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Widely available 2D imaging or 
point‐wise measurement 
techniques are often insufficient 
to resolve 3D flow phenomena
 Repetition needed to capture 

spatial statistics

Motivation: 3D imaging for a 3D world

2Daniel R. Guildenbecher

high-speed video of a ethanol drop 
in an air-stream

air 
flow

digital holographic measurement 
(Gao, Guildenbecher et al, 2013, Opt. Lett.)

Holography is an optical technique to record and reconstruct a 3D light field
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Outline for talk
Introduction to holography and 
the “digital revolution”

Application to liquid sprays

Propellant fire measurements
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What is holography?

Optical method first proposed by Gabor in 1948
1. Coherent light diffracted by particle field forms the object wave, Eo
2. Interference with a reference wave, Er, forms the hologram: h = |Eo+Er|2

3. Reconstruction with Er forms virtual images  at original particle locations 
h∙Er = (|Eo|2 + |Er|2)Er + |Er|2Eo + Er2Eo*
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h = |Eo + Er|2



Applications of holography 
took off with invention of the 
laser in 1960

Challenges:
 Darkroom needed to 

process the hologram
 Limited temporal resolution
 Manual post processing

Analog holography
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Thompson et al, 1967, Appl. Opt.

Collier et al, 1971, Optical Holography

hologram

reconstruction



Digital in‐line holography (DIH)

Holographic plate and wet‐chemical processing replaced with digital sensor
 First proposed by Schnars and Jüptner in ‘90s
 Advantages: (1) no darkroom, (2) temporal resolution is straight forward, 

(3) results can be numerically refocused and post‐processed
 Challenge: Resolution of digital sensors (order 100 line pairs/mm) is much 

less than resolution of photographic emulsions (order 5,000 line 
pairs/mm)
 For suitable off axis angles, , the fringe frequency, f, is typically too large to 

resolve with digital sensors (f = 2sin(/2)/)
 Rather, the in‐line configuration ( = 0) is typically utilized
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x

z

collimating optics particle field
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Light propagation in a non‐absorbing, constant index of refraction medium is 
described by the diffraction integral equation:

 E(,,0) ≡ complex amplitude at hologram plane = h(,)∙Er*

 E(x,y,z) ≡ refocused complex amplitude at optical depth z

Numerical refocusing
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reconstructed amplitude throughout depth, z

digital holograms of the breakup of an ethanol drop in an 
air-stream (Gao, Guildenbecher et al 2013, Opt. Lett.)

recorded hologram: h(,) 
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Data processing
Acquisition and refocusing of a digital 
hologram is relatively 
straightforward.

However…
For quantitative measurements, 
methods are required to locate and 
measure particles.
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Challenge: depth‐of‐focus problem
The spatial extent of the diffraction pattern limits the angular aperture, , 
from which a particle is effectively reconstructed (Meng et al, 2004, Meas. Sci. Technol.)

 From the central diffraction lobe  ≈ 2/d
 Using the traditional definition of depth‐of‐focus, , based on change of 

intensity within the particle center   ≈ 4/2

 Therefore: for in‐line holography,  ≈ d2/
 Example: d = 300 m,  = 532 nm   ≈ 170 mm!



Data processing
Literature contains two basic methods to find the focal plane:
1. Fit a model to the observed diffraction patterns (inverse method)
 Generally accurate with small depth uncertainty
 Limited to objects with known diffraction patterns (spheres)

2. Reconstruct the amplitude (or intensity) throughout depth and apply a 
focus metric to find “in‐focus” objects
 No a‐priori knowledge of particle shape required
 Accuracy is a strong function of the chosen focus metric
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Hybrid method:
 Focus metric is a combination of 

amplitude minimization and edge 
sharpness maximization
 Details in Guildenbecher et al 2013, 

Appl. Opt.; Gao et al 2013, Opt. 
Express; Gao et al 2014, Appl. Opt.

Gao et al 2014, Appl Opt.



Experimental validation

 Quasi‐stationary particle field
 Polystyrene beads (                     ) in 10,000 cSt silicone oil
 Settling velocity ≈ 0.8 m/s

 Multiple holograms recorded, displacing the particle 
field 2 mm in the z‐direction between each acquisition
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 465μmd

particle field

hologram Detected objects colored by z-position



Experimental validation

Diameter measured from area of the 
detected 2D morphology
 Actual mass median 

diameter = 465 m
 Measured mass median 

diameter = 474 m
 Error of 2.0% with respect to 

actual value
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Displacement found by particle 
matching between successive 
holograms
 Actual displacement = 2.0 mm
 Mean detected displacement = 

