Libraries
• Optix from Nvidia
• OSPRay and Embree from Intel

Ed Angel, Interactive Computer Graphics 5E, 2009: http://www.cs.utsa.edu/~jpq/Site/teaching/cg-s11/raytracing.ppt



Angel: Interactive Computer Graphics 

5E © Addison-Wesley 2009

Ray Tracing
• Follow rays of light from a point source

• Can account for reflection and transmission

Ed Angel, Interactive Computer Graphics 5E, 2009: http://www.cs.utsa.edu/~jpq/Site/teaching/cg-s11/raytracing.ppt



Angel: Interactive Computer Graphics 

5E © Addison-Wesley 2009

Ray Casting
• Only rays that reach the eye matter

• Reverse direction and cast rays

• Need at least one ray per pixel

Ed Angel, Interactive Computer Graphics 5E, 2009: http://www.cs.utsa.edu/~jpq/Site/teaching/cg-s11/raytracing.ppt



Angel: Interactive Computer Graphics 

5E © Addison-Wesley 2009

Shadow Rays

• Even if a point is visible, it will not be lit unless we 
can see a light source from that point

• Cast shadow or feeler rays

Ed Angel, Interactive Computer Graphics 5E, 2009: http://www.cs.utsa.edu/~jpq/Site/teaching/cg-s11/raytracing.ppt



Rendering

But how do we get the final color??

Joe Michael Kniss, University of Utah: 
http://www.cs.utah.edu/~jmk/papers/volumeRendering-g.ppt

Volume Data

Eye

Image plane

Ray Casting

r0
r1



Transfer Function
• Assign optical properties to data

• Color

• Opacity

Transfer function

T(x)

Joe Michael Kniss, University of Utah: 
http://www.cs.utah.edu/~jmk/papers/volumeRendering-g.ppt



Rendering

Joe Michael Kniss, University of Utah: 
http://www.cs.utah.edu/~jmk/papers/volumeRendering-g.ppt

Solution: Sum (Riemann)

r0
r1

r0 r1


1

0

)(

r

r

dxxT xxT
n

i

i 
0

)(



Refraction

• Light bends as it moves through different materials 
• E.g., moving from air to water

• Different speeds for different
materials

• See: Index of Refraction

• Snell’s Law
Ni * Sin(Ai) = Nr * Sin(Ar)

Angel: Interactive Computer Graphics 

5E © Addison-Wesley 2009

Ed Angel, Interactive Computer Graphics 5E, 2009: http://www.cs.utsa.edu/~jpq/Site/teaching/cg-s11/raytracing.ppt



Angel: Interactive Computer Graphics 

5E © Addison-Wesley 2009

Building a Ray Tracer

• Best expressed recursively

• Can remove recursion later

• Image based approach
• For each ray …….

• Find intersection with closest surface
• Need whole object database available

• Complexity of calculation limits object types

• Compute lighting at surface

• Trace reflected and transmitted rays

Ed Angel, Interactive Computer Graphics 5E, 2009: http://www.cs.utsa.edu/~jpq/Site/teaching/cg-s11/raytracing.ppt



KD-Tree Search Structure

From https://courses.cs.washington.edu/courses/csep521/99sp/lectures/lecture15/sld031.htm



VTK
The Visualization Toolkit



Introduction

*Adapted from The ParaView 

Tutorial, Moreland

• Visualization: converting raw data to a form that is viewable and 

understandable to humans.

• Scientific visualization: specifically concerned with data that has 

a well-defined representation in 2D or 3D space (e.g., from 

simulation mesh or scanner).

Robert Putnam, Class Presentation at Boston University, 2010
www.bu.edu/tech/files/2010/10/VTK-Fall-2010.ppt



VTK

Visualization Toolkit

– Open source

– Set of object-oriented class libraries for visualization and data analysis

– Several language interfaces

• C++

• Tcl

• Java

• Python

– Portable (MS Windows, Linux, OSX)

– Active developer community

– Good documentation available, free and otherwise

– Professional support services available from Kitware

Robert Putnam, Class Presentation at Boston University, 2010
www.bu.edu/tech/files/2010/10/VTK-Fall-2010.ppt



VTK terminology/model

Source/ 

Reader

Filter Renderer

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-

data/geometry/topology graphics

Mapper

“Scene"

Lights, Camera

DataObject ProcessObject

Actor

RenderWindow

Robert Putnam, Class Presentation at Boston University, 2010
www.bu.edu/tech/files/2010/10/VTK-Fall-2010.ppt



Pipeline -> Sample Code

vtkStructuredGridReader reader

reader SetFileName "density.vtk"

reader Update

vtkContourFilter iso

iso SetInputConnection [reader GetOutputPort]

iso SetValue 0 .26

vtkPolyDataMapper isoMapper

isoMapper SetInputConnection [iso GetOutputPort]

vtkActor isoActor

isoActor SetMapper isoMapper

vtkRenderer ren1

ren1 AddActor isoActor

vtkRenderWindow renWin

renWin AddRenderer ren1

renWin SetSize 500 500

renWin Render

Reader

Filter

Mapper

Actor

Renderer

RenderWindow

Robert Putnam, Class Presentation at Boston University, 2010
www.bu.edu/tech/files/2010/10/VTK-Fall-2010.ppt



Examples of Dataset Types

 Structured Points (Image Data)

– regular in both topology and geometry

– examples:  lines, pixels, voxels

– applications: imaging CT, MRI

 Rectilinear Grid

– regular topology but geometry only partially 

regular

– examples: pixels, voxels

 Structured Grid (Curvilinear)

– regular topology and irregular geometry

– examples: quadrilaterals, hexahedron

– applications: fluid flow, heat transfer

Robert Putnam, Class Presentation at Boston University, 2010
www.bu.edu/tech/files/2010/10/VTK-Fall-2010.ppt



Examples of Dataset Types    (cont)

 Polygonal Data

– irregular in both topology and geometry

– examples: vertices, polyvertices, lines, 

polylines, polygons, triangle strips

 Unstructured Grid 

– irregular in both topology and geometry

– examples: any combination of cells

– applications: finite element analysis, 

structural design, vibration

Robert Putnam, Class Presentation at Boston University, 2010
www.bu.edu/tech/files/2010/10/VTK-Fall-2010.ppt



Examples of Cell Types

Robert Putnam, Class Presentation at Boston University, 2010
www.bu.edu/tech/files/2010/10/VTK-Fall-2010.ppt



Code – cone2.tcl

Editor cone2.tcl:

vtkConeSource cone

cone SetResolution 100

vtkPolyDataMapper coneMapper

coneMapper SetInput [cone GetOutput]

vtkActor coneActor

coneActor SetMapper coneMapper

[coneActor GetProperty] SetColor 1.0 0.0 0.0

vtkRenderer ren1         

ren1 SetBackground 0.0 0.0 0.0  

ren1 AddActor coneActor

vtkRenderWindow renWin         

renWin SetSize 500 500         

renWin AddRenderer ren1

vtkRenderWindowInteractor iren

iren SetRenderWindow renWin      

iren Initialize 

Robert Putnam, Class Presentation at Boston University, 2010
www.bu.edu/tech/files/2010/10/VTK-Fall-2010.ppt



VTK - Readers

 Image and Volume Readers

– vtkStructuredPointsReader - read VTK structured points data files

– vtkSLCReader - read SLC structured points files

– vtkTIFFReader - read files in TIFF format

– vtkVolumeReader - read image (volume) files

– vtkVolume16Reader - read 16-bit image (volume) files

 Structured Grid Readers

– vtkStructuredGridReader - read VTK structured grid data files

– vtkPLOT3DReader - read structured grid PLOT3D files

 Rectilinear Grid Readers

– vtkRectilinearGridReader - read VTK rectilinear grid data files

 Unstructured Grid Readers

– vtkUnstructuredGridReader - read VTK unstructured grid data files

Robert Putnam, Class Presentation at Boston University, 2010
www.bu.edu/tech/files/2010/10/VTK-Fall-2010.ppt



VTK - Readers

 Polygonal Data Readers

– vtkPolyDataReader - read VTK polygonal data files

– vtkBYUReader - read MOVIE.BYU files

– vtkMCubesReader - read binary marching cubes files

– vtkOBJReader - read Wavefront (Maya) .obj files

– vtkPLYReader - read Stanford University PLY polygonal data files

– vtkSTLReader - read stereo-lithography files

– vtkUGFacetReader - read EDS Unigraphic facet files

 Image and Volume Readers (add’l)

– vtkBMPReader - read PC bitmap files

– vtkDEMReader - read digital elevation model files

– vtkJPEGReader - read JPEG files

– vtkImageReader - read various image files

– vtkPNMReader - read PNM (ppm, pgm, pbm) files

– vtkPNGRReader - read Portable Network Graphic files

Robert Putnam, Class Presentation at Boston University, 2010
www.bu.edu/tech/files/2010/10/VTK-Fall-2010.ppt



Clipping, Cutting, Subsampling

Selection Algorithms

- Clipping

• can reveal internal details of surface 

• VTK - vtkClipDataSet

- Cutting/Slicing

• cutting through a dataset with a surface

• VTK - vtkCutter

- Subsampling

• reduces data size by selecting a subset of 

the original data

• VTK - vtkExtractGrid

Robert Putnam, Class Presentation at Boston University, 2010
www.bu.edu/tech/files/2010/10/VTK-Fall-2010.ppt



Contouring

 Scalar Algorithms  (cont)

– Contouring

• construct a boundary between distinct regions, two steps:

– explore space to find points near contour

– connect points into contour (2D) or surface (3D)

• 2D contour map (isoline):

– applications: elevation contours from topography, pressure contours 

(weather maps) from meteorology3D isosurface:

• 3D isosurface:

– applications: tissue surfaces from tomography, constant pressure or 

temperature in fluid flow, implicit surfaces from math and CAD

– VTK

• vtkContourFilter

Robert Putnam, Class Presentation at Boston University, 2010
www.bu.edu/tech/files/2010/10/VTK-Fall-2010.ppt



Marching Cubes

Scott Schaefer, Class Presentation at Texas A&M: 
http://faculty.cs.tamu.edu/schaefer/teaching/645_Fall2015/lectures/volumetric.ppt



Contour Trees
• Contour trees encode the topological changes that occur to the contour as the 

isovalue ranges between its minimum and maximum values

• Contour trees can be used to identify the most “important” isovalues in a data 
set according to various metrics (e.g., persistence / prominence)

From “Computing Contour Trees in All Dimensions” Hamish Carr, Jack Snoeyink, and Ulrike Axen. Computational Geometry: Theory and Applications, 2003.

