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Progress HiD Complexity Inverse Arch

High Dimensionality and UQ

@ Dimensionality of UQ problem is the number of degrees of
freedom required to represent uncertain model inputs
and/or parameters

@ Number of parameters
e Karhunen-Loéve expansion (KLE) for random fields

@ Hi-D challenge in UQ: high-dimensional integration

@ We discuss advances in
e Local KLE
@ Reduced KLE dimensionality for random field in subdomains
e Basis adaptation
@ Isometric transformations to low-dimensional subspaces
e Low rank sparse tensors
@ Combinations of low-D integrals
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Progress HiD Complexity Inverse Arch

Dimensionality Reduction via Local KLE
SNL, Purdue, ETH, U.Utah Karhunen Loéve Expansion

We wish to solve PDEs such as
— V- (a(z,w)Vu(z,w)) = f(x), x €D,
u=g(x) x € 0D.

Parameterize the random field a(z,w) using KLE
d
a(r,w) ~ a(x,Z) = pq(x) + Z VA (2) Zs (w).
1=1

Divide D into a set of non-overlapping subdomains D), i =1,..., K

The original problem on the full domain can be solved in each
subdomain with proper coupling conditions at the interfaces.

The collection of the subdomain solutions is equivalent to that of the
original problem in the global domain, i.e.,

K
u(r,w) = Z u (2, )y (),
i=1
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Progress HiD Complexity Inverse Arch

Local KLE — Eigenstructure

We represent the restriction of the
input process a(x,w) in the
subdomain D as

Local KLE

D (z,w)
. . d(,L) . . .
oD (2, w) 2 ul (@) + 30 (AP (@) 2§ (w)
j=1

The decay rate of the eigenvalues
depends critically on the relative
correlation length.

—— Global Eigenvalues

—o6— Local Eigenvalues on 8 x 8 subdomains
—=— Local Eigenvalues on 16 x 16 subdomains
—&— Local Eigenvalues on 32 x 32 subdomains

The rel. correl. length on each subdomain :
is larger than that on the full domain.

@ Local KL eigenvalues decay ol bl

faster MERES

107 \a’&

@ a9 (z,w) parameterized w/ a <o
smaller number of random N

variables, thus d) < d , |
Decay of eigenvalue magnitudes
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Progress HiD Complexity Inverse Arch

Local KLE — Algorithm

Off-line phase

@ In parallel Build (independently)
PCE surrogate on each
subdomain D

@ For linear PDE each random
realization requires n ;.5 pc) + 1

On-line phase

@ Generate a realization of the

radom field on the global domain . =
@ Project global field onto each ol B %Z
subdomain to obtain parameters ol
ZW of local KLE oV (z, Z) ol
@ Evaluate local PCE at local 1070
random parameters Z (%) 107}
@ Generate solution on each o
subdomain by solving global Rt 10! I 0 10"
interface problem Error vs. # sub-domain solves
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Progress HiD Complexity Inverse Arch

Basis Adaptation to Quantities of Interest — USC

@ Qols in hi-D systems are frequently low-dimensional

@ We developed a procedure for basis discovery/adaptation

e permits efficient and accurate approximation within a
low-dimensional subspace in which the Qol is concentrated

@ Using Gaussian parameterization of the uncertain inputs,

e Isometry is first applied to induce a desired structure in the
representation of the Qol

@ 1°'-order terms in one dimension
e diag. quadratic form w/ 2"¢-order terms; match target CDF

@ Reduction is then achieved through projection of the
resulting representation

@ Reduced model captures:

e the probabilistic content of the Qol
e its functional dependence on the original parameterization
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Progress HiD Complexity Inverse Arch

Basis Adaptation Demo — Convective Heat Transfer

@ Consider a 2D domain with flow past random heated
inclusions, described in high stochastic dimension

ThermCond

53.183899
150

125
1100
=75
E50
33.2479897

Flow past thermal inclusions. The rods have spatially varying thermal conductivities.

