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Quantum dot lasers for silicon photonics

Grow IlI-V lasers on larger and cheaper silicon ~ —\\
substrates without sacrificing laser performance |
for lower cost and higher throughput
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3-D confinement reduces carrier migration to
dislocations

Quantum dot lasers have the lowest threshold
current densities of all semiconductor lasers

(Courtesy of Dr. Jordan Lang, Yale)

To push the limits of device performance, it is critical to
minimize nonradiative losses and inhomogeneous broadening
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Experiment

50 yms wide broad area lasers on GaAs
Measurements in pulsed mode, 5 ps pulse width, 1000 ps off time

Assumptions:

 Equal power output from both facets

 R=0.32

* Negligible cavity length dependent loss
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Approach (quantized electrons & classical optical field)

Electronic structure
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Overview: Chow & Jahnke, Progress in Quantum Electronics 37, 109 (2013)



Intrinsic versus inhomogeneously-broadened quantum dots
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Intrinsic versus inhomogeneously-broadened quantum dots
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wetting layer QD non-uniformity
GaAs A
c
5nm { } Iny,Ga, gAs g R4 BN
. A QW © N
N—r S A
24nm GaAs o _:/ |\\\<_ inh
o
Ngot = 5 x 10%0cm-2 | b > &

Intrinsic (A;,,=0)

1 2
Sin(@) = | de ——— e~ (e=20*/(VZ Ainn) Shomog (@, €)

|_‘_' \/ﬁainh

Inhomogeneously-
broadened (measured)
spectrum

Intrinsic
\ spectrum

Dephasing width

SN

N
T

o
T

Material gain (103cm™1)
IN N

()]
1
Emission

_8 1 1 1 1
0.8 0. 10 11 12 13

Photon energy (eV)

Photon energy, ®

T = 300K, N = 0.1x, 0.5x, 1x, 2x, 3 x 102cm-2



Intrinsic versus inhomogeneously-broadened quantum dots
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Intrinsic versus inhomogeneously-broadened quantum dots

InAs QDs and
wetting layer
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Material gain

Fwow
Ngot = 5 x 101%m-2

Material gain is gain from In, ;:Ga, gsAs QW
embedding Ny, density of InAs QDs and
wetting layer

Threshold current density

From gain calculation
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Extraction of inhomogeneous broadening and nonradiative losses
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Extraction of inhomogeneous broadening and nonradiative losses
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Extraction of inhomogeneous broadening and nonradiative losses
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For more details on shape of QD G vs J curves see: M. Lorke, F. Jahnke and W. W. Chow, Appl. Phys. Lett. 90 051112, 2007

For details on the fitting process: Chow, Liu, Gossard and Bowers, ‘Extraction of inhomogeneous broadening and
nonradiative losses in InAs quantum-dot lasers,’ (submitted APL)



Extraction of inhomogeneous broadening and nonradiative losses
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Comparison of QD vs QW
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Uncertainty in extracted parameters

100 ; 30 F

Hg 20meV 10 k
5 _
E O 1 1 1
© [
o 10 - 0.06 0.12 0.18
3 N Mode confinement factor, T’
@] L
= I 2
_ ow
- D -
Q Ainpn=0
1 1 1 I:IIIII J 1 ||||||I 1 L L1111l ‘;'(; 1 |
10 102 103 104 :E/
J (Alcm?)
O 1 1 1

03 04 05 06 0.7 08
Carrier injection efficiency, n,



Modal gain (cm-1)

Uncertainty in extracted parameters

From spontaneous emission
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Summary

Gain-current relationships in qguantum-dot and quantum-well lasers:
Theory and experiment

Weng Chow, Alan Liu, Art Gossard, John Bowers and Frank Jahnke
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Intrinsic versus inhomogeneously-broadened quantum dots
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