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High Temperature Falling Particle Receiver
(DOE SunShot Award FY13 – FY15)
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Advantages of Particle Receivers

 Direct heating of particles

 Higher temperatures than conventional molten salts
 Enable more efficient power cycles

 Higher solar fluxes for increased receiver efficiency

 Direct storage of hot particles

 Reduced costs
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CARBO ceramic particles (“proppants”)



General Approach
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Phase 1

• Modeling, design, 
proof-of-concept 
testing

Phase 2

• Component 
testing, model 
validation, design 
optimization

Phase 3

• Prototype 
development for 
on-sun testing
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Receiver
Free-Fall vs. Obstructed Flow
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Free-Falling Receiver Designs

 Developed CFD models to optimize 
receiver performance 
 ANSYS FLUENT: Radiation, convection, 

discrete phase particles, turbulence

 Features modeled

 Alternative geometries

 Particle recirculation

 Air curtain

 Particle size, mass flow rate, release patterns
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Particle Receiver Designs – Free Falling
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Obstructed Flow Designs

Al Ansary, H. et al., United States Patent Application 2013/0068217 A1, Solid Particle Receiver with Porous 
Structure for Flow Regulation and Enhancement of Heat Transfer, K.S. University, March 21, 2013.
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Patent Pending

Staggered Chevron 
Mesh Array



Staggered Array of Chevron Mesh Structures
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Particle Flow over Chevron Meshes
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Pros:  particle velocity 
reduced for increased 
residence time and heating

Cons:  Mesh structures 
exposed to concentrated 
sunlight (~1000 suns)



Particles
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Particle Radiative Properties and 
Rejuvenation 
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Material Name Type

Solar 

weighted 

absorptivity

Thermal 

emissivity*

Selective 

Absorber 

Efficiency**

Carbo HSP Sintered Bauxite 0.934 0.843 0.864

CarboProp 40/70 Sintered Bauxite 0.929 0.803 0.862

CarboProp 30/60 Sintered Bauxite 0.894 0.752 0.831

Accucast ID50K Sintered Bauxite 0.906 0.754 0.843

Accucast ID70K Sintered Bauxite 0.909 0.789 0.843

Fracking Sand Silica 0.55 0.715 0.490

Pyromark 2500 Commercial Paint 0.97 0.88 0.897

*Spectral directional reflectance values were measured at room temperature.  The total hemispherical emissivity was calculated 
assuming a surface temperature of 700 C.
**Q is assumed to be 6x105 W/m2 and T is assumed to be 700 C (973 K):
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Siegel et al. 2015, The Development of Direct Absorption and Storage Media for Falling Particle Solar 
Central Receivers, ASME J. Solar Energy Eng., 137(4)



 Laboratory tests for surface impact evaluation, 
attrition, and sintering

Particle Durability

Ambient drop 
tests at ~10 m
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Thousands of 
drop cycles at 
ambient and 
elevated 
temperatures 
(up to 1000 ˚C)

Knott, R., D.L. Sadowski, S.M. Jeter, S.I. Abdel-Khalik, H.A. Al-Ansary, and A. El-Leathy, 2014, High Temperature 
Durability of Solid Particles for Use in Particle Heating Concentrator Solar Power Systems, in Proceedings of the 
ASME 2014 8th International Conference on Energy Sustainability, ES-FuelCell2014-6586, Boston, MA, June 29 -
July 2, 2014.



Balance of Plant
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 Experimental evaluation and modeling of prototype thermal 
energy storage designs

Thermal Storage

El-Leathy et al., “Experimental Study of Heat Loss from a Thermal Energy Storage System for Use 
with a High-Temperature Falling Particle Receiver System,” SolarPACES 2013 18



 Experimental evaluation of heat transfer 
coefficients & particle flow
– Heat exchanger module designed and 

instrumented for continuous sand flow over 
tubes

Particle to Working Fluid Heat Exchanger 

Golob et al., 2013, “Serpentine Particle-Flow Heat Exchanger with Working Fluid, for Solar Thermal Power Generation,” 
SolarPACES 2013
Nguyen, C., D. Sadowski, A. Alrished, H. Al-Ansary, S. Jeter, and S. Abdel-Khalik, 2014, Study on solid particles as a 
thermal medium, Proceedings of the Solarpaces 2013 International Conference, 49, p. 637-646. 19

