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Motivation: 3D imaging for a 3D world )

Widely available 2D imaging or
point-wise measurement
techniques are often insufficient
to resolve 3D flow phenomena

= Repetition needed to capture
spatial statistics
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- whigh-speed video of a e_fl;allol drop
in an air-stream digital holographic measurement
(Gao, Guildenbecher et al, 2013, Opt. Lett.)

Holography is an optical technique to record and reconstruct a 3D light field
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Outline for talk ) e

Introduction to holography and ..
the “digital revolution” HI ' ‘ ‘ ‘ o .\ &&é{@

Application to liquid sprays

Propellant fire measurements
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What is holography? A i,

boratories
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mirror
Optical method first proposed by Gabor in 1948
1. Coherent light diffracted by particle field forms the object wave, E_
2. Interference with a reference wave, E,, forms the hologram: h = |E_+E,|?

3. Reconstruction with E, forms virtual images at original particle locations
h-E.=(|E,|?+ |E|?)E, + |E |%E, + E2E,S
(. v Y S’ Sl
DC term virtual real
image image
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Analog holography ) e,

Laboratories

Applications of holography
took off with invention of the
laser in 1960

Challenges:

=  Darkroom needed to
process the hologram

= Limited temporal resolution

= Manual post processing

T Collier et al, 1971, Optical Holography
Thompson et al, 1967, Appl. Opt.
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Digital in-line holography (DIH) ) i

Laboratories
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Holographic plate and wet-chemical processing replaced with digital sensor
= First proposed by Schnars and Juptner in ‘90s

= Advantages: (1) no darkroom, (2) temporal resolution is straight forward,
(3) results can be numerically refocused and post-processed

= Challenge: Resolution of digital sensors (order 100 line pairs/mm) is much
less than resolution of photographic emulsions (order 5,000 line
pairs/mm)

= For suitable off axis angles, 6, the fringe frequency, f, is typically too large to
resolve with digital sensors (f = 2sin(6/2)/A)

= Rather, the in-line configuration (8= 0) is typically utilized

B
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Numerical refocusing

h
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Light propagation in a non-absorbing, constant index of refraction medium is
described by the diffraction integral equation:

- jkr

E(x,y,2)=— Hf(f n,2=0)

—dédy  where: r = JE=XxP +(n-y) +2°

" E(£1,0) = complex amplitude at hologram plane = h(&,n)-E,”

= FE(x,y,z) = refocused complex amplitude at optical depth z

Drop ,
Trajectory ;

e

digital holograms of the breakup of an ethanol drop
air-stream (Gao, Guildenbecher et al 2013, Opt. Lett.)

reconstruﬂmﬁdaupllmmgrﬂrmom&o@t depth z
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Data processing ) s,

Acquisition and refocusing of a digital
hologram is relatively
straightforward.

However...

For quantitative measurements,
methods are required to locate and
measure particles.

Challenge: depth-of-focus problem

The spatial extent of the diffraction pattern limits the angular aperture, Q,
from which a particle is effectively reconstructed (Meng et al, 2004, Meas. Sci. Technol.)

=  From the central diffraction lobe > Q= 24/d

= Using the traditional definition of depth-of-focus, o, based on change of
intensity within the particle center 2> 5= 41/C3?

= Therefore: for in-line holography, 6= d?/4
= Example: d =300 um, A =532 nm = 6= 170 mm!
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Data processing ) e,
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Literature contains two basic methods to find the focal plane:

1. Fit a model to the observed diffraction patterns (inverse method)
= Generally accurate with small depth uncertainty
= Limited to objects with known diffraction patterns (spheres)
2. Reconstruct the amplitude (or intensity) throughout depth and apply a
focus metric to find “in-focus” objects
=  No a-priori knowledge of particle shape required

= Accuracy is a strong function of the chosen focus metric
Hybrid method:

= Focus metric is a combination of E '
amplitude minimization and edge =
sharpness maximization . _
= Details in Guildenbecher et al 2013, . -
Appl. Opt.; Gao et al 2013, Opt. g
Express; Gao et al 2014, Appl. Opt.