W. Widanagamaachchi, P.-T. Bremer, C. Sewell, L.-T. Lo, J. Ahrens, and V. Pascucci. Data-Parallel Halo Finding with 
Variable Linking Lengths. Proc. of the IEEE Symposium on Large-Scale Data Analysis and Visualization, Nov. 2014.



Code – Contour (isosurface)

Editor: isosurface.tcl

. . .

vtkStructuredGridReader reader         

reader SetFileName “density.vtk”         

reader Update        

vtkContourFilter iso         

iso SetInputConnection [reader GetOutputPort]         

iso SetValue 0 0.26        

vtkPolyDataMapper isoMapper         

isoMapper SetInputConnection [iso GetOutputPort]         

eval isoMapper SetScalarRange [[reader GetOutput] GetScalarRange]

vtkActor isoActor         

isoActor SetMapper isoMapper

. . .

Robert Putnam, Class Presentation at Boston University, 2010
www.bu.edu/tech/files/2010/10/VTK-Fall-2010.ppt



Oriented Glyphs

 Vector Algorithms  (cont)

– Oriented Glyphs

• orientation indicates direction

• scale indicates magnitude

• color indicates magnitude, pressure, 

temperature, or any variable

– VTK

• vtkGlyph3D

Robert Putnam, Class Presentation at Boston University, 2010
www.bu.edu/tech/files/2010/10/VTK-Fall-2010.ppt



Code – Oriented Glyphs

Editor: glyph.tcl
vtkArrowSource arrow         

arrow SetTipResolution 6         

arrow SetTipRadius 0.1         

arrow SetTipLength 0.35         

arrow SetShaftResolution 6         

arrow SetShaftRadius 0.03  

vtkGlyph3D glyph         

glyph SetInput [reader GetOutputPort]         

glyph SetSource [arrow GetOutputPort]         

glyph SetVectorModeToUseVector         

glyph SetColorModeToColorByScalar         

glyph SetScaleModeToDataScalingOff         

glyph OrientOn         

glyph SetScaleFactor 0.2      

vtkPolyDataMapper glyphMapper         

glyphMapper SetInput [glyph GetOutput]         

glyphMapper SetLookupTable lut         

glyphMapper ScalarVisibilityOn         

eval glyphMapper SetScalarRange [[reader GetOutput] GetScalarRange]

Robert Putnam, Class Presentation at Boston University, 2010
www.bu.edu/tech/files/2010/10/VTK-Fall-2010.ppt



Field Lines

 Vector Algorithms  (cont)

– Field Lines

• Fluid flow is described by a vector field in three dimensions for steady (fixed time) 

flows or four dimensions for unsteady (time varying) flows

• Three techniques for determining flow

– Pathline (Trace)

• tracks particle through unsteady (time-varying) flow

• shows particle trajectories over time

• rake releases particles from multiple positions at the same time instant

• reveals compression, vorticity

– Streamline

• tracks particle through steady (fixed-time) flow

• holds flow steady at a fixed time

• snapshot of flow at a given time instant

– Streakline

• particles released from the same position over a time interval (time-varying)

• snapshot of the variation of flow over time

• example: dye steadily injected into fluid at a fixed point

Robert Putnam, Class Presentation at Boston University, 2010
www.bu.edu/tech/files/2010/10/VTK-Fall-2010.ppt



Field Lines

Streamlines

• Lines show particle flow 

• VTK – vtkStreamTracer

Streamlets

• half way between streamlines and glyphs

• VTK - vtkStreamTracer, vtkGlyph3D

Streamribbon

• rake of two particles to create a ribbon

• VTK - vtkStreamTracer, vtkRuledSurfaceFilter

Streamtube

• circular rake of particles to create a tube

• VTK - vtkStreamTracer, vtkTubeFilter

Robert Putnam, Class Presentation at Boston University, 2010
www.bu.edu/tech/files/2010/10/VTK-Fall-2010.ppt



Code – Streamlines
Editor: streamLines.tcl
vtkPointSource seeds          

seeds SetRadius 3.0          

eval seeds SetCenter [[reader GetOutput] GetCenter]          

seeds SetNumberOfPoints 100        

vtkRungeKutta4 integ

vtkStreamTracer streamer          

streamer SetInputConnection [reader GetOutputPort]          

streamer SetSourceConnection [seeds GetOutputPort]          

streamer SetMaximumPropagation 100          

streamer SetMaximumPropagationUnitToTimeUnit

streamer SetInitialIntegrationStepUnitToCellLengthUnit

streamer SetInitialIntegrationStep 0.1          

streamer SetIntegrationDirectionToBoth

streamer SetIntegrator integ

vtkPolyDataMapper mapStreamLines

mapStreamLines SetInputConnection [streamer GetOutputPort]          

eval mapStreamLines SetScalarRange [[reader GetOutput] GetScalarRange]   

vtkActor streamLineActor

streamLineActor SetMapper mapStreamLines

Robert Putnam, Class Presentation at Boston University, 2010
www.bu.edu/tech/files/2010/10/VTK-Fall-2010.ppt



Code – Streamtubes
Editor: streamTubes.varyRadius.tcl
vtkPointSource seeds          

seeds SetRadius 1.0

seeds SetNumberOfPoints 50

vtkRungeKutta4 integ

vtkStreamTracer streamer          

streamer SetInputConnection  [reader GetOutputPort]          

streamer SetSourceConnection [seeds GetOutputPort]          

. . .       

vtkTubeFilter streamTube

streamTube SetInputConnection [streamer GetOutputPort]

streamTube SetRadius 0.01

streamTube SetNumberOfSides 6

#    streamTube SetVaryRadiusToVaryRadiusOff

streamTube SetVaryRadiusToVaryRadiusByScalar

vtkPolyDataMapper mapStreamTube

mapStreamTube SetInputConnection [streamTube GetOutputPort]

mapStreamTube SetLookupTable lut

eval mapStreamTube SetScalarRange  [[[[reader GetOutput] GetPointData] GetScalars] GetRange]

vtkActor streamTubeActor

streamTubeActor SetMapper mapStreamTube

[streamTubeActor GetProperty] BackfaceCullingOn

Robert Putnam, Class Presentation at Boston University, 2010
www.bu.edu/tech/files/2010/10/VTK-Fall-2010.ppt



VTK - Writers

 Polygonal Data Writers

– vtkBYUWriter - write MOVIE.BYU files

– vtkCGMWriter - write 2D polygonal data as a CGM file

– vtkIVWriter - write Inventor files

– vtkMCubesWriter - write triangles in marching cubes format

– vtkPolyDataWriter - write VTK polygonal data files

– vtkPLYWriter - write Standford University PLY polygonal data files

– vtkSTLWriter - write stereo-lithography files

 Image and Volume writers

– vtkBMPwriter - write PC bitmap files

– vtkJPEGwriter - write images in JPEG format

– vtkPostscriptWriter – write image files in Postscript format

– vtkPNMwriter - write PNM (ppm, pgm, pbm) image files

– vtkPNGwriter - write image file in Portable Network Graphic format

– vtkTIFFWriter – write image files in TIFF format

– vtkStructuredPointsWriter – write a vtkStructuredPoints file

Robert Putnam, Class Presentation at Boston University, 2010
www.bu.edu/tech/files/2010/10/VTK-Fall-2010.ppt



ParaView
Large-scale Scientific Visualization



What is ParaView?

• An open-source, scalable, multi-platform 
visualization application.

• Support for distributed computation models to 
process large data sets.

• An open, flexible, and intuitive user interface.

• An extensible, modular architecture based on open 
standards.

• A flexible BSD 3 Clause license

• Commercial maintenance and support.

Ken Moreland, Alan Scott, David DeMarle, Li-Ta Lo, Joseph Insley, and Rich Cook, Tutorial at Supercomputing 2015
http://www.paraview.org/Wiki/images/8/8e/ParaView_Tutorial_Slides.pptx



ParaView Application Architecture

MPIOpenGL IceT Etc.

VTK

ParaView Server

ParaView Client pvpython Custom App

UI (Qt Widgets, Python Wrappings)

ParaWeb Catalyst

Ken Moreland, Alan Scott, David DeMarle, Li-Ta Lo, Joseph Insley, and Rich Cook, Tutorial at Supercomputing 2015
http://www.paraview.org/Wiki/images/8/8e/ParaView_Tutorial_Slides.pptx



Data Types

Uniform Rectilinear
(vtkImageData)

Non-Uniform Rectilinear
(vtkRectilinearData)

Curvilinear
(vtkStructuredData)

Polygonal
(vtkPolyData)

Unstructured Grid
(vtkUnstructuredGrid)

Multi-block
Hierarchical Adaptive 

Mesh Refinement 
(AMR)

Hierarchical Uniform 
AMR

Octree

Ken Moreland, Alan Scott, David DeMarle, Li-Ta Lo, Joseph Insley, and Rich Cook, Tutorial at Supercomputing 2015
http://www.paraview.org/Wiki/images/8/8e/ParaView_Tutorial_Slides.pptx



User Interface
Menu Bar

Toolbars

Pipeline Browser

Properties Panel

3D View

Advanced Toggle

Ken Moreland, Alan Scott, David DeMarle, Li-Ta Lo, Joseph Insley, and Rich Cook, Tutorial at Supercomputing 2015
http://www.paraview.org/Wiki/images/8/8e/ParaView_Tutorial_Slides.pptx



Creating a Cylinder Source

1. Go to the Source menu and select Cylinder.

2. Click the Apply button to accept the default 
parameters.

3. Increase the Resolution parameter.

4. Click the                   button again.

5. Delete the Cylinder.

Ken Moreland, Alan Scott, David DeMarle, Li-Ta Lo, Joseph Insley, and Rich Cook, Tutorial at Supercomputing 2015
http://www.paraview.org/Wiki/images/8/8e/ParaView_Tutorial_Slides.pptx



Geometry Representations

Points Wireframe Surface Surface
with Edges

Volume

Ken Moreland, Alan Scott, David DeMarle, Li-Ta Lo, Joseph Insley, and Rich Cook, Tutorial at Supercomputing 2015
http://www.paraview.org/Wiki/images/8/8e/ParaView_Tutorial_Slides.pptx



Calculator

Contour

Clip

Slice

Threshold

Extract Subset

Common Filters
Glyph

Stream Tracer

Warp (vector)

Group Datasets

Extract Level

Ken Moreland, Alan Scott, David DeMarle, Li-Ta Lo, Joseph Insley, and Rich Cook, Tutorial at Supercomputing 2015
http://www.paraview.org/Wiki/images/8/8e/ParaView_Tutorial_Slides.pptx



Apply a Filter

Change parameters to create an isosurface at Temp = 400K.

