

The Diagnostic Value of Tritium on Z

Contact:

Brent Jones, Manager Org. 1677, Neutron and Particle Diagnostics
Sandia National Laboratories

bmjones@sandia.gov

The Sandia Z Neutron and Nuclear Diagnostics Team:

Scientists: Gordon Chandler, Kelly Hahn, Carlos Ruiz

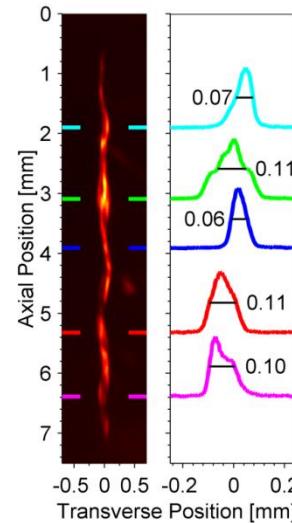
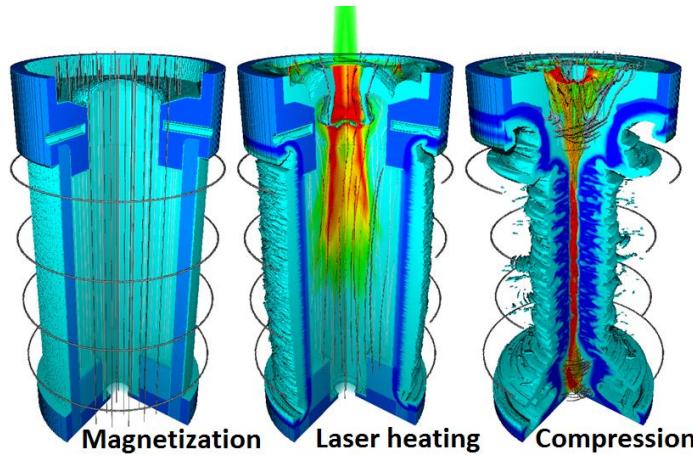
Technologists: James Bur, Jose Torres

*Exceptional
service
in the
national
interest*

National HED Diagnostics Workshop
Los Alamos, NM
October 6, 2015

U.S. DEPARTMENT OF
ENERGY

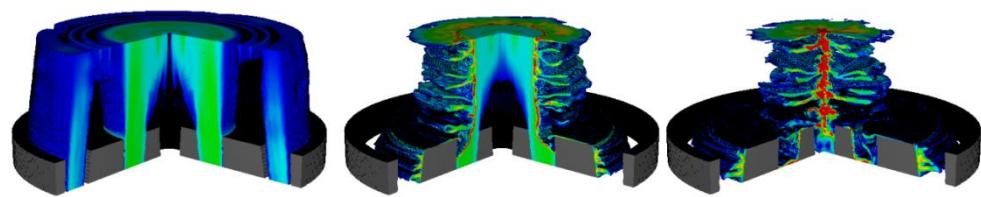
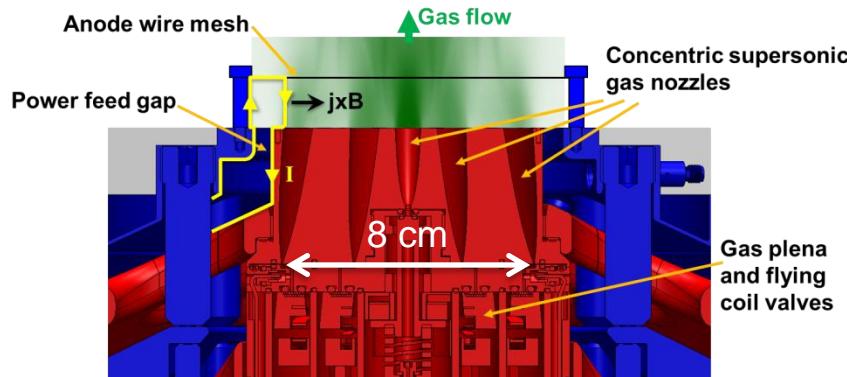
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.



