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Wavelet Transforms 
using VTK-m

Samuel Li
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Wavelet 101
● Essence: a window sliding over the 

input array doing convolutions. 
(Animation from Wikipedia)

● Sliding windows == wavelet kernels
● Outcome: wavelet coefficients

○ approximate coeffs
○ detail coeffs

● Apply on X, Y, Z, and T dimensions to 
take advantage of coherence along 
each axis.



Wavelet 101: Compression

● Wavelet transform concentrate 
information into few coefficients.

● Compression: only keep large coefficients 
(coefficient prioritization)

● Example on Sine wave:
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VTK-m 101
● Next generation of VTK
● Massive parallelism on multiple backends: TBB, CUDA
● One code runs on all supported backends.
● A worklet is a basic computational unit doing calculations:

○ In my case, a worklet calculates the convolution at an index position.
○ Every core executes the same worklet at different index positions.

● (I’m using the parallel framework rather than vis algorithms)
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Wavelets + VTK-m: Performance Comparison
● Parallelism strategy for wavelet transforms:

○ Spatial decomposition + (pthreads, OpenMP, etc.)
○ VTK-m 

● Test data: 2D Gaussian distribution in double 
precision (image from Wikipedia)

● Five techniques to compare:
○ Serial VAPoR (reference implementation)
○ Serial VTK-m
○ Spatial decomposition with VAPoR (OpenMP, 16 cores)
○ VTK-m with TBB (16 cores)
○ Tesla K40 GPU

● Increase 2D square size from 1,0242 to 32,7682 



Wavelets + VTK-m: Performance Comparison
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Wavelets + VTK-m: Accuracy Comparison
● Accuracy measurements:

○ L-infinity norm: maximum point-wise difference
○ Root Mean Square Error (RMSE): average point-wise difference (similar to SNR)
○ Normalize both L-infinity and RMSE measurements by the data range.

● Reminder: compression strategy is to threshold smaller coefficients. 
E.g. 100:1 means to keep a hundredth largest coefficients.

● Parallel techniques may have impacts on accuracy:
○ VTK-m keeps largest coefficients globally
○ Spatial decomposition keeps largest coefficients of each block, or locally

● Assumption: VTK-m provides better accuracy, especially when spatial 
decomposition has too many blocks. 



Wavelets + VTK-m: Accuracy Comparison

● Compression level: 100:1.
● Spatial Decomposition use number of blocks: 1, 4, 16, 64, 256.
● VTK-m has one accuracy number.



Impact on Accuracy by Spatial Decomposition
● Impact of spatial decomposition at different compression ratios 

--- 50:1, 100:1, and 200:1
● Number of blocks are 1, 4, 16, 64, 256.
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Lessons Learned
● Launching worklets is expensive.
● Natural logic of performing 2D wavelet transform:

○ Repeat the same 1D wavelet transform on every row;
○ Repeat the same 1D wavelet transform on every column.
○ Invoke the 1D wavelet worklet every time: num_rows x num_columns

● VTK-m approach of performing 2D wavelet transform:
○ Create a worklet for 2D that handles both rows and columns
○ Invoke this new worklet only one time.

● Fast calculation, but cannot reuse 1D implementations.



Wavelets + VTK-m: Conclusion
● ++ One code runs on GPUs as well (and a lot faster)
● ++ Better accuracy compared to spatial decomposition
● +/- Comparable performance on multi-core CPUs.
● --   There’s a Learning curve to program with VTK-m



What is done, and what is next
● What’s done:

○ Wavelet Transform in 1D gets merged to VTK-m mainstream.
○ Wavelet Transform in 2D is ready to merge.

● What’s next
○ Finish Wavelet Transform in 3D
○ Write a paper to report these results.