Change to Temp

Change to 400

Ken Moreland, Alan Scott, David DeMarle, Li-Ta Lo, Joseph Insley, and Rich Cook, Tutorial at Supercomputing 2015
http://www.paraview.org/Wiki/images/8/8e/ParaView_Tutorial_Slides.pptx



Histogram / Bar Chart

1. Select disk_out_ref.ex2.

2. Filters → Data Analysis → Histogram

3. Change Input Array to Temp.

4.

Ken Moreland, Alan Scott, David DeMarle, Li-Ta Lo, Joseph Insley, and Rich Cook, Tutorial at Supercomputing 2015
http://www.paraview.org/Wiki/images/8/8e/ParaView_Tutorial_Slides.pptx



Make an Animation

1. Sources → Sphere, 

2. Make animation view visible.

3. Change No. Frames to 50.

4. Select Sphere1, Start Theta, press

5. Double-click Sphere1 – Start Theta

6. Make New keyframe.

7. First keyframe value→360, second keyframe
time→0.5 value→0.

8. Click OK.

Ken Moreland, Alan Scott, David DeMarle, Li-Ta Lo, Joseph Insley, and Rich Cook, Tutorial at Supercomputing 2015
http://www.paraview.org/Wiki/images/8/8e/ParaView_Tutorial_Slides.pptx



Golevka Asteroid vs. 10 Megaton Explosion

• CTH shock physics, over 1 billion cells

Ken Moreland, Alan Scott, David DeMarle, Li-Ta Lo, Joseph Insley, and Rich Cook, Tutorial at Supercomputing 2015
http://www.paraview.org/Wiki/images/8/8e/ParaView_Tutorial_Slides.pptx



Polar Vortex Breakdown
• SEAM Climate Modeling, 1 billion cells (500 million 

cells visualized).

Ken Moreland, Alan Scott, David DeMarle, Li-Ta Lo, Joseph Insley, and Rich Cook, Tutorial at Supercomputing 2015
http://www.paraview.org/Wiki/images/8/8e/ParaView_Tutorial_Slides.pptx



Objects-in-Crosswind Fire
• Coupled SIERRA/Fuego/Syrinx/Calore, 10 million 

unstructured hexahedra

Ken Moreland, Alan Scott, David DeMarle, Li-Ta Lo, Joseph Insley, and Rich Cook, Tutorial at Supercomputing 2015
http://www.paraview.org/Wiki/images/8/8e/ParaView_Tutorial_Slides.pptx



Large Scale AMR

Ken Moreland, Alan Scott, David DeMarle, Li-Ta Lo, Joseph Insley, and Rich Cook, Tutorial at Supercomputing 2015
http://www.paraview.org/Wiki/images/8/8e/ParaView_Tutorial_Slides.pptx



Wing with Unsteady Crossflow from Synthetic Jet (3.3B tet)

Ken Moreland, Alan Scott, David DeMarle, Li-Ta Lo, Joseph Insley, and Rich Cook, Tutorial at Supercomputing 2015
http://www.paraview.org/Wiki/images/8/8e/ParaView_Tutorial_Slides.pptx



Wake of Deflected Wing Flap

Ken Moreland, Alan Scott, David DeMarle, Li-Ta Lo, Joseph Insley, and Rich Cook, Tutorial at Supercomputing 2015
http://www.paraview.org/Wiki/images/8/8e/ParaView_Tutorial_Slides.pptx



Choosing Color Maps

  

“Within this colormap you can see detail of the structures over a wide range of 

temperatures to a greater degree than previously available.  The ability to see this level of 

detail in the eddies and currents is essential to develop an intuition of the ocean 

dynamics.  This intuition leads us to choose further analysis, which may then lead to 

quantifiable conclusions.” 

Mark Petersen, PhD   Climate Ocean Sea Ice Modeling Group, Los Alamos National Laboratory

Ocean images from “Understanding via Color”, 2015, by Francesca Samsel



Client-Render Server-Data Server

Client
Data

Server

Render

Server

Ken Moreland, Alan Scott, David DeMarle, Li-Ta Lo, Joseph Insley, and Rich Cook, Tutorial at Supercomputing 2015
http://www.paraview.org/Wiki/images/8/8e/ParaView_Tutorial_Slides.pptx



Data Parallel Pipelines
• Duplicate pipelines run independently on different 

partitions of data.

Ken Moreland, Alan Scott, David DeMarle, Li-Ta Lo, Joseph Insley, and Rich Cook, Tutorial at Supercomputing 2015
http://www.paraview.org/Wiki/images/8/8e/ParaView_Tutorial_Slides.pptx



Data Parallel Pipelines
• Some operations will work regardless.

• Example: Clipping.

Ken Moreland, Alan Scott, David DeMarle, Li-Ta Lo, Joseph Insley, and Rich Cook, Tutorial at Supercomputing 2015
http://www.paraview.org/Wiki/images/8/8e/ParaView_Tutorial_Slides.pptx



Data Parallel Pipelines
• Some operations will work regardless.

• Example: Clipping.

Ken Moreland, Alan Scott, David DeMarle, Li-Ta Lo, Joseph Insley, and Rich Cook, Tutorial at Supercomputing 2015
http://www.paraview.org/Wiki/images/8/8e/ParaView_Tutorial_Slides.pptx



Data Parallel Pipelines
• Some operations will work regardless.

• Example: Clipping.

Ken Moreland, Alan Scott, David DeMarle, Li-Ta Lo, Joseph Insley, and Rich Cook, Tutorial at Supercomputing 2015
http://www.paraview.org/Wiki/images/8/8e/ParaView_Tutorial_Slides.pptx



Data Parallel Pipelines
• Some operations will have problems.

• Example: External Faces

Ken Moreland, Alan Scott, David DeMarle, Li-Ta Lo, Joseph Insley, and Rich Cook, Tutorial at Supercomputing 2015
http://www.paraview.org/Wiki/images/8/8e/ParaView_Tutorial_Slides.pptx



Data Parallel Pipelines
• Some operations will have problems.

• Example: External Faces

Ken Moreland, Alan Scott, David DeMarle, Li-Ta Lo, Joseph Insley, and Rich Cook, Tutorial at Supercomputing 2015
http://www.paraview.org/Wiki/images/8/8e/ParaView_Tutorial_Slides.pptx



Data Parallel Pipelines
• Ghost cells can solve most of these problems.

Ken Moreland, Alan Scott, David DeMarle, Li-Ta Lo, Joseph Insley, and Rich Cook, Tutorial at Supercomputing 2015
http://www.paraview.org/Wiki/images/8/8e/ParaView_Tutorial_Slides.pptx



Data Parallel Pipelines
• Ghost cells can solve most of these problems.

Ken Moreland, Alan Scott, David DeMarle, Li-Ta Lo, Joseph Insley, and Rich Cook, Tutorial at Supercomputing 2015
http://www.paraview.org/Wiki/images/8/8e/ParaView_Tutorial_Slides.pptx



Parallel Rendering

Ken Moreland, Alan Scott, David DeMarle, Li-Ta Lo, Joseph Insley, and Rich Cook, Tutorial at Supercomputing 2015
http://www.paraview.org/Wiki/images/8/8e/ParaView_Tutorial_Slides.pptx



Parallel Rendering

Ken Moreland, Alan Scott, David DeMarle, Li-Ta Lo, Joseph Insley, and Rich Cook, Tutorial at Supercomputing 2015
http://www.paraview.org/Wiki/images/8/8e/ParaView_Tutorial_Slides.pptx

Ed Angel, http://slideplayer.com/slide/5186942/



ParaView Web

• Web remote visualization framework.

• ParaView client on the web.

Ken Moreland, Alan Scott, David DeMarle, Li-Ta Lo, Joseph Insley, and Rich Cook, Tutorial at Supercomputing 2015
http://www.paraview.org/Wiki/images/8/8e/ParaView_Tutorial_Slides.pptx



ParaView Alternatives

• VisIt – also open-source and built on VTK

• EnSight - commercial

Images from http://www.nersc.gov/users/data-analytics/data-visualization/visit-2/ 
and https://www.ensight.com/flow-3d-post-processing/



In-Situ Visualization
Catalyst



System Parameter 2011 “2018” Factor Change

System peak 2 PF 1 EF 500

Power 6 MW ≤20 MW 3

System Memory 0.3 PB 32-64 PB 33

Node Performance 0.125 Tf/s 1 TF 10 TF 8-80

Node Concurrency 12 1,000 10,000 83-830

Network BW 1.5 GB/s 100 GB/s 1,000 GB/s 66-660

System Size (nodes) 18,700 1M 100k 50

Total Concurrency 225 K 10 B 100 B 40k-400k

Storage Capacity 15 PB 300-1,000 PB 20-67

I/O BW 0.2 TB/s 20-60 TB/s 100-300

Why In Situ?

Source: “Scientific Discovery at the Exascale: Report from the DOE ASCR 2011 Workshop on Exascale Data Management, Analysis and Visualization.”

Ken Moreland, Alan Scott, David DeMarle, Li-Ta Lo, Joseph Insley, and Rich Cook, Tutorial at Supercomputing 2015
http://www.paraview.org/Wiki/images/8/8e/ParaView_Tutorial_Slides.pptx



Simulation

ParaView Catalyst

# Create the reader and set the filename. 

reader = servermanager.sources.Reader(FileNames=path)

view = servermanager.CreateRenderView()

repr = servermanager.CreateRepresentation(reader, view)

reader.UpdatePipeline()

dataInfo = reader.GetDataInformation()

pDinfo = dataInfo.GetPointDataInformation()

arrayInfo = pDInfo.GetArrayInformation("displacement9")

if arrayInfo:

# get the range for the magnitude of displacement9

range = arrayInfo.GetComponentRange(-1)

lut = servermanager.rendering.PVLookupTable()

lut.RGBPoints  = [range[0], 0.0, 0.0, 1.0,

range[1], 1.0, 0.0, 0.0]

lut.VectorMode = "Magnitude" 

repr.LookupTable = lut

repr.ColorArrayName = "displacement9"

repr.ColorAttributeType = "POINT_DATA"

Statistics

Polygonal Output
with Field Data

Script Export

Augmented 
script in 
input deck.

