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Meet Eric the Experimentalist
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Eric

• Eric made a qubit.  Now, Eric wants to show his program 
manager how good it is, and get more well-deserved funding.



Eric does Randomized Benchmarking

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly 
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.

My RB error rate is 10-4!   
We’ve made a great qubit.

Well done!  But our theorists say 
the diamond norm error is important.  

What is it for your qubit?

Er…

Also, we’d like to see you reduce 
that error rate by a factor of 3x.  Which 

kinds of errors can you eliminate?

Er…



Eric does Randomized Benchmarking

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly 
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.

My RB error rate is 10-4!   
We’ve made a great qubit.

Er…

Also, we’d like to see you reduce 
that error rate by a factor of 3x.  Which 

kinds of errors can you eliminate?

Er…

• RB didn’t tell Eric very much about the kinds of error in his 
qubit.  He needs more detailed debugging information!

Well done!  But our theorists say 
the diamond norm error is important.  

What is it for your qubit?



Eric does Process Tomography

• But when Eric does process tomography 
at different times, his gate fidelities 
fluctuate wildly!  

• But at least they’re high.  
Like… 105%… 😕. 

• Eric reads Merkel et al (PRA 2013) and 
learns that process tomography is 
unreliable unless he has perfect gates.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly 
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.
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Supplementary Figure 4 | Calibrated vs uncalibrated state tomography: a,
Data taken to calibrate the tomography shows ripples in the length of the Bloch
vector if we assume that the tomography projects the quantum state on to
Cartesian axes (inset). b-c, The paths around the Bloch sphere for the different
evolutions that are used for tomography calibration. If the tomography is
assumed to project on to the Cartesian axes there are points that lay outside
the Bloch sphere, and the pure |Si states are not at the north pole, which is
indicative of flawed state tomography. d, The ripples in the length of the bloch
vector are diminished (compared to panel a) if the axes deduced from state
tomography (inset) are used. e-f, The paths around the Bloch sphere for the
different evolutions that are used for state tomography. When the correct axes
are used, all the points lie inside the Bloch sphere and the pure |Si are at the
north pole.

many different evolutions around the Bloch sphere by evolving
from many different starting points at many values of ≤ (Suppl.
Fig. 4b,c,e,f). We determine the axes on to which we project
our state by finding the axes that minimize the amplitude of
the ripples in the length of the Bloch vectors (Suppl. Fig. 4d).
Based on our measurement procedure, we define the S-T 0 axis
to lie along the z-axis. We allow the y-axis to lie anywhere
on the Bloch sphere because a rotation around the x-axis can
suffer from over/under rotation as well as adiabaticity issues
with switching J on and off instantly. We constrain the x-axis
to lie in the x-z-plane because the only expected error is due
to adiabaticity turning J on and off. The typical tomographic
axes are shown in Suppl. Fig. 4d, and the signs of the errors are
consistent with their origins. The variation from calibration to
calibration is ª1% on the axis lengths and angles.
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Supplementary Figure 5 | Single-qubit rotations: a, The Pauli set for ø=100ns
as measured is complicated by single qubit rotations. b, Numerically rotating
each qubit around the S-T0-axis simplifies presentation and analysis. c, The
expected state for ø=100ns. d, The single qubit rotation angles for both qubits
as a function of ø are smooth and monotonic functions. e-f The entire Pauli set
as a function of ø for the raw and rotated data equation(1). The the y-axes of
adjacent elements in the Pauli set are offset by 1.

Determining Single Qubit Rotations
During the entangling sequence the two qubits rotate very

