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Abstract

Bolted are joints are prevalent in most assembled structures; however, predictive models for
the behavior of these joints do not yet exist. Many calibrated models have been proposed to
represent the stiffness and energy dissipation characteristics of a bolted joint. In particular, the
Iwan model put forth by Segalman and later extended by Mignolet has been shown to be able
to predict the response of a jointed structure over a range of excitations once calibrated at a
nominal load. The Iwan model, however, is not widely adopted due to the high computational
expense of implementing it in a numerical simulation. To address this, an analytical, closed form
representation of the Iwan model is derived under the hypothesis that upon a load reversal, the
distribution of friction elements within the interface resembles a scaled version of the original
distribution of friction elements. Additionally, the Iwan model is extended to include the pinning
behavior inherent in a bolted joint.
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1 Introduction

One of the great remaining challenges in classical structural dynamics and solid mechanics is the
prediction of the behavior of a jointed connection. Despite the prevalence of jointed connections in
engineering structures, predictive models do not exist for several reasons: in most applications there
is no penalty for over designing a joint to ensure that it survives most realistic loading scenarios,
the physics to predict the behavior of a joint is reliant upon an improved understanding of friction
(which is a nontrivial undertaking), and what joint models do exist are often computationally
burdensome (which results in analysts favoring simplistic and hopefully conservative representations
instead). However, in several industries (aerospace, defense, automotive, etc.) there is becoming a
pressing need to better understand the behavior of a jointed connection. In many of the pertinent
applications, the jointed connections are part of a system that will only be fabricated a small number
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of times and that has strict weight and space limits (increasing the penalty for over designing the
joint). Conventional approaches to modeling the joint, due to harsh loading environments and
nonlinearities, often are not as conservative as an analyst anticipates. In fact, the use of linear
models, calibrated at low excitation levels, significantly over predict the energy dissipation and
joint stiffness at high load levels. Consequently, a number of failures have been reported in recent
years that are related to bolted joints (see, for instance, (Deckstein and Traufetter 2012)).

The present research is motivated by one particular class of joint models that are used in finite
element analysis as well as analytical mechanics and reduced order models: the Iwan model. The
broad category of constitutive models referred to as Iwan models are used to model dissipative
behavior with a single degree of freedom. These models originally were applied to elastic-plastic
material responses (Iwan 1966; Iwan 1967) and have more recently been adapted to joint mechanics
(Segalman 2005; Segalman and Starr 2004). In particular, the four-parameter Iwan model (Segal-
man 2005) regularizes the joint interface to be represented by a single degree of freedom. The
four-parameter Iwan model is, essentially, a constitutive model that describes the hysteretic behav-
ior of micro- and macroslip across a jointed interface and replaces the kinematics of the adjacent
interfacial surfaces with a nonlinear constitutive model. The model’s constitutive parameters can
be populated either with representative experimental data or deduced from fine mesh finite element
analysis. The constitutive formulation is fundamentally that of a Preisach model and has basis in
(Bauschinger 1886; Masing 1926; Prandtl 1928; Ishlinskii 1944; Iwan 1966; Iwan 1967). More re-
cently, the Iwan model has been extended to be considered in modal space (as opposed to physical
coordinates) (Deaner et al. 2013)

One difficulty present in the implementation of the Iwan model is its high computational cost.
The Iwan models used for the analysis of bolted joints are based on a discretized set of dry friction
sliders (Segalman 2005). This discretization leads to the need to store the individual state of
each dry friction slider in the model, effectively increasing the degrees of freedom from one to an
arbitrarily large number. In what follows, a reduced formulation of the Iwan model is derived based
on the assumption that when a load reversal occurs, the state of each dry friction slider is reset (this
assumption is discussed in Section 2.2.1. While this is a subtle change from the four-parameter Iwan
model formulated in (Segalman 2005), both the new and old models are still approximations that
can be calibrated to fit the data accurately, and the resulting model thus does not lose applicability
from this new assumption.