Rendered Images

Output 
Processed 
Data

In Situ Analysis and Visualization

Series Data

Ken Moreland, Alan Scott, David DeMarle, Li-Ta Lo, Joseph Insley, and Rich Cook, Tutorial at Supercomputing 2015
http://www.paraview.org/Wiki/images/8/8e/ParaView_Tutorial_Slides.pptx



Access to More Data

Post-processing In situ processing

CTH (Sandia) simulation with roughly equal data stored at simulation time

Reflections and shadows added in post-processing for both examples

Dump 
Times

Ken Moreland, Alan Scott, David DeMarle, Li-Ta Lo, Joseph Insley, and Rich Cook, Tutorial at Supercomputing 2015
http://www.paraview.org/Wiki/images/8/8e/ParaView_Tutorial_Slides.pptx



ParaView GUI Plugin

• Creates Catalyst scripts to use with simulation runs

• Similar to using ParaView interactively

• Setup desired pipelines

• Ideally, start with a representative data set from the 
simulation

• Extra pipeline information to tell what to output during 
simulation run

• Add in data extract writers

• Create screenshots to output

• Both require file name and write frequency

Ken Moreland, Alan Scott, David DeMarle, Li-Ta Lo, Joseph Insley, and Rich Cook, Tutorial at Supercomputing 2015
http://www.paraview.org/Wiki/images/8/8e/ParaView_Tutorial_Slides.pptx



Feature Extraction
• Identify “features” of interest in the data

• May be able to save only the features rather than 
all the raw data

• Examples
• Ocean eddies (circular currents of water) in ocean 

climate simulations

• Halos (regions of high density) in cosmology dark matter 
particle simulations

Eddies from “Visualization of Ocean Currents and Eddies in a High-Resolution Global Ocean-Climate Model” by Samsel et. Al. 
Halos from “Large Scale Simulations of Sky Surveys” by Heitmann et. al.



Image Databases
Cinema



Image Database

In situ visualization and analysis completed with interactive exploration 
using an image database.

Viable solution for extreme scale visualization and analysis. Our framework:

• Enables different interaction modes
• (animation and selection for objects (isosurface value), 
• camera (rotation), 
• time) then we imagined possible with a set (database) of pre-generated analysis 

results.

• Responsive interactive solution
• rivals modern post-processing approaches
• Produces constant time retrieval (and assembly) of visualization objects from the 

image database.

• Encourages the use of typically avoided analysis in post-processing 
approaches

• computationally intensive analysis
• temporal exploration 

John Patchett, Presentation at Kaiserlautern University, 2014
https://datascience.lanl.gov/data/KaiserslauternInSituPatchett.pptx



What Can Be Done?

Explorat ion Helpers

Batch

Ken Moreland, Alan Scott, David DeMarle, Li-Ta Lo, Joseph Insley, and Rich Cook, Tutorial at Supercomputing 2015
http://www.paraview.org/Wiki/images/8/8e/ParaView_Tutorial_Slides.pptx



Interactive on What?

Θ
φ

Camera

Filter Parameter
Time

Ken Moreland, Alan Scott, David DeMarle, Li-Ta Lo, Joseph Insley, and Rich Cook, Tutorial at Supercomputing 2015
http://www.paraview.org/Wiki/images/8/8e/ParaView_Tutorial_Slides.pptx



Composable Imagery

For visualization object compositing, the 
image is replaced by an image set consisting 
of an image sprite file, a composite file, and 
a query file.

Images can be extracted from image sprite 
file and properly composited in a 
combinatorial number of ways, like those to 
the right. 

John Patchett, Presentation at Kaiserlautern University, 2014
https://datascience.lanl.gov/data/KaiserslauternInSituPatchett.pptx



Distributed Memory 
Parallelism
MPI, Legion



Pavan Balajii and Torsten Hoefler, Presentation at PPoPP 2013
https://htor.inf.ethz.ch/teaching/mpi_tutorials/ppopp13/2013-02-24-ppopp-mpi-basic.pdf



Pavan Balajii and Torsten Hoefler, Presentation at PPoPP 2013
https://htor.inf.ethz.ch/teaching/mpi_tutorials/ppopp13/2013-02-24-ppopp-mpi-basic.pdf



Heterogeneity
• System Architecture for Titan (#2 on Top500)

~20,000 nodes

16 Latency-optimized cores
Good at running arbitrary code
Big, power-hungry

32GB system memory

448 Throughput-optimized cores
Good at adding and multiplying
Cheap, power-efficient

6GB dedicated memory ~1GB “zero-copy” memory
(carved out of system memory)

High-bandwidth, low-latency 
interconnect

Elliott Slaughter, Presentation at Oak Ridge National Lab, 2016
https://www.olcf.ornl.gov/wp-content/uploads/2016/01/Legion_Elliott_Slaughter.pptx



~3,500

~10,000~10,000

~50,000

~20,000

Heterogeneous Heterogeneity
Titan

Aurora

Trinity / Cori

Summit

Elliott Slaughter, Presentation at Oak Ridge National Lab, 2016
https://www.olcf.ornl.gov/wp-content/uploads/2016/01/Legion_Elliott_Slaughter.pptx



Legion: Tasks & Regions
• A task is the unit of parallel execution

• I.e. a function

• Task arguments are regions
• Collections
• Rows are an index space
• Columns are fields

• Tasks declare how they use their regions 

task saxpy(is : ispace(int1d), x,y: region(is, float), a: float )

where reads(x, y), writes(y)

Elliott Slaughter, Presentation at Oak Ridge National Lab, 2016
https://www.olcf.ornl.gov/wp-content/uploads/2016/01/Legion_Elliott_Slaughter.pptx

0

1

2

3

4

2.72

3.14

42.0

12.7

0.0



Example Task

task saxpy(is: ispace(int1d), x: region(is, float),
y: region(is, float), a: float)

where
reads(x, y), writes(y)

do
for i in is do
y[i] += a*x[i]

end
end

Elliott Slaughter, Presentation at Oak Ridge National Lab, 2016
https://www.olcf.ornl.gov/wp-content/uploads/2016/01/Legion_Elliott_Slaughter.pptx



Regions

• Regions can be partitioned into subregions

• Partitioning is a primitive operation
• Supports describing arbitrary subsets of a region

Elliott Slaughter, Presentation at Oak Ridge National Lab, 2016
https://www.olcf.ornl.gov/wp-content/uploads/2016/01/Legion_Elliott_Slaughter.pptx



Partitioning
N W

Elliott Slaughter, Presentation at Oak Ridge National Lab, 2016
https://www.olcf.ornl.gov/wp-content/uploads/2016/01/Legion_Elliott_Slaughter.pptx

P S

N

s1 s2 s3 g1 g2 g3p1 p2 p3

W

w1 w2 w3



Tasks
• Tasks can call subtasks

• Sequential semantics, implicit parallelism
• If tasks do not interfere, can be executed in parallel

task foo(x,y,z: region(…)) 

where reads writes(x,y,z) do

bar(y,x)

bar(x,y)

bar(x,z)

bar(z,y)

end

task bar(r,s: region(…)) where reads(r), writes(s)

Elliott Slaughter, Presentation at Oak Ridge National Lab, 2016
https://www.olcf.ornl.gov/wp-content/uploads/2016/01/Legion_Elliott_Slaughter.pptx



Deferred Execution

Legion Runtime

task foo(x,y,z: region(…)) 

where reads writes(x,y,z) do

bar(y,x)

bar(x,y)

bar(x,z)

bar(z,y)

end

task bar(r,s: region(…)) where reads(r), writes(s)

bar(y,x)

bar(x,y) bar(x,z)

bar(z,y)

Elliott Slaughter, Presentation at Oak Ridge National Lab, 2016
https://www.olcf.ornl.gov/wp-content/uploads/2016/01/Legion_Elliott_Slaughter.pptx



Mapping Interface
• Mapper selects:

• Where tasks run
• Where regions are placed

• Mapping computed dynamically

• Decouple correctness from 
performance

154

t1

t2

t3

t4
t5

rc

rw

rw1 rw2

rn

rn1 rn2

$

$

$

$

N

U

M

A

N

U

M

A

FB

D

R

A

M

x86

CUDA

x86

x86

x86

Elliott Slaughter, Presentation at Oak Ridge National Lab, 2016
https://www.olcf.ornl.gov/wp-content/uploads/2016/01/Legion_Elliott_Slaughter.pptx



Shared Memory 
Parallelism
Data Parallel Programming



Extreme Scale: Threads, Threads 
Threads!
• A clear trend in supercomputing is ever increasing 

parallelism

• Clock increases are long gone
• “The Free Lunch Is Over” (Herb Sutter)

*Source: Scientific Discovery at the Exascale, Ahern, Shoshani, Ma, et al.

Jaguar – XT5 Titan – XK7 Exascale*

Cores 224,256 299,008 cpu and
18,688 gpu

1 billion

Concurrency 224,256 way 70 – 500 million way 10 – 100 billion way

Memory 300 Terabytes 700 Terabytes 128 Petabytes

Chris Sewell, Ken Moreland, and Robert Maynard, Presentation at the GPU Technology Conference 2016
http://m.vtk.org/images/3/36/GTC2016-VTKm.pptx



Shared Memory Programming Models

• Nvidia CUDA
• Intel Thread Building Blocks
• Intel Cilk
• OpenMP
• OpenCL
• OpenACC

CUDA image from: 
http://www.nvidia.co.uk/object/cuda-parallel-
computing-uk.html

OpenMP image from: 
http://www.ibm.com/developerworks/library/l-gcc4/



Performance Portability

A B C D E FAlgorithm

Architecture

Chris Sewell, Ken Moreland, and Robert Maynard, Presentation at the GPU Technology Conference 2016
http://m.vtk.org/images/3/36/GTC2016-VTKm.pptx



Performance Portability

A B C D E FAlgorithm

Backend

VTK-m

Chris Sewell, Ken Moreland, and Robert Maynard, Presentation at the GPU Technology Conference 2016
http://m.vtk.org/images/3/36/GTC2016-VTKm.pptx



NVIDIA’s Thrust Library

● Thrust is an open-source C++ template 
library developed by NVIDIA

● It allows the user to write CUDA 
programs using an STL-like interface, 
without having to know CUDA-specific 
syntax or functions

● In addition to CUDA, it has backends for 
OpenMP and Intel TBB, and can be 
extended to support additional backends

● It implements many data-parallel 
primitives, with user-defined functors

● It provides thrust::host_vector and 
thrust::device_vector, simplifying memory 
management and data transfer between 
the host and device

LA-UR-12-26127

Sample Thrust code to compute vector norm

LA-UR-13-21884
Chris Sewell, Guest Lectures at the University of Oregon 2014, and at Programming Models Workshop 2016
https://datascience.lanl.gov/data/Presentation2014Oregon.pdf



Brief Introduction to Data-Parallel 
Programming and Thrust

● Sorts

● Transforms

● Reductions

● Scans

● Binary searches

● Stream compactions

● Scatters / gathers

Challenge: Write operators in terms of 

these primitives only

Reward:  Efficient, portable code

What algorithms does Thrust provide?

