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Combining x-ray diffraction with Z’s unique high energy 
density samples will provide benchmark quality data 

 Z’s high energy density matter samples are large, uniform, long-lived and 
precisely characterized

 X-ray diffraction will expand diagnostic capabilities on Z beyond pressure and 
density measurements
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Z is a unique platform for equation-of-state studies

 Magnetically launched flyer plates for shock 
compression1

 Flyer impact velocities to ~ 40 km/s

 Hugoniot states to ~ 10 Mbar; 10,000 – 50,000 K

 Pressure and density characterized ~ 1-2 %

Anode/Flyer Plate

Target

J

B

 Ramp (shockless) compression2

 Continuous quasi-isentropic compression to ~ 5 Mbar

 Strain rates ~ 106-107 /s

 Lower temperature states ~ 1000 – 3000 K 

cathode anode/sample

undisturbed material

 Dynamic material properties (DMP) experiments

 Shock-ramp compression3

 Initial flyer impact followed ramp loading

 Complex loading path access off-Hugoniot states

 Shock melt and ramp refreeze
2J.-P. Davis et al., Phys. Plasmas 12, 056310 (2005)

1R.W. Lemke et al., J. Appl. Phys. 98, 073530 (2005)

3C. T. Seagle et al., Appl. Phys. Lett. 102, 244104 (2013)
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Z-DMP planar experiments
 Coaxial load1

 Cathode stalk surrounded by 
anode panels

 Dual pressures possible on 
north and south panels

 Enclosed magnetic fields

 More sample locations

 Optimal for (flyer plate) shock 
compression

 Stripline load2

 Identical pressure on both 
cathode and anode panels

 Higher current density and 
pressure

 Open magnetic fields

 Optimal for high-pressure ramp 
compression
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1M. D. Knudson et al., J. Appl. Phys. 94, 4420 (2003)

2R. W. Lemke et al., Int. J. Impact Eng. 38, 480 (2011)
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Z-DMP cylindrical experiments

 Cylindrical implosion reaches extreme pressure states1

 Current pulse shaping creates ramp-wave compression

 Quasi-isentropic compression to 20 Mbar
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 Diagnostics are challenging2

 Limited space

 Miniature probes

 Velocities well beyond 10 km/s

1M. R. Martin et al., Phys. Plasmas 19, 056310 (2012)
2D. H. Dolan et al., Rev. Sci. Instrum. 84, 055102 (2013)
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3 key components to x-ray diffraction on 
Z-DMP experiments

 Produce source x-rays

 Laser irradiate metal foil

 X-pinch

 X-ray diode

 Generate high-pressure state

 Z-DMP load 

 Debris mitigation

 X-ray background

 Detect diffracted x-rays 

 Image plate

 Scintillator/phosphor

 Streak camera

 CCD

Z-DMP
load

X-ray
source

diffracted
x-rays

Detector

incident
x-rays

debris
mitigation
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Challenges of x-ray diffraction on Z

 Target parameters

 Large and thick samples

 Reflection geometry

 Containment targets

 Inserting incident x-rays

 Extracting diffracted x-rays

 Destructive environment of Z-DMP load

 Prevent catastrophic vacuum breach

 Protect ZBL 

 Retrieve data

 X-ray background

 High energy photons (up to 10 MeV) produced

 Sufficient signal-to-noise

 Electromagnetic pulse (EMP)

 Fry electronics
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Addressing challenges of Z-XRD 

 High photon energy (>10 keV), short duration (< 1ns) multi-pulse x-ray 
source
 Penetrate into thick targets

 Temporally resolve phase transformations

 Placing image plate, x-ray CCD, and x-ray streak camera near load
 Robust x-ray and EMP shielding

 Advanced debris mitigation

 Convert diffracted x-rays into visible photons
 X-ray phosphor/scintillator near load

 Transport light out of load region (fiber or open optics relay)
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Laser and source requirements

Source: 
▪ Above 10 keV due to thick targets
▪ Monochromatic
▪ Short emission duration (1 ns or below)
▪ Multi-pulse with >5 ns inter-pulse delays