rapidly around the S-T0 axis compared to the speed of the
CPHASE gate (J1/2º ª J2/2º ª 300M H z, J12/2º ª 1M H z). These
single qubit rotations are not perfectly canceled out by the º-
pulses in the dynamically decoupled sequence due to pulse
distortions, consistent with pulse rise time effects at short times
and capacitive coupling to RC-filtered DC gates at long times.
Moreover, the angles by which the qubits are rotated change
as a function of the evolution time ø. In order to undo these
rotations, we perform a least-square fit of the data to the ex-
pected form of the Pauli set (see equation(1) below), restricting
the rotation to be around the S-T0 axis because J1, J2 ¿ ¢Bz .
These angles are shown in Fig. 3b, and exhibit a smooth,
monotonic behavior. The angles increase quickly for small ø,
which is consistent with pulse rise time effects, and display
linear behavior for long ø, which is consistent with long time RC
filtering. For comparison, we plot the entire Pauli set for both
the rotated and unrotated data in Suppl. Fig. 5 c-d.
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Data taken to calibrate the tomography shows ripples in the length of the Bloch
vector if we assume that the tomography projects the quantum state on to
Cartesian axes (inset). b-c, The paths around the Bloch sphere for the different
evolutions that are used for tomography calibration. If the tomography is
assumed to project on to the Cartesian axes there are points that lay outside
the Bloch sphere, and the pure |Si states are not at the north pole, which is
indicative of flawed state tomography. d, The ripples in the length of the bloch
vector are diminished (compared to panel a) if the axes deduced from state
tomography (inset) are used. e-f, The paths around the Bloch sphere for the
different evolutions that are used for state tomography. When the correct axes
are used, all the points lie inside the Bloch sphere and the pure |Si are at the
north pole.

many different evolutions around the Bloch sphere by evolving
from many different starting points at many values of ≤ (Suppl.
Fig. 4b,c,e,f). We determine the axes on to which we project
our state by finding the axes that minimize the amplitude of
the ripples in the length of the Bloch vectors (Suppl. Fig. 4d).
Based on our measurement procedure, we define the S-T 0 axis
to lie along the z-axis. We allow the y-axis to lie anywhere
on the Bloch sphere because a rotation around the x-axis can
suffer from over/under rotation as well as adiabaticity issues
with switching J on and off instantly. We constrain the x-axis
to lie in the x-z-plane because the only expected error is due
to adiabaticity turning J on and off. The typical tomographic
axes are shown in Suppl. Fig. 4d, and the signs of the errors are
consistent with their origins. The variation from calibration to
calibration is ª1% on the axis lengths and angles.
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Supplementary Figure 5 | Single-qubit rotations: a, The Pauli set for ø=100ns
as measured is complicated by single qubit rotations. b, Numerically rotating
each qubit around the S-T0-axis simplifies presentation and analysis. c, The
expected state for ø=100ns. d, The single qubit rotation angles for both qubits
as a function of ø are smooth and monotonic functions. e-f The entire Pauli set
as a function of ø for the raw and rotated data equation(1). The the y-axes of
adjacent elements in the Pauli set are offset by 1.

Determining Single Qubit Rotations
During the entangling sequence the two qubits rotate very

rapidly around the S-T0 axis compared to the speed of the
CPHASE gate (J1/2º ª J2/2º ª 300M H z, J12/2º ª 1M H z). These
single qubit rotations are not perfectly canceled out by the º-
pulses in the dynamically decoupled sequence due to pulse
distortions, consistent with pulse rise time effects at short times
and capacitive coupling to RC-filtered DC gates at long times.
Moreover, the angles by which the qubits are rotated change
as a function of the evolution time ø. In order to undo these
rotations, we perform a least-square fit of the data to the ex-
pected form of the Pauli set (see equation(1) below), restricting
the rotation to be around the S-T0 axis because J1, J2 ¿ ¢Bz .
These angles are shown in Fig. 3b, and exhibit a smooth,
monotonic behavior. The angles increase quickly for small ø,
which is consistent with pulse rise time effects, and display
linear behavior for long ø, which is consistent with long time RC
filtering. For comparison, we plot the entire Pauli set for both
the rotated and unrotated data in Suppl. Fig. 5 c-d.
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Merkel Plot

3

integrals are often extremely hard to calculate, especially
since there is no uniquely good measure over quantum
channels dr. A much simpler technique is to report the
maximum of the likelihood function. If the global max-
imum lies inside the space of physical maps then it is
simply the r

bare

from Eq. (8), and if most of the support
of L(m0|r) is also physical then the Bayesian estimate
and the maximum likelihood estimate will be be approx-
imately the same. In the case where the bare estimate is
unphysical maximizing L(m0|r) over the space of physi-
cal r is a semidefinte program [24] and can be solved for
small instances easily with optimizers such as SeDuMi
[25]. This is because the likelihood function is of the
form of a 2-norm distance between vectors m0 and S0T r
and the constraints are that the Choi matrix is positive
semidefinite. We use the approach outlined in the supple-
ment of [1] which is an extension of the state tomography
techniques in [26, 27] as well as [12].