1.91 mm +/‐ 0.81 mm 
 Standard deviation of 1.74 times 

mean diameter



Application to Liquid Sprays



Aerodynamic drop fragmentation
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Experimental configuration: Double‐
pulsed laser and imaging hardware as 
typically used in PIV
  = 532 nm, 5 ns pulsewidth
 Interline transfer CCD 

(4008×2672, 9 m pixel pitch)
 Temporal separation, t = 62 s, 

determined by laser timing 
Note: without a separate reference 
wave, coherence length requirements 
in DIH are greatly relaxed.
 Expensive injection seeders are 

not always needed
 Faster lasers (ps or fs) can be used 

with some advantages (e.g. 
Nicolas et al 2007, Opt. Express) digital holograms of the breakup of an ethanol drop in an 

air-stream (Gao, Guildenbecher et al 2013, Opt. Lett.)
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Optical configuration (Gao, Guildenbecher et al 2013, Opt. Lett.)



Aerodynamic drop fragmentation
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Secondary drop sizes/positions extracted 
by the hybrid method
 Comparison with phase Doppler 

anemometer (PDA) data confirms 
accuracy of measured sizes

Ring measured from z‐location of 
maximum image gradient
 Total volume of ring + secondary drops 

is within 2.2% of the initial volume
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Velocimetry suffers from uncertainty in 
the out‐of‐plane (z) position
 A stereo‐view configuration is one 

solution
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Aerodynamic drop fragmentation

Advantages:
 Improved z‐uncertainty
 Eliminates false particle size 

and position measurements

Challenges:
 Increased experimental 

complexity
 Careful calibration required

Single view DIHStereo DIH



Aerodynamic drop fragmentation
Ensemble averaging of 44 realizations at each condition
 Roughly 10,000 individual drops measured per condition
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(a) t = 0 ms (b) t = 18.3 ms (c) t = 31.4 ms (d) t = 43.6 ms

DIH is particularly advantageous for rapid quantification of particle statistics



High‐speed (kHz) DIH
Increased temporal resolution is possible using high‐speed (kHz rate) cameras

Challenges: (1) higher readout noise, fewer pixels, larger pixel pitches            
(2) very large data sets (10s of Gb) 
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High‐speed (kHz) DIH
Processing of a single hologram can take roughly 30 min on a typical CPU
 Much of that time spent on numerical refocusing:

 Refocusing to a single depth, z, requires: 
(1) calculation of
(2) multiplication of two large arrays, FFT[h(,)]∙ G(fx,fy,z)
(3) a two‐dimensional inverse FFT
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        
1( , , ) ( , ) , ,x yE x y z FFT FFT h G f f z

Graphical processing units (GPUs) are well suited to these 
tasks
 E.g. NVIDIA Tesla K40 GPU, Dual Xeon CPU, Matlab v2014a 

with parallel computing toolbox   per‐frame processing 
time of ~7 seconds

      
2 2 2 2( , , ) exp 1x y x yG f f z jkz f f



High‐speed (kHz) DIH

 Frame‐to‐frame particle matching illustrates the depth‐of‐focus problem
 With sufficient temporal resolution, particles trajectories can be fit to 

temporal models
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High‐speed (kHz) DIH
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 Multi‐frame trajectory fitting leads to a 36X reduction in z‐uncertainty



Breakup of a water jet in a shock‐tube
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laminar water jet

shock propagation direction

Goals:
1. Quantify the fragment sizes and velocities as a function of shock strength
2. Investigate the relation between surface instabilities and fragment properties
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Breakup of a water jet in a shock‐tube
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6× magnification 
camera and lens

z

x

2× magnification 
camera and lens

shock-tube

shock propagation 
direction

initially laminar 
water jet 

98 mm
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Breakup of a water jet in a shock‐tube
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Alternative 3D measurements
Plenoptic cameras use micro‐lens arrays and white light to create a 3D image
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Thoughts on applications to fuel sprays

For modeling of liquid fuel sprays 
DIH/plenoptic imaging could provide:
 Detailed particle statistics of 

laboratory scale problems which form 
the basis of fuel spray models (e.g. 
drop impact, aerodynamic breakup)

 Qualitative, 3D imaging of larger, more 
realistic phenomena
 Quantitative imaging may be possible 

in sub‐regions of the flow and/or 
downstream positions where particle 
density is reduced

October 14, 2015 25Daniel R. Guildenbecher

DIH has many advantages:
• Simple optical configuration
• 3D‐3C measurement
• Rapid quantification of statistics
• Captures details of transient events

… and challenges:
• Depth‐of‐focus problem
• Data processing
• Small field of view
• Limited to dilute sprays