Chris Sewell, Guest Lectures at the University of Oregon 2014, and at Programming Models Workshop 2016
https://datascience.lanl.gov/data/Presentation2014Oregon.pdf



Five Operations You Can Do with 
a Lot of Data in Parallel

• Generate/Create
• Automatically fill with programmatically defined data

• Transform
• Apply some “operation” to each element of the data

• Also called “Map” in many contexts

• Compact
• Take only the elements in which you are interested

• Also called “Filter” in many contexts

• Expand
• The opposite of Compact

• Create a larger data set from a smaller data set

• Aggregate
• Calculate a “summary” of your data (e.g., sum or average)

• Also called “Reduce” or “Fold”

• “Scan” also provides all intermediate values

LA-UR-13-27416
Chris Sewell, Guest Lectures at the University of Oregon 2014, and at Programming Models Workshop 2016
https://datascience.lanl.gov/data/Presentation2014Oregon.pdf



Simple Examples with Thrust Pseudocode

• Generate
thrust::sequence(0,4)  0  1  2  3  4

• Transform
input                  4  5  2  1  3

thrust::transform(+1)  5  6  3  2  4

• Compact
input                  4  5  2  1  3

thrust::copy_if(even)  4  2

• Expand
input                  4  5  2  1  3

thrust::for_each(x,2x) 4  8  5 10  2  4  1  2  3  6

• Aggregate
input                  4  5  2  1  3

thrust::reduce(+)      15

LA-UR-13-27416
Chris Sewell, Guest Lectures at the University of Oregon 2014, and at Programming Models Workshop 2016
https://datascience.lanl.gov/data/Presentation2014Oregon.pdf



Generate Data in Parallel

• Many copies of a certain constant value
// Ten elements with initial value of integer 1

thrust::device_vector<int> x(10, 1);

• A sequence of increasing or decreasing values
// Allocate space for ten integers, uninitialized

thrust::device_vector<int> y(10);

// Fill the space with integers

thrust::sequence(y.begin(), y.end(), 5, 2);

• Random Values
• Multiple copies of a random number generator

• Give each one a different seed

LA-UR-13-27416
Chris Sewell, Guest Lectures at the University of Oregon 2014, and at Programming Models Workshop 2016
https://datascience.lanl.gov/data/Presentation2014Oregon.pdf



Transform: Vector Addition
• Apply a binary operator “plus” to each element in x and y

thrust::transform(x.begin(), x.end(), // begin and end of the

// first input vector

y.begin(),                            // begin of the second

// input vector

result.begin(),                       // begin of the result

// vector

thrust::plus<int>());                 // predefined integer

// addition

x: 1  1  1  1  1  1  1  1  1  1

+

y: 5  7  9 11 13 15 17 19 21 23

=

result: 6  8 10 12 14 16 18 20 22 24

LA-UR-13-27416
Chris Sewell, Guest Lectures at the University of Oregon 2014, and at Programming Models Workshop 2016
https://datascience.lanl.gov/data/Presentation2014Oregon.pdf



Transform: Uniform Sampling 
of a Mathematical Function

• Q: How are we going to generate something more 
complicated?
A: Start from some sequence and apply some 
transformation

• Sampling the function f(x) = x2 in the interval of [0, 1]
// Generate a sequence of xi in [0,1] with dx=0.1

// in between each of them

float dx = 1.0f/10.0f;

thrust::sequence(x.begin(), x.end(), 0.0f, dx);

// Apply the square operation to each of the xi
// to transform into f(xi) = yi = xi

2

thrust::transform(x.begin(), x.end(),

y.begin(),

square());

x: 0.0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1.0

y: 0.0  0.01 0.04 0.09 0.16 0.25 0.36 0.49 0.64 0.81 1.0

Chris Sewell, Guest Lectures at the University of Oregon 2014, and at Programming Models Workshop 2016
https://datascience.lanl.gov/data/Presentation2014Oregon.pdf



Reduce: Simple Numerical Integration

• Apply what we learned to 
estimate the area under a curve 

• Create a constant vector of 
widths

• Create a vector of heights from 
the function values

• Apply multiply operation on 
each element of width and 
height

• Sum all the computed areas to 
get the total area

• In calculus, this is a method of 
estimating the integral 




n

i

i xxfdxxf
1

1

0

)()(

Chris Sewell, Guest Lectures at the University of Oregon 2014, and at Programming Models Workshop 2016
https://datascience.lanl.gov/data/Presentation2014Oregon.pdf



Simple Numerical Integration: 
Example

thrust::device_vector<int> width(11, 0.1); 

width =  0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1

thrust::sequence(x.begin(), x.end(), 0.0f, 0.1f);

x           = 0.0   0.1   0.2   0.3   0.4   0.5   0.6   0.7   0.8   0.9   1.0

thrust::transform(x.begin(), x.end(), height.begin(), square()); 

height      =  0.0  0.01  0.04  0.09  0.16  0.25  0.36  0.49  0.64  0.81   1.0

thrust::transform(width.begin(), width.end(), height.begin(), area.begin(), 

thrust::multiplies<float>())

area        =  0.0 0.001 0.004 0.009 0.016 0.025 0.036 0.049 0.064 0.081   0.1

total_area = thrust::reduce(area.begin(), area.end());

total_area =  0.385

thrust::inclusive_scan(area.begin(), area.end(), accum_areas.begin());

accum_areas =  0.0 0.001 0.005 0.014 0.030 0.055 0.091 0.140 0.204 0.285 0.385

Chris Sewell, Guest Lectures at the University of Oregon 2014, and at Programming Models Workshop 2016
https://datascience.lanl.gov/data/Presentation2014Oregon.pdf



Scan: Simple Numerical Integration

• What happens if we are interested in the integral 

on the interval [0, 1] instead of just a number?

• Calculate a running sum by using scan

• thrust::inclusive_scan(y_dx.begin(), y_dx.end(), F.begin());

• f(xi)*dx =  0.0 0.001 0.004 0.009 0.016 0.025 0.036 0.049 0.064 0.081   0.1

F(t) =  0.0 0.001 0.005 0.014 0.030 0.055 0.091 0.140 0.204 0.285 0.385

• The last element of the scan (0.385) is the same as the output of reduce

• In mathematical terms, 



t

dtxfFtF
0

)()0()(

)0()1()(

1

0

FFdxxf 

Chris Sewell, Guest Lectures at the University of Oregon 2014, and at Programming Models Workshop 2016
https://datascience.lanl.gov/data/Presentation2014Oregon.pdf



Scan: Calculating the Fibonacci Sequence 
by Matrix Multiplication

• The reduce and scan operators can also work with a user 
defined type

• The Fibonacci Sequence is defined as
with 

• By “unrolling” the recurrence we have

• Thus we can compute Fn by matrix multiplication

11   nnn FFF 1,0 10  FF































1

1

01

11

n

n

n

n

F

F

F

F



















































































35

58

23

35

12

23

11

12

01

11

01

11

01

11

01

11

01

11

01

11

Chris Sewell, Guest Lectures at the University of Oregon 2014, and at Programming Models Workshop 2016
https://datascience.lanl.gov/data/Presentation2014Oregon.pdf



Fibonacci Sequence using a Matrix Scan

Chris Sewell, Guest Lectures at the University of Oregon 2014, and at Programming Models Workshop 2016
https://datascience.lanl.gov/data/Presentation2014Oregon.pdf



5     6     2     1    2     5     4     1     3     8     2     7    9     2     4     3   

5   11   13   14    2     7    11  12    3    11  13   20    9    11  15  18   

0    14  12   20 

0   14   26   46 

0                         14                        26                        46

5    11   13  14   16   21  25   26  29   37   39  46   55   57  61   64

thrust::inclusive_scan

thrust::inclusive_scan

MPI_Gather

MPI_Scatter

thrust::transform

P0                   P1                 P2                 P3
A

ltern
ative: 

M
P

I_Exscan

Distributed Scan Algorithm

Chris Sewell, Guest Lectures at the University of Oregon 2014, and at Programming Models Workshop 2016
https://datascience.lanl.gov/data/Presentation2014Oregon.pdf



0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15

0  1 2  5 4  9 6 13 8 17 10 21 12 25 14 29

0  1  2  6 4  9  6 22 8 17 10 38 12 25 14 54

0  1  2  6  4  9  6 28 8 17 10 38 12 25 14 92

0  1  2  6  4  9  6 28  8 17 10 38 12 25 14 120

0  1  2  6  4  9  6 28  8 17 10 38 12 25 14  0

0  1  2  6  4  9  6  0 8 17 10 38 12 25 14 28

0  1  2  0 4  9  6  6 8 17 10 28 12 25 14 66

0  0 2  1 4  6 6 15 8 28 10 45 12 66 14 91

0  0  1  3  6 10 15 21 28 36 45 55 66 78 91 105

Up-sweep (reduce)

for d = 0 to log2n-1 do

for k from 0 to n-1 by 2d+1 pardo

x[k+2d+1-1] = x[k+2d-1] + x[k+2d+1-1]

x[n-1] = 0

Down-sweep

for d = log2n-1 down to 0 do

for k from 0 to n-1 by 2d+1 pardo

t = x[k+2d-1]

x[k+2d-1] = x[k+2d+1-1]

x[k+2d+1-1] = t + x[k+2d+1-1]

Tree Scan Algorithm

Chris Sewell, Guest Lectures at the University of Oregon 2014, and at Programming Models Workshop 2016
https://datascience.lanl.gov/data/Presentation2014Oregon.pdf



Compaction: Finding Prime Numbers 
Using the Sieve of Eratosthenes

Chris Sewell, Guest Lectures at the University of Oregon 2014, and at Programming Models Workshop 2016
https://datascience.lanl.gov/data/Presentation2014Oregon.pdf



Kokkos from Sandia 
(Carter Edwards)

• Parallel dispatch

• parallel_for( {#teams, #threads/team}, functor)

• parallel_reduce( {#teams, #threads/team}, functor)

• parallel_scan( {#teams, #threads/team}, functor)

• Multidimensional array layout

• Leading dimension (right most) is parallel work 
dimension

• Choose array layout for required access pattern (e.g., 
AoS vs. SoA) transparently to application

• Provides views of data

• Subject of separate proposal

• Like Thrust and the Parallelism TS, for node-level only 
(not distributed memory)

Chris Sewell, Guest Lectures at the University of Oregon 2014, and at Programming Models Workshop 2016
https://datascience.lanl.gov/data/Presentation2014Oregon.pdf



C++17 Parallel Algorithms Library
• “An object of an execution policy type indicates the kinds of parallelism allowed in 

the execution of an algorithm and expresses the consequent requirements on the 
element access functions.”