While there are issues regarding maximum likelihood
estimation for QPT, there is a deeper problem that af-
fects any reconstruction method that utilizes the like-
lihood function. To calculate the likelihood function we
require sj which in turn implies we have a complete char-
acterization of ⇢j and Mj . In any experimental imple-
mentation of tomography there will be SPAM errors and
in many situations the magnitude of the SPAM errors is
the same order as the size of the gate errors we are trying
to estimate. If the SPAM errors are stochastic, then the
situation is reducible to the previous case by e↵ectively
treating the SPAM errors as additional sampling noise
on the measurement. When the errors are systematic
we may write |⇢jii ! REj |⇢ji, |Mjii ! RFj |Mji and
therefore sj ! REj ⌦RT

Fj
sj .

For the remainder of this manuscript we will consider
a slightly less general form of tomography that is ap-
plicable to many experimental implementations: a fixed
initial state |⇢

0

ii and measurement operator hhM
0

| and
a library of gates G = {R

1

,R
2

, . . .RN}. In this picture
we describe experiments according to the convention

mij = hhM
0

|RjR⇤

Ri|⇢0ii = hhMj |R⇤

|⇢iii. (11)

Systematic errors are described G(err) =
{RE1R1

,RE2R2

, . . .RENRN}, under the assump-
tion that the initial gate-set was composed of unitary
maps.

In Fig. 1 we simulate the e↵ects of both systematic
and stochastic measurement noise in the case where the
measured gate is a perfect identity gate. This test is a
good primitive for both theory and experiment since the
identity is the one gate that should be perfectly imple-
mentable in any experiment by immediately performing
measurement after state preparation (i.e. doing nothing
for no time). In this figure the systematic SPAM error
comes from a depolarizing channel of varying strengths
E
dep

. We do not impose the CPTP constraint on the out-
come and therefore measure the di↵erence between the
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B

FIG. 1. (color online) Reconstructing a perfect identity gate
with imperfect tomography due to depolarizing errors on the
SPAM gates as well as Gaussian random noise on the measure-
ment outcomes. We plot the diamond norm distance between
the bare estimate Eq. (8) and the identity versus the noise
power. In A) we vary the strength of the depolarizing error
for a fixed gate-set with four elements corresponding to map-
ping the ground state to the four corners of a tetrahedron.
The experimental noise power is obtained from [1]. In B) we
fix the depolarizing strength at Edep = 10�3and vary the set
of gates used for SPAM over four sets of gates of di↵ering
order.

reconstructed gate and the identity by a diamond norm
distance [28], which is calculated through the semidefi-
nite programming technique in [29]. In this simulation
the gates map the |0i state to the four points on a tetra-
hedron which is essentially the most symmetric, minimal
set of gates. We observe that for large noise powers the
error in the estimate decreases exponentially with respect
to decreasing noise power (and thus increasing repeti-
tions) until it hits a floor determined by the systematic
error in the interrogating gates.
In Fig. 1B we look at a similar plot for di↵erent li-

braries of unitary SPAM gates. The first two gate-sets
are defined in terms of the set of states to which they
map the qubit ground state |0i: a tetrahedron or the six
cardinal directions on the Bloch sphere. The second two



Eric needs Gate-Set Tomography

• No reliance on pre-calibrated 
operations (gates, POVMs, etc). 

• Unconditional reliability (except 
due to non-Markovian effects). 

• Resource complexity (# of exp’ts, 
clicks, etc) is only slightly higher 
than that of process tomography 
on all gates in the gateset. 

• Estimates the RB number as 
accurately as RB itself. 

• Estimates all gate parameters to 
high accuracy (including derived 
quantities, e.g. ♢-norm) 

• Usually detects non-Markovian 
noise/errors/effects. 

• Gateset estimate & derived 
quantities can be equipped with 
error bars.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly 
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.

General GST Properties Properties of Sandia GST



Principles of GST

• Gates are relational.  Initial states are prepared using gates, 
and final measurements are performed using gates. 
         Process tomography is not about “How does this 
         process transform these input states?”   
         It is about “How does this process relate to these 
        other `fiducial’ processes?” 

• The existence of a gauge for gatesets is a direct consequence. 

• The probabilities for sufficiently many gate sequences (circuits) 
determine a gateset, up to gauge.  These are estimated from data.  
All ensuing discussion is about: (1) what sequences to measure;  
and/or (2) how to analyze the data.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly 
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.



