
Gain-current relationships in quantum-dot and 

quantum-well lasers: Theory and experiment 

Frank Jahnke, Bremen University 

Motivation for experiment 

Theoretical model 

Results: 

 Sample characterization 

 Prediction of eventual performance 

 Quantum-dot/quantum-well comparison  

Weng Chow, Sandia National Laboratories 

Alan Liu, Art Gossard and John Bowers, University of California, Santa Barbara 

  

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned 

subsidiary of Lockheed Martin Corporation, for the United States Department of Energy’s National Nuclear Security Administration 

under contract DE-AC04-94AL85000. 

SAND2015-8561C



Quantum dot lasers for silicon photonics 

(Courtesy of Dr. Jordan Lang, Yale) 

300 mm Silicon - ~$0.2 cm-2 
100 mm InP - ~$4.0 cm-2 

Grow III-V lasers on larger and cheaper silicon 

substrates without sacrificing laser performance 

for lower cost and higher throughput 

3-D confinement reduces carrier migration to 

dislocations  

To push the limits of device performance, it is critical to 

minimize nonradiative losses and inhomogeneous broadening  

Quantum dot lasers have the lowest threshold 

current densities of all semiconductor lasers 

Bowers, John E., et al. "A Path to 300 mm Hybrid Silicon Photonic Integrated Circuits.”  OFC 2014 

A. Y. Liu, A. C. Gossard, J. E. Bowers et. al, “Quantum dot lasers for silicon photonics [Invited]”, 

Photonics Research, vol. 3, 2015  

1991 – “Semiconductor Structure for Optoelectronic Components with Inclusions” 

(Jean Gerard & Claude Weisbuch), U.S. Patent No. 5,075,742 

D. Bimberg, U. W. Pohl, “Quantum dots: promises and accomplishments.” Materials Today, 2011.    



50 μms wide broad area lasers on GaAs 

Measurements in pulsed mode, 5 μs pulse width, 1000 μs off time 

Assumptions: 

• Equal power output from both facets 

• R=0.32 

• Negligible cavity length dependent loss 

QDs 

Experiment 
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Overview: Chow & Jahnke, Progress in Quantum Electronics 37, 109 (2013) 
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For more details on shape of QD G vs J curves see: M. Lorke, F. Jahnke and W. W. Chow, Appl. Phys. Lett. 90 051112, 2007 

For details on the fitting process: Chow, Liu, Gossard and Bowers, ‘Extraction of inhomogeneous broadening and 
nonradiative losses in InAs quantum-dot lasers,’ (submitted APL) 
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Comparison of QD vs QW 
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Summary 

= 𝚪𝐆𝐦𝐚𝐭𝐞𝐫𝐢𝐚𝐥 𝚫𝒊𝒏𝒉 Theory 

𝐆𝐦𝐨𝐝𝐚𝐥 =
𝟏

𝟐𝑳
𝜶𝒂𝒃𝒔 − 𝒍𝒏 𝑹𝟏𝑹𝟐  Experiment 
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