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Sensory	
  
Input	
  

Brain	
  

EM	
  

Connectome	
  B	
  

Human	
  
Behavior	
  

[Ca2+]	
  

•  Connectome	
  B	
  is	
  an	
  individual	
  characteris,c	
  
derived	
  from	
  Electromagne,c	
  field	
  data	
  

•  Connectome	
  A	
  is	
  a	
  popula*on	
  characteris,c	
  
derived	
  from	
  B	
  

•  Not	
  all	
  of	
  Connectome	
  A	
  is	
  used	
  in	
  the	
  CNM	
  

Computa,onal	
  
Neural	
  Model	
  

Sensory	
  
Input	
  

One	
  characteriza,on	
  of	
  Structural	
  Fidelity	
  of	
  CNM	
  is	
  a	
  
structural	
  comparisons	
  between	
  Connectome	
  B,	
  
Connectome	
  A,	
  and	
  the	
  por,on	
  of	
  Connectome	
  A	
  
employed	
  by	
  the	
  CNM	
  	
  	
  

Network	
  
Behavior	
  

Func,onal	
  Fidelity	
  Structural	
  Fidelity	
  

Connectome	
  A	
  



Approximate	
  Graph	
  Matching	
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•  Variety of methods, for example:  
•  Kroenecker product  
•  Graduated assignment  
•  Eigen-decomposition 
•  Edit distance, e.g. Hamming, A*, Hausdorff   (labeled, attributed, graphs) 
•  Spherical approximate matching 
•  etc.  

•  Methods typically require a correspondence between nodes:  
•  Nodes are labeled and the labels have meaning.   
•  Node labels are not the same as node attributes.  

•  Characteristics of current problems:  
•  Unlabeled nodes 
•  Directed/undirected edges 
•  Node and/or edge attributes 
•  Nodes or edges missing: graphs may be incomplete 

•  Exact match between graphs is assumed to not be possible; must 
look for graphs that are similar.  



Uses	
  for	
  Similarity	
  Measures	
  
§  Classifica,on	
  

§  Is	
  it	
  a	
  cat?	
  
§  Image	
  Retrieval	
  

§  Show	
  me	
  pictures	
  of	
  cats.	
  
§  Unsupervised	
  segmenta,on	
  

§  Which	
  parts	
  of	
  the	
  image	
  are	
  a	
  cat	
  box?	
  

Need	
  a	
  similarity	
  measure	
  based	
  on	
  distribu1on	
  of	
  features	
  or	
  
a3ributes:	
  	
  shape,	
  color,	
  structure,	
  texture…	
  	
  

Distribu1on	
  of	
  features	
  will	
  be	
  captured	
  in	
  a	
  histogram	
  or	
  
signature.	
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Signatures	
  
§  Signatures 

§  Similar to histograms but efficiently captures more information 
§  Signature: {sj=(mj, wmj)} is a set of graph features where 

§  mj = median/centroid of feature cluster 
§  wmj = weight/frequency/count of feature within cluster with centroid mj  

§  Signatures can be associated with: 
§  Structural properties of graph G, e.g. centrality  

of all induced subgraphs of radius 2  

§  Attribute properties of node or edge: 
a1,1…n= {Tree	
  Canopy,	
  Grass/shrub,	
  Bare	
  soil,	
  Water,	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Buildings,	
  Railroad,	
  Other,	
  Area,	
  Aspect	
  ra,o} 

1.3 EMD for Graph Structural Similarity
Following the work by Macindoe, et al [5]

1.3.1 Diversity Metric

Diversity metrics capture the topological survivability [8] and variable connectivity [1] of
a graph. Is the graph dominated by a small number of large, highly connected subgraphs,
or is it composed of a large number of very loosely connected nodes (or small subgraphs)?

For a graph with n vertices, let di be the degree of of vertex i,1 ⇤ i ⇤ n and define
D= {d1,d2, . . . ,dn} be the degree sequence of the graph, where, without loss of generality,
d1 ⌅ d2 ⌅ · · ·dn. Define a metric for graph G with degree sequence D, the s metric:

s(G) = Â
(i, j)⇧E

did j = Â
i⇧V

Â
j⇧V

diai jd j (5)

where the vertex adjacency matrix is defined A =
�
ai j

⇥
.

1.3.2 Centrality Metric

Centrality metrics capture how well the edges are distributed across the nodes.

c(G) =
Ân

i=1(dmax �di)

(n�2)(n�1)
(6)

If all nodes have the same degree, then the centrality metric is low. Alternatively, if one
node is connected to all the other nodes, which themselves are not connected (star graph),
the centrality is maximal.

1.3.3 Clustering Metric

Triadic closure as a clustering metric:

t(G) =
6⇥ (# triangles)

(# length-two-paths)
(7)

If two nodes are connected through a third node, T captures the probability that two nodes
are directly connected. Graphs with no triangles, e.g. bipartite, indicate less clustering of
nodes. T is maximal for a complete graph.
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(b) Bonding
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(c) Diversity
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(d) LBD Simplex

Fig. 3. LBD distributions and simplex for the Enron graph at radius 2.
The asterisk indicates the lbd location for the full graph (i.e.radius is now the
diameter of the graph. The histograms show the frequencies of the parameters
given on the abscissa.)

is a team and each edge is a match. The general structure
is that local teams play one another, forming small bonded
subgraphs, and then their winners play one another, linking
the subgraphs. Figures 4b and c show the distribution of LBD
values at radius 1 and radius 2. At radius 1 we can see the
a large proportion of the graph is composed of subgraphs
with one or two vertices whose degree is higher than the rest
of the vertices in the subgraph. These vertices are division
winners and their influence can seen in the mid to high range
leadership values in the simplex. As is typical of radius 1
subgraphs, diversity scores tend to be low. This tells us that
when we look at just the subgraph of a team and the teams
that they have played against, there are one or two teams that
have played more games and that most teams have played
games against opponents within their own local competition.
At radius 2 there is a dramatic shift. Since the graph has a low
diameter, radius 2 neighborhoods include most of the graph,
leading to a convergence in LBD scores. Leadership scores
become much lower, because now most subgraphs include
most division winners which compete with one another in
degree. Diversity also rises as different divisions are linked by
the winners of those divisions playing one another. At higher
radii the point cloud converges towards the asterisk, which
shows the full graph LBD score.

V. COMPARING GRAPH FINE STRUCTURE

Since the LBD distribution of a graph summarizes its fine
structure we can compare the LBD distributions of two graphs
to judge their similarity. In performing this comparison there
are some choices and tradeoffs to be made. The first is
what radius to consider for the distributions. For much social
network analysis, researchers are interested in ego-centric
subgraphs within a social network, which corresponds to a

(a) The Football network [14]. Note the clustering of
teams into local competitions.
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(b) Radius 1
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(c) Radius 2

Fig. 4. Visualization and lbd simplexes for the Football graph at radii 1 and
2.

radius 1 analysis, or perhaps radius 2 if they are interested in
an analysis of the structure of the subgraphs including friends
of friends. From our experiments the most interesting results
come from analysis at these two radii, particularly radius 2,
at which subgraphs become large enough for diversity to be a
significant factor.