@ An upscaled effective stochastic porous medium is
computed. The Qol at every spatial point is the
homogenized permeability and conductivity.

e permeability and conductivity are statistically dependent.
@ can be evaluated as functions of the fine scale randomness.
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Progress HiD Complexity Inverse Arch

Basis Adaptation to Quantities of Interest — Demo

x10°
[~—t-diops | o ~—&_d10-p3
3005 —-1-KL-d1-p3 ol -o-n-KL-d1-p3
—=-n-KL-d2-p3 —=n-KL-d2-p3
250y n-KL-d3-p3 T n-KL-d3-p3
200 6 ~*n-KL-d4-p3
8—150— y, :g-i:
100f , al
sol a8 oL
0.024 0.025 0.026 _ 0.027 , 0.02 9 0.03 0.031 0.03 7 x x — - -e
Permeabl?lty q(ﬂ %gf ’ o 2%)hermaslogonduc€c'?\?ity (20?00 . .
Upscaled stochastic permeability Upscaled stochastic conductivity
verified at one spatial point. verified at the same spatial point.

@ Basis adaptation makes it feasible to evaluate upscaled
properties at each spatial location as function of fine scale
uncertainty.

@ Solve a number of low-stochastic-dimension UQ problems
instead of one high-D problem
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Progress HiD Complexity Inverse Arch

Fast Evaluation of MP Integrals (FEMPI) — Quantum Chemistry
SNL, UIUC ASCR-BES Partnership

Computational Challenge:
@ Accurate computational prediction of key molecular
properties requires ab initio all-electron theories.
@ Initial focus on vibrational and electronic structure integrals
@ Integrands involve series of tensor contractions and dense
matrix manipulations — Nonscalable!
@ Better scaling achieved via enhancements of Monte-Carlo.

QUEST:

Improve integration efficiency and scalability
@ Advanced hi-D function representations used in UQ
@ Low rank sparse tensor representations

@ Replace hi-D integral with a number of low-D integrals
@ Evaluate using sparse quadrature
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Progress HiD Complexity Inverse Arch

Vibrational Energy integral — Water Molecule — XVH2

Main approach: low-rank approximation of integrand:
R m
f@) =Y [[ 7@, @eca=(a,... .20, ULidr==z
1 =1 k=1

High-dimensional integral is estimated via several low-d integrals
Q

R m R m
IR DY | AT S) | D SITACS
= &, i=1 k=1

i=1 k=1 q=1
E.g., second-order correction to zero-point energy (6D):
EP = /e‘”“’TszAV(a:)H(a:,w')e_Hme/'|2AV(m/)dazda}/

Ongoing work:

@ Singular integrals from MP2 theory.
Exponential sum apprx + low-rank.

,_.
S

—
o
[

t @ Automatic detection of groupings xy
\ Low-Rank HG Quad. and sparsity within them.

~—— Monte-Carlo

Random-Walk MC @ Scale up to larger systems.

10*
Sample Size, N

Relative error in EO(Z)

H
o
i/
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Progress HID Complexity Inverse Arch

Model Complexity

@ Large-scale models require substantial computational
resources for solving the original deterministic problem

@ This can lead to infeasible costs for either intrusive or
non-intrusive/sampling-based UQ methods

@ We discuss advances in
e Multifidelity UQ methods
@ Use of predictions from models at different levels of fidelity
e Hierarchical calibration and model discrepancy
@ Use of model bias and discrepancy in statistical calibration
e Adaptive sparse quadrature
@ Selection of computational samples for hi-D integration

Najm QUEST



Progress HID Complexity Inverse Arch

Multiple Model Forms in UQ — SNL

@ Given a clear hierarchy of fidelity:
e Multifidelity forward UQ:

@ UQ for hi-fi model leveraging
cheaper low-fi models

e Multifidelity inference:
@ Estimation of low-fi model
discrepancies
@ Given a non-hierarchical ensemble
of credible models:
e Model probability — prior info
e Bayesian model selection
e Model averaging
@ Both hierarchy and peers

e Leverage model selection and
multifidelity inference

Potential Flow model

Reynolds

Averaged Navier- quation m ss RAN
Stokes (RANS) RANS model W
—— .

