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Goals for EOS Upscaling Paradigm
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• Provide quantitative uncertainty estimates to the analyst based upon 
fundamental measurements and calculations used to build the EOS.

• Preserve model providence throughout the process.
• Produce a usable system for generation and use of the EOS.



Our approach to solving this problem

Software Package Output

EOS model library and data Proposal Model
(XML input deck)

Bayesian Inference using Markov 
Chain Monte Carlo

Extensive sampling of the posterior
distribution function (PDF)

EOS Table Building Topologically equivalent tables for 
each sample

PCA  Analysis Mean EOS table + most significant 
perturbations

Hydrocode + Dakota Cumulative Distribution Function 
(CDF) for quantities of interest

Robinson, Berry, Carpenter, Debusschere, Drake, Mattsson, Rider, “Fundamental 
issues in the representation and propagation of uncertain equation of state 
information in shock hydrodynamics”,  Computers and Fluids, 83, (2013) p. 187–193.

3

History and Context:  This work has been supported at Sandia since FY11 and the basic ideas 
have not changed much from the beginning but working out the operational , production 
quality details for multiphase EOS has been very challenging. 



The Process Glue: a Common XML Input Deck
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XML Input Deck is really the “EOS Model”:

<EOSModel> -- Traditional EOS model definition

<EOSData> -- EOS data and uncertainties used for model calibration

<Inference> -- Controls for the inference

<Tabulation> -- Controls for the tabulation

Key Requirement:
 All expert knowledge of EOS construction and proper behavior must be encoded into 

the xml input file and associated software. (Reproducible!)

 This enables later steps to complete since these assume correct EOS behavior.

Aluminum as an example case:

 Wide range Al EOS is built from semi-empirical models, with solid and liquid phases 
including melt/vaporization/sublimation.

 37 total parameters, 25 constrained well enough by data for inferring UQ information.

 16 standard data sources: Isobaric enthalpy and density for solid and liquid, Shock data for solid 
and liquid, Isothermal compression data for solid, QMD calculations of critical point plus melt and 
vaporization data.

 Constraints on physicality: smoothness and convexity change limitations along phase 
boundaries; thermodynamic stability checks across range of interest.



Al EOS Model Parameter Bayesian Inference
for Posterior

• Data sources appear in likelihood with a noise model.
• Use adaptive Markov Chain Monte Carlo (MCMC) scheme to reduce the number of steps.
• Use optimization to find Maximum A Posteriori (MAP) parameters from which to start chain.
• Each posterior evaluation is roughly equivalent to generating an entire EOS table and 

having an expert check it for correct behavior!
• PDF evaluations may be parallelized to enable long chains (~4.5M steps for this EOS, one 

serial evaluation is approximately 2 sec.)
• Bottom Line: The inference process is costly.
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A marginal 
distribution



UTri EOS tables accurately match the model 
 Triangular mesh e.g. (density, energy) with all other thermodynamic 

quantities and their derivatives  tabulated at the mesh nodes.

 Mesh nodes added to reduce error below tolerance with respect to model.

 Accurate EOS tables correctly represent the thermodynamic sound speed as 
being very small in certain mixed phase regions with precise phase jumps.

 Prescribed accuracy means tabulation error may be quantified and/or 
eliminated from uncertainty considerations.
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Phases:

off table 
solid
fluid
melt
vaporization
sublimation



UTri Tabular EOS generation
 Must build N (~10,000) UTri tables which are topologically equivalent

and of similar accuracy:

 Adaptively mesh boundaries:

 Adaptively mesh phase regions:
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Phase region complexities:
 Constrained Delaunay triangulation used as 

transfer function
 Extreme non-convexity in individual phase 

regions
 Computational chain must be parallelized 

for large numbers of tables
 Mesh 0 for Al fluid region

Lesson Learned:  Great care must be taken with non-
convexity issues associated with phase regions.

Must iteratively “fix” the bad triangles



Tabular EOS UQ representation

Principal Component Analysis (PCA) is used 
to look for a tabular representation with 
reduced dimensionality:
• N tables from previous meshing step are 

starting point
• Export a truncated set of mode tables that 

capture most of the details (i.e. eigenspectrum 
energy)

• Multi-precision floating point is necessary due 
to dynamic range of multi-phase tables.  