An issue which was not mentioned in section IV is whether
or not to make the LBD space discrete when computing
distributions. LBD distributions were derived from counts of
the occurrences of real valued LBD scores for subgraphs.
However, for the purposes of ease of comparison we may wish
to bin LBD values within discretized regions. The choice of the
granularity of this discretization will impact any comparison,
since coarser discretizations may place distinct points in
the same bin. We chose a compromise between abstraction
and fidelity by discretizing LBD space into 0.2 unit length
cubes with the result that some graphs may be judged more
similar than in the non-discretized case. Our results suggest
however that the discretization process does not introduce an
unreasonable amount of noise.

Another concern relates to the question of what kind of
comparison of fine structure we want to make. Our construc-
tion of LBD distributions weights each LBD bin’s contribution
in the representation by the proportion of subgraphs in the full
graph that fall into that bin. An alternative construction would
be simply a vector of LBD values occurring in the graph. The
distinction here is that in the former representation proportion
is important, whereas in the latter mere presence is important.

astro blue brian clifford dino droopy goofy grommit lady peabody tramp

0
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Goal: to compare graphs we need to find a distance 
metric that characterizes the similarity between 
signatures.  
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Joint	
  vs	
  Marginal	
  Histograms	
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Joint	
  vs	
  Marginal	
  Histograms	
  

However, only really need bins to be associated with significant 
elements of the features/attributes 7	
  



Adap,ve	
  Binning	
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Clusters	
  -­‐>	
  Signatures	
  

•  Use K-means to identify important 
feature values from the 
histogram.  

•  Histogram converted to signature. 
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Graph	
  Similarity	
  Metric	
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•  Similarity between graphs will be based on the similarity of their signatures 

•  The distance between signatures will be a measure of their similarity 

•  Signature comparison is not done cell-by-cell as is done for some 
histogram comparison (chi-squared metric), but rather across all cells 
simultaneously using a distance algorithm, e.g. Earth Movers Distance.    

p1 p2 p3 p4 p5

q1

q2

q3

q4

p1 p2 p3 p4 p5

q1

q2

q3

q4

?



Distance	
  Measures	
  

§  Heuris,c	
  
§  Minkowski-­‐form	
  
§  Weighted-­‐Mean-­‐Variance	
  (WMV)	
  

§  Nonparametric	
  test	
  sta,s,cs	
  
§  χ	
  2	
  	
  (Chi	
  Square)	
  
§  Kolmogorov-­‐Smirnov	
  (KS)	
  
§  Cramer/von	
  Mises	
  (CvM)	
  

§  Informa,on-­‐theory	
  divergences	
  
§  Kullback-­‐Liebler	
  (KL)	
  
§  Jeffrey-­‐divergence	
  (JD)	
  

§  Ground	
  distance	
  measures	
  
§  Histogram	
  intersec,on	
  
§  Quadra,c	
  form	
  (QF)	
  
§  Earth	
  Movers	
  Distance	
  (EMD)	
  

11	
  
[see backup slides for more detail on each metric] 



Earth	
  Movers	
  Distance	
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§  EMD	
  is	
  defined	
  for	
  signatures	
  of	
  the	
  form	
  P={(x1,p1),...,(xm,pm)}	
  and	
  Q={(y1,q1),...,
(ym,qm)}	
  where	
  xi	
  is	
  the	
  center	
  of	
  cluster	
  i	
  and	
  represents	
  the	
  feature	
  of	
  interest,	
  
e.g.	
  ’color’,	
  and	
  pi	
  is	
  the	
  weight	
  of	
  cluster	
  i,	
  e.g.	
  number	
  of	
  points	
  of	
  that	
  feature	
  
type	
  in	
  the	
  cluster.	
  	
  

§  Let	
  F	
  =	
  [fij]	
  represent	
  the	
  flow	
  of	
  material	
  between	
  Pi	
  (supply)	
  to	
  Qj	
  (demand).	
  Two	
  
signatures	
  P	
  and	
  Q	
  can	
  be	
  compared	
  by	
  finding	
  the	
  flow	
  F	
  that	
  minimizes	
  the	
  
transporta,on	
  problem:	
  	
  

Graph Bertillonage: Approximate Graph Matching Tech. Note ARG

histogram is defined across the index set I = {(i, j) : 1  i  m;1  j  n}; for example
P = {pi j : (i, j) 2 I} where (i, j) is an index into one of the N bins.

1.4.2 Constructing Signatures

• k-means

• PCA

1.4.3 EMD

Earth Movers Distance (EMD) for image retrieval was first introduced by Rubner [15].
EMD is defined for signatures of the form P= {(x1, p1), . . . ,(xm, pm)} and Q= {(y1,q1), . . . ,(ym,qn)}
where xi is the center of cluster i and represents the feature of interest, e.g. ’color’, and pi
is the weight of cluster i, e.g. number of points of that feature type in the cluster.

Let F = [ fi j] represent the flow of material between Pi (supply) to Q j (demand). Two
signatures P and Q can be compared by finding the flow F that minimizes the transportation
problem:

Work(P,Q;F) =

 
min

fi j
Â
i, j

fi jdi j

!
s.t. : (1)

fi j > 0 earth can only be moved from P to Q (2)

Â
j

fi j  pi the earth to be moved must be less than what is in P (3)

Â
i

fi j  q j the earth to be moved must be less than what Q can receive (4)

Â
i

fi j = min
�

pi,q j
�

move the maximum amount of earth (5)

(6)

Solving the transportation problem yields the optimum flow F⇤ which can then be used
to find the Earth Movers Distance:

EMD(P,Q;F) =

 
min

f ⇤i j
Â
i, j

f ⇤i jdi j

!
/Â

i, j
f ⇤i j (7)

where di j is the ground distance between bin i and bin j in the histograms. The ground
metric d is the distance between features, which is interpreted as the cost of turning a unit
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EMD	
  (con,nued)	
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Figure 2: EMD as Transportation Problem

mass of one feature into a unit mass of the feature in another signature. Figure 2 depicts a
basic transportation problem where m = 4,n = 3.

Note that, unlike the c2 or KolmogorovSmirnov (KS) distance metrics, EMD is not
a bin-to-bin distance comparison between two signatures (Figure 3. KS distance and the
Cramer von Mises statistics are more closely related to ground distance. However, these
measures are defined only in one dimension and cannot exploit the ground distance in the
full feature space.

p1 p2 p3 p4 p5

q1

q2

q3

q4

p1 p2 p3 p4 p5

q1

q2

q3

q4

?