“Overkill tomography”.  IBM 2012-13

• What to measure:  all gate sequences of length ≤ 3. 

• Analysis method:  maximum likelihood (MLE).  Local 
optimization using target gates as a starting point. 

• The Good:  first implementation — original idea.  Usually 
worked. 

• The Bad:  both aspects ad-hoc.  Likelihood function known 
to be non concave (probabilities nonlinear in gates), so hard 
to optimize reliably.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly 
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.

Pijk = hhE|GiGjGk |⇢ii



Linear GST (LGST). Sandia, 2013

• What to measure:  specific “fiducial sandwich”  
sequences of length L ≤ 7. 

• Analysis method:  closed-form linear algebra. 

• The Good: incredibly fast, 100% reliable. 

• The Bad:  Not very accurate.  Unweighted linear inversion is 
statistically unsophisticated.  Minimal ability to detect non-
Markovian noise.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly 
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.
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Long sequence GST.  Sandia, 2013-15

• What to measure:  Specific “germ power” fiducial sandwich 
sequences of length 2L + O(1), up to 2L = 8192. 

• Analysis method:  naive least squares, min-χ2, or MLE. 

• The Good:  Heisenberg accuracy.  Highly reliable, overcomes 
likelihood pathologies a la phase estimation (see Kimmel 
2015).  Provides extensive detection of non-Markovian noise. 

• The Bad:  complex, finicky, can be slow (1-30 minutes).

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly 
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.
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State of Play:  October 1, 2015



How we implement GST

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly 
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.

Identify target gates

Design germ sequences

Send datafile template to 
experimental team

Design fiducial sequences

Record data in datafile

Do LGST analysis 
(short sequence data only)

Gauge-optimize LGST 
estimate & truncate to CP

Iteratively refine estimate by 
adding L=2,4,8,… data and 
minimizing 𝜒2 (scipy.opt)

Refine final estimate by 
maximizing likelihood.

Optimize gauge 

Error bars (likelihood-ratio 
and/or bootstrap)

Compute fidelities, etc.

Compute badness-of-fit



The Standard Qubit

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly 
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.

Operator Hilbert-Schmidt vector (Pauli basis) Matrix
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0
0
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✓
1 0
0 0

◆

E0

0.7071
0
0

�0.7071

✓
0 0
0 1

◆

Table 1: Target gateset: SPAM (state preparation and measurement) gates. These are the ideal

input state (⇢0) and ‘plus’ POVM e↵ect E0 for the device on which we report. SPAM gates are given here
both as d ⇥ d matrices, and in “vectorized” form as d2-dimensional vectors in B(H). See Table 5 for GST
estimates of the actual ⇢0 and E0 implemented in this experiment.

Gate Superoperator (Pauli basis) Rotation axis Angle

Gi

0

BB@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1
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0
1
0
0
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1 0 0 0
0 0 0 1
0 0 1 0
0 �1 0 0

1
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0
0
1
0

0.5⇡

Table 2: Target gateset: logic gates. These are the ideal (generally unitary) logic gates. Each has a
name starting with “G”, and is represented as a d2 ⇥ d2 superoperator that acts by matrix multiplication on
vectors in B(H). For each gate, its axis of rotation (in B(H) and angle of rotation are also given. See Table
7 for GST estimates of the actual logic gates implemented in this experiment.

2. A small set of short fiducial sequences are chosen so that, when applied to ⇢0 or E0, they generate an
informationally complete set of states or e↵ects.

3. Each germ is concatenated with itself to form base sequences of length approximately 1, 2, 4, 8, . . . L
max

.

4. Each base sequence is sandwiched between every possible pair of fiducial sequences.

The dataset comprises all sandwiched base sequences. A few other short sequences (e.g., those corresponding
to the empty base sequence) may also appear.

The fiducial sequences and germs for this dataset are given in Table 3. An overview of the information
contained in the file you provided for dataset “GST BB1 XYXY 8192 condensed” is given in Table 4.