Propellant fire measurements
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Aluminum drop combustion in propellants
Motivation: rocket failures can 
lead to propellant fires
 Sandia Laboratories is 

interested in predicting the 
response of objects in this 
environment
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http://www.cbsnews.com/news/rocket-crash-no-immediate-threat-to-station-but-cause-is-unknown/

high-speed video of a burning propellant

Aluminum agglomeration at the surface 
yields large reacting drops with high 
damage potential
 Prediction requires knowledge of 

particle size, velocity, and temperature

1 mm



Aluminum drop combustion in propellants

Propellant: solid‐rocket propellant pressed into a pencil size strand
 Combusts from the top surface down, ejecting molten aluminum particles 

traveling a few m/s
Laser: Continuum Minilite Nd:YAG, 532 nm wavelength, 5 ns pulse duration
Camera: sCMOS from LaVision at 15Hz
Lens: Infinity K2 long distance microscope with CF‐4 objective 
 ~ 6X magnification
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double-
pulsed laser

camera focal-
plane

spatial 
filter

x

z

collimating 
optics

camera and lens

propellant 
strand

propellant in the text fixture



Aluminum drop combustion in propellants

Daniel R. Guildenbecher

molten 
aluminum

Al2O3 cap

Al2O3
formation 
zone

wake containing nm 
sized Al2O3 particles

29October 14, 2015



Aluminum drop combustion in propellants
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Algorithms automatically measure unique features of burning aluminum



Aluminum drop combustion in propellants
Three strand burns  5594 images 
and 17496 measured drops
 Main peak due to agglomerated 

particulates
 Peak at 50 m due to non‐

agglomerated particulate
Experiments repeated at higher initial 
temperature (faster burn rate)
 Main peak is reduced due to 

decreased residence time for 
agglomeration

 Peak at 50 m remains
Trend is consistent at still higher initial 
temperatures
 Main peak reduced further
 Peak at 50 m remains
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Recorded at 
20,000 fps
Camera: Photron

SA‐Z
Laser: Coherent 

Verdi V6

43,684 frames 
15,991 measured 
drops
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DIH in the literature
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Biology

Marquet et al 2005, Opt. Lett.

Katz and Sheng 2010,  Annu. Rev. Fluid Mech.

Sheng et al 2009, J. Fluid Mech.

Particle Image Velocimetry

Microscopy

Yao et al 2015, Appl Opt.

Multiphase Flows



Aluminum drop combustion in propellants
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DIH gives mass transfer (particle size + velocity)

We really need to quantify the heat transfer (particle and 
gas phase)
 Combination of DIH and two‐color pyrometery

particle size + velocity + temperature

particle field

pyrometer front 
focal plane

700 nm

905 nm

905 nm 700 nm



Aluminum drop combustion in propellants
Gas phase temperature can be 
measured using fs/ps CARS
 Advantages compared to ns CARS:

 Low (mJ) pulse energies  reduces 
dielectric breakdown

 Time‐delayed probe   eliminates 
background signal

 Enhanced precision ~ 1%
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See poster: Hybrid fs/ps CARS for sooting and metalized flames by Kathryn 
Hoffmeister, Sean Kearney, Daniel Guildenbecher, and Caroline Winters



New concepts and opportunities



Pulse‐burst DIH
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QuasiModo 1000
pulse-burst laser, 

532 nm p.p.

periscope

½

f = 200 mm f = 500 mm

50 m diamond 
pinhole

vacuum spatial 
filter

igniter in boom box

ND filter + 
532 bandpass

filter

Photron SAZ + K2 long-
distance microscope with 
CF4 objective

boom-box and high-speed DIH imager

Spectral Energies pulse-burst laser



Pulse‐burst DIH

 Beam quality is sufficient for DIH
 Freezes high‐speed particles and penetrates through flash and smoke
 Noise due to soot and index‐of‐refraction gradients
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Optical challenges in DIH
Coherent imaging is susceptible to:
 Image distortion through index 

of refraction gradients
 Loss of phase information due 

to multiple‐scattering

Holography configuration for shotgun investigationsReconstructed amplitude throughout depth, z

Desired: optical corrections to remove 
these noise sources before recording
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Phase‐conjugate DIH theory

 Phase‐conjugate mirror reflects the incoming wave with opposite phase
 Non‐linear optical effect achieved through passive means (stimulated Brillouin 

scattering) or active means (degenerate four‐wave mixing)