• Classes define types used to disambiguate parallel algorithm overloading

• Execution may not be parallelized
class sequential_execution_policy { };
constexpr sequential_execution_policy seq{};

• Execution may be parallelized
class parallel_execution_policy { };
constexpr parallel_execution_policy par{};

• Execution may be vectorized and parallelized
class parallel_vector_execution_policy { };
constexpr parallel_vector_execution_policy par_vec{};

Chris Sewell, Guest Lectures at the University of Oregon 2014, and at Programming Models Workshop 2016
https://datascience.lanl.gov/data/Presentation2014Oregon.pdf



C++17: Execution Policy Example

Chris Sewell, Guest Lectures at the University of Oregon 2014, and at Programming Models Workshop 2016
https://datascience.lanl.gov/data/Presentation2014Oregon.pdf



C++17: Parallel Algorithms

• “Parallel algorithms have template parameters named ExecutionPolicy which 
describe the manner in which the execution of these algorithms may be 
parallelized and the manner in which they apply the element access 
functions.”

• Execution policies

• sequential_execution_policy: “sequential order in the calling thread”

• parallel_execution_policy: “unordered fashion in either the invoking 
thread or in a thread implicitly created by the library…any such 
invocations executing in the same thread are indeterminately sequenced 
with respect to each other”

• parallel_vector_execution_policy: “unordered fashion in unspecified 
threads, and unsequenced with respect to one another within each 
thread (…may be interleaved on a single thread)”

Chris Sewell, Guest Lectures at the University of Oregon 2014, and at Programming Models Workshop 2016
https://datascience.lanl.gov/data/Presentation2014Oregon.pdf



C++17: Table of Parallel Algorithms

• “The Parallel Algorithms Library provides overloads for each of the algorithms named in [the table 
below], corresponding to the algorithms with the same name in the C++ Standard Algorithms Library”

• “…the overloads shall have an additional template type parameter named ExecutionPolicy”

Chris Sewell, Guest Lectures at the University of Oregon 2014, and at Programming Models Workshop 2016
https://datascience.lanl.gov/data/Presentation2014Oregon.pdf



Isosurface with Marching Cube –
the Naive Way

● Classify all cells by transform

● Use copy_if to compact valid cells.

● For each valid cell, generate same 
number of geometries with flags.

● Use copy_if to do stream 
compaction on vertices.

● This approach is too slow, more 
than 50% of time was spent 
moving huge amount of data in 
global memory.

● Can we avoid calling copy_if and 
eliminate global memory 
movement?

Chris Sewell, Guest Lectures at the University of Oregon 2014, and at Programming Models Workshop 2016
https://datascience.lanl.gov/data/Presentation2014Oregon.pdf



Isosurface with Marching Cube –
Optimization

● Inspired by HistoPyramid

● The filter is essentially a mapping 
from input cell id to output vertex 
id

● Is there a “reverse” mapping?

● If there is a reverse mapping, the 
filter can be very “lazy”

● Given an output vertex id, we only
apply operations on the cell that 
would generate the vertex

● Actually for a range of output 
vertex ids

0 1 2 543 6

0

1

2 3
4

5

6

7

8

9

Chris Sewell, Guest Lectures at the University of Oregon 2014, and at Programming Models Workshop 2016
https://datascience.lanl.gov/data/Presentation2014Oregon.pdf



Isosurface with Marching Cubes Algorithm

Chris Sewell, Guest Lectures at the University of Oregon 2014, and at Programming Models Workshop 2016
https://datascience.lanl.gov/data/Presentation2014Oregon.pdf



Variations on Isosurface: Cut Surfaces and Threshold

● Cut surface

● Two scalar fields, one for generating 
geometry (cut surface) the other for 
scalar interpolation

● Less than 10 LOC change, negligible 
performance impact to isosurface

● One 1D interpolation per triangle 
vertex

● Threshold

● Classify cells, this time based on 
whether value at each vertex falls 
within threshold range, then stream 
compact valid cells and generate 
geometry for valid cells

● Additional pass of cell classification 
and stream compaction to remove 
interior cells 

Chris Sewell, Guest Lectures at the University of Oregon 2014, and at Programming Models Workshop 2016
https://datascience.lanl.gov/data/Presentation2014Oregon.pdf



Data-Parallel 
KD Tree

Chris Sewell, Guest Lectures at the University of Oregon 2014, and at Programming Models Workshop 2016
https://datascience.lanl.gov/data/Presentation2014Oregon.pdf



Additional Operators
Our implementations

• Glyphs

• KD-Tree Construction

• Halo finder for cosmology 
simulations

• “Boid” simulation 
(flocking birds)

Data Structures
Graphs: Neighbor reducing, distributing excess across edges
Trees: Leaffix and rootfix operations, tree manipulations
Multidimensional arrays

Computational Geometry
Generalized binary search
k-D tree
Closest pair
Quickhull
Merge Hull

Graph Algorithms
Minimum spanning tree
Maximum flow
Maximal independent set

Numerical Algorithms
Matrix-vector multiplication
Linear-systems solver
Simplex
Outer product
Sparse-matrix multiplication

Blelloch’s “Vector Models for Data-Parallel Computing”

http://www.cs.cmu.edu/~blelloch/papers/Ble90.pdf

Chris Sewell, Guest Lectures at the University of Oregon 2014, and at Programming Models Workshop 2016
https://datascience.lanl.gov/data/Presentation2014Oregon.pdf

flock.mp4
flock.mp4


External Memory (Streaming or 
Out-of-Core) Algorithms
• When all the data does not fit in memory at once, or if I/O is 

very expensive, algorithms may be designed to minimize the 
number of I/Os rather than the number of flops

Lars Arge, Presentation at the University of Aarhus, 2013: 
http://www.slideshare.net/ktoshik/io-efficient-algorithms-and-data-structures-34-lecture-by-lars-arge



Lars Arge, Presentation at the University of Aarhus, 2013: 
http://www.slideshare.net/ktoshik/io-efficient-algorithms-and-data-structures-34-lecture-by-lars-arge



VTK-m
Accelerating VTK for Multi-core/Many-core



VTK-m Framework

Execution 
Environment

Cell Operations
Field Operations

Basic Math
Make Cells

Control 
Environment

Grid Topology
Array Handle
Invoke

Device 
Adapter

Allocate
Transfer
Schedule

Sort
…

W
o

rklet

Chris Sewell, Ken Moreland, and Robert Maynard, Presentation at the GPU Technology Conference 2016
http://m.vtk.org/images/3/36/GTC2016-VTKm.pptx



Libsim

Sim
u

latio
n

s

GUI / Parallel Management

Base Vis Library
(Algorithm Implementation)

In Situ Vis Library
(Integration with Sim)

Multithreaded Algorithms
Processor Portability

Chris Sewell, Ken Moreland, and Robert Maynard, Presentation at the GPU Technology Conference 2016
http://m.vtk.org/images/3/36/GTC2016-VTKm.pptx



ArrayHandle
• vtkm::cont::ArrayHandle<type> manages an “array” of data

• Acts like a reference-counted smart pointer to an array
• Manages transfer of data between control and execution
• Can allocate data for output

• Relevant methods
• GetNumberOfValues()
• GetPortalConstControl()
• ReleaseResources(), ReleaseResourcesExecution()

• Functions to create an ArrayHandle
• vtkm::cont::make_ArrayHandle(const T*array,vtkm::Id 
size)

• vtkm::cont::make_ArrayHandle(const
std::vector<T>&vector)

• Both of these do a shallow (reference) copy.
• Do not let the original array be deleted or vector to go out of scope!

Chris Sewell, Ken Moreland, and Robert Maynard, Presentation at the GPU Technology Conference 2016
http://m.vtk.org/images/3/36/GTC2016-VTKm.pptx



Array Handle Storage

Array Handle

x0 y0 z0 x1 y1 z1 x2 y2 z2

Array of Structs
Storage

x0 y0 z0 x1 y1 z1 x2 y2 z2

x0 x1 x2Array Handle

x0 y0 z0 x1 y1 z1 x2 y2 z2

Struct of Arrays 
Storage

y0 y1 y2

z0 z1 z2

vtkCellArray
Storage

Array Handle

v0 v1 v2 v3 v4 v5 v6 v7 v8

v2 3 v3 v4 v5 3 v6 v7 v8v1v03

Chris Sewell, Ken Moreland, and Robert Maynard, Presentation at the GPU Technology Conference 2016
http://m.vtk.org/images/3/36/GTC2016-VTKm.pptx



Fancy Array Handles
Array Handle

c c c c c c c c c
Constant Storage c

Array Handle

x0 y0 z0 x1 y1 z1 x2 y2 z2

Uniform Point 
Coord Storage

f(i,j,k) = [ox + sx i, oy + sy j, oz + sz k]

Permutation 
Storage

Array Handle

x8 x5 x5 x0 x5 x2 x0 x3 x5

Array Handle

8 5 5 0 5 2 0 3 5

Array Handle

x0 x1 x2 x3 x4 x5 x6 x7 x8

Chris Sewell, Ken Moreland, and Robert Maynard, Presentation at the GPU Technology Conference 2016
http://m.vtk.org/images/3/36/GTC2016-VTKm.pptx



DynamicArrayHandle

• DynamicArrayHandle is a magic untyped reference 
to an ArrayHandle

• Statically holds a list of potential types and storages 
the contained array might have

• Can be changed with ResetTypeList and ResetStorageList

• Changing these lists requires creating a new object

• Parts of VTK-m will automatically staticly cast a 
DynamicArrayHandle as necessary

• Requires the actual type to be in the list of potential 
types

Chris Sewell, Ken Moreland, and Robert Maynard, Presentation at the GPU Technology Conference 2016
http://m.vtk.org/images/3/36/GTC2016-VTKm.pptx



A DataSet Has

• 1 or more CellSet
• Defines the connectivity of the cells
• Examples include a regular grid of cells or explicit connection 

indices

• 0 or more Field
• Holds an ArrayHandle containing field values
• Field also has metadata such as the name, the topology 

association (point, cell, face, etc), and which cell set the field is 
attached to

• 0 or more CoordinateSystem
• Really just a Field with a special meaning
• Contains helpful features specific to common coordinate systems

Chris Sewell, Ken Moreland, and Robert Maynard, Presentation at the GPU Technology Conference 2016
http://m.vtk.org/images/3/36/GTC2016-VTKm.pptx



Worklet Types

• WorkletMapField: Applies worklet on each value 
in an array.

