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Biological molecular motors

e Active transport systems:

o

Key to many dynamic physiological processes

Nature evolved motor proteins to transport
materials in static, nanofluidic environments
because fluid flow at those length scales
becomes problematic (e.g., pressure-driven
fluid low is hard in nano-channels)

Biomotors do not require external power —
rather they convert chemical energy (low
mass/weight) into mechanical work with great
efficiency

Biomotors function autonomously without the
need for a “user” to control function

Ability to transport in complex solutions (e.g.,
blood, saliva)

Biology: Adaptive and responsive
materials properties

*L. Haimo and C. Thaler, BioEssays 16, 727-733 (1994).

Adapted from: http://wilkes-fs1.wilkes.edu/~terzaghi/BIO-226/lectures/24.html

Nanotechnology: Dynamic materials
assembly



Kinesin and Microtubules

Biomolecular motors & active transport:

» Convert chemical energy (ATP) to mechanical work (40 pNenm) with
high catalytic efficiency (>50%)

Microtubule
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Goal: To utilize biomolecular motor-powered systems to develop novel
nanomaterials and nanofluidic systems with biomimetic functionality




Active self-assembly: spools

QDs + biotinylated MTs

Energy input via
ATP hydrolysis
~50 kJ/mol ATP
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Randomly assembled MTs
and QDs (equilibrium)

Gliding biotinylated MTs

Actively assembled MTs and
QDs (+ energy)

chemical energy — mechanical work — active assembly



Spool initiation and growth

Individual microtubules
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Initiation mechanism studied primarily
by changing experiment parameters,
observing effect on resultant spools,
and then inferring back to implications
for formation.




Photodamage

Damage to fluorescent dyes: Decreased brightness
Os 10 s 20s 30s 40 s

Damage to motors and microtubules

Depolymerization: MT

Pinning: fluorophore in
catastrophically disassembles

excited state or other
radical reacts with kinesin,
arresting movement of MT




Photostability of fluorescent dyes

Bleaching
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Once every ~1000 excitations, the
fluorophore goes from excited state
(S4) to long-lived triplet state (T,) and
stays “dark” for milliseconds before
returning to the ground state. These
undesired intensity fluctuations
decrease the ensemble intensity.

Fluorophore is rapidly rescued
from the triplet state by a reducing
and oxidizing system.



Oxygen scavenging system

Remove oxygen to ameliorate bleaching:
Enzymatic oxygen scavenger system
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Reducing and Oxidizing System to ameliorate blinking:

» Rescues fluorophore from dark triplet state, reducing blinking.
« Reduces bleaching by shortening the time the fluorophore spends in reactive
excited states.

Reductant: UV light Oxidant:
Trolox Trolox Quinone
(900 uM) 0 5 I (100 uM)

COOH
HO™ “cooH



Integrating biomotors into microfluidic
devices

* PDMS devices made via soft lithography and molding
— Rapid prototyping compared to hard materials
— Multi-layer devices enable integrated valves
— Permeable to gases
* For lab use to control experiment parameters in the study of
biomotors

Inlet 2

Valve 1 €3 + €5+ € Valve 2
Inlet 1 Inlet 3 Inlet |
Nitrogen Valve 3 ’ Inlet 2
Outlet 1 Nitrogen lc\lri\:rc:gsls / Inlet 3
+ Inlet —— Valve 2
y  Z Outl " ~ Valve |
L s \ ¥ ~_Valve 3

Outlet

I Control layer, 30 um deep

Flow layer, 13 um dee . .
" YIS HMEEER % Oxygen Nitrogen inlet

VanDelinder, Anal. Chem., 2013



GODCAT

Microfluidic

Photodamage

Photodamage to dyes — loss of brightness

3Imw 5mw 15 mw 0.4 mW
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I GODCAT

B GODCAT + Trolox

B Microfluidic device + Trolox

Device + TX




Photodamage

Photodamage to dyes — loss of brightness

Photodamage to motors — loss of motion
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Direct observation of spool formation via

microfluidics

Can visualize microtubules
while adding QDs

Controlled solution exchange
and can image during exchange
Iterate experiment repeatedly
Continuous supply of ATP
Improved photostability

* Less photodamage to motors
(less pinning)

* No enzymatic oxygen
scavenger system needed
(which stops working and
acidifies solution after |-2 hrs)

2) Streptavidin-conjugated QDs

1) Biotinylated MTs

M Valves

M Nitrogen channels

M Flow channels

Outlet



Formation mechanism: pinning

Pinning
Frequency
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e Diameter 2.7 £ |.5 um (mean * SD)

e The diameter of rings formed by pinning is determined the buckling
radius of a MT

> contributes to the uniformity of size of rings formed by this mechanism

e Rate at which microtubule encounters a dead motor is a stochastic
process

 Pinning is greatly increased by photodamage to motors

e The majority of rings formed by pinning rotated in the CCW
direction (62%)



Biased rotation direction

e Microtubules rotate axially depending on

14-pmtuﬂ|amsnt{left handad CCW) .
-- protofilament #

SN
13 protofilament e * Protofilament # has been observed to
: ! ” !13! - t”m] % affect ring rotation direction
= * Wada et al proposed mechanism by
12-protofilament (right-handed,CW) which an inhibiting point would produce
/> directional bias in ring rotation direction
> Amount of bias is dependent on kinesin surface
density
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Wada 2015



FLIC of individual MTs
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Formation mechanism: collisions

e Diameter 6.2 + 4.8 um

1
* Spools formed via collisions 2 e m cw
displayed a biased rotation £ 32 s B ccw
direction (74% CCW) CE
° Getting stuck on another MT ETE— gm?m ] ¢
can serve as an inhibiting Inner diameter (um) =

point



Formation mechanism:
induced curvature

* Closing events were rare and
thus difficult to capture

* This mechanism wasn’t
previously observed

e Diameter 33 £ 20 um

« 58% CCW

* Two different mechanisms
could underlie induced
curvature:
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Induced curvature of bundles

e Observed many
bundles that followed
persistent curved
trajectories

e Similar to what was
previously seen for
myosin-driven actin
filaments crosslinked by Ring Phase
facsin

Schaller 201 |



FLIC of bundles

 [f twist-bend coupling is
responsible to curved
trajectory of MT bundles,
then bundles should rotate
axially as they translate
across the surface

e Only ~20% of bundles
appear to be rotating

* Does not support twist-
bend coupling hypothesis




Trajectories

Single MTs Bundles Single MTs with QDs




Curvature analysis
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Comparison between device and
flow cell

Conventional glass flow cell Microfluidic device
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e On aggregate, the diameters and rotation direction
were consistent in the device and flow cell

> Device had fewer small (0-2 um) diameter rings, as
expected from decreased photodamage in device



Effect of formation mechanism on
spool properties
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e Formation mechanism affects

Pinning
Frequency

properties of spools :
» Can tune spool by biasing 2] N
which formation mechanism cgn
dominates 25
> Oxidative damage to motors » o L_ -
more pinning and small rings o on] S
> High surface density of MTs » % e
more collisions and medium- 33 ¢
sized rings g . : I
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Inner diameter (um) =
Induced
Pinning Collision Curvature
Inner Diameter (um) 2.7 6.2 31.6
Std dev I.5 4.8 19.4

%CCW 62 74 58
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Applications

Macroscale visual readout

Pigment
granule Microtubule




