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Conventional Wisdom: Electron Sheaths Collect a Random
Flux of Electrons

Global Current Balance
Global current balance requires that for

a monotonic electron sheath

AE/Aw <
√

2.3me/Mi [1]

Conventional Wisdom
Understanding of the electron sheath is

from probe theory

• Flux collected by an electron

sheath is the random flux [2,3]

• The electron velocity distribution

function is a truncated Maxwellian

at the sheath edge [4]

• The electron sheath equivalent of

the Bohm criterion is trivially

satisfied =⇒ no need for

presheath [5,6]
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Do electron sheaths collect a random flux of electrons?
Simulations and experiments suggest NO!

• Experiments show that an electron sheath causes density gradients over
large scales (Talk NR3.00003 in this session)

PIC simulation results show that the EVDF can be modeled as a flowing maxwellian

in the electron sheath and presheath. The sheath edge is at z ≈ 0.25 cm.

• The electron VDFs are flow shifted, but where do they get their velocity?

• Reconsider the electron sheath plasma interface =⇒ Consider a
presheath



Fluid Model for the Electron Sheath Plasma Interface

For the purposes of modeling the presheath and sheath edge, consider a
model that:

• Assumes that the plasma is generated at a rate proportional to the
density

dne
dz

= νsne

• Ions are assumed to obey a Boltzmann density

ni = no exp(−eφ/Ti)

• Models electrons with the momentum equation

Ve
dVe
dz

= − e

me
E − Te

mene

dne
dz
− Ve(νR + νs)



Electron Sheath Analog of the Bohm Criterion

• Sheath Criterion: At the sheath edge ρ ≈ 0 and
∣∣dρ/dφ|φ=φ0

∣∣ > 0

• This can be rewritten as ∑
s

qs
dns
dz
≤ 0

• Using the continuity equation (no source)

∑
s

qs
ns
Vs

dVs
dz
≤ 0

• Inserting the momentum equation

Ve ≥
√
Te + Ti
me

≡ veB

• Ve is achieved through a flow shift, but how is such a large flow
generated?



Pressure Drives the Electron Flow

• Quasineutrality implies

dne
dz

= −eniE/Ti

• The momentum equation shows the pressure term is Te/Ti larger
than the electric field term

Ve
dVe
dz

= − e

me
E − Te

mene

(
− eniE

Ti

)
− Veν

• In the electron presheath the electric field causes a density
(pressure) gradient. The acceleration of the flow velocity
is dominated by the pressure gradient. This is significantly
different from the ion presheath.



Presheath

• The quasineutrality condition with the momentum and continuity
equation combine to give a mobility limited flow equation

Ve = −µe
(

1− V 2
e

v2
eB

)
E

where µe = e(1 + Te/Ti)/[me(νR + 2νs)] is the electron mobility

• The quasineutral limit of Poisson’s Eq with Boltzmann ions gives

φ = −Ti
e

ln
(veB
Ve

)
• These two combine to give

dz

dVe
=
v2
eB − V 2

e

νV 2
e

,

which can be solved analytically for constant mean free path
(ν = Ve/l) and constant collision frequency (ν = veB/l) cases



Sheath is Larger in the Presence of Electron Flow

• Combining the momentum and continuity equations and integrating(
Ve
veB

)
− 2 log

(
Ve
veB

)
=

2eφ

Te
+ 1

• For large Ve pressure contributions are negligible

• Within the sheath flux conservation (ne(φ)Ve(φ) = noveB) is
obeyed approximately. Neglecting the ion density, and integrating
Poisson’s equation twice:

z

λDe
= 0.79

(
e∆φ

Te

)3/4

• The numerical constant is typically assumed to be 0.32 =⇒
Sheath is twice as thick as previously thought



Where to Look Next: Simulations

• ALEPH: an electrostatic

particle-in-cell code with direct

simulation Monte Carlo collisions

• Reduced scale compared to

experiments: 5 cm x 7 cm
• AE/Aw ≈ 0.011
• a 0.25 cm electrode was

separated from the grounded

walls by a .2 cm dielectric
• The typical cell size was

0.7λDe

• Timestep of 10−4µs resolved

the electron plasma frequency
• Included ion neutral collisions
• ne ≈ 5× 108cm−3,

P = 1mTorr, Te =≈ 2 eV,

Ti ≈ 0.05 eV
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Model vs PIC

• The flowing Maxwellian picture
correctly predicts the sheath
length

• A constant collision frequency
model accurately predicts the
flow velocity for a presheath
length of ` = 0.3 cm

• The electron flow achieves the
required velocity near the
sheath edge (as predicted by
the sheath thickness )

• The portion of the presheath
immediately before the sheath
is pressure driven

• Residuals in the momentum
equation could possibly be due
to electron scattering off waves
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Summary: Electrons are Accelerated in a Presheath

• The velocity distribution function at the sheath edge of an
electron sheath is a flowing Maxwellian

• The flow moment satisfies an electron sheath analog of the

Bohm criterion Ve ≥
√

Te+Ti
me

• This velocity is achieved in a presheath where the electron
flow is driven by pressure gradients

• Under these conditions the sheath is twice as thick as
previously assumed

• These are in agreement with the PIC simulations
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Presheath Scaling
• In this case the collision frequencies are different, using νs = ngKs the

ratio of presheath length scales is

le
li

=
veB
cs

νi
νe

=

√
mi

me

(
1 +

Ti

Te

)
Ki

Ke
(1)

• For helium using the total momentum scattering cross section for
electrons [7] and the charge exchange and elastic cross sections [8] for
ions

[7] Phelps database, www.lxcat.net, retrieved on september 30, 2015. [8] W. H. Cramer and J. H. Simons,

JChPhys 26, 1272 (1957)



Failure of the Conventional Picture
•

fe(v) =
n̄e

π3/2v̄3
T

e
−v2/v̄2

T Θ(vy − v‖,c) (2)

Here Θ is the Heaviside function, the parameters n̄e and v̄T =

√
2T̄e
m are functions of

location in the sheath, and the truncation velocity throughout the sheath is given by

conservation of energy v‖,c =
√

2e∆Φ
me

, where ∆Φ = Φ− Φplasma

• The square of the electric field can be solved using the density moment of Eq. (1) along

with the Boltzmann relation for the ion density ni = no exp(−eΦ/Ti), and Poisson’s

equation:

ξ
2

= ξ
2
o + 2

[
2

√
φ

π
− 1 + e

φ
erfc(

√
φ)−

Ti

T̄e
+
Ti

T̄e
e
−φT̄e/Ti

]
, (3)

where ξ = eEλDe/T̄e andφ = e∆Φ/T̄e

• |ξo| must be greater than zero

• inconsistent with no E field at sheath

edge
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Instabilities

• The dielectric response for a plasma where the electrons are Maxwellian
with flow Ve and stationary Maxwellian ions is

ε(k, ω) = 1−
ω2
pe

k2v2Te
Z′(ξe)−

ω2
pi

k2v2Ti
Z′(ξi) (4)

where ξe = ω−k·Ve
kvTe

and ξi =
ω

kvTi