→ use multiple Kα bursts from period-5 transition metals (15-25 keV)

Laser and focusing hardware:
▪ Multi-pulse capability
▪ Sub-ns pulse duration
▪ Final focusing optics well-shielded from Z debris
▪ Z vacuum protection when debris protection does not hold

→ modify ZPW for multi-pulse, 100-ps operation & use existing ZBL lens focusing 
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ZBL 2ω conversion

ZBL/ZPW combination

Facility Overview

ZPW

PECOS target chamber

ZBL

Z

Z-Backlighter

JEMEZ target chamber
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Target Bay Overview

New target chamber (CHAMA)
▪ 1st chamber to use ZBL, ZPW & CHACO
▪ anticipated activation: Q1, FY16

Laser systems:
▪ Chaco laser to load diffraction targets
▪ Up to 50J/532nm/5-10ns
▪ Status:

▪ Laser operational
▪ Beam delivery to CHAMA under 

construction

▪ ZPW to create x-ray source
▪ Up to 400J/1054nm/50-200ps
▪ Energy is limited due to gold gratings and B-

integral issues in final focal lens
▪ Status:

▪ Laser operational
▪ Optics being coated
▪ Mounting hardware under construction
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Jemez 
Chamber

Chaco 
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Chaco 
Probe 
Beam

ZPW ZBL

Switchyard

Periscope

Chaco 
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CHACO

Multi-
pulse
ZPW

Polycrystalline 
Target

x-ray 
targets

Laser-driven dynamic x-ray diffraction

 Use CHACO laser to pressure-load polycrystalline targets 
to 1-10 Gpa

 Use Z-Petawatt (ZPW, 1ω, ≈500 J, 100 ps) laser

 Focus ZPW with a lens and create multi-pulse x-ray 
source (Δt ≈ 2-20 ns)

 Design and implement multi-frame, 2D x-ray detector

 Perform multi-pulse XRD and time-resolve phase 
changes during laser drive
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Sub-ns laser-created x-ray sources

Kα2

Kα1

Kβ

Heα

ZPW: 1 ps, 100 J, OAP focusing 
Zirconium, E = 15.7 keV

▪ Lens-based focusing of ZPW requires 100-ps-scale pulse duration 
▪ How efficient is 100-ps x-ray generation?
▪ What is the photon yield?
▪ How “clean” is the spectrum (Heα)?
▪ What is the x-ray pulse duration?
▪ What is the optimum target size?
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Debris generation at Z

Z-backlighter Z-XRTS 

Z-pinch
load

x-ray 
target

FOA

ZBL

! 

blast shield lid

debris

Z-DMP
load

(a) (b) Z-XRDZ-Backlighter

Image taken from J.E. Bailey et al., Sandia Report SAND2012-7998 (2012) 
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current ZPW Final Optics Assembly for Z

 ZPW: 

 43x43 cm beam

 500 J, 500 fs

 F/# = 11 parabola (f = 4.73 m)

 FOA is designed for off-axis, sub-ps 
irradiation of backlighter targets

J. Schwarz et al., PRST-AB 13, 041001 (2010)
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Optics protection for on-axis irradiation

lens

vacuum 
window

debris shield

blast shield

Z load

45°-mirror
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▪ Refractive index depends on intensity: n(I) = n0 + n2 I

▪ Intense laser propagation then has a nonlinear component to phase ( Φ = 2π/λ n(I) z ), which 
accumulates (called B-integral): 

▪ Limits:
▪ Total accumulated nonlinear phase 

must be ∑B < 4 to avoid whole-beam 
self-focusing effects (i.e., focal spot 
shifting)

▪ “small” spatial defects can be stripped 
at pinholes of spatial filters. B-integral 
between pinholes resets to 0 at each 
pinhole. Keep ΔB < 2 

⟹ Amplify pulse with 1-1.5 ns chirp, then 
compress to ≈100 ps prior to focusing

B-Integral considerations
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B-integral calculations by P.K. Rambo
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Expected laser focal spot and intensity

