SAND2015- 8650C

Lightweight threading with MPI using Persistent
Communications Semantics

*
Ryan E. Grant
Sandia National Laboratories
Center for Computational
Research
P.O. Box 5800, MS-1110
Albuquerque, NM 87185-1110

regrant@sandia.gov

ABSTRACT

Multi-threaded performance in MPI is of concern for future
systems, particularly at Exascale, where massive concur-
rency will be necessary to leverage the full power of sys-
tems. While MPI provides generalized solutions and addi-
tional proposals like endpoints expand this general model,
examining common use cases that have good solutions that
may not be universally applicable is a viable additional ap-
proach. This paper details a new conceptual concurrency
support mechanism for MPI that is applicable to a (large)
subset of MPI applications. This approach is expected to
provide very low overhead while still allowing for optimiza-
tions in the MPI library that are not currently possible.

1. INTRODUCTION

The Message Passing Interface (MPI) [6] has supported
threaded execution in user applications since Version 2 [4]
was released in 1997. To this day, MPI multi-threading
support remains not well optimized. It has been hard for
thread-based code to interact with MPI and many hybrid
codes today do not allow for thread interaction with MPI.
For example, an MPI/OpenMP hybrid code might perform
a computation using many threads in a loop, but then use
a single master process to communicate using MPI. It is de-
sirable for threaded codes to interact with MPI, but many
codes do not actually require the full MPI multi-threaded
support that exists today. The current commonly used MPI
implementations pessimistically use locks to enforce thread
safety to MPI calls (e.g., serialization), allowing only a sin-
gle thread to be interacting within certain MPI critical paths

*Sandia is a multiprogram laboratory operated by Sandia
Corporation, a Lockheed Martin Company, for the United
States Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Anthony Skjellum
Auburn University
Department of Computer
Science and Software
Engineering
. Auburn, AL 36849
skjellum@auburn.edu

Purushotham V.
Bangalore
University of Alabama at
Birmingham
Department of Computer and
Information Sciences
Birmingham, AL 35294

puri@uab.edu

at a given time. While this may be desirable for a general
threading case where no particular behavior of threads is
guaranteed, it can be heavyweight for threads that would
otherwise not interfere with each other in their participation
in a communication (that also lacked ordering constraints).
For example, if multiple threads each wrote to a shared
memory buffer to assigned locations based on offsets related
to their thread IDs, no interference would occur between
these threads. When sending the buffer to the target, that
buffer can be sent after all of the threads have finished, or
separate portions could be sent in a MPI_Send calls.

The overheads for imposing thread safety for MPI have
been studied [8], and most implementations as of 2015 do not
have sophisticated locking mechanisms for enforcing thread
safety. Some approaches simply use a single global lock on
the MPI library, while others try to lock at a fine-granularity.
When using blocking MPI operations, there is a serialization
of the data flowing out of the threads over the wire, while
there may be no inherent need to enforce this ordering.

Multi-threading support for MPI has traditionally focused
on providing thread-safety, with multiple different operating
modes for supporting thread-based concurrency. All of these
modes concentrate on the methods by which MPI can arbi-
trate between threads and what restrictions it must put in
place to ensure thread-safety. The approach presented in
this paper places the burden of managing safe threading on
the application, which has good information on which to
base its approach to concurrency.

2. LIGHTWEIGHT CONCURRENCY

Solutions to multi-threading in MPI such as Endpoints [3],
provide for parallelism with threads through exposing the
threads as additional ranks (or some application-prescribed
subsets thereof). For some common use cases, endpoints
are overly complex. They lead to increased application code
complexity as well as greater network resource usage (be-
cause of greatly expanded rank space, and concomitant state).
Application code complexity and the amount of change that
existing codes must endure in order to leverage thread par-
allelism in future codes is of great concern. Multi-million
line MPI codes require great effort to modify (and revali-
date) and therefore minimal code change and familiarity to
existing multi-threaded approaches is desirable for efficiency
in both time and cost for updating legacy code bases.

2.1 A Solution for Many Applications

Existing multi-threaded code can be written such that
many threads (actors) contribute to a single solution in a
shared memory buffer. The need for each of the threads
to have knowledge of each other is limited, with the ba-
sic knowledge of where the solution must be written to for
each thread being of primary concern. As such, the need for
thread to thread communication in MPI is concomitantly
limited, the access to the larger input buffer of data used
and the output buffer for the solution is the main concern.
For example, for a stencil code, one might further break
up the simulation space within a given MPI process in the
same way that it was done for the multiple processes them-
selves. The data to be exchanged (a face of a 3D simulation
space) with the process neighbor only needs the face data
for the process. It does not need to understand the number
of threads nor the layout of the data that each of the threads
is working on in another process. What is needed is that the
entire face data be sent to the other neighbor process.

