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ABSTRACT
This paper presents a fine-grain queueing model of MPI
point-to-point messaging performance for use in the design
and analysis of current and future large-scale computing sys-
tems. In particular, the model seeks to capture key perfor-
mance behavior of MPI communication on many-core sys-
tems. We demonstrate that this model encompasses key
MPI performance characteristics, such as short/long proto-
col and offload/onload protocol tradeoffs, and demonstrate
its use in predicting the potential impact of architectural and
software changes for many-core systems on communication
performance. In addition, we also discuss the limitations
of this model and potential directions for enhancing its fi-
delity.

1. INTRODUCTION
High-Performance Computing (HPC) communication sys-
tem performance is critical to scientific application perfor-
mance. However, recent architectural, programming model,
and application changes challenge current message passing
library designs, particularly those that target next-generation
exascale computing systems. For example, many task appli-
cation and programming model designs are stressing com-
munication message rates at the same time that many-core
processors have reduced the message rate that current HPC
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communication systems can handle [4, 3]. Many-core pro-
cessors have concomitantly exposed key synchronization and
threading challenges both in the MPI standard itself [20, 8]
and in its implementation. Finally, network interface (NIC)
design choices also present important challenges to commu-
nication library design, for example in terms of protocol of-
fload vs. onload [10].

To address these challenges, we propose using fine-grain
queueing models to analyze the key performance and re-
source allocation tradeoffs in HPC messaging systems. These
models capture issues of resource contention, synchroniza-
tion, and concurrency in modern systems that previous mod-
els do not seek to encompass, though they also have their
own limitations. In addition, more complex queueing analy-
ses can model the performance impact of complex stochastic
communication workloads as opposed to simple average-case
analyses, as well as more complex synchroniation behaviors.
Overall, this approach will allow system designers to quan-
tify NIC and middleware design tradeoffs more accurately
without the overhead of complex simulation or prototype
implementation efforts. Surprisingly, we found little if any
literature on this subject.

This paper presents our basic approach to using queueing
systems to model MPI point-to-point performance in a frame-
work that encompasses the primary sources of contention
and delay on modern hardware. Our contributions include:

• The description of a simple queueing model for MPI
point-to-point communication that captures important
performance issues such as matching cost, protocol on-
load/offload, and short/long message switch points in
analyzing MPI bandwidth and latency;

• A validation of this model against the point-to-point
performance of simple, well-known MPI benchmark
running on modern MPI implementation and hard-
ware;

• A demonstration of this model for analyzing the im-
pact of match list length on MPI message rate on both
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many-core and heavyweight SMP systems, similar to
previously published results;

• An example predictive analysis of the impact of differ-
ing numbers of MPI progress engines on message rates
in next-generation many-core systems; and

• A discussion of the capabilities, challenges, and limita-
tions on the broader use of queueing models to analyze
and predict MPI communication system performance.

After providing essential background in Section 2, we de-
scribe these contributions in detail in Sections 3 though 6.
Sections 7 and 8 then discuss related work and conclude,
respectively.

2. BACKGROUND
Queuing models have long been used to model the perfor-
mance of computing systems, including I/O, Internet and
Cloud systems, as well as other complex computing setups [5,
12]. In these models, systems are represented by a set of
linked queueing stations. In a closed queueing network, a
fixed population of requests route between different stations,
with routing potentially occurring probabilistically based on
the class of the request. In an open queueing network, re-
quests arrive to the system periodically, and later leave the
system. In both cases, the amount of time a request takes
to cycle through the system, the average utilization and res-
idence time at each station, and the distribution of queue
lengths at each station are all important metrics.

The stations themselves can take on a wide range of forms,
but generally are comprised of a queue at which requests ar-
rive according to some arrival distribution and a server which
processes elements from that queue with some service distri-
bution in an order determined by a queueing discipline. So-
called M/M/1 FIFO stations are one of the most commonly
used types of stations in queueing networks, and represent
a station with 1 server servicing a queue with Markovian
arrivals and service times in first-in/first-out order. Other
common queue types include M/M/Inf queues, which induce
a fixed service delay on incoming requests but no queueing
delay, M/M/c stations where the service time depends on
the number of queued requests, and M/G/1 stations where
service times follow a general (i.e. non-exponential) distri-
bution [16].

