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Combining x-ray diffraction with Z’s unique high energ@“‘“"‘"‘“
density samples will provide benchmark quality data

= Z’s high energy density matter samples are large, uniform, long-lived and
precisely characterized

= X-ray diffraction will expand diagnostic capabilities on Z beyond pressure and
density measurements
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Z is a unique platform for equation-of-state studies ) e

= Dynamic material properties (DMP) experiments

AnodelFerPlaiew Magnetically launched flyer plates for shock

compression?
*  Flyer impact velocities to ~ 40 km/s
= Hugoniot states to ~ 10 Mbar; 10,000 — 50,000 K
= Pressure and density characterized ~ 1-2 %

A Target

anodg/sample = Ramp (shockless) compression?

~

= Continuous quasi-isentropic compression to ~ 5 Mbar
= Strain rates ~ 10°-107 /s
[Ba * Lower temperature states ~ 1000 — 3000 K

undisturbed material

Shock-ramp compression3
= Initial flyer impact followed ramp loading
= Complex loading path access off-Hugoniot states

'R.W. Lemke et al.,J. Appl. Phys. 98, 073530 (2005) = Shock melt and ramp refreeze
2].-P. Davis et al., Phys. Plasmas 12, 056310 (2005)

3C. T. Seagle et al., Appl. Phys. Lett. 102, 244104 (2013)
I ———————



Z-DMP planar experiments .

=  Coaxial load?

» Cathode stalk surrounded by
anode panels

short circuit

= Dual pressures possible on
north and south panels

* Enclosed magnetic fields
= More sample locations

= Optimal for (flyer plate) shock north cathode SOUth
. d
compression anode e

= Stripline load?
= |dentical pressure on both
cathode and anode panels

= Higher current density and JxB
pressure

= Open magnetic fields

= Optimal for high-pressure ramp
compression

anode cathode

IM. D. Knudson ef al., J. Appl. Phys. 94, 4420 (2003)

ZR. W. Lemke et al., Int. J. Impact Eng. 38, 480 (2011)
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Z-DMP cylindrical experiments u

Cylindrical implosion reaches extreme pressure states?

Current pulse shaping creates ramp-wave compression
= Quasi-isentropic compression to 20 Mbar

2
=20 MA
R=1mm
P;= 64 Mbar
probe
motion motion

= Diagnostics are challenging?
= Limited space
= Miniature probes

-
=
o
p—
=
3

<«—— current

Au
= Velocities well beyond 10 km/s rod,
turning
liner mirror

IM. R. Martin et al., Phys. Plasmas 19, 056310 (2012)
2D. H. Dolan et al., Rev. Sci. Instrum. 84, 055102 (2013)




3 key components to x-ray diffraction on )=

Z-DMP experiments

=  Produce source x-rays
= Laser irradiate metal foil
= X-pinch
= X-ray diode

= Generate high-pressure state
= Z-DMP load
= Debris mitigation
= X-ray background

= Detect diffracted x-rays
* Image plate
= Scintillator/phosphor
= Streak camera
= CCD

X-ray
source

incident
X-rays

debris
mitigation
diffracted
X-rays
‘ Detector




Challenges of x-ray diffraction on Z =N

= Target parameters
= Large and thick samples
= Reflection geometry

* Containment targets
* Inserting incident x-rays
= Extracting diffracted x-rays

= Destructive environment of Z-DMP load
" Prevent catastrophic vacuum breach
= Protect ZBL
“ Retrieve data

= X-ray background
= High energy photons (up to 10 MeV) produced
= Sufficient signal-to-noise

= Electromagnetic pulse (EMP)
* Fry electronics




Addressing challenges of Z-XRD .