 After double passing, the phase disturbance is canceled
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Pulsed laser

phase conjugate 
mirror

x

z

CCD

particles with 25% random phase 
disturbance at each particle plane

traditional in-
line hologram

numerically re-focused to 
first particle z-position

optically restored 
hologram

numerically re-focused to 
first particle z-position

Dramatic improvement 
compared to 

traditional in‐line 
hologram
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SBS phase‐conjugate DIH
A focused beam in a non‐linear medium induces phase conjugation via 
stimulated Brillouin scattering (SBS)
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f = 300 mm
CCl4 cell

LaVision sCMOS + K2 long-
distance microscope with 

CF4 objective

wirephase 
conjugate 

image plane

in-line 
hologram 

image plane

z z

Quanta-Ray Pro 350
injection seeded, 

Nd:YAG, 532 nm, 
~10 ns pulse duration

LaVision sCMOS + K2 long-
distance microscope with 

CF4 objective



SBS phase‐conjugate DIH
Without a 
disturbance 
both views give 
similar results
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SBS phase‐conjugate DIH
A focused beam in a non‐linear medium induces phase conjugation via 
stimulated Brillouin scattering (SBS)
 A misaligned lens in the beam path causes a phase disturbance
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f = 300 mm
CCl4 cell

LaVision sCMOS + K2 long-
distance microscope with 

CF4 objective

wirephase 
conjugate 

image plane

in-line 
hologram 

image plane

z z

Quanta-Ray Pro 350
injection seeded, 

Nd:YAG, 532 nm, 
~10 ns pulse duration

LaVision sCMOS + K2 long-
distance microscope with 

CF4 objective

phase disturbance
(f = 2000 mm)



SBS phase‐conjugate DIH
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Phase 
conjugation 
corrects image 
distortion

See poster: Phase conjugate digital inline holography (PC‐DIH) by 
Kathryn Hoffmeister, Sean Kearney, and Daniel Guildenbecher



Ballistic DIH
Multiple scattering can be reduced through 
ps time gating
 Combination with DIH might enable 

scatter free 3D imaging through optically 
dense media
 First proposed by: Trolinger et al 2011, 

International Journal of Spray and 
Combustion Dynamics
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ballistic image of a diesel spray 
(Linne et al 2006, Exp. Fluids)

Ti:Sapphire, 
800 nm, 100 fs

f = 250 mm

crossed polarizers

CS2 cell

imaging plane

measured gate transmission



Ballistic DIH
DIH imaging through a Kerr gate (no scatter sources)

Next step: Explore ballistic DIH through dense scattering sources
 Challenge: Can we retain sufficient image fidelity and coherence to resolve 

3D phenomena?

October 14, 2015 48Daniel R. Guildenbecher

DIH image of a needle recorded with the ballistic configuration (1.6 ps switch delay)

See poster: Ballistic imaging holography by 
Derek Dunn‐Rankin, Ali Ziaee, Jim Trolinger



Where is the reference wave?

Hologram is the combination of object and reference waves: h = |Eo+Er|2

 Reconstruction with Er gives: h∙Er = (|Eo|2 + |Er|2)Er + |Er|2Eo + Er2Eo*

 In off‐axis holography, these terms are spatially separated are we attempt to 
reconstruct the original object wave, Eo

 In in‐line holography, we actually want to reconstruct the combination of 
the reference wave and object wave, Eo+Er
 Rearranging: h∙Er = |Eo|2Er + |Er|2(Eo+Er) + Er2Eo*
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Data processing
The basic DIH system includes:
 Coherent light source (laser)
 Particle field
 Image recorder (digital camera)

 DATA ANALYSIS SOFTWARE

Currently each group has their own code:
 Hybrid : Guildenbecher, Gao, et al
 Laplacian: Choi and Lee
 Correlation coefficient: Yang et al
 Minimum edge intensity: Tian et al
 Variance: Palero et al.
 Etc…
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SBS phase‐conjugate DIH
A hot plate 
creates a phase 
disturbance in 
the air
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SBS phase‐conjugate DIH
A butane 
igniter creates 
a more severe 
phase 
disturbance
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4‐wave mixing phase‐conjugate DIH
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4‐wave mixing phase‐conjugate DIH
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Glass with a 
uneven layer of 
optical glue 
creates a severe 
distortion



Drop impact on a thin film
Motivation: measurement of secondary 
droplets by other methods requires 
significant experimental repetition
 Process symmetry provides 

opportunities to validate accuracy
Experimental configuration:
 Double pulsed laser ( = 532 nm, 5 ns 

pulsewidth)
 Interline transfer CCD (4872×3248, 

7.4 m pixel pitch)
 Temporal separation, t = 33 s, 

determined by laser timing 
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impact of a 3 mm water drop on a 2 mm water film 
(Guildenbecher et al, 2013, Exp. Fluids.) 

f = 100 mm

Continuum 
Minilite PIV

hwp pp

pinhole
d = 50 m

f = 750 mm

spatial filter and 1st beam expansion

ThorLabs BE15M-A

2nd beam expansion CCD

z

y

syringe pump

laser pd

syringe 
tip

g

experimental configuration of holographic recording of drop impact on a thin film
(Guildenbecher et al, 2014, Exp. Fluids.) 
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Drop impact on a thin film
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holographic reconstruction of 
drop impact on a thin film

(Guildenbecher et al, 2014, Exp. Fluids.) 