• Log density and log energy used in PCA 
analysis (also ensures positivity)

• Parallel processing of SVD matrix creation is 
important.

• Random variables ξ are uncorrelated, with 
zero mean and unit standard deviation, but not 
necessarily independent

• PCA solver currently scales as MN2 so this  
limits the practical number of samples.
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Multiphase Tabular Generation and 
Representation: Al UQ enabled table

 Current wide range UQ Al EOS 
with 6 phase regions in the density-
energy table.

 With the current multi-phase model 
there are 37 free parameters.  12
parameters were fixed due to 
insufficient constraining data. The 
MCMC inference samples 25
parameters.

 We took 442 samples from the 
chain. There were 7 modes at 1e-3 
cutoff in the PCA analysis. 

 Accuracy of the tables is set at a 
relative tolerance of 0.01.
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Develop surrogate random variable distributions

 We keep K ordered modes and expect the end user to sample Ku (0 ≤
Ku ≤ K) of them in some way at their discretion.

 The PCA provides a set of samples for the random variables      which 
are zero mean and unit co-variance (Not necessarily independent)

 One can assume independence (not justifiable) OR 

 Model the distribution of these random variables using a kernel density 
estimator and use a Rosenblatt transformation to create a Hermite
PCE representation in which the random variables are independent 
but still preserve ordered dependencies.  
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Rosenblatt transformation needs more samples
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 The Rosenblatt transformation seems to do quite well in the main components. I.e. 
relating the first mode to the first PCE dimension. 

 However, the coupling terms between the different modes are much more 
nonlinear, and seem a bit noisy. Even 15th order PCE does not seem to be sufficient.

 We need more samples, and higher order PCEs (or another mapping approach).

 We are now going for 10,000 sample tables!  With this many tables we are now 
hitting conditions where the meshing near the critical point is failing. This has to do 
with the constraints on the model and possibly some small inconsistencies in how 
the critical point is computed. This is the next major item to be fixed in the 
automatic table generation process.



DAKOTA
optimization, calibration,
sensitivity analysis,
uncertainty quantification

ALEGRA
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It helps users to have a unified, user-friendly and 
regularly tested capability
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Meta-analysis approach for enabling users



2mm diameter Al ball impacting spaced Al plates at 20 
km/s in air background.  Termination at 1.5 s.
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Phase boundary lines of PCA source EOS files are shown along with 
phase space trajectory of tracers (mean table, csmin=0, mfac=4). 



Looking at UQ Results via ALEGRA-DAKOTA
 3 PCE (polynomial chaos expansion) quadrature points and 1 tabular mode with K=3 

and r=6  Rosenblatt transformation. (eval_2 is center quadrature point)

 Shown here are material momentum plots at factors of 1 and 4 times resolution. 

 Sample output time histories are a good way to gain perspective on what might be 
important.

14Low resolution 4 times resolution



Uncertainty analysis using UQ enabled Al EOS
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1) Effects of EOS uncertainty can be comparable or smaller than other model 
uncertainties (e.g. mesh resolution (mfac), numerical or modeling constants (mincs)).

2) Conclusions will depend on where you look!  QOI is fundamental.
3) Availability of the formal UQ material model approach encourages a UQ viewpoint on 

the whole modeling process.
4) UQ enabled table capability tends to drive useful verification and numerical work.

3 PCE (polynomial chaos expansion) quadrature points and 1 tabular mode with 3 
mode (K=3,r=6) Rosenblatt transformation.

Higher resolution 
(diamonds)

mincs = 0 (red)

Lower resolution 
(circles)

2 3 4 Tracer Id



Conclusion
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A multiphase EOS table approach with embedded UQ 
provides the following value:

 More precise EOS surface representation including phase 
boundaries

 Embedded UQ information in EOS
 Usable EOS representation for UQ enabled continuum analysis
 Quantitatively improves clarity for the end user on issues of model 

and model data uncertainty relative to other V&V issues.

What is next:  
• Build a representation based on 10,000 sample tables to provide a 

satisfactory usable representation.
• Implement other closure models (i.e. conductivity) into the same 

consistent framework.
• Eventually, work toward providing UQ enabled strength modeling.


