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Motivation
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Nanocrystalline metals

 Exemplary mechanical
properties

« Abundant sinks for structural
and chemical defects

. Ideal candidates for radiation-
tolerant materialse

Generation IV: Nuclear Energy Systems Deployable no later than 2030 and offering
significant advances in sustainability, safety and reliability, and economics
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Ale$ Bursic, via World-

Nuclear-News.org

Kaoumi, et al, ] ASTM Intl, 2006.

What are the relationships among ion damage, grain boundary character, and grain growth?
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10 keV Au in Au, via Wikimedia Commons.

Sandia

Radiation-Solid Interactions @ oy

Energetic ion displaces one or
more target atoms

o Frenkel (vacancy-interstitial) pair
o Collision cascade

o Nuclear and electronic interactions
time 0.0001 ps

Kai Nordlund (2008)

Effective transient
temperatures

~thousand(s) of K!

Affected volumes
vary based on
radiation species,
energy, and
target material.
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Schematicrecoil spectra for 1 MeV particles
in Cu. Sizes represent recoil energies. After
Averback, ] Nucl Mater, 1994.

Highly temporally and spatially localized energy transfer drives microstructural change.
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Sandia’s In situ Ion Irradiation @ Sandia
TEM (I3TEM) Collaborator: D.L. Buller

Laboratories
Electron gun 10 kV Colutron - 200 kV TEM - 6 MV Tandem

Sub-nm imaging
Electron diffraction >
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ﬂ Image recording system

Gringer, 2009, via Wikime::lia Commons. Hattar, et al, Nucl Instr Meth Phys Res B, 2014.

Enables real-time studies of samples under irradiation.
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Synergistic In Situ Capabilities () s

Laboratories

Hummingbird Tomography Stage
Gatan 925 Double Tilt Rotate Hummingbird Heating
Morphology changes as a result of Stage
radiation damage Coupling effects of

temperature and irradiation
on microstructural evolution
up to 800 °C

EHYSITRON

Hysitron PI95 TEM Picoindenter
Gatan 654 Straining Holder

Direct correlation of dose and . i
defect density with resulting Texture
changes in strength, ductility,

and defect mobility

Environmental

Protochips Liquid and Gas Flow
Effects of radiation on corrosion
and gas loading at the grain
level

Nanomegas ASTAR
Quantifying orientation changes as a
result of radiation, implantation, and heat.

The application of advanced microscopy techniques to characterize synergistic

effects in a variety of extreme environments




In Situ Irradiation

« Au foil during
bombardment with 10
MeV Sist

« ~10s of 4000s total
experiment time

« Canreproduce previous
results, but with greater
energy range and
expanded capabilities
for analysis.
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2x real time

Locations of single ion strikes and resulting microstructural change captured.
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Quantification:
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After Irradiation
368 Grains
davg =47.8+32.6 nm

5 largest grains
16% of total area
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Same area
characterized
before and after
irradiation.

Standard TEM

Orientation maps

o Local grain size,
orientation, boundary
character

o Hundreds of grains
counted in minutes

Rapid quantification of statistically relevant numbers of grains and boundaries.
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Quantification: Local @ ot

« The same grains LR Temgetorelf s Boundariéslsetors.
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Identified before and
after irradiation

* |ndividual grain
boundary misorientation
angles and axes
quantified

« Correlation of GB
properties and radiation-
iInduced changes

| 3°<p<15° ]
[15°<$<30° |

Grain boundary misorientation angle and axes quantified
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. . : Sandia
Simulated Irradiation () i
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Experiment/Model ) s
Discrepancies?
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« Subtle deviations from homogenous grain growth
« Overall scaling laws appear consistent

Immobile boundaries suggest importance of non-thermally activated mobility
® RGSAM 2015 10/02/2015 ® 10




Laboratories

Sandia
Summ ary @ National

« TEM orientation mapping at various ion fluences
o Analyzed and used as direct input for a phase field model

« Discrepancies between experimentally observed and
modeled grain growth

« Stable grains are characteristic of known low mobility grains
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Apvroach: Experimental ([
PP P
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Experimental Theoretical Template  Point Mapped
Pattern Template Matched To IPF

« Automated diffraction

orientation mapping

o Point by point grid of
orientations mapped

o 5 nm resolution

 Analogous to EBSD
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Point diffraction data
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Ions in the TEM
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Hattar, et al, Nucl Instr Meth Phys Res B, 2014.
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Approach: Modeling [ =
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 What is phase field modeling?

o Mathematical model for solving interfacial
problems, like solidification, growth, etc.

« Example grain growth model
o Thermodynamic free energy function
 dF=d(yA)=vydA (y: GB energy, A: GB area)
o Model for kinetics
« V=Mpyh (M: GB mobility, h: GB curvature)
o Solve at each pixel for a predetermined timestep

« See Abdeljawad and Foiles, Acta
Mater, 2015 for more information
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Can directly use experimental maps as input structures, and then compare evolutions!

® RGSAM 2015 10/02/2015 @ 14



Sandia

Simulated Anneal P,
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Model Data Analysis )&=,

20 | —<©— Anneal

« During simulated annealing — .~ Avg. Thermal Spikes
grain growth scales

approximately with T1/2
o Expected for homogenous grain growth

« During simulated irradiation,
grain growth scales with T/n,
where n = 3 o s & s 1

o Initially faster, but stagnates sooner
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