Fielding tritium on Z will open the door to valuable collaborative MagLIF physics studies, but is nontrivial

- Tritium is not presently fielded on Z
 - Vacuum chamber is open every day, MITL grinding, tanks of oil and water
- Community needs to assess the cost-benefit of using tritium at Z
- Tritium would open the door to nuclear diagnostic techniques and target physics studies not presently possible
- These opportunities would encourage collaboration on Z with the broader HED community

ICF neutron sources at Z can have very different implosion dynamics and plasma conditions

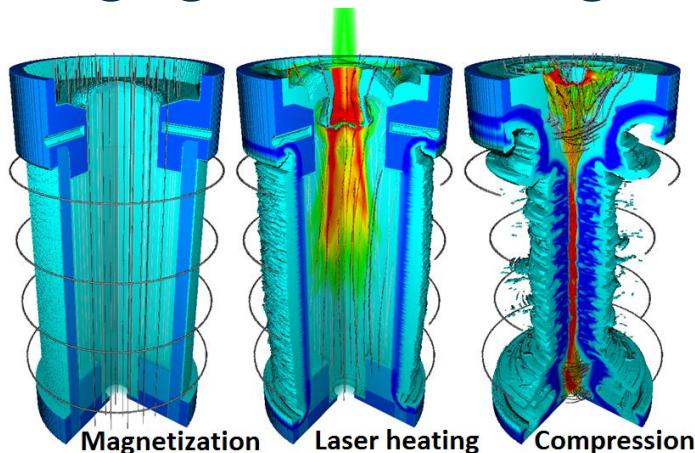
MagLIF



MagLIF:

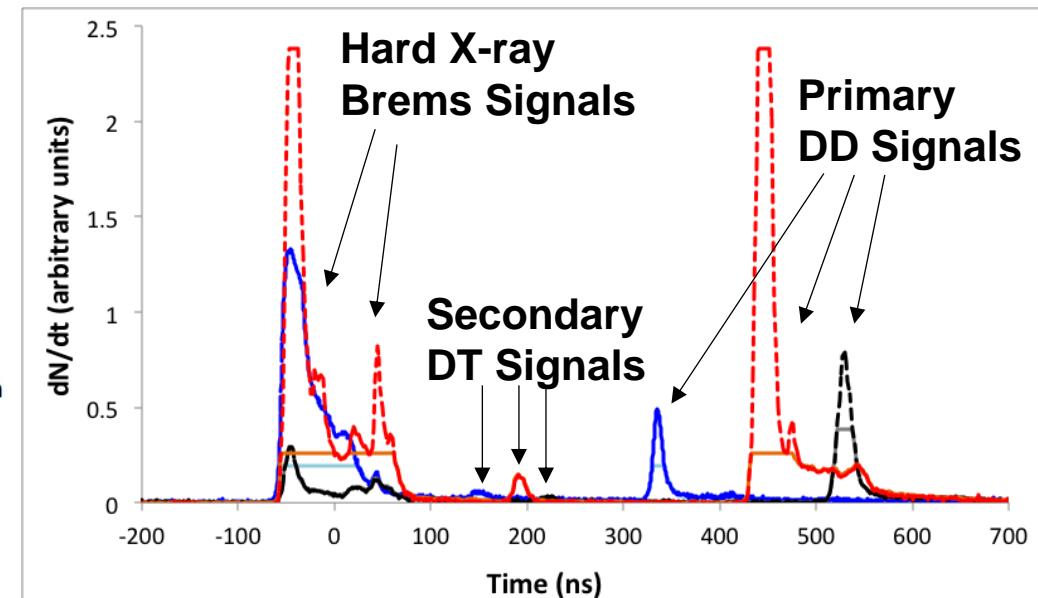
M. R. Gomez *et al.*,
PRL 113, 155003 (2014).