Processed with the hybrid method
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Percussion primers
Motivation: No viable technique currently exists to 
quantify the size and velocity distribution from the hot 
particles in percussion primers
Experimental configuration:
 Double pulsed laser ( = 532 nm, 5 ns pulsewidth)
 Interline transfer CCD (4872×3248, 7.4 m pixel 

pitch)
 ~6X magnification achieved using Infinity K2 long 

distance microscope with CF‐4 objective 
 Temporal separation, t = 2 s, determined by laser 

timing 

October 14, 2015 Daniel R. Guildenbecher
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Percussion primers
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High-speed video of event

Time since trigger

1017 s

1097 s

1177 s

1257 s

1337 s

DIH FOV

Recorded hologram

Numerically re-focused to z = 200 mm from the CCD
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Five holograms recorded at these 
conditions

First known quantification of particle size
 Particle size distribution shows the 

expected behavior
 Probability goes to zero at large and 

small particle diameters



Cross‐correlation method
Theory: in‐focus particle images from two sequential holograms contain 
correlated information
 The maximum cross‐correlation, c, gives the displacement (x, y)

 Img1 and Img2 chosen as the edge sharpness images from the two frames
 z positions in each frame (z1 and z2) are found from the maximum value of 

c over all possible combinations of z1 and z2
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hologram
(Guildenbecher et al, 

2013, Opt. Lett.)

hologram after displacing 
the particle field by 2 mm

(Guildenbecher et al, 
2013, Opt. Lett.)

maximum value of c for the particle in the white 
boxes (Guildenbecher et al, 2013, Opt. Lett.)

z1 = 194.72 mm, 
z2 = 192.72 mm,
z = 2.00 mm



Cross‐correlation method
Again, experimentally validated with quasi‐stationary particles in silicone oil

 Actual displacement = 2.0 mm
 Mean detected displacement = 1.996 mm +/‐ 0.072 mm 

 Standard deviation of 0.15 times mean diameter
 Order of magnitude improvement compared to uncertainties in the literature
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measured displacement field from one realization
(Guildenbecher et al, 2013, Opt. Lett.)

measured z-displacements from all realizations
(Guildenbecher et al, 2013, Opt. Lett.)



Sonic pellets from a shotgun

Results closely match the expected mean velocity (350 m/s) and         
diameter (2.0 mm)
 Uncertainty in z is on the order of 0.2 particle diameters
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particle field from the shotgun measured with the cross-correlation method
(Guildenbecher et al, 2013, Opt. Lett.)



3D, 3C fluid velocity measurements?

 Particles stirred by 
a rotating rod         
(r0 = 1.58 mm, 
0=100 rpm) 

 Recorded at 15Hz 
with a LaVision
sCMOS camera 
(2560×2160,       
6.5 m pixel pitch)
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particles measured with the hybrid method, background shows the recorded holograms



For all trajectories
 Error in measured z = ‐0.04 ± 1.51 mm
 Error in measured z = ‐0.03 ± 1.05 mm

 Standard deviation of

Experiments repeated with smaller particles      
( , see  paper for details)
 Error in measured z = ‐0.003 ± 0.379 mm
 Error in measured z = ‐0.001 ± 0.302 mm

 Standard deviation of 

Next steps:
 Compare results with alternative particle 

detection methods
 Use results to quantify effects of particle 

overlap and other experimental noise 
sources
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all measured x-z trajectories vs. predicted

2.3 d
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2.6 d

3D, 3C fluid velocity measurements?



3D, 3C fluid velocity measurements?
Advantages:
 Simple optical setup requiring only one 

line‐of‐sight view
 Large depth of field (hundreds of mm 

possible)
 Particle sizes can be measured (if desired)
Challenges:
 High uncertainty in the z‐direction
 Particle field must be relatively sparse 

providing only limited vectors
 Vectors at random positions 
 Methods not as mature as PIV or even 

tomographic‐PIV
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mean measured x-z velocities

Note: the literature contains many works on 
holographic‐PIV.  My own work has not been 

focused on these applications