Large Eddy
Simulation (LES)

AN[ap1Y] [PPOJAl SursedIdU]

Potential Flow

Hybrid RANS/LES
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Progress HID Complexity Inverse Arch

Multifidelity UQ Using Stochastic Expansions

. . . . . = Nhi/Nlo = 6
@ High-fidelity simulations 10°g Y [—e—Csmut
i ng- > i —&— CS singl
can be prohibitive for use |2 1o’} —o— 5 mult
in UQ UE) 10_2; —e—fA(CB:smgle
@ Low fidelity “design” codes |2 10
often exist that are B 107¢
. . . o
predictive of basic trends 0 = - — )
10 10 10 10 10
Equivalent Number of High-Fidelity Model Evaluations

@ Leverage LF codes w/ HF UQ

e Global approximations of model discrepancy

e Adaptive sparse grids:
@ Gen. sparse grids for LF & discrepancy levels
@ Greedy selection from grids: max AQol/ACost
@ Refine discrepancy where LF is less predictive

e Compressed sensing:
@ Target sparsity within the model discrepancy

Najm QUEST



Progress HID Complexity Inverse Arch

Hierarchical Calibration & Model Discrepancy — LANL

Hierarchical calibration addresses the relationship between
model discrepancy and parameter bias

@ Given different calibration examples with different bias
yi = n(x,0 + b;) + 0;(x, 0 + b;) + ¢

@ e.g. climate model bias different at high vs. low latitudes

Employ a hierarchical model, reconciling the evidence of bias
@ Inferred discrepancy effects are better fit to problems
@ Diagn. of relationship bet. parameter bias & discrepancy
@ Additional source of uncertainty identifiable in UQ analyses

@ Capability has been in GPMSA, developing the clarifying
examples and framework of diagnostics for user adoption

Najm QUEST




Progress HID Complexity Inverse Arch

Hierarchical Calibration Demo — Southern Ocean

@ |dealized southern ocean model
with two parameters

@ Calibration w.r.t. higher fidelity
Parallel Ocean Program (POP)
computations

o LANL+NCAR

LONGITUDE

Potential temperature (deg C)

@ A number of metrics

e Temperature, salinity, density
vs. depth
e Vertical heat & salt transport

. i _ L L L
0 0.5 1 1.5 2 25 3 35 4 4.5 5

@ Hierarchical distribution
combines information from
different metrics
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Progress HID Complexity Inverse Arch

Adaptive Sparse Quadrature (ASQ) — Duke/MIT

Non-Intrusive Pseudospecitral projection

@ Sparse tensorization of 1-D quadrature formulae

@ Reduce number of simulations, improve accuracy
Adapitivity:

@ Progressive construction with cost control

@ Robust error indicator to guide adaptation

@ Nested hierarchical approximation

@ Sensitivity-based directional refinement

Application to forward UQ in Gulf of Mexico modeling
@ Challenges with failed computational samples
e both ASQ & MC-LHS
@ Use L2-misfit constrained L1-norm minimization (BPDN)
e Estimate Qols: sparse learning from available samples
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Progress HID Complexity Inverse Arch

UQ for Circulation in Gulf of Mexico

Impact of uncertainty in: ~Eigenvalue decay — SSH
@ Initial conditions (4 dims)
@ Wind stress (4-dims)

e Time-dependent EOFs

on circulation in Gulf of Mexico oo b—

(o)}
T

Latitude
N N
Ny

Latitude
N N
N

-95 -90 -85 -80
Longitude

Longitude

Mean (left) and STD (right) of sea surface height (SSH) at day 30
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Progress HiD Complexity Inverse Arch