In the general case, analyzing the performance of queue-
ing networks involves solving for the stationary distribution
of the underlying Markov chain. For non-trivial queueing
networks, analyzing the full state-space of this system can
quickly become prohibitive. Fortunately, a wide range of
techniques exist for quickly solving or at least approximat-
ing the performance of many important subclasses of queue-
ing models. The most well-known of these are product-form
networks, networks of stations with restricted types (gener-
ally M/M/x stations and several variants) and service times
(i.e. uniform service times across all request classes) that
can be relatively quickly analyzed. In this paper, we restrict
our models to such networks, though other more general
formulation are also viable, as we discuss in Section 6. In-
terested readers are referred to the many excellent references
on queueing systems for more detail [16, 15, 5, 12].

3. A QUEUEING MODEL OF MPI POINT-
TO-POINT COMMUNICATION

Our model of MPI point-to-point communication perfor-
mance is based on closed product-form queueing networks.
As described in Section 2, these networks support limited
types of queueing stations, queueing disciplines, and arrival
and service time distributions. We use these stations to
model key processing and communication components in
the high performance systems, eliding system components
that are not likely to influence communication performance
to simplify the model. As necessary, each components can
also be subdivided into additional components for further
accuracy; we limit our models to the minimum number of
stations necessary to capture the key performance tradeoffs
we seek to study.

3.1 General Model Structure
Figure 1 shows the general structure of our models, which
is similar to many previous point-to-point network queue-
ing models [16]. This basic model is comprised of a closed
network of two hosts with links with limited bandwidth and
latency. Hosts are represented by multiple M/M/1 queues
with one queue per core; when workloads (e.g., MPI end-
points) are bound to specific cores, we use multi-class queue-
ing models to capture this behavior. The network link itself
is represented as two pairs of stations, one pair in each di-
rection. The first queue in each pair is a delay (M/M/Inf)
stations that induces wire time and switching costs, and sec-
ond in each pair is an M/M/1 FIFO station that processes
32-byte flits at network bandwidth speed.

We make a number of key assumptions to restrict our model
to product-form networks. First, we do not model the
NIC transmit, receive, and DMA engines, and assume that
they are part of the network link. We make this assump-
tion because of challenges with message synchronization and
pipelining—queueing models assume a request is processed
at only one station at a time, so pipelining is typically mod-
eled using multiple independent requests. The use of mul-
tiple independent requests, however, prevents modeling the
synchronization that occurs when all elements are received.

In addition, we assume exponentially distributed service times
for all stations and exponentially distributed message inter-
arrival times. We also assume that an MPI receive is pre-
posted for each incoming transmission. Finally, we assume
that the time to match an incoming message is exponen-
tially distributed. The first assumption is the largest simpli-
fication, particularly for BSP-style applications that queue
bursts of message sends and SMP systems where multiple
cores synchronize their activities; this assumption may be
more reasonable, however, in emerging many-task program-
ming models [21]. The second and third assumptions are
generally true for scalable MPI programs, but there are im-
portant dynamics of how this relates to issues such as flow
control that are not covered by this basic model. We discuss
techniques for relaxing these assumptions in Section 6.

3.2 Modeling Key MPI Features
We construct a model for a particular scenario by deter-
mining (1) the number of times a communication request
in a class visits each queueing station, and (2) the service
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Figure 1: General Queueing Architecture of Model

Model Station Service Time Parameters
Host Core 1ns Visit counts set based on message length for

matching delay, eager message copy bandwidth,
and per-message protocol delays costs for onload NICs.

Link delay Offloaded protocol delays Visit count set to the number of messages
plus wire latency that traverse the link to process a request

Link bandwidth Serial flit processing time Visit count set based on the total number of
flits that have to pass through a link to
process request

Table 1: Queuing stations and parameters in model

time for a visit at each station. For example, in the case
of network links, we set the M/M/1 queue service time for
each direction of the network link to the time to process a
32-byte flit at full network bandwidth. Each message visits
the queue based on the number of flits in the corresponding
message. This allows small messages (e.g., request-to-send
(RTS) and clear-to-send (CTS) requests) to pass large mes-
sages (e.g., data transfers) in the model, but a large message
must finish all of its visits to a station prior to proceeding to
the next station for processing. Table 1 lists the full set of
stations and the parameters we use to set the service time
and number of visits to each station.