Gao et al 2014, Appl Opt.
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Experimental validation i e
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= Quasi-stationary particle field
= Polystyrene beads (d =~ 465um) in 10,000 cSt silicone oil
= Settling velocity = 0.8 um/s
= Multiple holograms recorded, displacing the particle
field 2 mm in the z-direction between each acquisition

particle field
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hologram Detected objects colored by z-position
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Experimental validation ) s
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40 - 120
—— holography
—_ . e Mastersizer
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° 160 rlll'm.i‘b'oo 10000 R A
diameter (um) 4 2 0 2 4 6 8 10
K Az (mm)
Diameter measured from area of the Displacement found by particle
detected 2D morphology matching between successive
= Actual mass median holograms
diameter =465 um = Actual displacement = 2.0 mm
= Measured mass median = Mean detected displacement =
diameter =474 um 1.91 mm +/- 0.81 mm
= Error of 2.0% with respect to = Standard deviation of 1.74 times

actual value mean diameter
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Application to Liquid Sprays



Aerodynamic drop fragmentation ) i,
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Lenses

. . . Di i -
Experimental configuration: Double- 'spﬁgs'"g? lg
CCD camera

pulsed laser and imaging hardware as Spatia
typically used in PIV —

= A4=532nm, 5 ns pulsewidth

= |Interline transfer CCD Optical configuration (Gao, Guildenbecher et al 2013, Opt. Lett.)
(4008 X 2672, 9 um pixel pitch)

= Temporal separation, At = 62 ps,
determined by laser timing

Drop .
Trajectory i

Note: without a separate reference
wave, coherence length requirements
in DIH are greatly relaxed.

=  Expensive injection seeders are
not always needed

= Faster lasers (ps or fs) can be used
with some advantages (e.g.

Nicolas et al 2007’ Opt Express) dig_ital holograms of the breakup of an ethanol drop in an
air-stream (Gao, Guildenbecher et al 2013, Opt. Lett.)
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Aerodynamic drop fragmentation ) i
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Secondary drop sizes/positions extracted 10mis 19
by the hybrid method | - 1 ~0
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Aerodynamic drop fragmentation

Velocimetry suffers from uncertainty in
the out-of-plane (z) position

= A stereo-view configuration is one
solution
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Aerodynamic drop fragmentation ) i

Laboratories

Ensemble averaging of 44 realizations at each condition
= Roughly 10,000 individual drops measured per condition
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DIH is particularly advantageous for rapid quantification of particle statistics

October 14, 2015
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High-speed (kHz) DIH () S
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Increased temporal resolution is possible using high-speed (kHz rate) cameras
. i-1,=-165ms = lelms v

5 mm

Challenges: (1) higher readout noise, fewer pixels, larger pixel pitches
(2) very large data sets (10s of Gb)

| October 14, 2015 Daniel R. Guildenbecher 17



High-speed (kHz) DIH rh) s

Processing of a single hologram can take roughly 30 min on a typical CPU
= Much of that time spent on numerical refocusing:
E(x,y,2)=FFT| FFT[h(En)-G(f,.f,,2) |
= Refocusing to a single depth, z, requires:
(1) calculation of G(f,, f,,2) = exp[—jkz\/l_;tzfxz _’pfyz}
(2) multiplication of two large arrays, FFT[h(E,n)]- G(f,.f,,2)
(3) a two-dimensional inverse FFT

Graphical processing units (GPUs) are well suited to these

tasks

= E.g. NVIDIA Tesla K40 GPU, Dual Xeon CPU, Matlab v2014a
with parallel computing toolbox —> per-frame processing
time of ~7 seconds

October 14, 2015 Daniel R. Guildenbecher



time, ¢ - &y [ms]