D₂ gas puff:

C. A. Coverdale *et al.*,
PoP 14, 022706 (2007).


D₂ gas puff

	Y _n (DD)	Y _n (DT)	T _e (keV)	T _i (keV)	n _i (cm ⁻³)	Δt (ns)	Diameter
MagLIF	3x10 ¹²	5x10 ¹⁰	~3	2.5	~ 10 ²³	< 2	~50 μm
D ₂ gas puff	4x10 ¹³	<4x10 ⁹	2.2	~10	2x10 ²⁰	~30	6 mm


Adapting diagnostic technology to the Z environment can be challenging and rewarding

MagLIF

- Significant brems on Z can overdrive scopes, obscure the secondary DT neutron signal on nTOF detectors
- Fuel magnetization inferred from DT secondary spectrum

P. Schmit *et al.*, PRL 113, 155004 (2014).

Key Collaborations on nTOF

NSTec

R. Buckles
I. Garza
K. Moy

LLE

V. Glebov

LLNL

D. Fittinghoff
M. May

Gated PMTs, fast scintillators, close-in nTOF, clipper circuits, CVD diamonds

Several key physics issues could be addressed with DT experiments

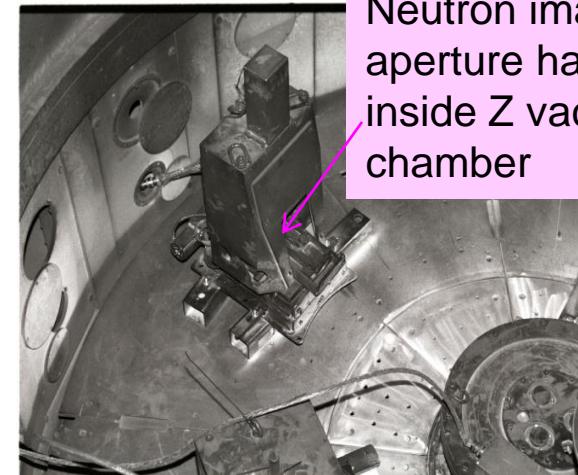
Physics	Measurement	Tritium fuel content		
		<0.1%	0.1%	1%
Behavior of tritium in the Z pulsed power environment	Sampling of tritium contamination, migration			
Scaling of yield to DT—thermonuclear?	DT yield			
Ion temperature and non-thermal population	Precision nTOF and DT/DD yield ratio			
Liner/fuel mix	DT yield with tritiated gas fill and deuterated liner			
Fuel morphology	Neutron imaging			
Thermonuclear reaction history	Gamma Ray History/GCD, Thompson parabola			
Liner/fuel density, non-thermal effects (peak shifts)	Compact/Magnetic Recoil Spectrometer (CRS/MRS), precision nTOF			

Diagnostic Capabilities enabled by tritium use will open new physics understanding for MagLIF

- Better SNR, higher dynamic range n-spectral measurements
 - More precise ion temperature
 - High precision Be down scatter measurements for liner pR
 - MRS or CRS measurements both axially and radially
- Neutron imaging enabled by higher yields
 - Is the neutron producing volume the same as the x-ray producing volume?
 - Down-scatter image for liner pR uniformity measurements
- γ reaction history enabled by higher yields and preferable γ -branching ratio
 - Is the x-ray history the same as the γ -history?
 - Does the reaction history have structure indicating multiple isolated burn regions?
- Novel mix studies are enabled by separated reactant experiments using tritium or tritiated hydrogen gas
 - Deuterated window to study window mix
 - Deuterated coating on liner interior to study liner mix
 - Deuterated top/bottom caps to study mix from laser interactions
 - Combine w/ neutron imaging to study transport of mix material

Gradual increase in MagLIF tritium fuel content will provide increasing scientific opportunities