Sand Flow

Feed Ramp 
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Serpentine Tube 

Heat Exchanger

Water/Air In

Water/Air Out

Funnel
Conveyor Scale

Olds Elevator

Particle Flow 

Assist Vibrator

www.solexthermal.com

http://www.solexthermal.com/


 Evaluate commercial particle lift 
designs
– Requirements

• Up to 10 kg/s/m

• Operating temperature ~ 500 C 
(assumes T during last drop of 
>200 C)

– Different lift strategies evaluated

• Olds Elevator

• Screw-type

• Bucket

• Mine hoist

Particle Elevators

Repole K, Jeter S, “Design and Analysis of a High Temperature Particulate Hoist for Proposed Particle 
Heating Concentrator Solar Power Systems”, Energy Conversion and Management, - Submitted
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Prototype System Design
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Staggered Chevron Array Receiver
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Lifting the system to the top of the 
tower – June 22, 2015
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Lifting the system to the top of the 
tower
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Lifting the system to the top of the 
tower



On-Sun Tower Testing
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On-Sun Tower Testing
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Over 300 suns on receiver

(June 25, 2015)



On-Sun Tower Testing
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Over 600 suns peak flux on receiver

(July 20, 2015)



On-Sun Tower Testing
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Particle Flow Through Mesh Structures
(June 25, 2015)



Irradiance Measurements
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Measured Simulated using Ray Tracing 
(SolTrace)



Temperature Measurements
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Summary of Results
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Location

Average 
Irradiance 
(kW/m^2)

Average Particle 
DT per drop 

length (°C/m)
Average Particle 
Temperature (°C)

Specific 
Heat (J/kg-

K)
Mass Flow 
Rate (kg/s)

Power 
absorbed by 

particles (kW)
Incident 

Power (kW) 
Thermal 

Efficiency 

Propagated % 
Relative Error 
in Efficiency

Outer two 
zones

110 27.4 457 1100 1.23 44.4 60.6 0.733 4.97

All zones 173 46.1 469 1100 3.32 203 258 0.786 5.33

Inner three 
zones

211 57.1 475 1110 2.09 158 197 0.802 5.44
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Receiver Mesh Structures
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July 24, 2015 – Nearly 700 suns
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Conclusions

 Designed and constructed first continuously recirculating 
high-temperature particle receiver
 Achieved peak particle temperatures over 800 C

 Non-uniform irradiance caused non-uniform heating of particles

 Average particle temperature rise per unit drop length was ~30 ˚C/m 
and ~60 ˚C/m at average particle irradiances of 100 and 200 kW/m2, 
respectively

 Thermal efficiency at particle inlet temperatures of ~440 ˚C ranged 
from ~70% to 80% at average particle irradiances of ~100 and 200 
kW/m2, respectively.
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Next Steps

 Perform on-sun tests of free-falling particle curtain

 Received new DOE awards (FY16 – FY18)
 Particle/sCO2 heat exchanger

 Novel particle curtain designs
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Particle Velocities – Free fall vs. 
Obstructed
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Error bars for measured free-fall data 
represent  minimum and maximum values
Error bars for measured fall over chevron 
screens represent one standard deviation Ho, C.K., J. Christian, D. 

Romano, J. Yellowhair, 
and N. Siegel, 2015, 
Characterization of 
Particle Flow in a Free-
Falling Solar Particle 
Receiver, in Proceedings 
of the ASME 2015 Power 
and Energy Conversion 
Conference, San Diego, 
CA, June 28 - July 2, 
2015.



Sintering Potential

Al-Ansary et al., “Characterization and Sintering Potential of Solid Particles for Use in High 
Temperature Thermal Energy Storage System,” SolarPACES 2013
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Design of Experiments

 Factors

 Particle size

 Particle mass flow rate

 Particle release location

 Air curtain blower speed

 External wind

 Metrics

 Particle loss

 Particle curtain spread
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Impact of Air Curtain on Convective Heat Loss

 The air curtain 
generally increased 
convective losses in 
the system by ~0.5-1% 
for low initial particle 
temperatures of 25 C

 When the simulated 
initial particle 
temperature was 
increased to 600 C, the 
convective losses were 
reduced by 3.5 
percentage
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