. .
Sandia
High-speed (kHz) DIH ) e,
Laboratories
.'-. : : : :ri.' : ) 1 0.7 5
ms
> 0.6 o
s . = ™,
£ 05 ., g N
P . B “
04 ‘."q. i ",
Yo, *s
-10
0 10 20 0 10 20
time, ¢ - &y [ms] time, 7 - t [ms]
120 .
ot
| 3’:
118 LW
. v!?@- .
116 1 *t-t" .
o L
114 i "Q’r
‘ w:'r:. N
RCAD
= 1127 ‘s 'of &
g . ‘é’&u
t 110 4 +* : A
108 1 o
106 1 g
104
102 . ’ ’
5 10 15 20

= Frame-to-frame particle matching illustrates the depth-of-focus problem

=  With sufficient temporal resolution, particles trajectories can be fit to

temporal models

October 14, 2015 Daniel R. Guildenbecher
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High-speed (kHz) DIH ) i,
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=  Multi-frame trajectory fitting leads to a 36X reduction in z-uncertainty
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Breakup of a water jet in a shock-tube ()

Laboratories

f=1.15ms

? laminar water jet

5 mm

Goals:
1. Quantify the fragment sizes and velocities as a function of shock strength

2. Investigate the relation between surface instabilities and fragment properties

| October 14, 2015 Daniel R. Guildenbecher 21



Breakup of a water jet in a shock tube ()

Laboratories
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Breakup of a water jet in a shock-tube ()

Laboratories
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Alternative 3D measurements () e

et Laboratories

Plenoptic cameras use micro-lens arrays and white light to create a 3D image

i
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Thoughts on applications to fuel sprays ) S,

Laboratories

DIH has many advantages: ... and challenges:
e Simple optical configuration e Depth-of-focus problem

* 3D-3C measurement * Data processing
e Rapid quantification of statistics e Small field of view
e Captures details of transient events J* Limited to dilute sprays

7 D {um): 80 90 120 150 180 210 240 270 300 330 360

For modeling of liquid fuel sprays
DIH/plenoptic imaging could provide:

= Detailed particle statistics of
laboratory scale problems which form L
the basis of fuel spray models (e.g. Y g A
drop impact, aerodynamic breakup) SRR e

= Qualitative, 3D imaging of larger, more
realistic phenomena
= Quantitative imaging may be possible
in sub-regions of the flow and/or

downstream positions where particle
density is reduced

October 14, 2015 Daniel R. Guildenbecher



Propellant fire measurements



Aluminum drop combustion in propellants ()&
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Motivation: rocket failures can
lead to propellant fires

= Sandia Laboratories is
interested in predicting the
response of objects in this
environment

http://www.chsnews.com/news/rocket-crash-no-immediate-threat-to-station-but-cause-is-unknown/

Aluminum agglomeration at the surface
yields large reacting drops with high
damage potential

= Prediction requires knowledge of
particle size, velocity, and temperature

high-speed video of a burning propellant

October 14, 2015 Daniel R. Guildenbecher
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Aluminum drop combustion in propellants (i) &

\ .
double- ! ' : S i
pulsed laser | ! f
------- A \
J ! X
spatial ~ collimating camera focal- camera and lens
filter optics plane
propellant

strand

propellant in the text fixture

Propellant: solid-rocket propellant pressed into a pencil size strand

= Combusts from the top surface down, ejecting molten aluminum particles
traveling a few m/s

Laser: Continuum Minilite Nd:YAG, 532 nm wavelength, 5 ns pulse duration
Camera: sCMOS from LaVision at 15Hz

Lens: Infinity K2 long distance microscope with CF-4 objective

= ~ 6X magnification
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Aluminum drop combustion in propellants (i) =
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Algorithms automatically measure unique features of burning aluminum

| October 14, 2015 Daniel R. Guildenbecher 30




Aluminum drop combustion in propellants ()&

Laboratories

Three strand burns - 5594 images £ 6 < 10 ——C
and 17496 measured drops =4 ’
=  Main peak due to agglomerated g 2
particulates R : , : , |
= Peak at 50 um due to non- —— Alzcﬂgmctefffm) 100300
agglomerated particulate 107
Experiments repeated at higher initial E ° - Toé 100 °C
temperature (faster burn rate) % 4
= Main peak is reduced due to g2 Hﬂ
decreased residence time for EX0 ; ;