To enable this type of computation/communication in MPI
with minimal overheads, the threads can deliver their por-
tion of the overall data to MPI with an MPI_Partitioned _
Add to_buffer' call. The intention of this proposed func-
tion is to provide a portion of data to an operation that will
collect many pieces of data from many actors and deliver
the payload to the requested MPI process. This approach
requires that some information about the partitioned opera-
tion be expressed to MPI prior to writing to any buffers. The
partitioned operation interface leverages the persistent com-
munications interface in MPI to provide this data. First, the
operation must be initialized; this will provide the required
information to setup the buffers and the synchronization
methods (which could be as simple as an atomic increment
on a counter). This operation can subsequently be started
and finished as a normal persistent communication would
be, using the same semantics as a traditional persistent com-
munication, with modifications for the partitioned nature of
the operation. An MPI Partitioned Send Create(Comm,
to_rank, to_tag, base_ address, data_type, count, num
contributors, &request)2 call can be used to initialize the
partitioned send, which is similar to a persistent operation
setup. The mechanisms used to start/stop the operation
are similar to persistent operations as well. Calling a MPI _
Start(request) call will activate the partitioned send, but
the actual data transmission will only start/complete once
the parts of the message are delivered to MPI. The most
naive implementation of this would be that no data be sent
over the wire until all parts of the overall communication
had been assembled by MPI (of course parts of the message
could be sent before all parts are received for optimization
purposes, as will be discussed later). The method of fin-
ishing a partitioned send is a simple MPI Wait(request) as
one would typically wait for a request to complete in MPI.
This process is illustrated at a high level in Figure 1. It is
important to note that in this paper we refer to the actors
on the buffer as threads, when they could be tasks instead.

While similar communication could be accomplished with
many individual smaller MPI_Send calls from each thread,
this partitioned data approach has several key advantages.
First, the overhead of synchronization between threads can

LA new proposed API by the authors.
2 Additional new API functionality.

Thread ID # 15 places
data to index 15

Thread ID #37 places
data to index 37

\ Concurrently /

Origin
Shared
Memory
Buffer

Subsegment of the message is complete
with the addition of data to index #15, so
message segment is sent

Target
Shared
Memory
Buffer

Message is partially completed on
the target side
Figure 1: An example of multiple threads placing
data into a partitioned buffer with partial buffer
sending capabilities in the MPI library.

be reduced, inasmuch as each contributor to the single larger
MPI operation can add its respective data and all that is
needed is an atomic increment to maintain the count on the
number of contributions to the partitioned send (the number
of contributions is known at the point that the partitioned
operation is initialized). This has much lower overhead than
the current MPI THREAD MULTIPLE methods for en-
suring thread-safe MPI operations, as it does not require
locking of key MPI library functions as the impact of the
call is confined to the partitioned operation’s buffer®. In
addition, there are opportunities for the MPI library to pro-
vide optimizations to the communication as a whole. For
example, a partitioned send could take one of two extremes
in when it would place data out on the wire for transmission,
it could send the data as one large message once all of the
parts have been placed in the buffer. Alternatively, it could
send each individual part as they are placed. Of course,
any combination in between these two extremes could also
be implemented. This can provide certain benefits, partic-
ularly when knowledge about the network can be applied,
like sending message chunks that are the size of the underly-
ing network MTU whenever they are complete. This should
provide a steady lower bandwidth requirement communica-
tion stream, that would also minimize wire-side communi-
cation overhead by optimizing payload sizes with respect
to header/tail data. While this can also be accomplished by
sending large messages, this approach can lead to less bursty
traffic over time, lessening the possibility of temporally lo-
calized stress on the network resources.

2.2 Applicability to Stencil Codes

Stencil codes can be satisfied in their threading require-
ments with a call to MPI that allows for partial placement
of data into a communication buffer, letting MPI pack the
larger communication buffer as a whole and communicating
the entirety of it to other MPI processes. Since this thread-
ing/communication system relies on underlying shared mem-
ory among the threads, no scatter operation needs to take
place on the receiving process, so long as the target for place-

3Furthermore it works to localize any additional overhead

ment of the data is a shared memory window. This also
leverages all of the potential performance optimizations that
could be implemented as previously discussed. For multi-
threading, MPI is providing a method of operation that has
already existed outside of MPI for some time. It is notably
important to utilize the current paradigms in threaded pro-
gramming with MPI proposals, to aid in an easier transition
to multithreaded MPI code.

2.3 Flexibility Through Expressive Inputs

A challenge in further meeting the needs of application
codes is typically encountered in the initialization phase.
This challenge is that codes may need to place non-contiguous
partitioned data, but may be able to do so in a predefined
pattern. In order to support multiple common needs with
respect to data placement, two approaches can cover the ma-
jority of requirements. The first is the simpler of the two,
providing a bit mask, which determines where in the buffer
as a whole each of the provided items should be placed. The

function MPI _Partitioned Add_to_buffer(request, in_data,

in_datatype, num_ contributions, mask][]) can be used for
this purpose. However, for cases where there are a large
number of contributions to be made or the buffer is huge,
the bitmask approach becomes unwieldy, because the size of
the bitmask can be significant and lead to performance and
memory space utilization issues. Consequently, it is useful
to offer an alternative approach, in which the data place-
ment can be expressed in a vector. This lowers both the
memory requirements for expressing where the data should
be placed as well as the issues surrounding passing in a large
mask. However, this is more complicated for the application
programmer to use and may be more difficult to process in
the MPI library for small partitioned buffers.