Statistical Inverse Problems

@ Statistical inversion is used for data-based estimation of
model parameters/inputs with quantified uncertainty

@ Inverse problems are hard!
e Typically ill-posed; ill-conditioned
e High-dimensionality
e Forward model complexity

@ We discuss select recent advances in Bayesian inversion
e Optimal experimental design (OED)
@ Identify optimal sensor placement for geophysical inversion
e Surrogates & Markov chain Monte Carlo methods

@ Adaptive local surrogates
@ Parallel MCMC methods

SNL Najm QUEST




Progress HiD Complexity Inverse Arch

Scalable algorithms for optimal exptl design (OED)

Large-scale Bayesian inverse problems Ut

Context: Inference of parameter fields w/ quantified uncertainty

@ OED asks the “outer loop” question:

@ How to choose sensor locations so that the inferred
parameter field uncertainty is minimized?

@ In its full generality, this is intractable:
e Inner problem alone is an infinite dimensional Bayesian
inverse problem
@ Approach:

e Represent covariance by inverse Hessian of negative log
posterior (Laplace approximation)

e Invoke fast randomized trace estimators

e Employ techniques from PDE-constrained optimization

Result: OED method whose cost—-measured in forward PDE
solves—scales independent of parameter/sensor dimension

SNL Najm QUEST




Progress HiD Complexity Inverse Arch

Formulation of OED for Bayesian inversion

Hessian/PDE-constrained optimization problem

@ Seek an experimental design w (e.g., sensor locations) to
collect data d to minimize average posterior variance

@ OED problem:

e Minimize average variance given by trace of inverse
Hessian, evaluated at maximum a posteriori solution of
inverse problem m*:

min ]Ed{trace [(H! (m* (w), w; d)] }
@ Sample averaging to approximate expectation over d

@ Randomized trace estimation of 2!

SNL Najm QUEST




Progress HiD Complexity Inverse Arch

A-optimal sensor placement for inferring

log-permeability in subsurface flow (SPE model)

Posterior variance with various sensor placements

Optrmal Sub- optimal Sub-optimal

—— T —
7 .
‘ C
.
;

Inference with the optimal design (parameter dim ~ 10%)

True parameter Posterior mean  Posterior sample

- -~
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Progress HiD Complexity Inverse Arch

Asymptotically Exact MCMC

Earlier times Later times

@ Inference in computationally intensive models is essentially
intractable without surrogates

@ Key questions: Where should a surrogate be accurate? How to
construct it? Should it depend on the data? How does error in
the surrogate corrupt inference?

@ Our approach: incremental and asymptotically exact
construction of posterior-focused model approximations
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Progress HiD Complexity Inverse Arch

Asymptotically Exact MCMC — Surrogates

@ Framework includes several different local approximation
schemes: linear, quadratic,

@ Accuracy versus cost (below); orders of magnitude speedups

10°

True model
Linear
Quadratic
GP

1

10

Relative covariance error

2

10™

10° 10*
Total number of evaluations

Recent developments:

2 105

10

@ Surrogates coupled with more sophisticated (gradient and
Hessian-exploiting) MCMC proposals

@ Parallel MCMC chains, sharing a common pool of model
evaluations
SNL Najm QUEST




Progress HiD Complexity Inverse Arch

Parallel MCMC with Surrogates

@ Build a common pool of model runs across parallel workers

@ Approximation guaranteed to target the correct distribution; use
effective sample size (ESS) to measure efficiency

@ ESS per CPU-sec usually constant with simple parallel MCMC
@ Instead, it increases dramatically: chains “borrow strength”

@ Cost of a computationally intensive contaminant transport
inverse problem reduced from 200 hours to 30 minutes

10°

True model
AM Quadratic
AM Quadratic
AM Quadratic
® ] AM Quadratic )

AM Quadratic (20)
® MMALA Quadratic (1)
MMALA Quadratic (10)

=
o
1

—

']