= High photon energy (>10 keV), short duration (< 1ns) multi-pulse x-ray
source

= Penetrate into thick targets
= Temporally resolve phase transformations

= Placing image plate, x-ray CCD, and x-ray streak camera near load
* Robust x-ray and EMP shielding
= Advanced debris mitigation

= Convert diffracted x-rays into visible photons
= X-ray phosphor/scintillator near load

= Transport light out of load region (fiber or open optics relay)
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Laser and source requirements

Source:

= Above 10 keV due to thick targets

=  Monochromatic

= Short emission duration (1 ns or below)
=  Multi-pulse with >5 ns inter-pulse delays

— use multiple Ka bursts from period-5 transition metals (15-25 keV)

Laser and focusing hardware:

= Multi-pulse capability

= Sub-ns pulse duration

= Final focusing optics well-shielded from Z debris

= Zvacuum protection when debris protection does not hold

— modify ZPW for multi-pulse, 100-ps operation & use existing ZBL lens focusing




Facility Overview
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Target Bay Overview

New target chamber (CHAMA)
= 1%t chamber to use ZBL, ZPW & CHACO
= anticipated activation: Q1, FY16

Laser systems:
= Chaco laser to load diffraction targets
= Upto 50J/532nm/5-10ns
=  Status:
= Laser operational
= Beam delivery to CHAMA under
construction

= ZPW to create x-ray source
= Up to ~400J/1054nm/50-200ps
= Energy is limited due to gold gratings and B-
integral issues in final focal lens
=  Status:
= Laser operational
=  Optics being coated
=  Mounting hardware under construction
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Polycrystalline
Target

Use CHACO laser to pressure-load polycrystalline targets
to 1-10 Gpa

X-ray
targets

Use Z-Petawatt (ZPW, 1w, =500 J, 100 ps) laser

Focus ZPW with a lens and create multi-pulse x-ray
source (At = 2-20 ns)

Design and implement multi-frame, 2D x-ray detector

Perform multi-pulse XRD and time-resolve phase
changes during laser drive




Sub-ns laser-created x-ray sources Ll
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= Lens-based focusing of ZPW requires 100-ps-scale pulse duration

How efficient is 100-ps x-ray generation?
What is the photon yield?

How “clean” is the spectrum (He,)?
What is the x-ray pulse duration?

What is the optimum target size?



Debris generation at Z Q=
(a) Z-Backlighter (b) Z-XRD
FOA

blast shield lid

debris




current ZPW Final Optics Assembly for Z L

/PW:
= 43x43 cm beam
= 500)J, 500 fs
* F/#=11 parabola (f=4.73 m)

FOA is designed for off-axis, sub-ps
irradiation of backlighter targets

T

steering

parabola
{no fine of sight)

debris shield cartridge

= {nin film polymaer debris
shiedd

= marnual Lp ! UL to tune
transmission

= removable carlridge

windowed gate valve

= ppen onky for firal
alignment and shat

+ closed for vant-up

preumatic fast

valve
» E150mm in < 10 me

« 100 us designs exist \

foil laser target hlast

shield

self closing
nose cone of
target can

J. Schwarz et al., PRST-AB 13, 041001 (2010)




45°-mirror

lens

debris shield

blast shield — |
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B-Integral considerations Q=

= Refractive index depends on intensity: n(l) =n, +n, |

= Intense laser propagation then has a nonlinear component to phase ( ® = 2riti/A n(l) z ), which
accumulates (called B-integral):

_2n [t i
B = o n,(2)I(z) dz g9
0 €Ew©
o £
5.0 1 | 1 | 1 | 1 | 1 | L | 1 | IL) Lul_
* Limits: . front-end main amps
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Expected laser focal spot and intensity .

=  ZEMAX modeling with the existing ZBL lens to focus a 10 TW (1 kJ/ 100 ps) ZPW beam indicates:
= =1.2 %1019 W/cm? at the lens (matches B-Integral model)

=  focal spot: 11 um x 10 um (FWHM)
= = 8x 1018 W/cm? at the best focus

Simulated focused
beam profile

Irradiance (W/cm2)

f = 3.2m Asphere, 4.5 cm center thickness
No vacuum windows or debris shields accounted for




Multi-frame ZPW modification

=  Concept:

N
o

Spatially split beam before injection into main amp section

Full delay adjustment (2-20 ns)

Separated far-field spots (2 targets)

Similar to Z-Beamlet multi-frame backlighter (MFB) concept but without certain energy losses (except
for apodization strip at 10% level)