This table also contains one derived quantity, the spectrum of the largest Gram matrix that GST could
extract from the data. This is included here rather than in the analysis because it is not useful for predictive
purposes, and therefore is not part of the estimate. It serves, instead, to tell you something about the quality
of the data. More precisely, it tells you about the dimension of the state space that is explored by the fiducial
sequences. This should be d2-dimensional [because the fiducials are intended to explore all of B(H)], and
therefore the spectrum listed in Table 4 should (ideally) have exactly d2 elements that are large and nonzero.
In practice, you should see d2 large elements, and a rapid drop in magnitude thereafter. If fewer than d2

elements are large, then the fiducials were poorly chosen and are not exploring the state space e↵ectively. If
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informationally complete set of states or e↵ects.

3. Each germ is concatenated with itself to form base sequences of length approximately 1, 2, 4, 8, . . . L
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.

4. Each base sequence is sandwiched between every possible pair of fiducial sequences.

The dataset comprises all sandwiched base sequences. A few other short sequences (e.g., those corresponding
to the empty base sequence) may also appear.

The fiducial sequences and germs for this dataset are given in Table 3. An overview of the information
contained in the file you provided for dataset “GST BB1 XYXY 8192 condensed” is given in Table 4.

This table also contains one derived quantity, the spectrum of the largest Gram matrix that GST could
extract from the data. This is included here rather than in the analysis because it is not useful for predictive
purposes, and therefore is not part of the estimate. It serves, instead, to tell you something about the quality
of the data. More precisely, it tells you about the dimension of the state space that is explored by the fiducial
sequences. This should be d2-dimensional [because the fiducials are intended to explore all of B(H)], and
therefore the spectrum listed in Table 4 should (ideally) have exactly d2 elements that are large and nonzero.
In practice, you should see d2 large elements, and a rapid drop in magnitude thereafter. If fewer than d2

elements are large, then the fiducials were poorly chosen and are not exploring the state space e↵ectively. If
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more than d2 are large, then the system is experiencing strong non-Markovian e↵ects (e.g., strong coupling
to environmental degrees of freedom) or it has a larger Hilbert space dimension than expected.

Fiducials

# Prep. Measure

1
2 Gx Gx
3 Gy Gy
4 Gx ·Gx Gx ·Gx
5 Gx ·Gx ·Gx Gx ·Gx ·Gx
6 Gy ·Gy ·Gy Gy ·Gy ·Gy

# Germ

1 Gx
2 Gy
3 Gi
4 Gx ·Gy
5 Gx ·Gy ·Gi
6 Gx ·Gi ·Gy
7 Gx ·Gi ·Gi
8 Gy ·Gi ·Gi
9 Gx ·Gx ·Gi ·Gy
10 Gx ·Gy ·Gy ·Gi
11 Gx ·Gx ·Gy ·Gx ·Gy ·Gy

Table 3: Fiducial sequences and germs. See discussion in text.

Quantity Value

Number of strings 4657
Gate labels Gx, Gy, Gi
SPAM labels plus, minus

Singular values of Gram matrix

0.0179
0.09

0.2018
0.9017
1.0807
1.4886
3.345

Table 4: General dataset properties. See discussion in text.

3 Output from GST

The primary output of GST is an estimated gateset. This section presents the raw estimate, and then some
useful derived quantities of the estimated gates, including comparisons to the target gates.

3.1 Raw GST estimates

Table 5 reports the estimated SPAM operations, and Table 7 reports the logic gate operations. The estimated
SPAM gates (⇢0 and E0) are vectors in B(H), and the estimated logic gates are superoperators represented
as matrices acting on B(H), all in the Pauli basis. By taking the dot product of state preparation and
measurement vectors estimated SPAM probabilites are computed in Table 6. Tables 5 and 7 report 95%
confidence intervals for each of the gate matrix and SPAM vector elements. A confidence region is obtained
from the Hessian of the log-likelihood (see below) at its maximum, and confidence regions for each element are
obtained by projecting this multi-dimensional region onto the element’s axis. Since the resulting confidence
interval is always symmetric about the estimated value, we report the half-width of the intervals in the tables.
In table 6 and those in the following section, we specify the 95% confidence intervals of derived quantities
in using value ± half-width notation. Derived-quantity confidence intervals are computed by linearizing the
function of the gate matrix and/or SPAM vector elements.
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Max likelihood vs. Min χ2

• Data = observed frequencies f(sj) for various gate sequences. 

• Gateset predicts probabilities p(sj). 

• Likelihood: 

• [Semi]-Gaussian approximation: 

• We use a hybrid method (min-χ2 with a “final coat” of MLE): 
 - The χ2 function behaves better + faster in SciPy.optimize 
 - But Min-χ2 is biased for SPAM estimates (Max-L is not).

