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Parallel Algorithm Speedup




Parallel Algorithm Speedup ).

Serial time for large

problem sizes
nnot be measured in practice
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Measuring Scalability in Practice ~ [@J.

= Strong Scaling: Behavior as processing elements are
increased and problem size held constant.

= Per Amdahl’s Law, strong scaling always has its limits.

= Weak Scaling: Behavior as processing elements and
job size are increased proportionally.

= Per Gustafson-Barsis Law, weak scaling can possibly be
increased indefinitely.

= Scaling is often demonstrated with absolute run time
over different scales.
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Strong Scaling with Log Axes
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Demonstrating Weak Scaling
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Measuring Weak Scaling iL
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Normalized Weak Scaling
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Scaling with More Visual Precision @

Our position statement: rate and efficiency better
represent scaling behavior.

Although neither rate nor efficiency is a new
concept, there is not a lot of consistency in the
community.

Through algebra and examples | will show why rate
and efficiency are the “right” metrics to use.
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Why Use Rate?
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Why Use Rate?




Why Use Rate? ) .

T“(n) _T"(n)

S(n,p) = Tp) —  n R(n,p)

Becomes a constant
with n is constant.




Why Use Rate?

Sn(p) o< Ry (p)
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Scaling with Rate
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Measuring Scaling with Rate
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Measuring Scaling with Rate
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Measuring Efficiency from Cost

C(n,p) =pT(n,p)




Measuring Efficiency from Cost

Minimum (best) cost
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Measuring Efficiency from Cost

Minimum (best) cost

C*(n)
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Measuring Scaling with Efficiency
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Unifying Strong and Weak Scaling




Unifying Strong and Weak Scaling
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Efficiency Across Data Scales
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Unifying Rate Across Data Scales
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Unifying Rate Across Data Scales
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Unifying Rate Across Data Scales .
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Use Case 1: Gordon Bell Finalist ) o,

Measurements of HACC
code performance

Excellent Scalability

Measurements across
many scales

Lots of data provided in
paper

HACC: Extreme Scaling and Performance Across Diverse
Architectures
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Use Case 1: Gordon Bell Finalist
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Use Case 1: Gordon Bell Finalist
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Use Case 1: Gordon Bell Finalist
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Use Case 1: Gordon Bell Finalist
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Use Case 2: Imperfect Scaling

= Measures visualization
algorithm

" A high communication
overhead severely limits
scalability
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ABSTRACT

Exascale supercomputing will embody many revolutionary
ges in the hardware software of high-performance
computing. For example, projected limitations in power and
I/O-system performanee will fundamentally change 3
ization and analysis workflows. A traditional post-processing
workflow involves storing simulation results to disk and later
retrieving them for visualization and data analysis; how-
ever, at Exascale, post-processing approaches will not be
able to capture the volume or granularity of data necessary
for analysis of these extreme-scale simulations. As an alter-
native, researchers are exploring ways to integrate analysis
and simulation without using the storage system. In situ and
in transit are two options, but there has not been an ade-
quate evaluation of these approaches to identify strengths,
weaknesses, and trade-offs at large scale. This paper pro-
vides a detailed performance and scaling analysis of a large-
scale shock physics code using traditional post-processsing,
in situ, and in transit analy
from a simulated explosion.

s to detect material fragments

Categories and Subject Descriptors

L.6.6 [Simulation Output Analysis]; H.3.4 [Systems and
Software]: Performance evaluation (efficiency and effective-
ness)

Keywords
Case study, fragment detection, in situ analysis, in transit
analysis, shock physics
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Figure 1: Traditional and emerging workflow diagrams
showing the flow of information from simulation to persis-
tent storage.

1. INTRODUCTION

High-performance computing (HPC) applications produce
complex datasets that are increasingly difficult to explore
and understand using traditional post-processing workflows.
The primary reasc the increasing gap between computa-
tion and communication performance and the performance
of parallel file systems. This gap has been a known prob-
lem for several decades [13,15] and has motivated numerous
innovations to improve parallelism [16,31), caching [32], pro-
cessing [33], and scheduling (7] in 1/0 systems. Despite these
innovations, the gap widens at an alarming rate. At Exas-
cale, with a projected storage system rate of 60 TB/s (3],
/O em throughput will be less than 1% of the generat-
ing capacity of an HPC simulation. These trends are driving
an evolution away from application workflows consisting of |
sequences of independent simulation and analysis steps to in-
tegrated approaches that perform these steps concurrently. ‘

This paper provides a comprehensive evaluation of three
approaches (see Figure 1) to integrate visualization and data
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Use Case 2: Imperfect Scaling
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Use Case 2: Imperfect Scaling
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Final Recommendations )i,

= Do not rely on running time for performance
analysis. Instead use rate, efficiency, or both.

= Avoid using log-log scaling on plot axes, which hides
major inefficiencies. If necessary, repeat linear plots
at different scales.

= Rather than performing them separately,
incorporate weak and strong scaling studies in one.
Perform several strong scaling studies at different
scales of data size. Then find an overall minimal
practical cost per unit and plot all the measurements
together as demonstrated in the figures in this

paper.
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Kenneth Moreland Formal Metrics for Large-Scale Parallel Performance

“Formal Metrics for Large-Scale Parallel Performance." Kenneth Moreland and Ron Qldfield. In High
Performance Computing, July 2015. DOI 10.1007/978-3-319-20119-1_34.

Abstract

Performance measurement of parallel algorithms is well studied and well understood. However, a flaw in
traditional performance metrics is that they rely on comparisons to serial performance with the same input. This .
comparison is convenient for theoretical complexity analysis but impossible to perform in large-scale empirical T et coms

studies with data sizes far too large to run on a single serial computer. Consequently, scaling studies currently

rely on ad hoc methods that, although effective, have no grounded mathematical models. In this position paper we advocate using a rate-based
model that has a concrete meaning relative to speedup and efficiency and that can be used to unify strong and weak scaling studies.
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Full Paper

Formal Metrics for Large-Scale Parallel Performance

Supplemental Material

You can easily use any spreadsheet program (such as Microsoft Excel) or any other plotting program to generate plots based on the metrics in
this paper. The plots in this paper were generated with a Python module called toyplot. | built the scripts as self-documenting IPython
notebooks and provide them here as supplemental material for examples on how to compute and use these metrics. Even if you do not plan to
use the same tools | am using, you might find detail useful when replicating the detail yourself. You can download the archive of scripts, data,
and results or you can browse the material in the following web pages.

« Fabricated data from idealized performance and overhead. This data is not used in the paper, but | often use these figures when
presenting the work.

« Data from a real, good scaling parallel algorithm. This is the source for Figures 1 and 2 in the paper.

« Data from a real, poorly scaling parallel algorithm. This is the source for Figures 3 and 4 in the paper.

You can also download the presentation slides | used at ISC 2015. These slides do not give enough explanation to really understand the
concepts (that is what the speaker and paper are for), but it might be useful if you want to present this information to others.

SAND 2015-4836 W
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