Figure 3: EMD Bin-Bin Signature Distance

EMD can be applied to the more general variable-size signatures, which subsume

5 of 41 Version 0.5 07/25/2013 10:13

§  The	
  ground	
  metric	
  d	
  is	
  the	
  distance	
  between	
  features,	
  which	
  is	
  interpreted	
  as	
  the	
  
cost	
  of	
  turning	
  a	
  unit	
  mass	
  of	
  one	
  feature	
  into	
  a	
  unit	
  mass	
  of	
  the	
  feature	
  in	
  another	
  
signature.	
  Figure	
  depicts	
  a	
  basic	
  transporta,on	
  problem	
  where	
  m	
  =	
  4,	
  n	
  =	
  3.	
  	
  

§  For	
  signatures	
  with	
  the	
  same	
  total	
  mass	
  the	
  EMD	
  is	
  a	
  true	
  metric	
  on	
  distribu,ons,	
  
and	
  it	
  is	
  iden,cal	
  to	
  the	
  Mallows	
  distance.	
  Note	
  that	
  normalizing	
  signatures	
  with	
  the	
  
same	
  mass	
  does	
  not	
  affect	
  their	
  EMD.	
  However,	
  EMD	
  on	
  signatures	
  is	
  not	
  invariant	
  
to	
  weight	
  scaling	
  unless	
  both	
  signatures	
  are	
  scaled	
  by	
  the	
  same	
  factor.	
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§  Alterna,ve	
  formula,on	
  exists	
  that	
  doesn’t	
  
overcome	
  the	
  above	
  problem,	
  but	
  does	
  
account	
  for	
  unequal	
  signatures	
  mass:	
  

	
  

Graph Bertillonage: Approximate Graph Matching Tech. Note ARG

1.4.6 Issues with EMD

All is not rosy however in the case where the signatures are not of equal mass. If one
signature is a partial match for another signature, then a degenerate situation develops.

The following example is from Levina and Bickel[7]. Consider the two signatures in Fig-
ure 4; notice that Q is a partial match for P. First consider the case where both signatures are
normalized. Then Q= {(1,0.5),(4,0.5)} and P= {(1,0.25),(2,0.25),(3,0.25),(4,0.25)}.
Then, using L1 as the ground distance, we find that M1(P,Q) = EMD1(P,Q) = 0.5.. Alter-
natively, if the signatures are not normalized and again use L1 as the ground distance, we
find that EMD(P,Q) = 0. In fact, the EMD remains zero even with the addition of multiple
values of pi.

p1 p2 p3 p4

q1 q4

Figure 4: EMD Degenerate Case

1.4.7 Alternative EMD Formulations

As noted previously, EMD is a true metric for normalized signatures. Being a metric can
lead to more efficient data structures and search algorithms. When the two signatures to
be compared are similar in size then EMD behaves as an approximate metric. Pele and
Werman[11] suggested a variation of EMD that overcomes this issue. Assuming, without
loss of generality, the ÂPi � ÂQ j introduce an additional infinite ’demand’ that absorbs
the excess ’supply’ from P.

As before, solving the transportation problem (Equation 1) yields the optimum flow F⇤;
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Graph Bertillonage: Approximate Graph Matching Tech. Note ARG

these flows can then be used to find an variation of EMD:

EMD⇤(P,Q;F) =

 
min

f ⇤i j
Â
i, j

f ⇤i jdi j

!
+ |Â

i
Pi �Â

j
Q j|⇥a max

i, j
{di j} (9)

where, if a � 0.5 and the ground distance is a metric, then EMD* is a metric. This
alternative provides relief in two important situations: first is when the total mass of the
histograms is important and second, when the mass difference between the histograms is
important.

1.4.8 Code

• Python source within PuLP: www.coin-or.org/PuLP/main/installing_pulp_
at_home.html

• C source of EMD L1 cab driver distance (2006): www.vision.ucla.edu/
˜

hbling/

publication.htm

• C source with examples (1998): www.cs.duke.edu/
˜

tomasi/software/emd.htm

• C++ code (most recent Euclidean?)(2008?): www.site.uottawa.ca/
˜

dmacd070/

emd/

• C source, original code by Rubner (1999): vision.stanford.edu/
˜

rubner/emd/

http://ai.stanford.edu/ rubner/emd/default.htm
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§  All	
  is	
  not	
  rosy	
  however	
  in	
  the	
  case	
  where	
  the	
  signatures	
  are	
  
not	
  of	
  equal	
  mass.	
  If	
  one	
  signature	
  is	
  a	
  par,al	
  match	
  for	
  
another	
  signature,	
  then	
  a	
  degenerate	
  situa,on	
  develops.	
  	
  

§  Consider	
  the	
  two	
  signatures	
  in	
  Figure;	
  no,ce	
  that	
  Q	
  is	
  a	
  
par,al	
  match	
  for	
  P.	
  the	
  EMD	
  remains	
  zero	
  even	
  with	
  the	
  
addi,on	
  of	
  mul,ple	
  values	
  of	
  pi	
  



Advantages	
  
§  Uses	
  signatures	
  (more	
  efficient	
  than	
  histograms)	
  
§  Nearness	
  measure	
  without	
  quan,za,on	
  
§  Par,al	
  matching	
  
§  A	
  true	
  metric	
  (well,	
  almost)	
  

Disadvantage	
  
§  High	
  computa,onal	
  cost	
  

§  Not	
  effec,ve	
  for	
  unsupervised	
  segmenta,on,	
  etc.	
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Graph	
  Signatures	
  
§  Graph Signatures 

§  Similar to histograms but efficiently captures more information 
§  Signature: {sj=(mj, wmj)} is a set of graph features where 

§  mj = median/centroid of feature cluster 
§  wmj = weight/frequency/count of feature within cluster with centroid mj  

§  Signatures can be associated with: 
§  Structural properties of graph G, e.g. centrality  

of all induced subgraphs of radius 2  

§  Attribute properties of node or edge: 
a1,1…n= {Tree	
  Canopy,	
  Grass/shrub,	
  Bare	
  soil,	
  Water,	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Buildings,	
  Railroad,	
  Other,	
  Area,	
  Aspect	
  ra,o} 

1.3 EMD for Graph Structural Similarity
Following the work by Macindoe, et al [5]

1.3.1 Diversity Metric

Diversity metrics capture the topological survivability [8] and variable connectivity [1] of
a graph. Is the graph dominated by a small number of large, highly connected subgraphs,
or is it composed of a large number of very loosely connected nodes (or small subgraphs)?

For a graph with n vertices, let di be the degree of of vertex i,1 ⇤ i ⇤ n and define
D= {d1,d2, . . . ,dn} be the degree sequence of the graph, where, without loss of generality,
d1 ⌅ d2 ⌅ · · ·dn. Define a metric for graph G with degree sequence D, the s metric:

s(G) = Â
(i, j)⇧E

did j = Â
i⇧V

Â
j⇧V

diai jd j (5)

where the vertex adjacency matrix is defined A =
�
ai j

⇥
.

1.3.2 Centrality Metric

Centrality metrics capture how well the edges are distributed across the nodes.

c(G) =
Ân

i=1(dmax �di)

(n�2)(n�1)
(6)

If all nodes have the same degree, then the centrality metric is low. Alternatively, if one
node is connected to all the other nodes, which themselves are not connected (star graph),
the centrality is maximal.