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly 
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.

## Columns = count, total
{}            0.0     50
Gx            25.0    50
Gy            28.0    50
GxGxGx        18.0    50
GyGyGy        28.0    50
GxGx          50.0    50
GxGy          24.0    50
GxGxGxGx      0.0     50
GxGyGyGy      28.0    50
GyGx          23.0    50
GyGy          50.0    50
GyGxGxGx      21.0    50
GyGyGyGy      0.0     50
GyGxGx        21.0    50
GxGxGxGy      27.0    50
(Gx)^6        50.0    50
GxGxGxGyGyGy  20.0    50   

L =
Y

j

p
Nfj
j (1� pj)

N(1�fj)

�2 =
X

j

(pj � fj)2

pj



Autogenerated GST Reports

• Our software (“PyGSTi”) can read in a dataset, analyze it, 
and generate a comprehensive human-readable report on the 
gates with a single command. 

• Reports run 15-30 pages and contain: 

• Summary of experimental protocol & target gates 

• Estimated gates (including state prep and measurement) 

• Derived quantities (fidelities, diamond norms, rotation 
angles, rotation axes, SPAM parameter, etc…) 

• Extensive “badness-of-fit” information.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly 
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.



Detecting non-Markovian noise

• Fitting ∼30 parameters to ∼4500 experiments is overcomplete. 
=> we have a lot of residual data for model testing/selection. 

• Badly fit data points = model violation = non-Markovian.



Recent Advances @ Sandia 
(a.k.a. “The point of this talk”)



1.  We tomographed a qubit  
really really really precisely.

• Trapped-ion (Yb+) qubit in  
Peter Maunz’s lab (March 2015) 

• 3 gates (Xπ/2, Yπ/2, Idle).  6 fiducials.  
11 germs. L = 1,2,4,…,8192.  
4657 sequences.  50 counts/each.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly 
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.
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• Trapped-ion (Yb+) qubit in  
Peter Maunz’s lab (March 2015)

1.  We tomographed a qubit  
really really really precisely.

cGi =

2

664

1 0 0 0
0 0.999932 �6⇥ 10�5 1⇥ 10�5

6⇥ 10�6 3⇥ 10�5 0.999891 2⇥ 10�5

0 �3⇥ 10�5 �6⇥ 10�5 0.999900

3

775±

2

664

0 0 0 0
0.4 0.7 1.3 1.2
0.4 1.3 0.9 1.3
0.5 1.2 1.3 0.9

3

775⇥ 10�5

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly 
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.
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Gates are really Markovian!

Figure 1: 2� log(L) contributions for every individual experiment in the dataset. Each pixel
represents a single experiment (gate sequence), and its color indicates whether GST was able to fit the
corresponding frequency well. Blue is typical; dark red squares indicating 2� log(L)

s

> 10 should appear
only once per 638 experiments on average. Square blocks of pixels correspond to base sequences (arranged
vertically by germ and horizontally by length); each pixel within a block corresponds to a specific choice of
pre- and post-fiducial sequences. See text for further details.

4.3 Debugging aids

If the log(L) plots in Figures 1-2 indicate that the data is poorly fit by GST, the next step is to begin
“debugging” the experiments and/or the fit. Most commonly, a poor fit is due to non-Markovian behavior.
However, there are many kinds of non-Markovian behavior. The most straightforward occurs when the
gateset fluctuates over time, or when there is other time correlation in the experiments (e.g., due to memory
e↵ects). However, another possibility that must be considered is that repeated gate operations cause changes
in the system, e.g. heating it up (as is seen in 2-qubit trapped-ion gates) so that the data from long gate
sequences is simply chaotic and inconsistent with shorter experiments.

Figure 3 provides a test (albeit currently an unreliable one) for such an e↵ect. Like Figures 1-2, it
displays per-experiment 2� log(L) values – but not for any single gateset. Instead, this direct GST analysis
treats each base sequence as an independent process (not as a product of many gates), and analyzes it using
LSGST together with the individual gates (which are necessary to model the e↵ect of the fiducial sequences
that precede and follow the base sequence being analyzed). The resulting direct GST estimate is then used
to assign probabilities for the corresponding experiments.
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RB vs. GST

• Peter did RB experiments at the same time.  We used GST 
to predict what the RB experiments should look like.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly 
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.