Proposed Z Timeline

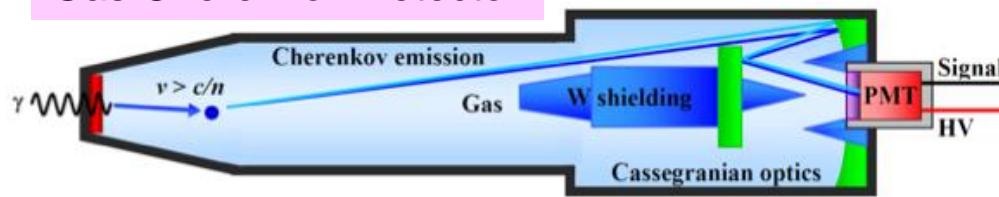

FY15	FY16	FY17	FY18	FY19

Tritium Surrogates $D_2, {}^3He$ Trace Tritium ES&H $<0.1\%$ Trace Tritium 10x DT Yield $\sim 0.1\%$ Minority Tritium $>10^{13}$ DT Yield $\sim 1\%$ Tritium Operations 10-50%

		DT yield scaling, ion temperature and non-thermal population	
		Nuclear tracers for liner/fuel mix	
	Neutron imaging, high sensitivity for DD MagLIF, mixed DD/DT imaging (CR-39?)		
Brems background measurements for GCD, shielding studies	Wedge range filter, CRS design	GRH/GCD, Thompson parab., CVD dia.	MRS neutron spectroscopy

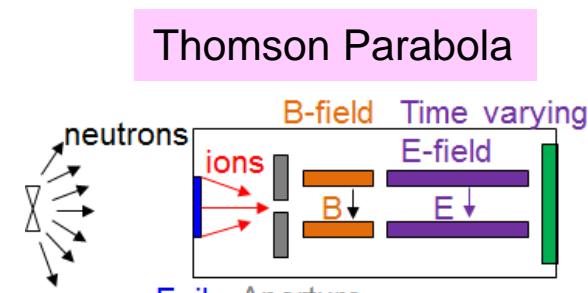
We are collaborating with other National Laboratories to improve Z's neutron diagnostic suite

- **LLNL:** D. Fittinghoff, M. May
 - Neutron-imager
 - Goal (~1-2 yrs): Improve existing neutron imager at Z to achieve ~0.5-1 mm resolution (along ~ 5 mm length column) for > 5e12 DD yields (for DT in ~3 yrs).
 - CVD diamonds (with NSTec)
 - Goal: Measure neutron burn history with ~1-2 ns resolution for > 1e13 DD yields (for DT in ~ 3 yrs).
- **LANL:** H. Herrmann, R. Leeper
 - Gas Cherenkov Detectors
 - Goal (1-2 yrs): Measure Z background gamma spectrum, consider D-³He
 - Goal (~3-5 yrs): Measure neutron burn/reaction history with ~1-2 ns resolution for > 5e12 DT yields.



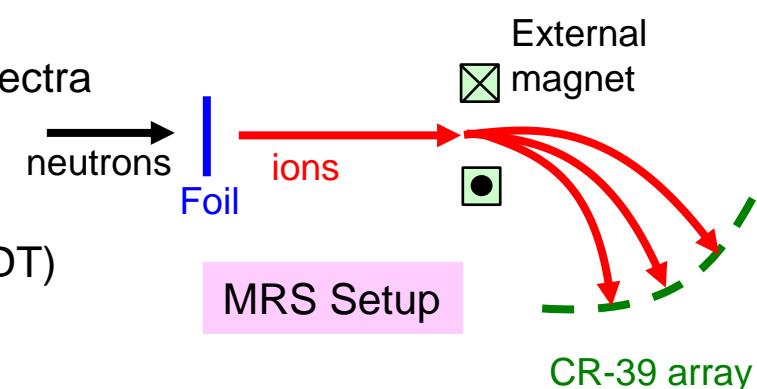
Neutron imager aperture hardware inside Z vacuum chamber

CVD Diamond Detectors

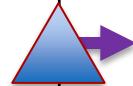


Gas Cherenkov Detector

We are collaborating with universities to improve Z's neutron diagnostic suite


- **UNM:** G. Cooper and J. Styron
 - Thomson Parabola
 - Goal: Measure neutron burn history for $> 1e13$ DD (or DT) yields with 1-2 ns resolution.