0 100 200 300 400 500

agglomeration Al diameter (um)
= Peak at 50 um remains =68 10° .
Trend is consistent at still higher initial = fom 107
temperatures 2 N
= Main peak reduced further _E .
2

] Peak at 50 Mm remains 0 100 200 300 400 500
Al diameter (um)
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particles ejected from the surface of a burning propellant @ Sandia

captured with 3D holograw =0.00 mdtd
gl S

Recorded at
20,000 fps

Camera: Photron
SA-Z
Laser: Coherent
Verdi V6

43,684 frames =
15,991 measured
drops
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DIH in the literature | ) i
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Microscopy

atz and Sheng 2010, Annu. Rev. Fluid Mech.
Multiphase Flows

' Tk -
/ 'y ﬂfj{f,_j/ ]

Yao et al 2015, Appl Opt. A e i
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Aluminum drop combustion in propellants ()&

Laboratories

DIH gives mass transfer (particle size + velocity)

We really need to quantify the heat transfer (particle and 11.
gas phase)

= Combination of DIH and two-color pyrometery =
particle size + velocity + temperature

pyrometer front
focal plane

2 mm
] "
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Aluminum drop combustion in propellants ()&

@12 ]
Gas phase temperature can be S U E L as To3103K
measured using fs/ps CARS S 0.8 F L pea O0ZN2=72%
8 06t ;
= Advantages compared tons CARS: = g4t
2] C
= Low (mlJ) pulse energies = reduces & O-S 3
. . c r
dielectric breakdown 0 02k
: _— x Ut
= Time-delayed probe - eliminates < -0.4 F+—— 4+ +++—t—F—+—+—+—
, J 100 150 200 250 300
background signal Raman Shift (cm™)
= Enhanced precision ~ 1% 250
Collimating Lens 200
2 150"
PROBE VOLUME ARS 8
Focusing '77 O 100r

Lens
50+

1000 1500 2000 2500 3000 3500 4000 4500
Temperature (K)

500

See poster: Hybrid fs/ps CARS for sooting and metalized flames by Kathryn
Hoffmeister, Sean Kearney, Daniel Guildenbecher, and Caroline Winters
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Pulse-burst DIH i e,

___________ Laboratories

o

Photron SAZ + K2 long-
distance microscope with
CF4 objective

vacuum spatial
f=200 mm filter f=500 mm

o—
o—y

50 um diamond ND filter +
pinhole 532 bandpass
filter
periscope e — = ! _____ 1

QuasiModo 1000
pulse-burst laser,
532 nm

boom-box and high-speed DIH imager

Spectral Energies pulse-burst laser
O
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Pulse-burst DIH
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e A

= Beam quality is sufficient for DIH

= Freezes high-speed particles and penetrates through flash and smoke
= Noise due to soot and index-of-refraction gradients




Optical challenges in DIH () i

Laboratories

Coherent imaging is susceptible to:

= |mage distortion through index
of refraction gradients

A
A

" Desired: optical corrections to remove

: these noise sources before recording
]
'

Reconstructed amplitude throughout depth, z Holography configuration for shotgun investigations
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Phase-conjugate DIH theory ) e,
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——————

. . B | P—a—p E —>-
Pulsed laser i___ B / A -

VARG —> —>
particles with 25% random phase phase conjugate
disturbance at each particle plane mirror

traditional in- numerjcally re-focused to
line hologram firstfparticle z-position

Dramatic improvement
compared to
traditional in-line

optically restored numerically re-focused to hologram
hologram first particle z-position

= Phase-conjugate mirror reflects the incoming wave with opposite phase

= Non-linear optical effect achieved through passive means (stimulated Brillouin
scattering) or active means (degenerate four-wave mixing)