• WorkletMapTopology: Takes from and to 
topology elements (e.g. point to cell or cell to 
point). Applies worklet on each “to” element. 
Worklet can access field data from both “from” and 
“to” elements. Can output to “to” elements.

• Many more to come…

Chris Sewell, Ken Moreland, and Robert Maynard, Presentation at the GPU Technology Conference 2016
http://m.vtk.org/images/3/36/GTC2016-VTKm.pptx



struct Sine: public vtkm::worklet::WorkletMapField {
typedef void ControlSignature(FieldIn<>, FieldOut<>);
typedef _2 ExecutionSignature(_1);

template<typename T>
VTKM_EXEC_EXPORT
T operator()(T x) const {
return vtkm::Sin(x);

}
};

Execution Environment

Control Environment

vtkm::cont::ArrayHandle<vtkm::Float32> inputHandle =
vtkm::cont::make_ArrayHandle(input);

vtkm::cont::ArrayHandle<vtkm::Float32> sineResult;

vtkm::worklet::DispatcherMapField<Sine> dispatcher; 
dispatcher.Invoke(inputHandle, sineResult);

Chris Sewell, Ken Moreland, and Robert Maynard, Presentation at the GPU Technology Conference 2016
http://m.vtk.org/images/3/36/GTC2016-VTKm.pptx



Elements of a Worklet
1. Subclass of one of the base worklet types

2. Typedefs for ControlSignature and ExecutionSignature

3. A parenthesis operator
1. Must have VTKM_EXEC_EXPORT

2. Input parameters are by value or const reference

3. Output parameters are by reference

4. The method must be declared const

struct ImagToPolar: public vtkm::worklet::WorkletMapField {
typedef void ControlSignature(FieldIn<vtkm::TypeListTagScalar>,

FieldIn<vtkm::TypeListTagScalar>,
FieldOut<vtkm::TypeListTagScalar>,
FieldOut<vtkm::TypeListTagScalar>);

typedef void ExecutionSignature(_1, _2, _3, _4);

template<typename T1, typename T2, typename T3, typename T4>
VTKM_EXEC_EXPORT
void operator()(T1 real, T2 imaginary,

T3 &magnitude, T4 &phase) const {

1

2

3.1
3.2

3.3
3.4

Chris Sewell, Ken Moreland, and Robert Maynard, Presentation at the GPU Technology Conference 2016
http://m.vtk.org/images/3/36/GTC2016-VTKm.pptx



Device Adapter Algorithms

• Implementations of data-parallel primitives
• Copy
• LowerBounds
• Reduce
• ReduceByKey
• ScanInclusive
• ScanExclusive
• Sort
• SortByKey
• StreamCompact
• Unique
• UpperBounds

Chris Sewell, Ken Moreland, and Robert Maynard, Presentation at the GPU Technology Conference 2016
http://m.vtk.org/images/3/36/GTC2016-VTKm.pptx



Worklet Example: Cell Average

Chris Sewell, Ken Moreland, and Robert Maynard, Presentation at the GPU Technology Conference 2016
http://m.vtk.org/images/3/36/GTC2016-VTKm.pptx



Filter Example: Cell Average

Chris Sewell, Ken Moreland, and Robert Maynard, Presentation at the GPU Technology Conference 2016
http://m.vtk.org/images/3/36/GTC2016-VTKm.pptx



Isosurface

Chris Sewell, Ken Moreland, and Robert Maynard, Presentation at the GPU Technology Conference 2016
http://m.vtk.org/images/3/36/GTC2016-VTKm.pptx



Surface Simplification

Chris Sewell, Ken Moreland, and Robert Maynard, Presentation at the GPU Technology Conference 2016
http://m.vtk.org/images/3/36/GTC2016-VTKm.pptx



Ray Tracing

Chris Sewell, Ken Moreland, and Robert Maynard, Presentation at the GPU Technology Conference 2016
http://m.vtk.org/images/3/36/GTC2016-VTKm.pptx



Direct Volume Rendering

Chris Sewell, Ken Moreland, and Robert Maynard, Presentation at the GPU Technology Conference 2016
http://m.vtk.org/images/3/36/GTC2016-VTKm.pptx



Demo
• In vtk-m/examples/demo

• Reads specified VTK file or generates a default input uniform structured grid 
data set

• Uses VTK-m’s rendering engine to render input data set to an image file using 
OS Mesa (or EGL, in development)

• Uses VTK-m’s Marching Cubes filter to compute isosurface

• Renders output data set to another image file 

Rendering of test input data Rendering of test output data

Chris Sewell, Ken Moreland, and Robert Maynard, Presentation at the GPU Technology Conference 2016
http://m.vtk.org/images/3/36/GTC2016-VTKm.pptx



Demo Part 1: Reading Input

Chris Sewell, Ken Moreland, and Robert Maynard, Presentation at the GPU Technology Conference 2016
http://m.vtk.org/images/3/36/GTC2016-VTKm.pptx



Demo Part 2: Rendering Data Set

Chris Sewell, Ken Moreland, and Robert Maynard, Presentation at the GPU Technology Conference 2016
http://m.vtk.org/images/3/36/GTC2016-VTKm.pptx



Demo Part 3: Marching Cubes Filter

Chris Sewell, Ken Moreland, and Robert Maynard, Presentation at the GPU Technology Conference 2016
http://m.vtk.org/images/3/36/GTC2016-VTKm.pptx



“Big Data”
Hadoop, MapReduce, Spark



Hadoop Distributed File System 
(HDFS) (1)
• Inspired by “Google File System”

• Stores large files (typically gigabytes-terabytes) across multiple 
machines, replicating across multiple hosts

• Breaks up files into fixed-size blocks (typically 64 MiB), distributes blocks

• The blocks of a file are replicated for fault tolerance

• The block size and replication factor are configurable per file

• Default replication value (3) - data is stored on three nodes: two on the same rack, 
and one on a different rack

• File system intentionally not fully POSIX-compliant
• Write-once-read-many access model for files. A file once created, written, and closed 

cannot be changed. This assumption simplifies data coherency issues and enables 
high throughput data access

• Intend to add support for appending-writes in the future

• Can rename & remove files

• “Namenode” tracks names and where the blocks are

SWE 622 – Distributed Software 
Systems

© Wheeler
David Wheeler, Class Presentation at George Mason University
www.dwheeler.com/essays/hadoop-spark.ppt



Hadoop Distributed File System 
(HDFS) (2)
• Hadoop can work with any distributed file system but this loses locality

• To reduce network traffic, Hadoop must know which servers are closest 
to the data; HDFS does this

• Hadoop job tracker schedules jobs to task trackers with an awareness of 
the data location

• For example, if node A contains data (x,y,z) and node B contains data 
(a,b,c), the job tracker schedules node B to perform tasks on (a,b,c) and 
node A would be scheduled to perform tasks on (x,y,z)

• This reduces the amount of traffic that goes over the network and prevents 
unnecessary data transfer

• Location awareness can significantly reduce job-completion times when 
running data-intensive jobs

SWE 622 – Distributed Software 
Systems

© Wheeler

Source: http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html

David Wheeler, Class Presentation at George Mason University
www.dwheeler.com/essays/hadoop-spark.ppt



(Parallel) MapReduce
• MapReduce is a programming model for processing and generating large data 

sets with a parallel, distributed algorithm on a cluster

• Programmer defines two functions, map & reduce

• Map(k1,v1) → list(k2,v2). Takes a series of key/value pairs, processes each, generates 
zero or more output key/value pairs

• Reduce(k2, list (v2)) → list(v3). Executed once for each unique key k2 in the sorted 
order; iterate through the values associated with that key and produce zero or more 
outputs

• System “shuffles” data between map and reduce (so “reduce” function has set 
of data for its keys) automatically handles system failures, etc.

SWE 622 – Distributed Software 
Systems

© Wheeler

Map

Map

Map

Reduce

Reduce

Input Output

David Wheeler, Class Presentation at George Mason University
www.dwheeler.com/essays/hadoop-spark.ppt

Image from Matei Zaharia, et. al., Tutorial at spark.apache.org, https://spark.apache.org/talks/overview.pptx



MapReduce: Word Count Example 
(Pseudocode)
map(String input_key, String input_value):

// input_key: document name

// input_value: document contents

for each word w in input_value:

EmitIntermediate(w, "1");

reduce(String output_key, Iterator intermediate_values):

// output_key: a word

// output_values: a list of counts

int result = 0;

for each v in intermediate_values:

result += ParseInt(v);

Emit(AsString(result));

SWE 622 – Distributed Software 
Systems

© Wheeler

http://research.google.com/archive/mapreduce-osdi04-slides/index-auto-0004.html

Any 12

Ball 1

Computer 3

…

David Wheeler, Class Presentation at George Mason University
www.dwheeler.com/essays/hadoop-spark.ppt



MapReduce Combiner
• Can also define an option function “Combiner” (to optimize 

bandwidth)
• If defined, runs after Mapper & before Reducer on every node that 

has run a map task
• Combiner receives as input all data emitted by the Mapper 

instances on a given node
• Combiner output sent to the Reducers, instead of the output from 

the Mappers
• Is a "mini-reduce" process which operates only on data generated 

by one machine

• If a reduce function is both commutative and associative, 
then it can be used as a Combiner as well