- **UR, LLE:** V. Yu. Glebov
 - Gated and alternative nTOF detectors
 - Goals: Suppress large brems signal contributions to enhance small signals (DT and n-Be tails) and improve precision (for T_{ion}).



- **MIT:** R. Petrasso, J. Frenje, F. Seguin, M. Gatu-Johnson, H. Han
 - Neutron recoil spectrometers
 - Goals for next 1-2 yrs: Measure yield and spectra for $1e11 - 5e13+$ experiments.
 - Longer term goal (~ 3-5 yrs): MRS-Magnetic Recoil Spectrometer ($>1e13$ DT)

Gradual increase in MagLIF tritium fuel content and essential collaborations will provide increasing scientific opportunities

Proposed Z Timeline

FY15	FY16	FY17	FY18	FY19

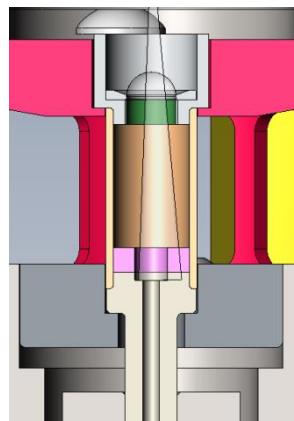
Tritium Surrogates $D_2, {}^3He$ Trace Tritium ES&H $<0.1\%$ Trace Tritium 10x DT Yield $\sim 0.1\%$ Minority Tritium $>10^{13}$ DT Yield $\sim 1\%$ Tritium Operations 10-50%

Key Collaborations for Z Neutron/Nuclear Diagnostics (blue=tritium needed)

<u>NSTec</u> R. Buckles I. Garza K. Moy	<u>LLE</u> V. Glebov	<u>LLNL</u> D. Fittinghoff M. May	<u>LANL</u> H. Herrmann A. McEvoy	<u>UNM</u> G. Cooper J. Styron	<u>MIT</u> R. Petrasso et al.
Gated PMTs, NRPU clipper circuits, CVD diamonds	Gated PMTs	Neutron imaging, close-in nTOF, fast scintillators, CVD diamonds	Gas Cerenkov Detectors for DT burn history, study D^3He reactions	Thompson parabola design study, diagnostic calibration, etc.	DD spectrometer (CR-39) leading to CRS/MRS

Our ability to minimize the impact on the facility depends on the ability to purge the tritium from the Z target chamber