1.3.3 Clustering Metric

Triadic closure as a clustering metric:

t(G) =
6⇥ (# triangles)

(# length-two-paths)
(7)

If two nodes are connected through a third node, T captures the probability that two nodes
are directly connected. Graphs with no triangles, e.g. bipartite, indicate less clustering of
nodes. T is maximal for a complete graph.

4

0.2 0.4 0.6 0.8 1.0

0.02
0.04
0.06
0.08
0.10
0.12
0.14

0.2 0.4 0.6 0.8 1.0

0.02

0.04

0.06

0.08

0.10

0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

0.4

l ⇥ 0

b ⇥ 0

d ⇥ 0

l ⇥ 1

b ⇥ 1

d ⇥ 1

�

LBD Simplex

Radius 2

0.2 0.4 0.6 0.8 1.0

0.02

0.04

0.06

0.08

0.10

6   enron-th1_lbd_analysis.nb

(a) Leadership
0.2 0.4 0.6 0.8 1.0

0.05

0.10

0.15

0.20

0.2 0.4 0.6 0.8 1.0

0.05

0.10

0.15

0.20

l ⇥ 0

b ⇥ 0

d ⇥ 0

l ⇥ 1

b ⇥ 1

d ⇥ 1

�

LBD Simplex

Radius 3

0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

0.4

0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

0.4

enron-th1_lbd_analysis.nb   7

(b) Bonding
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(c) Diversity
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(d) LBD Simplex

Fig. 3. LBD distributions and simplex for the Enron graph at radius 2.
The asterisk indicates the lbd location for the full graph (i.e.radius is now the
diameter of the graph. The histograms show the frequencies of the parameters
given on the abscissa.)

is a team and each edge is a match. The general structure
is that local teams play one another, forming small bonded
subgraphs, and then their winners play one another, linking
the subgraphs. Figures 4b and c show the distribution of LBD
values at radius 1 and radius 2. At radius 1 we can see the
a large proportion of the graph is composed of subgraphs
with one or two vertices whose degree is higher than the rest
of the vertices in the subgraph. These vertices are division
winners and their influence can seen in the mid to high range
leadership values in the simplex. As is typical of radius 1
subgraphs, diversity scores tend to be low. This tells us that
when we look at just the subgraph of a team and the teams
that they have played against, there are one or two teams that
have played more games and that most teams have played
games against opponents within their own local competition.
At radius 2 there is a dramatic shift. Since the graph has a low
diameter, radius 2 neighborhoods include most of the graph,
leading to a convergence in LBD scores. Leadership scores
become much lower, because now most subgraphs include
most division winners which compete with one another in
degree. Diversity also rises as different divisions are linked by
the winners of those divisions playing one another. At higher
radii the point cloud converges towards the asterisk, which
shows the full graph LBD score.

V. COMPARING GRAPH FINE STRUCTURE

Since the LBD distribution of a graph summarizes its fine
structure we can compare the LBD distributions of two graphs
to judge their similarity. In performing this comparison there
are some choices and tradeoffs to be made. The first is
what radius to consider for the distributions. For much social
network analysis, researchers are interested in ego-centric
subgraphs within a social network, which corresponds to a

(a) The Football network [14]. Note the clustering of
teams into local competitions.
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(c) Radius 2

Fig. 4. Visualization and lbd simplexes for the Football graph at radii 1 and
2.

radius 1 analysis, or perhaps radius 2 if they are interested in
an analysis of the structure of the subgraphs including friends
of friends. From our experiments the most interesting results
come from analysis at these two radii, particularly radius 2,
at which subgraphs become large enough for diversity to be a
significant factor.

An issue which was not mentioned in section IV is whether
or not to make the LBD space discrete when computing
distributions. LBD distributions were derived from counts of
the occurrences of real valued LBD scores for subgraphs.
However, for the purposes of ease of comparison we may wish
to bin LBD values within discretized regions. The choice of the
granularity of this discretization will impact any comparison,
since coarser discretizations may place distinct points in
the same bin. We chose a compromise between abstraction
and fidelity by discretizing LBD space into 0.2 unit length
cubes with the result that some graphs may be judged more
similar than in the non-discretized case. Our results suggest
however that the discretization process does not introduce an
unreasonable amount of noise.

Another concern relates to the question of what kind of
comparison of fine structure we want to make. Our construc-
tion of LBD distributions weights each LBD bin’s contribution
in the representation by the proportion of subgraphs in the full
graph that fall into that bin. An alternative construction would
be simply a vector of LBD values occurring in the graph. The
distinction here is that in the former representation proportion
is important, whereas in the latter mere presence is important.

astro blue brian clifford dino droopy goofy grommit lady peabody tramp

0
5

10
15

20
25

Goal: need to find a distance metric that characterizes 
the similarity between signatures.  Our focus (for now) 
is on finding graphs with similar structural 
characteristics.  16	
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Graph Bertillonage: Approximate Graph Matching
•  Problem: How can we statistically characterize the similarity between two graphs?  

•  Why are we interested: 
•  Does graph match something we’ve seen before? 

•  Generation of artificial graphs important area of research for evaluating graph analysis 
methods. Are the simulated graphs similar to the original?  

•  Can we determine what function the graph is performing? Social structure, cyber 
security, software algorithm ID, etc.  

•  Is the graph changing over time?   
 

•  Existing methods generally require a correspondence  
between nodes, i.e. nodes are required to have unique labels, 
and require complete graphs 

•  New method is very general 
•  Unlabeled 
•  Directed/undirected 
•  Only portions of graphs are needed 
•  No self-loops!  

•  Extension 
•  Semantic graphs: node/edge attributes 
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Why	
  ‘Ber,llonage’?	
  
§  Ber,llonage	
  is	
  a	
  simple	
  forensic	
  analysis	
  technique	
  based	
  on	
  bio-­‐metrics	
  that	
  

was	
  developed	
  in	
  19th	
  century	
  France	
  before	
  the	
  advent	
  of	
  fingerprints.	
  	
  
§  Alphonse	
  Ber,llon	
  was	
  a	
  French	
  criminologist	
  and	
  anthropologist	
  who	
  created	
  

the	
  first	
  system	
  of	
  physical	
  measurements,	
  photography,	
  and	
  record-­‐keeping	
  
that	
  police	
  could	
  use	
  to	
  iden,fy	
  recidivist	
  criminals.	
  	
  

§  Ber,llon	
  developed	
  an	
  anthropometric	
  method	
  based	
  on	
  measurements	
  from	
  
head	
  and	
  body,	
  shape	
  of	
  facial	
  features,	
  and	
  individual	
  marks	
  (taroos,	
  scars,	
  
etc.).	
  	
  These	
  characteris,cs	
  were	
  filed	
  with	
  photographs	
  of	
  the	
  suspects	
  and	
  
cross-­‐indexed	
  to	
  permit	
  quick,	
  systema,c	
  access.	
  	
