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Introduction
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This work addresses the completely kinetic description of a 
microscale discharge device operating at atmospheric pressure. 
Such devices are often used in arrays for a variety of light 
generation purposes.

The separation and control of specific excited states is the goal of 
the overall work. Developing a computational model will allow us 
to better design and assess operating efficiencies, trade-offs, etc.



Experiments
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Experiment uses 4 cylindrical 
50 µm radius cavities (up to 
200 µm deep) all connected to 
the same ballast resistor-in-
series circuit.
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Description of Aleph

4

 1, 2, or 3D Cartesian

 Unstructured FEM (compatible with CAD)

 Massively parallel

 Hybrid PIC + DSMC (PIC-MCC)

 Electrostatics

 Fixed B field

 Solid conduction

 Advanced surface (electrode) models

 e- approximations (quasi-neutral ambipolar, Boltzmann)

 Collisions, charge exchange, chemistry, excited states, ionization

 Photon transport, photoemission, photoionization

 Advanced particle weighting methods

 Dual mesh (Particle and Electrostatics/Output)

 Dynamic load balancing (tricky)

 Restart (with all particles)

 Agile software infrastructure for extending BCs, post-processed quantities, etc.

 Currently utilizing up to 64K processors (>1B elements, >1B particles)



Model Description
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10 x 50 x 40 µm
348K elements
(7.9M @ 0.35 um)

25 x 125 x 50 µm
5.0M elements

50 x 250 x 100 µm
42M elements

Simulations required ~ 2 
days on 1024 cores.
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Model Description
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Experiment Model
655 Torr 300 K Ne 655 Torr 300 K Ne (nNe = 2.1 x 1025/m3)
332 kΩ resistor-in-series w/circuit elements VA = VPS – IR, R = 332 kΩ, I averaged ~ 10 ps
50 µm radius, 200 µm depth, 10 µm spacer 25 µm radius, 40 µm depth, 10 µm spacer
4 full microcavities Single 3D 30 degree sector 
Full chemistry Ionization, excitation, elastic (7 tracked 

species), from LXCat, www.lxcat.net
ε = 3 10 µm polyimide dielectric ε = 3 10 µm polyimide dielectric w/ surface 

charging
SEE γ = 0.15 for Ne+ and Ne++

Computational Parameters
Targeting ne- < 1020/m3, Te = 4 eV,

λD > 1.1 µm  Δx < 1.1 um, [Debye length]
λmfp > 1.6 µm  Δx < 1.6 um, [Collision mean free path]

Use Δx = 1.0 µm.
Targeting ΔV < 200 V, vmax = maximum e- speed (~ 9.4 x 106 m/s including thermal],

ωp < 5.6 x 1011/s  Δt < 3.5 ps, [Plasma e- frequency]
Δt < Δx/vmax  Δt < 100 fs, [CFL]
Δtcollide < (nNeσmaxvmax)

-1  Δt < 170 fs, [Collision frequency]
Use Δt = 50 fs.



Cross-sections (from LXCat)
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Results (VPS = 200 V): Spatial Evolution
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Results (VPS = 200 V): Spatial Evolution
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Results (VPS = 200 V): I and V Evolution
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Anode current
– cathode current =



Results (operating I vs. V)
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Comparison to 
operating conditions of 
experiment



Results: Distribution Functions
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The Truth about Particle Weights
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In these simulations, the particle weights for all species except Ne 
is initially 0.01.
 We are supposedly still a plasma as the plasma number is ~500 

(# particles in a Debye sphere).
 One advantage of the tiny particle weight is the exponential 

multiplicative effect is essentially guaranteed to begin at t = 0.
 Circuit noise is also impacted with a lower particle weight.
 Laying in a low density plasma to initiate discharge is non-

physical and can lead to premature overshooting.



Conclusion & Future Steps
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 Have developed a fully kinetic capability for simulation 
atmospheric pressure microscale discharges.

 Can track vdf’s for all species in space and time.
 Agreement within factor of 2x with experiment (first 

comparison for us).

 Need more electron chemistry.
 Should add spontaneous emission.
 Looking into photoemission.
 Recombination?
 Question about experimental 

ground at bottom of silicon vs. 
model ground at silicon surface.

 Turn off trickle current after some 
initial time.

Photoelectric 
current from 
2.118 eV photon
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