Experimental RB GST Prediction

Pspam = 7⇥ 10�3

perr/gate = (4.99± 0.05)⇥ 10�5

Pspam = 5⇥ 10�3

perr/gate = (4.24± 0.13)⇥ 10�5



2.  We put error bars on it 
“All the single theorists… if you like it, put error bars on it!” 

• Error bars have been a perennial challenge for tomography. 

• Traditionally, a positivity 
constraint is essential to 
achieve high accuracy… 
…but it’s hard to assign 
error bars that respect this constraint. 

• Also, assigning error bars is just plain tricky and hard. 

• We’ve equipped GST with two kinds of error bars:  bootstrap and 
likelihood ratio confidence regions. 

• Key:  GST is so accurate that positivity isn’t really relevant!

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly 
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.

Robust error bars for quantum tomography

Robin Blume-Kohout1

1Theoretical Division (T-4/CNLS), MS-B258, Los Alamos National Laboratory, Los Alamos, NM 87545⇤

In quantum tomography1, a quantum state or
process is estimated from the results of measure-
ments on many identically prepared systems. To-
mography can never identify the state (⇢) or pro-
cess (E) exactly. Any point estimate is necessar-
ily “wrong” – at best, it will be close to the true
state. Making rigorous, reliable statements about
the system requires region estimates. In this ar-
ticle, I present a procedure for assigning likeli-

hood ratio (LR) confidence regions, an elegant
and powerful generalization of error bars. In par-
ticular, LR regions are almost optimally powerful
– i.e., they are as small as possible.

Quantum information processing relies on quantum
hardware, including memory qubits and unitary or
nearly-unitary quantum gates. These individual compo-
nents must perform their allotted transformations with
very high precision, especially for fault-tolerant quantum
computing. The methods used to characterize and vali-
date quantum devices are known, collectively, as quantum
tomography. Tomography usually involves repeated in-
dependent measurements on N identically-prepared sys-
tems (referred to hereafter as “standard tomography”),
but can also involve collective measurements on all N
copies. Because state and process tomography are math-
ematically equivalent, this paper will focus on state to-
mography for the sake of clarity, with the understand-
ing that all results can be extended straightforwardly to
processes13.

Tomography cannot identify ⇢ (the state produced by
a quantum device) exactly, for precisely the same rea-
son that flipping a coin N times cannot reveal its bias
exactly. Any point estimate ⇢̂ has precisely zero prob-
ability of coinciding exactly with the true ⇢, for there
are infinitely many other states arbitrarily close to ⇢̂ and
equally consistent with the data. To make a tomographic
assertion about the device that is true – or at least true
with high probability – we must report a region of states
or processes (vis. Fig. 1).

Such regions are often constructed by attaching error
bars to a point estimate. In quantum tomography, this
approach su↵ers several drawbacks, some of which are
illustrated in Fig. 2. Näıve error bars define an ellip-
soidal shape (arbitrary), centered at the point estimate
(suboptimal), which may include many unphysical states
(ine�cient). Worst of all, it is generally impossible to as-
sign this ellipsoid any rigorous meaning – e.g., “The true
state is within it, with probability at least 99%.” The
same problem applies to the other method used to date,
bootstrapping2 – which means generating a host of simu-
lated datasets {Dk} (either by resampling the real data,
or by simulating measurements on a point estimate ⇢̂),

FIG. 1: Point estimators, like the maximum likelihood esti-
mate ⇢̂MLE shown on the left, cannot provide meaningful and
rigorous statements about the true (but unknown) state ⇢.
But if we replace point estimators with region estimators, like
the likelihood-ratio confidence region shown on the right, then
the region R̂ defines an assertion – “⇢ lies within R̂ with 90%
certainty” – that is rigorously valid. The estimates shown
here came from simulated measurements on 60 copies of a
single-qubit state, with 20 measurements each of �

x

,�
y

,�
z

yielding +/- counts of 7/13, 9/11, and 3/17 (respectively).

then reporting the variance of the corresponding point
estimates {⇢̂k}. The underlying problem is that boot-
strapping and näıve error bars both represent standard
errors – the variance of a point estimator. Unfortunately,
the point estimators used in quantum tomography are all
biased, and standard errors for biased estimators do not
reliably represent uncertainty14 about the true ⇢.