  	
  

§  The	
  method,	
  referred	
  to	
  as	
  Ber*llonage,	
  worked	
  well	
  under	
  ideal	
  condi,ons,	
  
but	
  was	
  difficult	
  to	
  implement	
  for	
  a	
  variety	
  of	
  reasons.	
  For	
  example,	
  inaccurate	
  
measurements	
  were	
  common	
  for	
  untrained	
  personnel.	
  In	
  addi,on,	
  suspect	
  
characteris,cs	
  changed	
  with	
  age.	
  it	
  was	
  eventually	
  abandoned	
  in	
  favor	
  of	
  
fingerprints.	
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Example: detecting statistically 
significant changes in network traffic 

Example: with statistical confidence of 
90%, the decompiled control flow chart 
for the decompiled code similar to 
algorithms X, Y, Z  
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4.1 Graph Structure Metrics
4.1.1 Diversity Metric (not used)

Diversity metrics capture the topological survivability [12] and variable connectivity [2] of
a graph. Is the graph dominated by a small number of large, highly connected subgraphs,
or is it composed of a large number of very loosely connected nodes (or small subgraphs)?

For a graph with n vertices, let di be the degree of of vertex i,1 ⇥ i ⇥ n and define
D= {d1,d2, . . . ,dn} be the degree sequence of the graph, where, without loss of generality,
d1 ⇤ d2 ⇤ · · ·dn. Define a metric for graph G with degree sequence D, the s metric:

s(G) = Â
(i, j)⌅E

did j = Â
i⌅V

Â
j⌅V

diai jd j (7)

where the vertex adjacency matrix is defined A =
�
ai j

⇥
.

4.1.2 Centrality Metrics

Centrality metrics capture how well the edges are distributed across the nodes.

Closeness Centrality Closeness centrality (normalized) measures how many steps is re-
quired to access every other vertex from a given vertex thus providing an indication
of the potential for independent communication. It is the inverse of the average
length of the shortest paths to/from all the other vertices in the graph.

c(G) =
|V |�1

Âi ⇧=v d(v, i)
(8)

See Figures 6, 7, and 8.

Betweenness Centrality Betweenness centrality (normalized) measures the potential for
a node to control the communication within the network. It is approximately the
number of geodesics between b, c that go through a node a (n = |V |):

Cb(G) = Â
b<c

⇤ gbc(a)

gbc(n2 �3n+2)

⌅
(9)

Where gbc is the number of geodesics between b and c, and gbc(a) is the number of
geodesics between b and c that contain a. See Figures 9, 10, and 11.

11

Leadership Metric [4] Measures the degree to which a particular node dominates the
connections between nodes.

c(G) =
Ân

i=1(dmax �di)

(n�2)(n�1)
(10)

If all nodes have the same degree, then the leadership metric is low (zero). Alter-
natively, if one node is connected to all the other nodes, which themselves are not
connected (star graph), the centrality is maximal.

See Figures 12, 13, and 14.

Karate Club Network (G1)

Closeness Metric
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Figure 6: ClosenessMetric - Karate Network

4.1.3 Clustering Metric (not used)

Triadic closure as a clustering metric:

t(G) =
6⇥ (# triangles)

(# length-two-paths)
(11)

If two nodes are connected through a third node, T captures the probability that two nodes
are directly connected. Graphs with no triangles, e.g. bipartite, indicate less clustering of
nodes. T is maximal for a complete graph.
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Closeness centrality (normalized) measures how 
many steps is required to access every other vertex 
from a given vertex thus providing an indication of the 
potential for independent communication.  It is the 
inverse of the average length of the shortest paths to/
from all the other vertices in the graph. 

Betweenness centrality (normalized) measures the 
potential for a node to control the communication within 
the network.  

Leadership measures the degree to which a particular 
node dominates the connections between nodes.  

Diversity captures the topological survivability and 
variable connectivity. Is the graph dominated by a small 
number of large, highly connected subgraphs, or is it 
composed of a large number of very loosely connected 
nodes (or small subgraphs)? 
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number of geodesics between b, c that go through a node a (n = |V |):
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§  For	
  each	
  node	
  on	
  a	
  graph	
  a	
  subgraph	
  is	
  induced	
  by	
  finding	
  the	
  neighborhood	
  
of	
  size	
  two	
  for	
  that	
  node.	
  	
  

§  For	
  each	
  induced	
  subgraph,	
  the	
  graph	
  characteris,cs	
  are	
  calculated	
  
§  These	
  graph	
  graph	
  characteris,cs	
  are	
  collected	
  to	
  form	
  the	
  signatures	
  for	
  each	
  

graph	
  metric	
  
§  Alterna,ve	
  signature	
  construc,ons	
  methods	
  are	
  being	
  inves,gated:	
  

§  Equal	
  bin	
  width	
  (current)	
  
§  K-­‐means	
  to	
  find	
  bin	
  centroids	
  and	
  bin	
  width	
  (tes,ng)	
  

Neighborhoods	
  

21	
  



Verifica,on	
  

22	
  

§  The	
  goal	
  was	
  to	
  verify	
  the	
  ability	
  of	
  the	
  algorithm	
  to	
  characterize	
  the	
  similarity	
  
between	
  graphs.	
  	
  	
  

§  A	
  series	
  of	
  random	
  graphs	
  (Erdos-­‐Renyi)	
  were	
  generated	
  of	
  various	
  sizes	
  and	
  
connec,vity	
  parerns.	
  	
  

§  This	
  simula,on	
  resulted	
  in	
  a	
  large	
  number	
  of	
  graphs	
  across	
  a	
  spectrum	
  of	
  
parameters.	
  Each	
  graph	
  is	
  represented	
  by	
  a	
  code:	
  gn_N_d	
  
§  n=	
  simula,on	
  number,	
  i.e.	
  	
  all	
  graphs	
  g#_1000_1	
  represent	
  random	
  realiza,on	
  of	
  the	
  same	
  E-­‐

R	
  graph.	
  	
  	
  	
  
§  N	
  =	
  number	
  of	
  nodes	
  in	
  graph	
  

§  d	
  =	
  expected	
  degree	
  	
  	
  
§  Verifica,on	
  involved	
  using	
  GB	
  to	
  characterize	
  the	
  pair-­‐wise	
  similarity	
  between	
  

the	
  graphs	
  and	
  cluster	
  them	
  based	
  on	
  the	
  similarity	
  metric.	
  	
  	
  
§  The	
  following	
  few	
  slides	
  represent	
  various	
  depic,ons	
  of	
  the	
  results	
  
§  All	
  the	
  graphs	
  present	
  the	
  same	
  results,	
  just	
  in	
  slightly	
  different	
  visual	
  forms.	
  

Different	
  applica,ons/users	
  find	
  benefit	
  from	
  different	
  presenta,ons.	
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(zoom in on leaves) 
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Example: detecting statistically 
significant changes in network traffic 

Example: with statistical confidence of 
90%, the decompiled control flow chart 
for the decompiled code similar to 
algorithms X, Y, Z  
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Given an new graph from the 
wild we can query a historical 
library to identify graphs that 
have the similar structure.   