2.4 Hardware Support for Partitioned Send

Dedicated hardware support for partitioned send oper-
ations is unnecessary if the networking hardware provides
some basic building blocks on which the operations can be
built. An example of a networking solution that can support
partitioned sends today is Bull’s BXI interconnect [2]. Bull’s
BXI network uses the Portals 4 networking API [1], which
supports triggered operations. Triggered operations use a
hardware counter on the networking devices to accumulate
counts of certain events that can be associated with them.
Consequently, on the receive side, a Portals-compatible NIC
can keep a count of the number of expected contributions
to a buffer and deliver notification of the completion to the
target immediately upon completion of the operation. The
send-side MPI library can leverage triggered operations as
well, by staging multiple requested send operations with dif-
ferent counts on which they are triggered. Using the PtICT-
Inc function in the Portals 4 API, MPI can keep the book-
keeping required for subsections of the partitioned buffer
on the NIC hardware. Once a given sub-partition of the
overall buffer has been placed, the hardware automatically
triggers the send to occur. This allows for increased network
efficiency while offloading a large portion of the work that
would otherwise have to occur in software (counting incom-
ing segments and determining when a request was complete).

3. RELATED WORK

There have been past attempts to integrate threading
within MPI, like MPI/RT [7] and FG-MPI [5] and, while

promising, have not become widely used MPI implementa-
tions and have not been integrated into the MPI standard.
Work has been done in analyzing the performance of exist-
ing threading modes in the standard [8]. The MPI forum,
in 2015, has a proposal before it to support threads through
endpoints [3], in which each thread can be assigned a unique
rank in a endpoint communicator. Both the current thread-
ing support in MPI and the endpoints proposal require that
MPI be able to manage individual threads either through
thread safety or by using additional resources to account for
the threads (resp, endpoints). This work is differentiated
from previous efforts insofar as the requirements it places
on the applications, and the corresponding decrease both in
resources needed by MPI and synchronization overhead.

4. CONCLUSIONS AND FUTURE WORK

The partitioned send approach has been introduced and
the key motivations behind the need for such an approach
have been discussed. Providing threading support through
implicit methods such as persistent communication type par-
titioned sends allows for low overhead thread-safety as well
as fitting the existing application code methodologies. Al-
though this approach may not work for every possible use
case for threading support, it does provide a solution to a
substantial portion of the overall problem space. Therefore,
it holds promise as a potential methodology for future appli-
cation codes to enable threading support while maintaining
high performance network communication.

Future work in this area will involve the creation of a
prototype partitioned send/recv. We intend to test this ap-
proach with several different proxy applications of interest
to determine the performance benefits when compared to
MPI _THREAD MULTIPLE operation.

5. REFERENCES

[1] B. W. Barrett, R. Brightwell, R. E. Grant, S. Hemmert,

K. Pedretti, K. Wheeler, K. Underwood, R. Riesen, A. B.
Maccabe, and T. Hudson. The Portals 4.0.2 networking
programming interface, 2014.

[2] S. Derradji, T. Palfer-Sollier, J.-P. Panziera, A. Poudes, and
F. Wellenreiter. The BXI interconnect architecture. In
Proceedings of the 23rd Annual Symposium on High
Performance Interconnects, HOTI ’15. IEEE, 2015.

[3] J. Dinan, R. E. Grant, P. Balaji, D. Goodell, D. Miller,

M. Snir, and R. Thakur. Enabling communication
concurrency through flexible mpi endpoints. International
Journal of High Performance Computing Applications,
28(4):390-405, 2014.

[4] S. Huss-Lederman, B. Gropp, A. Skjellum, A. Lumsdaine,
B. Saphir, J. Squyres, et al. MPI-2: Extensions to the
message passing interface. University of Tennessee, available
online at hitp://www. mpiforum. org/docs/docs. html, 1997.

[5] H. Kamal and A. Wagner. An integrated fine-grain runtime
system for MPI. Computing, 96(4):293-309, 2014.

[6] MPI Forum. MPI: A message-passing interface standard
version 3.1. Technical report, University of Tennessee,
Knoxville, 2015.

[7] A. Skjellum, A. Kanevsky, Y. S. Dandass, J. Watts,

S. Paavola, D. Cottel, G. Henley, L. S. Hebert, Z. Cui, and
A. Rounbehler. The real-time message passing interface
standard (MPI/RT-1.1). Concurrency and Computation:
Practice and Ezperience, 16(S1):Si-S322, 2004.

[8] R. Thakur and W. Gropp. Test suite for evaluating
performance of mpi implementations that support mpi
thread multiple. In Recent Advances in Parallel Virtual
Machine and Message Passing Interface, pages 46—55.
Springer, 2007.