Modeling Long and Short Protocols: As an example
of the use of these parameters, consider a single rendezvous
MPI transmission from host 1/core 4 to host 2/core 4. This
request adds two visits to the outgoing delay station, one
for the RTS and one for the data transmission. It also adds
one visit to the return delay station for the CTS, a number
of visits to each bandwidth station based on the size of the
RTS, CTS, and data being sent, and visits on the receiv-
ing core to handle MPI matching costs. An eager message
transmission, on the other hand, does not include the visits
associated with the RTS or CTS, but adds additional visits
to the receiving CPU to account for copying the message to
its destination buffer. Additional visits on the receiving core
can be used to model computation on the received data.

Modeling Protocol Onload vs. Offload: Similarly, pro-
tocol onload and offload tradeoffs can be modeling by adjust-
ing service times and visit counts. In the case of protocol
onload, we remove protocol processing delays from the NIC
delay station and add extra per-message visits to core 1 on
the transmitting and receiving hosts. We also reduce match
delays on the receiving host because matching is typically

overlapped with protocol processing on MPI onload NICs.

4. MPI PING-PONG AND MESSAGE RATE
MODELING

To demonstrate of the feasibility of this formulation, we vali-
date it’s performance against the well-known MPI ping pong
benchmark and use it to model MPI message rate, another
important point-to-point communication characteristic. We
model the performance of both standard MPI eager short-
message protocols that require a copy on the receiving host
and rendezvous protocols that avoid this copy using the tech-
niques described in the previous section.

We use the model parameters shown in Table 2 in these
cases. These parameters were determined by measur-
ing the IB performance characteristics two Debian Linux
nodes with integrated Mellanox ConnectX-3 cards running
at QDR speeds, both running OpenMPI 1.4.5. We used
ibv_rc_pingpong to measure peak one-way link bandwidth
and half round-trip latency. As we run our tests on Mel-
lanox offload network interfaces, it is not possible to directly
measure the split between wire and protocol latency, so we
split it approximately; in the offload model, these values are
added together in series so the spliit does affect the correct-
ness of the model. MPI match latency was measured using
the difference between IB and OpenMPI 1-byte half round
trip latency, and memory bandwidth is that specificed by
the PCI Express bus in the nodes used in the test. We im-
plement and solve the resulting model using the mean-value
analysis solver in GNU Octave [11] queueing package [17].

Figures 2 and 3 show the modeled latency and bandwith
bandwidth performance of the MPI ping-pong model with
the parameters shown in Table 2. The extra cost of ren-
dezvous transfers for large transfers compared to eager trans-



Parameter Value

Bandwidth 3.787 GB/sec
Hardware Latency 1616 ns
Match Latency 271 ns
Memcpy bandwidth 16 GB/sec
(single thread)

Table 2: Parameters used in model setup, measured on a x86
PCI Express 3.0 cluster node with a Mellanox InfiniBand
QDR 4x NIC

fers are clear in these results. Similarly, rendezvous’s band-
width benefits over eager transfers are also clearly visible.
Both of these results match generally expected performance
results.
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Figure 2: Modeled MPI Eager and Rendezvous Ping Pong
Latency

To more carefully validate model performance, we then com-
pared modeled ping pong latency and bandwidth to that
measured using the OSU ping pong latency benchmark
osu_latency. Matching the behavior of the OpenMPI ver-
sion used, the model’s crossover from eager to rendezvous
protocols is set at 12KB. Figures 4 and 5 show the model
results versus measured ping pong latency and bandwidth.
Model results match measured values very closely, particu-
larly for latency, generally validating model performance.

Similarly, we modeled MPI message rate performance since
message rate is an increasing concern on upcoming many-
core processors [3]. Unlike the previous case, transfers are
unidirectional, and multiple sends are outstanding at a time,
as in the Sandia message rate and bandwidth benchmarks [9];
visit counts in our model setup were changed correspond-
ingly, and Figure 6 illustrates the natural decrease in mes-
sage rate with increasing message size.