Network Reaction to 
External Stimulus (static)

28	
  

2015070100
2015070101
2015070102
2015070103

201
507

010
4

20
15
07
01
05

201
507

010
6

201
507

010
7

20150
70108

20150
70109

20150
70110201

507
011

1

2015
0701

12
201

507
011

3

201
507

011
4

2015
0701

15
201

507
011

6

201
507

011
7

2015070118

2015070119
2015070120
2015070121

20150701222015070123

2015070200
2015070201

2015070202

2015070203

2015070204

20
15
07
02
05

2015070206

2015070207

201
507

020
8

201
507

020
9

201
507

021
0

201
507

021
1

201
507

021
2

20
15
07
02
13

201
507

021
4

2015070215

2015070216

20150702172015070218

201507021920150702202015070221

201507022220150702232015070300

2015070301

2015070302

2015070303

20150703042015070305

2015070306
2015070307

2015070308

2015070309
20150703102015070311

2015070312

20150703132015070314201507031520150703162015070317

2015070318

2015070319

2015070320

2015070321

2015070322

2015070323

2015070400

2015070401

2015070402

2015070403

2015070404

20
15
07
04
05

2015070406
2015070407

2015070408

2015070409

2015070410

2015070411

2015070412

2015070413

2015070414

2015070415

2015070416

2015070417

2015070418

2015070419

2015070420

2015070421

2015070422

2015070423

2015070500

2015070501

2015070502

2015070503

20150705042015070505

2015070506

2015070507
2015070508
2015070509

2015070510

2015070511

2015070512

2015070513

2015070514

2015070515

2015070516

2015070517

2015070518

2015070519

2015070520

2015070521

2015070522

2015070523

2015070600

2015070601
2015070602

2015070603

20150706042015070605

2015070606

20
15
07
06
07

201
507

060
8

201
507

060
9

201
507

061
0

201
507

061
1

201
507

061
2

20
15
07
06
13

20
15
07
06
14

201
507

061
5

20
15
07
06
16

2015070617

2015070618

2015070619

2015070620
2015070621
2015070622

2015070623
2015070700

2015070701
2015070702

2015070703

20
15
07
07
04

20
15
07
07
05

2015070706

2015070707

201
507

070
8

20
15
07
07
09

20
15
07
07
10

201
507

071
1

201
507

071
2

201
507

071
3

201
507

071
4

201
507

071
5

201
507

071
6

2015070717

2015070718

2015070719

20150707202015070721

2015070722
2015070723
2015070800

2015070801

2015070802

2015070803

20
15
07
08
04

20
15
07
08
05

2015070806

20
15
07
08
07

20
15
07
08
08

20
15
07
08
09

20
15
07
08
10

20
15
07
08
11

20
15
07
08
12

20
15
07
08
13

20
15
07
08
14

20
15
07
08
15

20
15
07
08
16

2015070817

2015070818

2015070819

2015070820
2015070821

2015070822

2015070823

2015070900

2015070901

2015070902

2015070903

2015070904

20
15
07
09
05

2015070906

20
15
07
09
07

20
15
07
09
08

20
15
07
09
09

20
15
07
09
10

20
15
07
09
11

20
15
07
09
12

20
15
07
09
13

20
15
07
09
14

20
15
07
09
15

20
15
07
09
16

2015070917

2015070918

2015070919

2015070920

2015070921

2015070922

2015070923

2015071000

2015071001

2015071002

2015071003

2015071004

20
15
07
10
05

2015071006

2015071007

2015071008
20150710092015071010

20150710112015071012
20150710132015071014
20150710152015071016

2015071017
2015071018

201507101920150710202015071021

2015071022

2015071023

2015071100
20150711012015071102

2015071103

2015071104
2015071105

2015071106

2015071107

2015071108

20150711092015071110

2015071111

201507111220150711132015071114

2015071115

2015071116

2015071117
2015071118

2015071119
2015071120

20150711212015071122

2015071123

2015071200

2015071201
2015071202

2015071203

2015071204
2015071205

2015071206

2015071207

2015071208

2015071209

2015071210

2015071211

2015071212

2015071213

2015071214
2015071215

2015071216

2015071217

2015071218

2015071219
2015071220

2015071221
20150712222015071223

2015071300

2015071301
2015071302

2015071303

201507130
4

2015071305

2015071306

201507
1307

201
507

130
8

20
15
07
13
09

2015
0713

1020
15
07
13
11

20
15
07
13
12

20
15
07
13
13

20
15
07
13
14

20
15
07
13
15

20
15
07
13
16

2015071317
2015071318

2015071319
2015071320

2015071321
2015071322

2015071323
2015071400

2015071401

2015071402

2015071403

20
15
07
14
04

20
15
07
14
05

2015071406

20
15
07
14
07

201
507

140
8

201
507

140
9

201
507

141
0

2015
0714

1120
15
07
14
12

20150
71413

2015
0714

14
2015

0714
15

2015
0714

1620
15
07
14
17

2015071418

2015071419
2015071420

2015071421
2015071422

2015071423
2015071500

2015071501
2015071502
2015071503

20
15
07
15
04

2015
0715

05

2015071506

20
15
07
15
07

2015
0715

0820
15
07
15
09

20150
71510

20150
71511

20150
71512

20150
71513

2015
0715

14

2015
0715

15

2015
0715

1620
15
07
15
17

2015071518

2015071519
2015071520

2015071521
2015071522
2015071523
2015071600
2015071601

2015071602
2015071603

2015071604

20
15
07
16
05

2015071606

20
15
07
16
07

2015
0716

08

2015
0716

09
2015

0716
1020

15
07
16
11

20
15
07
16
12

20
15
07
16
13

20
15
07
16
14

20
15
07
16
15

20
15
07
16
16

2015071617
2015071618

2015071619

2015071620

2015071621

2015071622

2015071623

2015071700

2015071701

2015071702

2015071703

201507
1704

2015071705

2015071706

20150717072015071708
2015071709

20150717102015071711
2015071712
2015071713
2015071714

2015071715
2015071716
2015071717
2015071718

2015071719

20
15
07
17
20

2015071721

2015071722
2015071723
2015071800

2015071801

2015071802

2015071803

2015071804

201
507

180
5

201
507

180
6

201507
1807

2015071808
2015071809 20

15
07
18
10

2015071811

2015071812

2015071813

2015071814

2015071815

2015071816

2015071817

2015071818

2015071819

2015071820

2015071821

2015071822

2015071823

2015071900

2015071901

2015071902

2015071903

2015071
904

20150719
05

2015071906

2015071907
2015071908