2 Analytical Development

Conceptually, there are three distinct regimes for the model, as can be seen in Fig. 1: microslip
(0 ≤ δ < ϕMAX), macroslip (ϕMAX ≤ δ < δP ), and pinning (δP ≤ δ). In what follows, these three
regimes will be calculated as part of two separate calculations: one calculation for the force due to
the Iwan model, which includes micro- and macroslip, and one calculation for the pinning force.

2.1 Pinning Force

The pinning force occurs when the shank of the bolt engages the edge of the through hole (of
diameter 2δP ) in which it is located. This contact is thus between two cylindrical surfaces. If no
plasticity is assumed to occur, this can be modeled using Hertz’s (Johnson 1985) elastic contact
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Figure 1: Illustrative drawing of the constitutive force F for a bolted joint as a function of dis-
placement δ.

formulation for two cylinders

FPIN =
π

4
E∗Ld. (1)

For this formulation, E∗ is the effective modulus of the two materials in contact (each having elastic
modulus Ej and Poisson’s ratio νj)

E =

(
1− ν21
E1

+
1− ν22
E2

)−1

. (2)

The engagement length of the bolt’s shank with the through hole (i.e. the height of the hole) is L,
and d is the interference/contact displacement of the two surfaces. As (1) is linear in d, FPIN can
be expressed as a spring force FPIN = KPd with stiffness

KP =
π

4
E∗L. (3)

All parameters needed to define KP are based on material and geometric properties, which can be
easily determined.

2.1.1 Relation of Relative and Global Displacements for the Iwan and Pinning Forces

In what follows, the relative displacement u is defined to be positive in the slip direction. Addi-
tionally, δ0 is defined to be the global displacement of the system at the start of a slip event (e.g. a
load reversal), and F0 is defined to be the force due to the Iwan element at the start of a slip event.
In order to relate the force due to the Iwan model and the force due to pinning,

δ = δ0 + u. (4)



This relationship establishes the constraint that at u ≥ δP − δ0, the pinning force is engaged

FPIN = ±H|u+ δ0 ∓ δP |KP (u+ δ0 ∓ δP ). (5)

2.2 Four-Parameter Iwan Model Overview

For both the micro- and macroslip regimes, the Iwan model is proposed. As a starting point, the
four parameter Iwan model developed in (Segalman 2005) is used. In that research, the constitutive
representation for the Iwan forces is

FIWAN =

∫ ∞

0
ρ(ϕ) (u(t)− x(t, ϕ)) dϕ, (6)

which describes a distribution ρ(ϕ) of dry friction sliders (Jenkins elements) such as shown in
Fig. 2. Note that in (Segalman 2005), the global displacement U is used in place of the relative
displacement u; this substitution is made, though, without loss of generality in what follows due
to the introduction of F0 and δ0, mentioned above. The jth slider has instantaneous displacement
xj = x(t, ϕj), and transitions from sticking to sliding at a displacement of xj = ϕj . The choice of
distribution ρ(ϕ) is a nontrivial task, and several choices are discussed in what follows. For the
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Figure 2: Illustrative drawing of an Iwan model as a parallel arrangement of dry friction sliders.
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Figure 3: Illustrative drawing of a typical hysteresis curve for a four-parameter Iwan model de-
scribed by (Segalman 2005).

model proposed in (Segalman 2005), the general form of the hysteresis loop is illustratively shown
in Fig. 3.

The four-parameter Iwan model of (Segalman 2005) is subject to the two Masing conditions
(which are both visible in Fig. 3): the forward and backward curves are reflections of one another
and are scaled to fit between the initiation of the loading point and the force for macroslip, and
that if a trajectory intersects the curve of a previous loading cycle, then it will change to follow
the previous curve. In what follows, the first Masing condition is exploited: a displacement in
the negative direction is the same as a displacement in the positive direction with a change of
coordinates. The second Masing condition, though, due to possible transitions from microslip to
macroslip to pinning, is neglected. By assuming that this condition can be neglected, the need for
a burdensome approach that tracks the history of previous loading cycles, can be eliminated from
this reduced formulation (a challenge that is evident in models such as (Smallwood, Gregory, and
Coleman 2001; Segalman and Starr 2004)).

