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With Jacobi optimization smoothing it is common to get inverted elements following 
one or two iterations that are normally resolved with additional iterations.  However 
there are cases that can oscillate and not allow for improvement.   Smooth damping is 
employed to slow convergence avoiding inversions.

Mesh Optimization is critical to grid based hex meshing tools such as Sandia’s Sculpt 
tool.  Work was accomplished this year (FY15) to improve overall success of Sculpt by 
dramatically increasing minimum mesh quality through a new procedure for parallel 
smoothing.  It incorporates Laplacian and Optimization smoothing but adds damping 
and parallel coloring to achieve improved results.

Mesh Optimization in Sculpt

Sculpt Meshing Procedure

Parallel Meshing in Sculpt
An overlay Cartesian grid is distributed among processors and a hex mesh is 
independently generated on each processor for a subset of the Cartesian domain.  
MPI is used for communication between neighboring processors to ensure continuity 
across processor boundaries.  The same mesh will be generated regardless of the 
number of processors

Parallel Smoothing
Ghosted elements and nodes are established and used to facilitate efficient MPI 
communication following each Jacobi iteration. 
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Parallel Coloring
The coloring algorithm will attempt to isolate kernels of hexes surrounding a node 
so that kernels do not overlap.  Selection of kernels is ordered based upon 
minimum scaled Jacobian at the node.  For each Jacobi iteration only non-
overlapping kernels of hexes are used. 
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A combined Laplacian and Optimization smoothing procedure is used.  Following a 
fixed number of Laplacian iterations, Optimization is run until a minimum Scaled 
Jacobian is achieved.

Node Optimization

Scaled Jacobian Definition

Numerical Gradient

The standard scaled Jacobian
definition is modified to account 
for a target element size

Procedure repeated until minimum   
exceeds 0.2 or maximum iterations 
reached.
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Smoothing Strategies
For serial applications, where order of operations is normally not important, a 
Gauss-Siedel approach is used.  In order to maintain parallel consistency we use a 
Jacobi-based smoothing procedure.
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For parallel, master nodes must communicate with their ghosted (slave) nodes the 
minimum scaled Jacobian of their surrounding hexes. This ensures each processor 
consistently selects the same hex kernels for smoothing.

MPI communication of min Scaled Jacobian at node between neighbor processors

Examples of Test Suite Models: 52 Single Part CAD Models

Sculpt Smoothing Comparison
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Total Nodes: 516,806
Total Time: 186 s

8 Processors
Macbook Air 
1.7 GHz Dual Core
8 GB RAM

Percent of 52 CAD models whose 
minimum scaled Jacobian fell within 
range:
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Default iterations Applied to which elements

All Hexes

Hexes with SJ < 0.6

Hexes with SJ < 0.2

Sculpt Smoothing Procedure

Sculpt’s nightly test sweet includes a set of 52 single part CAD models.  These 
were used in a comparison study of before and after new smoothing methods 
were employed.
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