= After double passing, the phase disturbance is canceled
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SBS phase-conjugate DIH ) e,
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A focused beam in a non-linear medium induces phase conjugation via
stimulated Brillouin scattering (SBS)

| |
| Z | z |
Quanta-Ray Pro 350 " ' ' :-;' '
injection seeded, H H
Nd:YAG, 532 nm, H i
~10 ns pulse duration N N
CCl, cell
v phase wire in-line f=300 mm
conjugate hologram
image plane image plane
LaVision sSCMOS + K2 long- LaVision sSCMOS + K2 long-
distance microscope with distance microscope with
CF4 objective CF4 objective
October 14, 2015 Daniel R. Guildenbecher 43




SBS phase-conjugate DIH

Without 3 in-line hologram

disturbance
both views give
similar results

I mm
E—

refocusedite

@ Sandia
National
Laboratories

phase-cony ugat'eu_-..helo gram

"‘_t“.;r e ‘}
W

g '-‘ .y v i Ty

refocused to.z =
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SBS phase-conjugate DIH ) e,
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A focused beam in a non-linear medium induces phase conjugation via
stimulated Brillouin scattering (SBS)

= A misaligned lens in the beam path causes a phase disturbance

Quanta-Ray Pro 350 " " —>
injection seeded, H H
Nd:YAG, 532 nm, H i

~10 ns pulse duration
—> CCI ceII
phase wire in-line f=300 mm
conjugate hologram
image plane image plane
phase dlsturbance
(f=2000 mm)
LaVision sSCMOS + K2 long- LaVision sSCMOS + K2 long-
distance microscope with distance microscope with
CF4 objective CF4 objective
October 14, 2015 Daniel R. Guildenbecher 45
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SBS phase-conjugate DIH () s
Phase ln-lm_e?_h_ol'ogi? am N i
conjugation NN
corrects image RN NN
distortion

%ﬁ

N refocused to z =19,

See poster: Phase conjugate digital inline holography (PC-DIH) by
Kathryn Hoffmelster 'Sean Kearney, and Danlel Gwldenbecher
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Ballistic DIH i e
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Multiple scattering can be reduced through
ps time gating

= Combination with DIH might enable
scatter free 3D imaging through optically

dense media ballistic image of a diesel spray
. ) (Linne et al 2006, Exp. Fluids)
= First proposed by: Trolinger et al 2011,

International Journal of Spray and
Combustion Dynamics

gate transmission

-1 0 1 2 3
delay [ps]

measured gate transmission

CS, cell

\

=

—

-

Ti:Sapphire,

_ - J
imaging plane f=250mm Y
800 nm, 100 fs

crossed polarizers
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Ballistic DIH ) i,
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DIH imaging through a Kerr gate (no scatter sources)

z=33.0 mm

DIH image of a needle recorded with the ballistic configuration (1.6 ps switch delay)

See poster: Ballistic imaging holography by

Derek Dunn-Rankin, Ali Ziaee, Jim Trolinger

Next step: Explore ballistic DIH through dense scattering sources

= Challenge: Can we retain sufficient image fidelity and coherence to resolve
3D phenomena?

B
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Where is the reference wave? i e
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__________ e ‘
: ' ® o o P 7
Laser ; . P
L ‘%.0
J .
spatial filter  collimating optics particle field CCD

Hologram is the combination of object and reference waves: h = |E_+E, |2

= Reconstruction with E, gives: h-E —(|E |2+ |E,|2)E.+ |E,|%E, + EE,)
v SN

DC term virtual real
image image

= |n off-axis holography, these terms are spatially separated are we attempt to
reconstruct the original object wave, E,
= Inin-line holography, we actually want to reconstruct the combination of
the reference wave and object wave, E_+E,
= Rearranging: h-E,= |E_|%E, + |E,|%(E+E,) + E’E
N~ S—~—" N
DC term virtual real
image image
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Data processing ) e,
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The basic DIH system includes:

= Coherent light source (laser) ==
=  Particle field

= |mage recorder (digital camera)