Building on these results, we also set out to model how
changes in match list length impact MPI message rate per-
formance. First, we modeled MPI match time using a simple
linear model based partially on the results from previously-
published many-core message rate studies [3]. Specifically,
we modeled match delay in microseconds for a many-core
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Figure 3: Modeled MPI Eager and Rendezvous Ping Pong
Bandwidth
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Figure 4: Modeled MPI Ping Pong Latency vs. Measured
using osu_latency benchmark

system based on the results for ARM Cortex-A9 as

delay = 10 + 0.06 × length (1)

and match delay for heavyweight core systems based on the
results for an Intel Ivy Bridge system as

delay = 1 + 0.004 × length (2)

These equations overestimate match delay for queue lengths
less than 10, but are reasonable approximations as queue
lengths increase.

Figure 7 shows the results of this model. The general shape
of these results match those seen in past published work, and
demonstrate both that our model can capture the approx-
imate impact of fine-grain MPI features such as matching
costs.

5. MANY-CORE MPI MESSAGE RATE AND
PROGRESS TRADEOFFS

Following on this initial demonstration, next we used this
model formulation to examine the potential impact of many-
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Figure 5: Modeled MPI Ping Pong Bandwidth vs. Measured
using osu_latency benchmark
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Figure 6: MPI Unidirectional Message Rate

core processors on MPI point-to-point performance. As de-
scribed in Section 3, we use multi-class queueing models to
bind traffic to specific core when appropriate. This allows,
for example, protocol processing for onload NICs to be han-
dled by one core, and the MPI-level progress core to be
determined based on the sending and receiving core.

In this case study, we focused on one key performance tradeoff—
the impact of different numbers of progress engines on MPI
message rate performance. Most MPI many-core applica-
tions either avoid all message parallelism (MPI_THREAD_-
SINGLE) or funnel all MPI traffic through a single core (MPI_-
THREAD_FUNNELED) because of the performance problems as-
sociates with current multi-threaded MPI implementations.
On many-core processors, this places the burden of MPI
progress entirely on one core.

Figures 8 and 9 model the effect of using a single progress
engine with a nominal matching delay of 100 nanoseconds
on unidirectional bandwidth and message rate. In this case,
as core count doubles, message size is halved but the num-
ber of messages in the system doubles. As a result, the
same quantity of messaging traffic is present in the system
in each case. Despite this, effective communication band-
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Figure 7: MPI Message Rate as a function of changing
match rates. Matching delays are linearly approximated
from match list length.
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Figure 8: Bandwidth with increasing core count, decreasing
message size, and all MPI progress funneled through core 1

width drops quickly, particularly for onloaded NICs and with
smaller initial message sizes. This occurs because a single
core cannot keep up with the progress requirements of the
additional cores despite the low per-message cost of MPI
matching. The impact is more significant on onload cores,
because the onloaded protocol processing costs borne by core
1 also reduce effective message rate.

We then modeled the impact of introducing additional
progress engines into the system over a broad range of
matching costs, as shown in Figure 10. In this case, mes-
sage size is fixed at 4KB, 128 cores are used, and only of-
fload NIC performance is modeled. Introducing additional
progress engines, either as separate MPI processes or as ad-
ditional endpoints [8] projects to significantly improve MPI
message rate up to 16 cores handling MPI progress. These
progress advantages must, however, be balanced with the
number of cores needed by the application for computation.

6. DISCUSSION
As described in Section 3, we make a number of central as-
sumptions to enable the use of product-form networks for
MPI point-to-point communications. These assumptions
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limit the generality of our model. In this section, we dis-
cuss those limitations in more details, as well as potential
approaches to removing or relaxing them.

6.1 Message pipelining
Message pipelining [19] is a key optimization for MPI point-
to-point communications, allowing the sending host, receiv-
ing host, NIC, and switches to process portions of large
messages in parallel. As discussed previously, however, the
current model structure does not correctly model this. In
particular, product-form models cannot model the synchro-
nization that occurs after all message fragments in a pipeline
arrive at a station. While bulk arrival queueing models do
encompass this behavior, they are not easily analyzable.