• Useful for word count – combine local counts

SWE 622 – Distributed Software 
Systems

© Wheeler

Source: https://developer.yahoo.com/hadoop/tutorial/module4.html

David Wheeler, Class Presentation at George Mason University
www.dwheeler.com/essays/hadoop-spark.ppt



Motivation for Spark

• Acyclic data flow is inefficient for applications that 
repeatedly reuse a working set of data:

• Iterative algorithms (machine learning, 
graphs)

• Interactive data mining tools (R, Excel, 
Python)

• With current frameworks, apps reload data from 
stable storage on each query

Matei Zaharia, et. al., Tutorial at spark.apache.org
https://spark.apache.org/talks/overview.pptx



Solution: Resilient
Distributed Datasets (RDDs)

• Allow apps to keep working sets in memory for 
efficient reuse

• Retain the attractive properties of MapReduce
• Fault tolerance, data locality, scalability

• Support a wide range of applications

Matei Zaharia, et. al., Tutorial at spark.apache.org
https://spark.apache.org/talks/overview.pptx



Apache Spark

• Processing engine; instead of just “map” and “reduce”, defines a large 
set of operations (transformations & actions)

• Operations can be arbitrarily combined in any order

• Open source software

• Supports Java, Scala and Python

• Key construct: Resilient Distributed Dataset (RDD)

SWE 622 – Distributed Software 
Systems

© Wheeler
David Wheeler, Class Presentation at George Mason University
www.dwheeler.com/essays/hadoop-spark.ppt



Spark example #1 (Scala)
// “sc” is a “Spark context” – this transforms the file into an RDD

val textFile = sc.textFile("README.md")

// Return number of items (lines) in this RDD; count() is an action

textFile.count()

// Demo filtering.  Filter is a tranform.  By itself this does no real work

val linesWithSpark = textFile.filter(line => line.contains("Spark"))

// Demo chaining – how many lines contain “Spark”?  count() is an action.

textFile.filter(line => line.contains("Spark")).count()

// Length of line with most words.  Reduce is an action.

textFile.map(line => line.split(" ").size).reduce((a, b) => if (a > b) a else b)

// Word count – traditional map-reduce.  collect() is an action

val wordCounts = textFile.flatMap(line => line.split(" ")).map(word => (word, 
1)).reduceByKey((a, b) => a + b)

wordCounts.collect()

SWE 622 – Distributed Software 
Systems

© Wheeler

Source: https://spark.apache.org/docs/latest/quick-start.html

David Wheeler, Class Presentation at George Mason University
www.dwheeler.com/essays/hadoop-spark.ppt



Sample Spark transformations
• map(func): Return a new distributed dataset formed by passing each element of 

the source through a function func.

• filter(func): Return a new dataset formed by selecting those elements of the 
source on which func returns true

• union(otherDataset): Return a new dataset that contains the union of the 
elements in the source dataset and the argument.

• intersection(otherDataset): Return a new RDD that contains the intersection of 
elements in the source dataset and the argument.

• distinct([numTasks])): Return a new dataset that contains the distinct elements 
of the source dataset

• join(otherDataset, [numTasks]): When called on datasets of type (K, V) and (K, 
W), returns a dataset of (K, (V, W)) pairs with all pairs of elements for each key. 
Outer joins are supported through leftOuterJoin, rightOuterJoin, and 
fullOuterJoin.

SWE 622 – Distributed Software 
Systems

© Wheeler

Source: https://spark.apache.org/docs/latest/programming-guide.html

David Wheeler, Class Presentation at George Mason University
www.dwheeler.com/essays/hadoop-spark.ppt



Spark – RDD Persistence
• You can persist (cache) an RDD

• When you persist an RDD, each node stores any partitions of it that it 
computes in memory and reuses them in other actions on that dataset 
(or datasets derived from it)

• Allows future actions to be much faster (often >10x).

• Mark RDD to be persisted using the persist() or cache() methods on it. 
The first time it is computed in an action, it will be kept in memory on 
the nodes.

• Cache is fault-tolerant – if any partition of an RDD is lost, it will 
automatically be recomputed using the transformations that originally 
created it

• Can choose storage level (MEMORY_ONLY, DISK_ONLY, 
MEMORY_AND_DISK, etc.)

• Can manually call unpersist()

SWE 622 – Distributed Software 
Systems

© Wheeler
David Wheeler, Class Presentation at George Mason University
www.dwheeler.com/essays/hadoop-spark.ppt



Spark vs. Hadoop MapReduce
• Performance: Spark normally faster but with caveats

• Spark can process data in-memory; Hadoop MapReduce persists 
back to the disk after a map or reduce action

• Spark generally outperforms MapReduce, but it often needs lots of 
memory to do well; if there are other resource-demanding services 
or can’t fit in memory, Spark degrades

• MapReduce easily runs alongside other services with minor 
performance differences, & works well with the 1-pass jobs it was 
designed for

• Ease of use: Spark is easier to program

• Data processing: Spark more general

• Maturity: Spark maturing, Hadoop MapReduce mature

SWE 622 – Distributed Software 
Systems

© Wheeler

“Spark vs. Hadoop MapReduce” by Saggi Neumann (November 24, 2014)

https://www.xplenty.com/blog/2014/11/apache-spark-vs-hadoop-mapreduce/

David Wheeler, Class Presentation at George Mason University
www.dwheeler.com/essays/hadoop-spark.ppt



Analysis Example
Halo analysis for a cosmology simulation



Intro to Cosmology Simulations

• The Hardware/Hybrid Accelerated Cosmology Code (HACC) simulates the 
distribution of dark matter in the universe over time

• To achieve high accuracy, simulations may use 100s of billions of particles

• Over time, particles cluster into massive, gravitationally-bound objects called halos

• Hot gas falls into this potential well, heats up, and triggers star formation

• Stars form galaxies, and some halos grow large enough to host clusters of galaxies

Visualization of a simulation’s particle distribution, zoomed in to a sub-region of the volume of a single node, showing halos that 
have formed in this region at the final time step.  Image credit: Silvio Rizzi and Joe Insley.

Chris Sewell, Presentation at Supercomputing 2015: 
http://datascience.dsscale.org/wp-content/uploads/sites/3/2016/06/Large-ScaleCompute-
IntensiveAnalysisViaACombinedIn-situAndCo-schedulingWorkflowApproach.pdf



Dark Matter Halos

• Dark matter halos are only observed indirectly through tracers, such as hot gas in the 
X-ray spectrum and the distribution of galaxies in the optical spectrum

• For the optical spectrum, the friend-of-friend (FOF) halo definition is often used, which 
traces the iso-density contours of halos allowing it to capture irregular boundaries

• Merger trees are used to track how halos merge and accrete mass over time, since the age and formation 
history of a halo affect the type of galaxies that will reside in it

• Sub-halo finding involves finding halos within halos, and galaxies will live within those structures

• Accurately determining halo centers is critical
• If the halo center is not at the potential minimum, the spherical overdensity mass will be biased low

• The correct placement of the central galaxy in the halo is crucial for comparison with observations 

• Halo properties such as concentration depend on accurate computation of halo centers

Illustration of the role 
of analysis in cosmology 
simulations.  Figure 
from “Large Scale 
Simulations of Sky 
Surveys” by Heitmann 
et. al.

Chris Sewell, Presentation at Supercomputing 2015: 
http://datascience.dsscale.org/wp-content/uploads/sites/3/2016/06/Large-ScaleCompute-
IntensiveAnalysisViaACombinedIn-situAndCo-schedulingWorkflowApproach.pdf



Analysis Tasks

• Power spectrum calculation (using cloud-in-
cell density estimation on uniform grid and 
FFTs)

• Halo identification (using FOF definition)

• Halo center finding (“most bound particle”; 
the particle with the lowest potential)

• Halo mass estimation (based on a spherical 
overdensity definition)

Chris Sewell, Presentation at Supercomputing 2015: 
http://datascience.dsscale.org/wp-content/uploads/sites/3/2016/06/Large-ScaleCompute-
IntensiveAnalysisViaACombinedIn-situAndCo-schedulingWorkflowApproach.pdf



Data-Parallel Analysis Algorithms

• Distributed parallel halo finder uses overload zones so that each rank can 
independently find halos and their centers

• Supporting the cross-product of halo analysis algorithms with all the 
multi-core and many-core architectures on which HACC is run is a major 
burden

• Data-parallel primitives provide an abstraction
by which portable parallel code can be 
implemented to take advantage of on-node 
parallelism

• Center-finding is the performance bottleneck 

• Running our data-parallel center-finder on 
Titan’s GPUs led to significant speed-ups

Illustration of friend-of-friend halos and their 
most bound particle (MBP) centers

Details of our data-parallel algorithms are in “Utilizing Many-Core Accelerators for Halo and 
Center Finding within a Cosmology Simulation”, IEEE Symposium on Large Data Analysis and 
Visualization, Sewell et. al., Oct. 2015.

Chris Sewell, Presentation at Supercomputing 2015: 
http://datascience.dsscale.org/wp-content/uploads/sites/3/2016/06/Large-ScaleCompute-
IntensiveAnalysisViaACombinedIn-situAndCo-schedulingWorkflowApproach.pdf



The “Q Continuum” Simulation
• Evolved a 81923 (~ a half trillion) particle data set 

• Utilized 16,384 (of 18,688) nodes on Titan supercomputer

• Halo analysis was performed at 100 time slices (between red shift values 10 to 0)

• This was the first time that the concentration-mass (c-M) relation has been 
measured from a single simulation volume over such an extended mass range

Concentration-mass relation over the full mass range covered by 
the Q Continuum simulation at redshift z=0

Strong lensing arc generated from the cluster-scale 
halo; Image credit: Joe Insley, Silvio Rizzi

The scientific results are presented in “The Q Continuum Simulation: Harnessing the Power of GPU Accelerated Supercomputers”,
Astrophysical Journal Suppl. Series, Heitmann et. al., Aug. 2015, from which above figures are taken

Chris Sewell, Presentation at Supercomputing 2015: 
http://datascience.dsscale.org/wp-content/uploads/sites/3/2016/06/Large-ScaleCompute-
IntensiveAnalysisViaACombinedIn-situAndCo-schedulingWorkflowApproach.pdf



Combined In-Situ / Off-line 
(Co-scheduled) Workflow

Chris Sewell, Presentation at Supercomputing 2015: 
http://datascience.dsscale.org/wp-content/uploads/sites/3/2016/06/Large-ScaleCompute-
IntensiveAnalysisViaACombinedIn-situAndCo-schedulingWorkflowApproach.pdf