= DATA ANALYSIS SOFTWARE

Currently each group has their own code:
= Hybrid : Guildenbecher, Gao, et al
= Laplacian: Choi and Lee
= Correlation coefficient: Yang et al
= Minimum edge intensity: Tian et al
= Variance: Palero et al.
= Etc...
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SBS phase-conjugate DIH

A hot plate
creates a phase
disturbance in
the air

@ Sandia
National
Laboratories

phase-conjugate hologram

in-line hologram
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SBS phase-conjugate DIH

A butane
igniter creates
a more severe
phase
disturbance

f? ’

in-line hologram
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phase-conjugate hologram
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4-wave mixing phase-conjugate DIH

¥ ' —

phase in-line

) . . i N CCl, cell
conjugate wire hologram
— virtual CCD virtual CCD —
] _ ]
LaVision SCMOS + K2 long- phase disturbance LaVision SCMOS + K2 long-
distance microscope with distance microscope with
CF4 objective CF4 objective

Sandia
National
Laboratories
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4-wave mixing phase-conjugate DIH Ok

Laboratories

in-line hologram phase-conjugate hologram

Glass with a
uneven layer of
optical glue
creates a severe
distortion

I mm
I

%

refocused 102 =201 mm refocused to z=201 mm

=
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Drop impact on a thin film ) e

Laboratories

Motivation: measurement of secondary
droplets by other methods requires
significant experimental repetition (o)

" Process symmetry provides
opportunities to validate accuracy

Experimental configuration:

= Double pulsed laser (1 =532 nm, 5 ns
pulsewidth)

impact of a 3 mm water drop on a 2 mm water film
" |nterline transfer CCD (4872 X 3248’ (Guildenbecher et al, 2013, Exp. Fluids.)

7.4 um pixel pitch)

. " 'syringe pump syringe
= Temporal separation, At = 33 ps, ;I-E-—:—/}tiyp i

determined by laser timing T ;

- J_ 17774 i T I 3 R Y | | et S |
Continuum spatial filter and 1t beam expansion 2nd heam expansion
1

1 1
f=100 mm pinhole f=750mm! | ThorLabs BEI5SM-A
1 d =50 um !

_________________________ I L |

experimental configuration of holographic recording of drop impact on a thin film
(Guildenbecher et al, 2014, Exp. Fluids.)
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Drop impact on a thin film

Processed with the hybrid method

[

October 14, 2015
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holographic reconstruction of
drop impact on a thin film
(Guildenbecher et al, 2014, Exp. Fluids.)
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Sandia

Percussion primers ) i,

Laboratories

Motivation: No viable technique currently exists to
quantify the size and velocity distribution from the hot
particles in percussion primers

Experimental configuration:

= Double pulsed laser (1 =532 nm, 5 ns pulsewidth)

" |nterline transfer CCD (4872 X 3248, 7.4 um pixel
pitch)

= ~6X magnification achieved using Infinity K2 long
distance microscope with CF-4 objective

"= Temporal separation, At =2 us, determined by laser

timing

_______ \ -
double- | ! © ] S i
pulsed laser | : ! : i
_______ / &\. )(

. - /

spatial  collimating ,v camera focal- camera and lens

filter optics . plane

|

primer
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Percussion primers ) i,

Laboratories

Five holograms recorded at these
conditions

counl

I mm

20 40 60 B0 1000 120 140 1ed 180 200
diameter [1m]

First known quantification of particle size

=  Particle size distribution shows the
expected behavior

= Probability goes to zero at large and

1 mm . .
small particle diameters

Numerically re-focused to z = 200 mm from the CCD
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Cross-correlation method i e,

Laboratories

Theory: in-focus particle images from two sequential holograms contain
correlated information

= The maximum cross-correlation, c, gives the displacement (Ax, Ay)

c=max| > > Img,(m,n)img,(m,n)(m—Ax,n—Ay)

Ax,Ay

" Img, and Img, chosen as the edge sharpness images from the two frames

= 7z positions in each frame (z, and z,) are found from the maximum value of
c over all possible combinations of z, and z,