Because of this, product-form models such as ours must ei-
ther model pipelining effects or synchronization effects. We
choose to focus on the later for the models in this paper be-
cause of the general structure of the benchmarks on which
we focused. As a result, we simplified the underlying model
to ammeliorate some of the inaccuracies this caused. How-
ever, for scenarios in which pipelining effects are important
compared to synchronization costs, for example when large

numbers of request are in the system, the alternative ap-
proach is likely preferable.

6.2 Barrier and Rendezvous Synchronization
Product-form models also struggle to model synchronization
between multiple cores in other ways. For example, bar-
rier synchronization between multiple stations is common
in bulk-synchronous parallel applications and not directly
analyzable in our approach. Similarly, important resource
allocation actions such as pinning and registering pages with
progress engines are also difficult to model with product
form netwoks. However, a number of approximations exist
to modeling synchronization. Models that include fork-join
queues [22], for example, can be used to model and approx-
imately solve for the performance of some simple barriers,
for example multiple cores synchronizing prior to sending
a single large message versus sending multiple smaller mes-
sages independently. Similarly, Petri networks and the var-
ied techniques for solving them [5] can also be used to model
the performance of more complex synchronization primi-
tives, albiet at the cost of increased solution time.

6.3 Non-exponential service times
Finally, parallel programs frequently have service times and
inter-arrival rates that are non-exponential. For example,
carefully engineered systems may have service times that are
deterministic instead of exponential, bursty, or heavy-tailed.
Matrix analytic methods [12] provide a way of handling these
models, though we have not yet attempted to apply them.

7. RELATED WORK
A large number of papers have sought to model parallel com-
munication performance. However these efforts of focused
primarily on quantifying point-to-point behavior and then
using fitted parameters to reason about the performance of
larger parallel constructs; the LogP model [7] mode and its
variants (e.g., [2]) are the most well-known of these. These
models and similar efforts [13] use coarse messaging parame-
ters, for example latency, communication/computation over-
lap, and message gap to derive the performance of applica-
tions and collective communication operations. Similarly,
these models have also been used as the basis for simula-
tions of MPI collective communication and application per-
formance[1, 14].

While queueing models have not, to the best of our knowl-
edge, been used for MPI performance analysis, they have
been widely used for the analysis of networking and other
computer systems, including the well-known work analyz-
ing the ALOHA MAC protocol [18]. More recently, queue-
ing models have been used for analyzing synchronization in
multi-core systems [6], as well as a range of other constructs.
These applications, recent advances in the area, and a de-
sire to apply them to HPC systems were a key motivation
behind the research described in this paper.

8. CONCLUSIONS AND FUTURE WORK
The importance of MPI communications for many-core ar-
chitectures and examining offloaded versus onloaded net-
working has been explored in prior works [3, 10]. However,
such work has thus far only examined existing hardware;



as such, it had limited utility for projecting future hard-
ware capabilities or suggesting particular design points that
would help enable efficient MPI communication for future
exascale systems, particularly those based on many-core ar-
chitectures.

We maintain that fine-grain communication system perfor-
mance models will be essential to properly designing HPC
communication systems for exascale computing system. With-
out such models, systems will not be able to effectively man-
age the complex tradeoffs resulting from, for example, large
numbers of cores, memory bandwidth limits, dynamic power
management, and network contention. New models that
quantify such tradeoffs, however, could enable a new gener-
ation of adaptive, high-performance exascale communication
systems.

This paper provides a first step toward the development of
such fine-grain performance models. The goal of the model
presented in this paper, as well as future work based on
this model, is to enable the exploration of the complex com-
munication design space and determine what approximate
hardware resources are required for efficient communication.
These models demonstrate the ability to capture key ele-
ments of MPI performance in analytical models, though do
have important limitations that make their use in modeling
MPI performance somewhat challenging.

A large number of directions for future work remain. Key
next steps include quantifying MPI application and bench-
mark messaging workloads to quantify the extent to which
our modeling assumptions are correct, and a full validation
of these models against a broader set of MPI benchmarks.
Beyond this, we plan to apply fork-join and other approx-
imations to more fully study tradeoffs in synchronization,
bandwidth, latency, and messaging progress in communi-
cation runtimes. This and other enhancements will help
expand the model’s ability to predict communication sys-
tem needs for future hardware. Finally, we also envision a
a broader approach that uses models of the form described
in this paper along with similar models to systematically
drive the development of next-generation communication li-
braries.
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