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Mesh Optimization in Sculpt Parallel Meshing in Sculpt Damping

Mesh Optimization is critical to grid based hex meshing tools such as Sandia’s Sculpt An overlay Cartesian grid is distributed among processors and a hex mesh is With Jacobi optimization smoothing it is common to get inverted elements following
tool. Work was accomplished this year (FY15) to improve overall success of Sculpt by independently generated on each processor for a subset of the Cartesian domain. one or two iterations that are normally resolved with additional iterations. However
dramatically increasing minimum mesh quality through a new procedure for parallel MPI is used for communication between neighboring processors to ensure continuity there are cases that can oscillate and not allow for improvement. Smooth damping is
smoothing. It incorporates Laplacian and Optimization smoothing but adds damping across processor boundaries. The same mesh will be generated regardless of the employed to slow convergence avoiding inversions.

and parallel coloring to achieve improved results. number of processors
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Node Optimization

A combined Laplacian and Optimization smoothing procedure is used. Following a
fixed number of Laplacian iterations, Optimization is run until a minimum Scaled
Jacobian is achieved.
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Scaled Jacobian Definition

Compute minimum scaled Jacobian, ,]S),
of nodep in all attached hexes P
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Numerical Gradient

The standard scaled Jacobian
definition is modified to account
for a target element size

St —Target element size

N A AT
(JS)I = Sfdet {E,,EJE]C}
Find improved (JS) by searching
along vector(VJ )p

*/p €3<St, St

Sp=4 " _ >
es > S‘t, es J

Procedure repeated until minimum JS

exceeds 0.2 or maximum iterations
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reached.

For parallel, master nodes must communicate with their ghosted (slave) nodes the

Smoothing Strategies

For serial applications, where order of operations is normally not important, a
Gauss-Siedel approach is used. In order to maintain parallel consistency we use a
Jacobi-based smoothing procedure.

consistently selects the same hex kernels for smoothing.
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Sculpt Smoothing Comparison Minimum Mesh Quality

Sculpt’s nightly test sweet includes a set of 52 single part CAD models. These
were used in a comparison study of before and after new smoothing methods
were employed.

‘ G -

Examples of Test Suite Models: 52 Single Part CAD Models

Percent of 52 CAD models whose
minimum scaled Jacobian fell within
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W 0.1<min SJ<0.2
B minSJ>0.2
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Sculpt Smoothing Procedure
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