The distinguishing feature of the Iwan model is the proposed distribution of Jenkins elements
ρ(ϕ), each element of which slips once they have been stretched a distance ϕ. In (Segalman 2005),
the proposed distribution (shown in Fig. 4(a)) is

ρ(ϕ) = Rϕχ (H(ϕ)−H(ϕ− ϕMAX)) + Sδ(ϕ− ϕMAX) (7)

R =
FS(χ+ 1)

ϕχ+2
MAX

(
β + χ+1

χ+2

) (8)

S =
FS

ϕMAX

β

β + χ+1
χ+2

(9)

ϕMAX =
FS(1 + β)

KT

(
β + χ+1

χ+2

) , (10)



with Heaviside step function H(·) and Delta function δ(·). In this formulation, 3 + χ is the energy
dissipated per cycle of small amplitude oscillation. Thus, −1 < χ ≤ 0 in this model. The distri-
bution ρ is a power law relationship that is truncated at ϕMAX with a Delta function. The ratio
of the stiffness of the Delta function portion of the distribution S to the power law portion of the
distribution R is defined as β

β =
S

Rϕχ+1
MAX/(χ+ 1)

. (11)

Note that with the definition of β, the model of (Segalman 2005) can be posed in terms of FS , KT ,
χ, and β, as opposed to a different set of parameters that are more difficult to directly measure
(e.g. FS , R, S, and ϕMAX). The relationships of Eqs. 8-10 are developed in (Segalman 2005) with
this ease of model parameter determination in mind.

Observe that with the definition of u the quantity from Eq. 6

u− x(t, ϕ) =

{
u if sliderϕ is stuck
ϕ if sliderϕ is sliding.

(12)

Thus, define

Γ(u, ϕ) = u− x(t, ϕ) =

{
u u < ϕ
ϕ u ≥ ϕ.

(13)

Substituting Γ and ρ into Eq. 6 yields

FIWAN =

∫ ϕMAX

0
Γ(u, ϕ)Rϕχdϕ+ SΓ(u, ϕMAX). (14)

Based on Γ, this can be broken into two integrals

FIWAN =

∫ u

0
Rϕχ+1dϕ+

∫ ϕMAX

u
uRϕχdϕ+ SΓ(u, ϕMAX), (15)

which has solution

FIWAN = R

((
1

χ+ 2
− 1

χ+ 1

)
uχ+2 +

ϕχ+1
MAX

χ+ 1
u

)
+ SΓ(u, ϕMAX). (16)

Substituting Eqs. 8 and 9 gives the full expression for the Iwan forces

FIWAN =
FS(χ+ 1)

ϕχ+2
MAX

(
β + χ+1

χ+2

) (( 1

χ+ 2
− 1

χ+ 1

)
uχ+2 +

ϕχ+1
MAX

χ+ 1
u

)
+

FS

ϕMAX

β

β + χ+1
χ+2

Γ(u, ϕMAX).

(17)
In the limiting case of u ≥ ϕMAX , the Iwan force reduces to FIWAN = FS .

2.2.1 Considerations for Cyclic Loading

Two cases must be considered for the cyclic loading: loading to macroslip, and loading within the
microslip regime. In loading to macroslip, all of the Jenkins sliders are, by definition, in slip. Thus
the first Masing condition can be applied. For the first cycle of loading, it is assumed that F0 = 0
and δ0 = 0. After the first cycle in which the joint is in macroslip, F0 = FS (as F0 doesn’t include
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Figure 4: Illustrations of (a) the distribution of (Segalman 2005), (b) the uniform distribution of
(Iwan 1966), and (c) Segalman’s proposed distribution.

pinning forces), and each Jenkins element is fully stretched in the direction opposite from the
new loading direction. For oscillations between two extremes (i.e. −FS and FS), the first Masing
condition (Segalman 2005; Jayakumar 1987) yields