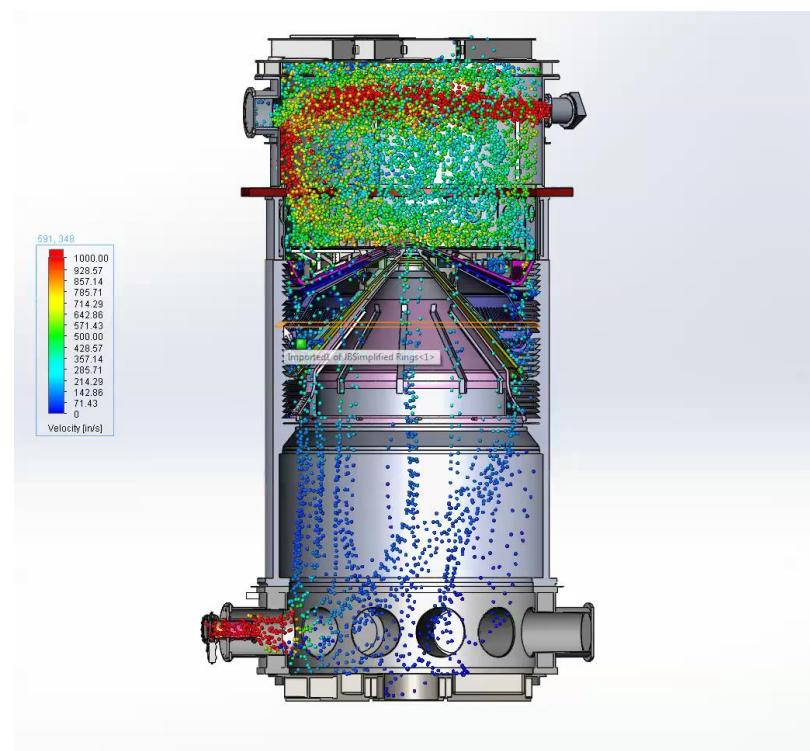
$h = 10 \text{ mm}$


$r_{\text{fuel}} = 2.75 \text{ mm}$

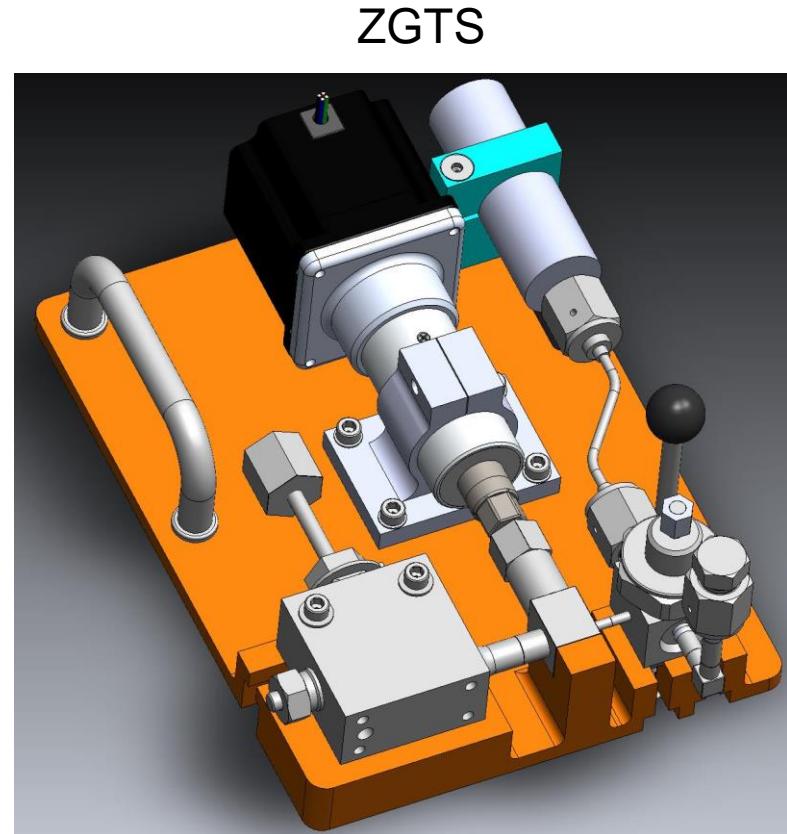
$V = 238 \text{ mm}^3$

$\rho = 1.5 \text{ mg / cc}$

$1 \% \text{ T} = 41.1 \text{ mCi}$


MagLIF target

Flow analysis of the Post Shot Air Exchange System for Z center section


Volume = 66 m^3

Total surface area = 464 m^2

- Purge efficiencies required to keep Z below control limits for tritium
 - Assuming entire surface area
 - 99.5 % for $10,000 \text{ dpm} / 100 \text{ cm}^2$
(Contaminated area)
 - $\sim 50 \%$ for $1 \text{ e}6 \text{ dpm} / 100 \text{ cm}^2$
(Highly contaminated area)

We recently completed development of the Z Gas Transfer System (ZGTS) capable of filling MagLIF targets in-situ on Z

- Robust tritium capable gas transfer system
 - Uses metal diaphragm puncture valve
 - Minimizes tritium inventory
 - Controls when and where tritium is used
 - Fills target in-situ just prior to shot