0.15
= z1 =194.72 mm,
g z2 = 192.72 mm,
S Az =2.00 mm
Imm . 0.25
0.15
hologram hologram after displacing
(Guildenbecher et al, the particle field by 2 mm Z [mm]
2013, Opt. Lett.) (Guildenbecher et al, maximum value of c for the particle in the white
2013, Opt. Lett.) boxes (Guildenbecher et al, 2013, Opt. Lett.)
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Cross-correlation method i e,

Laboratories

Again, experimentally validated with quasi-stationary particles in silicone oil

—

2 mm ~~ - R e T 80 _
dpm] | 4T 60 =
- T - et d E _
= 40 -
(] -
20
0 — T T T T
1.5 175 2 225 25
i 10 Az| = |z, - z,| [mm]
z 185
Z [mm) 180
measured displacement field from one realization measured z-displacements from all realizations
(Guildenbecher et al, 2013, Opt. Lett.) (Guildenbecher et al, 2013, Opt. Lett.)

= Actual displacement = 2.0 mm
= Mean detected displacement = 1.996 mm +/- 0.072 mm
= Standard deviation of 0.15 times mean diameter

= Order of magnitude improvement compared to uncertainties in the literature
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Sonic pellets from a shotgun ) i

Laboratories

350 s \
. [mzrj] ‘“—5. §§§10
o | \\\\Og
18 m \\ e
S [0

10 5 0 5 10
x [mm]

particle field from the shotgun measured with the cross-correlation method
(Guildenbecher et al, 2013, Opt. Lett.)

Results closely match the expected mean velocity (350 m/s) and
diameter (2.0 mm)

= Uncertainty in Az is on the order of 0.2 particle diameters

B
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3D, 3C fluid velocity measurements? ) S,

Laboratories

Litron Nano S 1 g‘j: " Spatial filter and 1% beam expansion | |~ 2 beam expansion | CMOS
65-15 PIV T | N\ : : : ,
hwp  pp J_ : [l J_ h Lo i
T U T U = <
:f =100mm  pinhole =750 mmi E ThorLabs BE15M-A i particle field v
:.________ _d_=_5_0_u_n1 _________ : : _________________ ! with stir rod Yy
= Particles stirred by
a rotating rod 240
(ro=1.58 mm,
@,=100 rpm) petat
g
= Recorded at 15Hz =]
. .. 220 °
with a LaVision W
sCMOS camera
210
(2560 X 2160,
6.5 um pixel pitch)
_ 200
-5 0 5
x [mm]

particles measured with the hybrid method, background shows the recorded holograms
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3D, 3C fluid velocity measurements? i e

Laboratories

For all trajectories

245 A

= Errorin measured z=-0.04 = 1.51 mm

= Errorin measured Az=-0.03 &= 1.05 mm =y
= Standard deviation of 2.3-d 235 -

Experiments repeated with smaller particles

i ) 230 - . I B
(d =118 um, see paper for details) 4 ®
1 ¢
=  Error in measured z = -0.003 = 0.379 mm £ 2. Q\ . =
g )
=  Errorin measured Az=-0.001 = 0.302 mm  «° 2201 < ~
= Standard deviation of 2.6-d ; PY %
2151 )
Next steps: 201 o 5 4
= Compare results with alternative particle 2051
detection methods - 4 ’ P
= Use results to quantify effects of particle T . .
overlap and other experimental noise o
sources all measured x-z trajectories vs. predicted
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3D, 3C fluid velocity measurements? i e

Laboratories

Advantages: s
=  Simple optical setup requiring only one
line-of-sight view 240 1
= Large depth of field (hundreds of mm 235 |
possible) _
= Particle sizes can be measured (if desired) al | o5 B
Challenges: E 2251 ?
= High uncertainty in the z-direction W 220 - R
= Particle field must be relatively sparse sl §
providing only limited vectors
= Vectors at random positions #1081
= Methods not as mature as PIV or even 205 -

tomographic-PIV

200 1

Note: the literature contains many works on

holographic-PIV. My own work has not been
focused on these applications

x [mm)]

mean measured x-z velocities
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