F+(u) = −FS + 2FIWAN

(
δ − δ0

2

)
(18)

F−(u) = −FS − 2FIWAN

(
δ0 − δ

2

)
. (19)



The forces F+ and F− are for positive and negative loading cycles respectively. Essentially, Eqs. 18
and 19 have the form

F± = ∓FS ± γFIWAN

(
±δ ∓ δ0

γ

)
, (20)

where γ scales the function appropriately.
In many vibratory environments, however, the limits of oscillation are not necessarily between

the two extreme values. Thus, an incomplete case (e.g. never loading to the point of macroslip)
must be considered. In the previously defined relative coordinate system for u, after a load reversal,
−F0 > −FS , the Jenkins elements of strength ϕ are fully stretched in the direction opposite from
the new loading direction for ϕ < u0, and are stretched a distance u0 in the direction opposite from
the new loading direction for ϕ > u0. As a result, Eq. 15 becomes

FIWAN =

∫ u

0
R

(
ϕ

2

)χ+1

dϕ+

∫ ϕMAX

u
uRϕχdϕ+ SΓ(u, ϕMAX)− F0, (21)

for u ≤ 2u0, and, with ψ = ϕ− 2u0, for u > 2u0

FIWAN =
1

2χ+1

∫ 2u0

0
Rϕχ+1dϕ+

∫ u

2u0

Rψχ+1dψ +

∫ ϕMAX

u
uRϕχdϕ+ SΓ(u, ϕMAX)− F0. (22)

The form of Eq. 22 is a (nonlinearly) scaled version of Eq. 15. Thus, the hypothesis is proposed:

Hypothesis For an arbitrary load reversal, there is a new distribution of Jenkins elements that
are now stuck that approximately resembles a scaled version of the original distribution of Jenkins
elements.

As a first order approximation of the new distribution, a linear scaling function is used in which
γ is bounded by 0 < γ ≤ 2. This leads to the functional form

FSLIDING =

 F0 +
FS−F0

FS
FIWAN

(
u FS
FS−F0

)
loading

F0 − −FS−F0
−FS

FIWAN

(
−u −FS

−FS−F0

)
reverse loading

(23)

This is rewritten as

FSLIDING = F0 +
FS ∓ F0

FS
FIWAN

(
±u FS

FS ∓ F0

)
. (24)

This relationship is predicate on F0 being a global value such that −FS ≤ F0 ≤ FS . The complete
formulation for the RIPP joint model can now be expressed as

FRIPP = FPIN + FSLIDING. (25)

In the case of δ0 ≥ δP − ϕMAX , this implies that macroslip is not necessary to achieve pinning.
It should be noted, however, that the force F0 should be determined solely from FSLIDING in order
for the model to be consistent.



2.2.2 Comparison With the Discrete Four-Parameter Iwan Model

As a verification of the analytical RIPP joint formulation, the RIPP joint model (25) is compared
to the discretized four-parameter Iwan model of (Segalman 2005) on which it is based in Fig. 5. The
parameters for (Segalman 2005) are chosen based on a 304 Stainless Steel lap joint, such as found
in (Segalman et al. 2009), and are listed in Table 1. The range for the displacement to calculate
the hysteresis curve is specified as ±2.25 mm. Outside of the pinning region, the two curves are
coincident. Near the transition from microslip to macroslip, the discretization of (Segalman 2005)
is evident under high magnification (as the curve appears faceted), but at the scale shown the two
models are in complete agreement.

Property Value

Tangential Stiffness, KT 1.5×107 N/m
Macroslip Force, FS 4 kN
Dissipation Exponent, χ -0.5
Stiffness Ratio, β 0.005
Pinning Stiffness, KP 107 N/m
Pinning Clearance, δP 2 mm

Table 1: Joint Parameters.
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Figure 5: Hysteresis curves for the discretized four-paramter Iwan model of (Segalman 2005) (—),
and the RIPP joint model (– –).