2015071909

2015071910

2015071911

2015071912

2015071913

2015071914

2015071915

2015071916

2015071917

2015071918

2015071919

2015071920

2015071921

2015071922

2015071923

2015072000

2015072001

2015072002

2015072003

201507
2004

2015072005

2015072006

20
15
07
20
07

201
507

200
8

20
15
07
20
09

201
507

201
0

2015072011

20
15
07
20
12

20
15
07
20
13

20
15
07
20
14

20
15
07
20
15

20
15
07
20
16

2015072017

2015072018

20
15
07
20
19

20
15
07
20
20

2015072021

2015072022

2015072023

201507
2100

2015072101

2015072102

2015072103

2015072104

201
507

210
5

20150
72106

201
507

210
7

201
507

210
8

20
15
07
21
09

20
15
07
21
10

20
15
07
21
11

2015
0721

1220
15
07
21
13

2015
0721

1420
15
07
21
15

20
15
07
21
16

2015072117
2015072118

2015072119
2015072120 20

15
07
21
21

2015072122 20
15
07
21
23

20
15
07
22
00

20
15
07
22
01

20
15
07
22
02

2015072203

20
15
07
22
04

20150
72205

20
15
07
22
06

20
15
07
22
07

201
507

220
8

2015
0722

0920
15
07
22
10

201
507

221
1

201
507

221
2

2015072213201507221420150722152015072216201507
2217

2015072218

2015072219

2015072220

20
15
07
22
21

20
15
07
22
22

20
15
07
22
23

20
15
07
23
00

20
15
07
23
01

2015072302

20
15
07
23
03

20150723042015072305
2015072306

20
15
07
23
07

201
507

230
8

201
507

230
9

201
507

231
0

20
15
07
23
11

20
15
07
23
12

20
15
07
23
13

20
15
07
23
14

20
15
07
23
15

20
15
07
23
16

2015072317

2015072318

2015072319 20
15
07
23
20

20
15
07
23
21

20
15
07
23
22

20
15
07
23
23

20
15
07
24
00

20
15
07
24
01

2015072402

20
15
07
24
03

2015072
404

2015072405

2015072406

2015072407

2015072
408

20150724092015072410
20150724112015072412

201507
2413

2015072414
2015072415
2015072416

2015072417 20
15
07
24
18

20
15
07
24
19

2015072420

20
15
07
24
21

2015072422

20
15
07
24
23

2015072500

20
15
07
25
01

2015072502

20
15
07
25
03

20150725
0420150

72505

20
15
07
25
06

2015072507 20
15
07
25
08

2015072509 20
15
07
25
10

20
15
07
25
11

20
15
07
25
12

20
15
07
25
13

2015072514

20
15
07
25
15

2015072516

20
15
07
25
17

2015072518

20
15
07
25
19

2015072520

20
15
07
25
21

20
15
07
25
22

20
15
07
25
23

20
15
07
26
00

20
15
07
26
01

20
15
07
26
02

20
15
07
26
03

2015072
604

20150726
05

20
15
07
26
06

2015072607 20
15
07
26
08

20
15
07
26
09

20
15
07
26
10

20
15
07
26
11

20
15
07
26
12

20
15
07
26
13

20
15
07
26
14

20
15
07
26
15

20
15
07
26
16

20
15
07
26
17

20
15
07
26
18

20
15
07
26
19

20
15
07
26
20

20
15
07
26
21

20
15
07
26
22

20
15
07
26
23

20
15
07
27
00

20
15
07
27
01

20
15
07
27
02

20
15
07
27
03

20150727
04

201507270
5

2015072706

2015072707

2015
0727

08
201

507
270

9

20
15
07
27
10

2015
0727

11

2015072712

20
15
07
27
13

2015
0727

1420
15
07
27
15

201
507

271
6

2015072
717

201507271
8

2015072719
2015072720 20

15
07
27
21

2015072722

20
15
07
27
23

2015072800 20
15
07
28
01

20
15
07
28
02

2015072803

20
15
07
28
04

20150728052015072
806

20
15
07
28
07

20
15
07
28
08

20
15
07
28
09

20150728102015072811201507
2812

201
507

281
3

20150
72814

2015072815201507281620150
72817

2015072818

2015072819 20
15
07
28
20

2015072821 20
15
07
28
22

20
15
07
28
23

2015072900 20
15
07
29
01

20
15
07
29
02

20
15
07
29
03

2015072904201507290520150
72906

2015072907

201
507

290
8

201
507

290
9

201
507

291
0

2015072911

201
507

291
2

2015072913

20150
72914

201507291520150729162015072917201507291
8

2015072919
2015072920
2015072921 20

15
07
29
22

20
15
07
29
23

2015073000 20
15
07
30
01

20
15
07
30
02

20
15
07
30
03

201507300420150730052015073006

201
507

300
7

2015073008201507300920150730102015073011

20150
81700

20150
81701201508
1702

20
15
08
17
03

20
15
08
17
04

201508
1705

20150
81706

2015081707

2015081708

2015081709

2015081710

2015081711

2015081712

2015081713

2015081714

2015081715
2015081716

2015081717

2015081718

2015081719

2015081720

2015081721

2015081722

2015081723

2015081800

2015081801

2015081802

2015081803

2015081804

2015081805

2015081806

2015081807

2015081809

2015081810

2015081811

2015081812

20
15
08
18
13

2015081814

20
15
08
18
15

2015081816

2015081817

2015081818

2015081819

2015081820

2015081821

2015081822

2015081823

2015081900

2015081901

2015081902

2015081903

2015081904

2015081905

2015081906

20
15
08
19
07

20
15
08
19
08

2015081909

20
15
08
19
10

2015081911

2015081912

20
15
08
19
13

2015081914

20
15
08
19
15

2015081916

2015081917

2015081918

2015081919

2015081920

2015081921

2015081922

2015081923

20
15
08
20
00

2015082001

2015082002

2015082003

2015082004

2015082005

20
15
08
20
06

20
15
08
20
07

20
15
08
20
08

20
15
08
20
09

20
15
08
20
10

20
15
08
20
11

20
15
08
20
12

2015082013

20
15
08
20
14

20
15
08
20
15

20
15
08
20
16

2015082017

2015082018
2015082019

2015082020

2015082021

2015082022

2015082023

2015082100
2015082101
2015082102
2015082103
2015082104

2015082105

20
15
08
21
06

2015082107

20
15
08
21
08

20
15
08
21
09

20
15
08
21
10

20
15
08
21
11

20
15
08
21
12

20
15
08
21
13

20
15
08
21
14

20
15
08
21
15

2015082116
2015082117

2015082118

20
15
08
21
19

2015082120
2015082121

2015082122

2015082123
2015082200

2015082201
2015082202

20
15
08
22
03

2015082204

2015082205
2015082206
2015082207

2015082208

2015082209

2015082210

2015082211

2015082212

2015082213

2015082214

20
15
08
22
15

2015
0822

16
20150

82217
2015

0822
18

2015082219

20
15
08
22
20

201
508

222
1

201
508

222
2

2015082223

2015082300

2015082
301

201
508

230
22015082303

2015082
3042015082305

20150823
062015082307201508230
8

201508230