(1)
(2)
(5)
(10

(ESS per CPU)/second
=
o
8

,_.
o
&
a0

,_.
o
i

10° 10* 102 103
Run time (hours)

»—-
o
L
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Architecture Awareness

@ UQ on massively-parallel heterogeneous architectures

e Scalability — Load balancing, communication, synchrony
e MPI, OpenMP, GPU/...

e Memory utilization

e Parallel I/O — data
(*)

Fault tolerance and resilience

@ Consequences:
e UQ problem formulation, algorithms, software

@ We discuss our practice & vision in architecture-aware UQ

e UQ libraries
e Non-intrusive/sampling-based UQ
e Intrusive stochastic-Galerkin UQ
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Architecture Awareness — Current Practice — SNL

@ We lower the bar for UQ on advanced architectures
e Large compute ensembles on leadership-class machines
@ Multilevel optimized partitioning & scheduling
e Relax regmt to converge all simulations for all partitions
@ Fault tolerance, failure mitigation & restart

@ We ease UQ adoption via usability features/enhancements
e Library embedding of UQ services in applications

@ Embed in familiar apps; eliminate custom interface code
o Simplify parallel execution; e.g. FELIX/Dakota (pisceEs)

e Rapid prototyping and integration with scripting languages

@ We invest in emerging capabilities, directly or leveraged
e Advanced fault tolerance (ASCR UQ)
e Advanced UQ workflows (QUEST/SUPER, MUQ DAGs)
e Centralized accessibility (e.g., Github) to maximize
community adoption and involvement
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Forward Vision — Non-intrusive UQ
SNL

@ Leverage emerging runtime systems for task-based
parallelism management within QUEST tools

@ e.g. Legion, Charm++, HPX, Uintah
e Migrate from imperative hybrid-MPI scheduling to
declarative parallelism models

@ Aggregate UQ and simulation workflow tasks within the
same runtime system, exposing new opportunities for
streamlining, asynchrony, etc.

e Move toward loop reordering / embedded ensembles
e Mappers control task delegation to hybrid hardware

— CPU, GPU, MIC
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Forward Vision — Intrusive UQ
SNL

@ Identify application partners for intrusive UQ methods

e Additional dedicated investments for selected applications
e Stochastic Galerkin methods
e Hybrid Galerkin-Collocation methods

@ Different levels and types of intrusion, in terms of

e Software (library linking)

e Coupling strategy (multiphysics/multiscale UQ)

e Parallel task scheduling (aggregation of runtime workflows)
e The actual simulation/solver

@ Available intrusive and linear algebra libraries in Trilinos

e Stokhos: stochastic Galerkin systems
e Tpetra: serial and distributed parallel linear algebra
e Kokkos: manycore performance portability

SNL Najm QUEST




Progress HiD Complexity Inverse Arch

Sparse Linear Stochastic Galerkin Solvers — SNL

Explore algorithmic constructions that show potential to keep
future hierarchy of HPC cores busy

@ Additive-multigrid/multilevel (physical/stochastic)

e Phys. mesh coarse/fine on communication/compute cores
@ Decoupled stochastic prolongation/restriction operators
e Higher-order stoch. levels = compute intensive cores

@ Recursive hierarchical matrix preconditioned inversion

e Break up matrix hierarchically into smaller nested blocks
e Each of which can be solved more easily and independently

@ Hybrid stochastic Galerkin/collocation approaches

e Coupled intrusive/non-intrusive strategy

e Target optimal use of computational architecture

e Tradeoff solution samples of deterministic problem for
reduced-size/better-conditioned stochastic Galerkin system
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Closure
Closure

@ Presented select highlights of recent progress

e High dimensionality
e Model complexity
e Statistical inversion
e Architecture

@ We continue to

e Refine and robustify QUEST algorithms and software to
address UQ challenges in large-scale problems
e Address UQ needs of SciDAC application partnerships

quest-scidac.org
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