2.3 Extension to the Five-Parameter Iwan Model

The five-parameter Iwan model, championed by Mignolet (Wang and Mignolet 2014), belongs to a
class of split Iwan models in which the response is split into two regimes. The fifth parameter is
defined as the ratio between dynamic µD and static µS friction

θ =
µD
µS

. (26)

The conceptual split in this model is that once a Jenkins element begins to slide, it is governed by
dynamic friction rather than the static friction that governed it in the stick state. The proposed
distribution ρ(ϕ), though, remains the same. Consequently, the Iwan force becomes

FIWAN = θ

∫ u

0
Rϕχ+1dϕ+

∫ ϕMAX

u
uRϕχdϕ+ SΓ(u, ϕMAX). (27)

In the limiting case of θ = 1, this reduces to Eq. 15. As before, the solution follows that

FIWAN = R

((
θ

χ+ 2
− 1

χ+ 1

)
uχ+2 +

ϕχ+1
MAX

χ+ 1
u

)
+ SΓ(u, ϕMAX). (28)

Substituting R and S yields the final form of the Iwan force equation for the five-parameter Iwan
model

FIWAN =
FS(χ+ 1)

ϕχ+2
MAX

(
β + χ+1

χ+2

) (( θ

χ+ 2
− 1

χ+ 1

)
uχ+2 +

ϕχ+1
MAX

χ+ 1
u

)
+

FS

ϕMAX

β

β + χ+1
χ+2

Γ(u, ϕMAX).

(29)
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Figure 6: Hysteresis curves for the RIPP joint model of the four-parameter Iwan model (—), and
of the five-parameter Iwan model with θ = 0.75 (– –).



In the limiting case of u ≥ ϕMAX ,

FIWAN = FS

β + θχ+1
χ+2

β + χ+1
χ+2

, (30)

which is less than FS for θ < 1.
In Fig. 6, the RIPP joint model of the four-parameter Iwan model is compared to the RIPP

joint model of the five-parameter Iwan model with θ = 0.75 and all other parameters the same as
before. Both models exhibit the same tangent stiffness immediately after a load reversal; however
the five-parameter model has a lower peak force due to θ < 1. One unexpected consequence of
this (coupled with the neglecting of the second Masing condition, as mentioned above) is that the
maximum and minimum forces vary from one loading cycle to the next.

2.4 Extension to the Uniform Iwan Distribution

In (Iwan 1966), the Iwan element is formulated with a uniform distribution for ρ (Fig. 4(b)). The
width of the distribution for the present work is taken to be ϕMAX , with a height of 1/ϕMAX.
This distribution leads to the Iwan force

FIWAN =

∫ ϕMAX

0

c

ϕMAX
Γ(u, ϕ)dϕ. (31)
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Figure 7: Hysteresis curves for the RIPP joint model of the four-parameter Iwan model (—), and
of the uniform distribution Iwan model (– –).



The constant c is determined by setting the resulting solution equal to FS , yielding

FIWAN =

{
2FS

ϕMAX

(
u− u2

2ϕMAX

)
u < ϕMAX

FS u ≥ ϕMAX .
(32)

Using the same parameters as from Fig. 5, Fig. 7 compares the hysteresis curves for the RIPP
joint model of the four-parameter Iwan model to that of the uniform distribution Iwan model.
Due to the uniform distribution for ρ(ϕ), the tangent stiffness appears much lower than for the
four-parameter Iwan model. By definition, the macroslip forces and pinning behavior is the same
for the two models though.

3 Summary

The analytical representation of the discretized Iwan model is formulated in this research for several
different friction models: the four-parameter distribution of Segalman, the five-parameter distri-
bution of Mignolet, and the uniform distribution originally used by Iwan. The advantage of an
analytical representation of the Iwan model is a dramatic improvement in computational time
compared to the discretized Iwan model developed in (Segalman 2005). The key hypothesis that
enables the analytical formulation is that on a load reversal, there is a new distribution of sliders
in sticking and slipping states that resembles a scaled version of the original distribution of sliders.
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