9

20150823
102015082311

201
508

231
2

2015082
3132015082314

2015082315

2015
0823

16

2015
0823

17
20150

82318

2015082319

2015082320

2015082321
2015082322

2015082323

2015082400

2015082401

20
15
08
24
02

2015082403
2015082404
2015082405
2015082406

20
15
08
24
07

20
15
08
24
08

20
15
08
24
09

20
15
08
24
10

20
15
08
24
11

20
15
08
24
12

20
15
08
24
13

20
15
08
24
14

20
15
08
24
15

2015082416

2015082417

2015082418
2015082419

2015
0824

20

201
508

242
1

201
508

242
2

2015082423

201
508

250
0

2015
0825

01
20150

82502

2015
0825

03

201
508

250
4

2015082505

2015082506
2015082507

20
15
08
25
08

2015082509
2015082510

2015082511

20
15
08
25
12

20
15
08
25
13

20
15
08
25
14

20
15
08
25
15

2015082516
2015082517

2015082518

2015
0825

19
2015

0825
20

201
508

252
1

201
508

252
2

201
508

252
3

201
508

260
0

201
508

260
1

2015082602
2015082603

201
508

260
4

2015082605
2015082606

20
15
08
26
07

20
15
08
26
08

20
15
08
26
09

20
15
08
26
10

20
15
08
26
11

2015082612
2015082613

20
15
08
26
14

20
15
08
26
15

20
15
08
26
16

2015082617
2015082618

2015082619

2015082620

2015082621

2015082622

20
15
08
26
23

2015082700
2015082701
2015082702

2015082703

2015082704
2015082705
2015082706

20
15
08
27
07

20
15
08
27
08

20
15
08
27
09

20
15
08
27
10

20
15
08
27
11

20
15
08
27
12

20
15
08
27
13

20
15
08
27
14

20
15
08
27
15

2015082716
2015082717

2015082718

2015082719

2015082720

2015082721

2015082722
2015082723
2015082800
2015082801

20
15
08
28
02

2015082803
2015082804
2015082805
2015082806

20
15
08
28
07

20
15
08
28
08

20
15
08
28
09

20
15
08
28
10

20
15
08
28
11

2015082812

20
15
08
28
13

201
508

281
4

201
508

281
5

2015
0828

16
201508

28172015082818
2015082

81920150828
202015082821201508282
220150828232015082900

20150
829012015082
902201508290
32015082904201508290520150829062015082907201508290820150829
09201508291020150829112015082912

20150
829132015082914

2015
0829

15
20150

8291620150829172015082918

201
508

291
92015082920

201508
2921

201508
2922

20150
82923201508
3000

2015
0830

01
2015

0830
02

201
508

300
3

2015
0830

04

2015
0830

05

2015
0830

06
20150

83007

2015
0830

082015083
009

2015083010

2015
0830

11
201508

301220150830132015083014

201
508

301
5

201508
3016201508301720150830182015083019

2015
0830

20

201
508

302
12015083022

20150
83023

2015083100
20150

8310120150
83102

201
508

310
3

20150
83104

2015
0831

05
2015

0831
06

2015083107

2015083108

20
15
08
31
09

20
15
08
31
10

20
15
08
31
11

20
15
08
31
12

20
15
08
31
13

20
15
08
31
14

20
15
08
31
15

20
15
08
31
16

2015083117

2015083118
2015083119

2015083120

2015083121
2015083122
2015083123
2015090100
2015090101
2015090102

20
15
09
01
03

2015090104
2015090105
2015090106

20
15
09
01
07

20
15
09
01
08

20
15
09
01
09

20
15
09
01
10

2015090111

20
15
09
01
12

20
15
09
01
13

20
15
09
01
14

20
15
09
01
15

20
15
09
01
16

2015090117

2015090118

20
15
09
01
19

20
15
09
01
20

20
15
09
01
21

20
15
09
01
22

20
15
09
01
23

20
15
09
02
00

20
15
09
02
01

2015090202

2015090203

20
15
09
02
04

2015090205

2015090206

2015090207

2015090208
2015090209

2015090210

2015090211

2015090212

2015090213

2015090214

2015090215

2015090216
2015090217

2015090218

20
15
09
02
19

20
15
09
02
20

20
15
09
02
21

20
15
09
02
22

20
15
09
02
23

20
15
09
03
00

20
15
09
03
01

2015090302

2015090303

2015090304

2015090305

2015090306

2015090307

2015090308

2015090309

2015090310

2015090311

2015090312

2015090313

2015090314

2015090315

2015090316

2015090317

20
15
09
03
18

20
15
09
03
19

20
15
09
03
20

20
15
09
03
21

20
15
09
03
22

20
15
09
03
23

20
15
09
04
00

20
15
09
04
01

20
15
09
04
02

20
15
09
04
03

20
15
09
04
04

2015090405

2015090406

2015090407

2015090408

2015090409

2015090410

2015090411

2015090412

20
15
09
04
13

2015090414

20
15
09
04
15

2015090416

20
15
09
04
17

20
15
09
04
18

201
509

041
9

201
509

042
0

20
15
09
04
21

20
15
09
04
22

20
15
09
04
23

20
15
09
05
00

20
15
09
05
01

201
509

050
2

20
15
09
05
03

20
15
09
05
04

20
15
09
05
05

20
15
09
05
06

20
15
09
05
07

20
15
09
05
08

20
15
09
05
09

20
15
09
05
10

20
15
09
05
11

20
15
09
05
12

20
15
09
05
13

201
509

051
4

20
15
09
05
15

201
509

051
6

20
15
09
05
17

20
15
09
05
18

201
509

051
9

201
509

052
0

201
509

052
1

201
509

052
2

201
509

052
3

201
509

060
0

201
509

060
1

201
509

060
2

201
509

060
3

201
509

060
4

201
509

060
5

201
509

060
6

201
509

060
7

20
15
09
06
08

201
509

060
9

20
15
09
06
10

20
15
09
06
11

20
15
09
06
12

20
15
09
06
13

20
15
09
06
14

20
15
09
06
15

20
15
09
06
16

20
15
09
06
17

20
15
09
06
18

20
15
09
06
19

20
15
09
06
20

20
15
09
06
21

20
15
09
06
22

201
509

062
3

20
15
09
07
00

201
509

070
1

201
509

070
2

20
15
09
07
03

201
509

070
4

20
15
09
07
05

20
15
09
07
06

20
15
09
07
07

20
15
09
07
08

20
15
09
07
09

20
15
09
07
10

20
15
09
07
11

20
15
09
07
12

20
15
09
07
13

20
15
09
07
14

20
15
09
07
15

20
15
09
07
16

201
509

071
7

201
509

071
8

201
509

071
9

201
509

072
0

20
15
09
07
21

20
15
09
07
22

201
509

072
3

20
15
09
08
00

201
509

080
1

20
15
09
08
02

201
509

080
3

201
509

080
4

20
15
09
08
05

2015090806

2015090807

2015090808

For a variety of static external 
stimulus, it is possible cluster 
or group the network reactions 
for specific stimulus 
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It is also possible to monitor 
the temporal change in a 
network structure, possibly as 
external stimula change 

Example A 

Example B 