Happily, all of these issues can be resolved with a re-

FIG. 2: General region estimates – adapted to the data, and
constructed so as to minimize volume – can be far more pow-
erful, useful, and reliable than traditional “error bars”. As
illustrated here, a valid confidence region need not be: (i) el-
lipsoidal or rectangular, (ii) centered at a point estimate, or
(iii) aligned with the axes defined by whatever observables
were measured. The figure on the right shows a cross-section
of a 1-qubit LR confidence region, while on the left the small-
est traditional error bars with the same coverage probability
are shown. The LR region is noticeably smaller, and includes
only valid states. Although in this case, the LR region could
be reasonably approximated by the intersection between the
error ellipsoid and the Bloch sphere, this is not always the
case.
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More about the bootstrap

• The error bars shown previously were obtained using the 
[parametric] bootstrap. 

• I’ve probably yelled at you for bootstrapping before! ????? 

• The bootstrap is wildly unreliable when used with  
a biased estimator.  MLE state/process  
tomography is biased because of the boundary. 

• We only use unbiased estimators in GST (it’s so accurate 
that gates are usually CP.  If they aren’t, we just accept it.) 

• Ultra-long sequences mean likelihood function is ~Gaussian.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly 
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.



Likelihood ratio confidence regions

• Better method:  use the shape of  
the likelihood function near its  
maximum to assign a  
confidence region.   — arxiv:1202.5270 

• We’ve implemented this method, but  
are still fixing bugs:  gauge freedom  
mixes SPAM error bars (large) with gate error bars (small). 

• Prelim results:  SPAM error bars  
           
             Gate matrix error bars 

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly 
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.

90%

99%

SPAM

gate

±{3⇥ 10�6 . . . 3⇥ 10�5}

±{4⇥ 10�4 . . . 3⇥ 10�3}



3.  We did 2 qubits  
      at the same time

• 2-qubit GST presents some challenges: 
 - At least 5 gates required for a complete gate set 
 - Each gate is 16x16 => 256 parameters 
 - Roughly 1250 parameters to estimate (vs ~50 for 1 qubit). 
 - Does anybody know how to interpret results? 

• We have implemented simulations of 2-qubit and 
“biqubit” (symmetric subspace) linear GST. 

• We have also simulated long sequence GST on a biqubit up 
to L=8. 

• And we just did experimental GST on a biqubit up to L=8.  

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly 
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.



Simulations (2-qubit LGST)

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly 
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.

• 5 gates: Xπ/2⊗I, Yπ/2⊗I,  
            I⊗Yπ/2, I⊗Xπ/2, CNOT) 

• 36 x 36=1296 “fiducial pairs” 
x (5+1) operations =  
5700 distinct experiments 

• With N=1000 (6x106 total “clicks”) 
we get ≈1% accuracy. 

• If we wanted to get 0.1% accuracy 
using LGST, we would need to do 
N=130,000 counts/experiment 
     ⇒ 109 clicks.  Not feasible!  👎 



Simulations (2-qubit LSGST)

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly 
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.

• 5 gates: Xπ/2⊗I, Yπ/2⊗I,  
            I⊗Yπ/2, I⊗Xπ/2, CNOT) 

• 16 x 10 = 160 “fiducial pairs” 
71 germs 
3528 distinct experiments 
(N.B.  we threw out about 85% of  
experiments — “compressed GST”) 

• At L=1, error is 4%. 

• At L=8, error is 0.4% 

• Consistent with 1/L scaling.

GST: Error vs. Sequence Length
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Biqubit Experiment

• Experiment performed 9/2015 with  
2 Yb+ qubits trapped in a  
SNL surface trap. 

• Individual addressing not yet 
possible — all gates are symmetric 
(XX, YY, Molmer-Sorenson). 
=> only symmetric subspace (d=3) is 
      accessible.  Call it a “biqubit”. 

• Good:  full (L=8) GST is feasible, ran in a few hours. 
Bad:  gates not stable => systematic errors  
                                     => only LGST makes sense

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly 
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.



Experiment Results

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly 
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Gi (target)
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GM-S (LGST)

GM-S (target)



Now, do GST  
in the privacy of your own home!

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly 
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Administration under contract DE-AC04-94AL85000.
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Expanded functionality coming soon (Nov. 1) 

Email rjblume@sandia.gov to get started.
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