Compatible with vacuum compressor in Target Bay

Allows 2 beams with each at 500J/0.1ns or 1kJ/0.2ns (B-integral limited)

to Vacuum Spatial Filter to Vacuum Spatial Filter

Beam splitting, angular
Current injection multiplexing and delay

| | = Kinematic baseplates allow
. . removal for single beam ops
O-degree
. S
mirror GEJ
©
E 2 g 7 ~—
()] ()] a
et = < variable delay
5 S (2-20ns)
S S
L L




Multi-frame, time-resolved detector ideas )=

=  First measurements will be time-integrated
= Use image plate as detector

. sample N\ ¥
= |ater: Scintillator/Phosphor screen + relay \

optics

) _ optical relay
=  Single-frame with CCD camera
=  Multi-frame operation with hCMOS camera
diffracted
X-rays
screen gated CCD/MCP
or visible hCMOS
sample  \ ¥

= Alternative: DIXI + hCMOS
= Not clear how close DIXI can be to the target
= Requires further investigation

diffracted
X-rays




END




Diagnosing material lattice dynamics ) .
during a dynamic compression experiment

=  What?

= Characterize phase transformations that occur in
dynamically compressed condensed matter on ns time

. Shock I
scales and nm spatial scales
Short-
n Why‘,) pulse 1
) X-ray src Ve
= Such information enables to determinate how material * ;‘g [Lorenzana,
el “.  LDRD-SI
behaves under extreme conditions 14 P22 0 2005-2008)]
= For most materials, there are very few constraints on \ : —;i.f Il .o

existing models for phase transitions under dynamic loading i actea %

signal

3
= How? Fe, P, ~260 kbar

= perform time-resolved, x-ray diffraction measurements on
dynamically compressed, polycrystalline matter (dynamic x-
ray diffraction, DXRD)

= Requires sub-ns x-ray probe to resolve dynamics
= High-Z material requires >10 keV x-rays

= Use short-pulse laser to create source

=  Modify short-pulse laser system for dual pulse operation to
temporally resolve phase transition dynamics




Z-Backlighter facility laser-to-x-ray conversion ) i,
efficiency scaling

atomic number
22 25 29 30 32 40 42 47 50

NIF: 3w, 16-60 kJ

102
ZBL, 2w (scaled Ruggles et al, RSI 2003)

ZBL, 2w (Schollmeier, 2014-2015)

Q: 3w, 1.5-6 kJ

OMEGA, 3w (Workman et al., RSI 2001)

[uy
Q
w

NIF, 3w (Barrios et al., HEDP 2013)
TITAN, 1w, (Park et al., PoP 2008)

ZPW, 1w (Schollmeier, 2009-2012)

y
~

=
Q
IS

O S 0 00O

PrismSPECT, 2 keV plasma

Boltzmann fits

=

e
o
I

ZBL: 2w, 1-2 kJ
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Focusing ZPW with a lens: Multi-pulse @
operation

T

Options Considered for ZBL MFB Options Considered for Two Color ZPW/ZBL Backlighting
. Angle multiplexing .§ T Wavetength-lucand 2w beams could be separated by dichroi tings —
£3 -zsuwmmW
* Via lateral pinhole offset g vZPW Is 100% 1w
*g §’ L E"‘Pﬁa..w ier=-Rolarizers could separate vertical and horlzontaW
e S8 zLaws horionts Zu e
£ - G -g < IS horizontal for gold gratings (current), vertical for MLD gratings (requited-for-
I3 rated by diffractl high ) or horizontal for b ing the gratings.
S gh energy) or horizontal fo ypa'ss g. eg.a g§ ‘ ' .
. Aperture division multiplexing v N'F?emmral Pockels cell could be used in conjunction with polarizers to differentiaty=—
£ S gdlrect temporally separated-peises
« Separated by wedge refraction g %” E * Redirection needs fnhn-dmm too slow for the
—rgquired delays. —
. Combinations of these e Spatial- Aperture division could redirect a portion of the beam

* 15% of the ZBL MagLIF heating beam could be split off with aperture division
* Reduces energy for heating
* How much energy is needed for backlighting?

"o Parttatreflectian/diffraction- A partial reflector/director could redirect 15%-efthe
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For ZPW MFB, it is best to consider either aperture or angle
multiplexing or a combination.




Lens-based focusing