▪ ZEMAX modeling with the existing ZBL lens to focus a 10 TW (1 kJ/ 100 ps) ZPW beam indicates:

▪ ≈ 1.2 × 1010 W/cm2 at the lens (matches B-Integral model)

▪ focal spot: 11 µm × 10 µm (FWHM)

▪ ≈ 8 × 1018 W/cm2 at the best focus 

f = 3.2m Asphere, 4.5 cm center thickness
No vacuum windows or debris shields accounted for

Simulated focused 
beam profile

11 µm

10.0 µm
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Multi-frame ZPW modification

▪ Concept:
▪ Spatially split beam before injection into main amp section
▪ Full delay adjustment (2-20 ns)
▪ Separated far-field spots (2 targets)
▪ Similar to Z-Beamlet multi-frame backlighter (MFB) concept but without certain energy losses (except 

for apodization strip at 10% level)
▪ Compatible with vacuum compressor in Target Bay
▪ Allows 2 beams with each at 500J/0.1ns or 1kJ/0.2ns (B-integral limited)

Current injection
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Multi-frame, time-resolved detector ideas

 First measurements will be time-integrated

 Use image plate as detector

 later: Scintillator/Phosphor screen + relay 
optics

 Single-frame with CCD camera

 Multi-frame operation with hCMOS camera

 Alternative: DIXI + hCMOS

 Not clear how close DIXI can be to the target

 Requires further investigation

sample 

diffracted
x-rays

screen

optical relay

gated CCD/MCP 
or visible hCMOS

sample 

diffracted
x-rays
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END
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Diagnosing material lattice dynamics 
during a dynamic compression experiment
 What?

 Characterize phase transformations that occur in 
dynamically compressed condensed matter on ns time 
scales and nm spatial scales

 Why? 

 Such information enables to determinate how material 
behaves under extreme conditions

 For most materials, there are very few constraints on 
existing models for phase transitions under dynamic loading

 How?

 perform time-resolved, x-ray diffraction measurements on 
dynamically compressed, polycrystalline matter (dynamic x-
ray diffraction, DXRD)

 Requires sub-ns x-ray probe to resolve dynamics

 High-Z material requires >10 keV x-rays

 Use short-pulse laser to create source

 Modify short-pulse laser system for dual pulse operation to 
temporally resolve phase transition dynamics

Cartoon from https://str.llnl.gov/str/JulAug06/Lorenzana.html

Short-
pulse

x-ray src
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Z-Backlighter facility laser-to-x-ray conversion 
efficiency scaling

Ω: 3ω, 1.5-6 kJ

NIF: 3ω, 16-60 kJ

ZBL: 2ω, 1-2 kJ

ZPW: 1ω, 100 J
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Focusing ZPW with a lens: Multi-pulse 
operation

• Angle multiplexing

• Via lateral pinhole offset

• Wavelength multiplexing

• Separated by diffraction grating

• Aperture division multiplexing

• Separated by wedge refraction

• Combinations of these

• Wavelength- 1w and 2w beams could be separated by dichroic coatings
• ZBL is 70% 2w and 30% 1w (1w could be stripped in 986)
• ZPW is 100% 1w

• Polarization- Polarizers could separate vertical and horizontally polarized pulses
• ZBL 1w is horizontal, 2w is vertical
• ZPW is horizontal for gold gratings (current), vertical for MLD gratings (required for 
high energy) or horizontal for bypassing the gratings.

• Temporal- Pockels cell could be used in conjunction with polarizers to differentially 
direct temporally separated pulses.

• Redirection needs to be done at full size but full size PEPC is too slow for the
required delays.

• Spatial- Aperture division could redirect a portion of the beam
• 15% of the ZBL MagLIF heating beam could be split off with aperture division
• Reduces energy for heating
• How much energy is needed for backlighting?

• Partial reflection/diffraction- A partial reflector/director could redirect 15% of the 
beam

• How much energy is needed for backlighting?

Options Considered for ZBL MFB Options Considered for Two Color ZPW/ZBL Backlighting
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For ZPW MFB, it is best to consider either aperture or angle 
multiplexing or a combination.
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Lens-based focusing


