

Exceptional service in the national interest

Sandia's Ion Beam Laboratory

Jon Custer

Radiation-Solid Interactions

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXX

Overview

- History of accelerators at Sandia
- The New Ion Beam Laboratory
- Preview of the Tour (Wednesday)

History of Accelerators at Sandia:

- Use of accelerators at Sandia predates the 'Ion Beam Laboratory' as we know it today.
- They continue to be used because of the problems that they can solve.
- Those problems have been a continuous thread at SNL
- A short tour through history:

RADIATION EFFECTS IN SEMICONDUCTORS

Proceedings of the Santa Fe Conference on Radiation Effects in Semiconductors, held October 3-5, 1967

Edited by F. L. Vook

Sandia Laboratories, Albuquerque, New Mexico

The field of radiation effects in semiconductors has rapidly advanced in recent years and substantial amounts of applicable evidence have been amassed.

Volume 13, Number 1

APPLIED PHYSICS LETTERS

1 July 1968

ANISOTROPIC THERMAL CONDUCTIVITY OF ELECTRON-IRRADIATED CdS*

Frederick L. Vook

Sandia Laboratories

Albuquerque, New Mexico 87115

(Received 26 April 1968)

PHYSICAL REVIEW

VOLUME 183, NUMBER 3

15 JULY 1969

Luminescence in Intrinsic and Annealed Electron-Irradiated GaAs:Cd†

GEORGE W. ARNOLD

Sandia Laboratories, Albuquerque, New Mexico 87115

(Received 17 March 1969)

**DIRECT EVIDENCE OF DIVACANCY FORMATION IN SILICON
BY ION IMPLANTATION***

H. J. Stein, F. L. Vook, and J. A. Borders
Sandia Laboratories
Albuquerque, New Mexico 87115
(Received 21 March 1969)

ELECTRON PARAMAGNETIC RESONANCE OF DEFECTS IN ION-IMPLANTED SILICON*

K. L. Brower, F. L. Vook, and J. A. Borders
Sandia Laboratories
Albuquerque, New Mexico 87115
(Received 4 August 1969)
Appl. Phys. Lett. 15, 208 (1969)

ION IMPLANTATION DEPTH DISTRIBUTIONS:
ENERGY DEPOSITION INTO ATOMIC PROCESSES AND ION LOCATIONS*

David K. Brice

Sandia Laboratories, Albuquerque, New Mexico 87115

(Received 20 October 1969; in final form 11 December 1969)

**A Simplified Technique for Crystal Alignment
during Channeling Effect Measurements***

J. A. BORDERS AND S. T. PICRAUX

Sandia Laboratories, Albuquerque, New Mexico 87115

(Received 6 April 1970)

Rev. Sci. Instrum. 41 1230 (1970)

LATTICE EXPANSION AND STRAIN IN ION-BOMBARDED GaAs AND Si[†]

R. E. Whan and G. W. Arnold

Sandia Laboratories, Albuquerque, New Mexico 87115

(Received 9 July 1970; in final form 12 August 1970)

Appl. Phys. Lett. 17, 378 (1970)

Technique for profiling ^1H with 2.5-MeV Van de Graaff accelerators^{a)}

B. L. Doyle and P. S. Peercy

Sandia Laboratories, b) Albuquerque, New Mexico 87185

(Received 12 February 1979; accepted for publication 21 March 1979)

We describe an elastic recoil detection (ERD) analysis technique for profiling ^1H in the near-surface regions of solids using a 2.5-MeV Van de Graaff accelerator commonly used for ion-backscattering analysis. Energy analysis of ^1H forward scattered by 2.4-MeV ^4He incident on the target tilted at an angle of $\sim 75^\circ$ yields a depth resolution of $\lesssim 700 \text{ \AA}$ and a sensitivity of better than 0.1 at.-% for ^1H to depths of $\lesssim 0.6 \mu\text{m}$ in solids.

Appl. Phys. Lett. 34, 811 (1979)

Electron beam annealing of ion implanted Al

W. R. Wampler, D. M. Follstaedt, and S. T. Picraux

Sandia Laboratories, Albuquerque, New Mexico 87185

(Received 12 October 1979; accepted for publication 14 December 1979)

Appl. Phys. Lett 36 366 (1980)

IEEE Transactions on Nuclear Science, Vol. NS-26, No. 1, February 1979

ION MICROANALYSIS AND IMPLANTATION APPLIED TO FUSION SURFACE RESEARCH*

F. L. Vook, B. L. Doyle, and S. T. Picraux[†]

SATURATION AND ISOTOPIC REPLACEMENT OF DEUTERIUM IN LOW-Z MATERIALS*

B.L. DOYLE, W.R. WAMPLER, D.K. BRICE and S.T. PICRAUX

Sandia National Laboratories[†], Albuquerque, New Mexico 87185, USA

J. Nucl. Materials 93&94, 551 (1980)

PHYSICAL REVIEW B

VOLUME 9, NUMBER 10

15 MAY 1974

Study of Cu diffusion in Be using ion backscattering*

S. M. Myers, S. T. Picraux, and T. S. Prevender

Sandia Laboratories, Albuquerque, New Mexico 87115

(Received 28 September 1973)

PHYSICAL REVIEW B

VOLUME 38, NUMBER 10

1 OCTOBER 1988

**Measurement of the oxygen content in high- T_c superconductors:
Enhanced resonant ion-scattering analysis**

J. C. Barbour, B. L. Doyle, and S. M. Myers

Sandia National Laboratories, Albuquerque, New Mexico 87185-5800

(Received 28 March 1988)

Nuclear Microprobe Imaging of Single-Event Upsets

K. M. Horn, B. L. Doyle, and Fred W. Sexton, *Member, IEEE*

A new approach to nuclear microscopy: the ion–electron emission microscope

B.L. Doyle ^{a,*}, G. Vizkelethy ^{a,1}, D.S. Walsh ^a, B. Senftinger ^b, M. Mellon ^c

^a *Radiation–Solid Interactions and Processing Department 1111, MS1056, Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185-1056, USA*

^b *Staib Instrumente GmbH, Langenbach, Germany*

^c *Quantar Technology Inc., Santa Cruz, CA, USA*

Nucl. Instr. Meth. B158, 6 (1999)

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 53, NO. 6, DECEMBER 2006

Damage Equivalence of Heavy Ions in Silicon Bipolar Junction Transistors

E. Bielejec, G. Vizkelethy, N. R. Kolb, D. B. King, and B. L. Doyle

Reduction in thermal boundary conductance due to proton implantation in silicon and sapphire

Patrick E. Hopkins,^{1,2,a)} Khalid Hattar,¹ Thomas Beechem,¹ Jon F. Ihlefeld,¹ Douglas L. Medlin,³ and Edward S. Piekos¹

¹*Sandia National Laboratories, Albuquerque, New Mexico 87123, USA*

²*Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904, USA*

³*Sandia National Laboratories, Livermore, California 87123, USA*

We've now come full circle back to:

Volume 13, Number 1

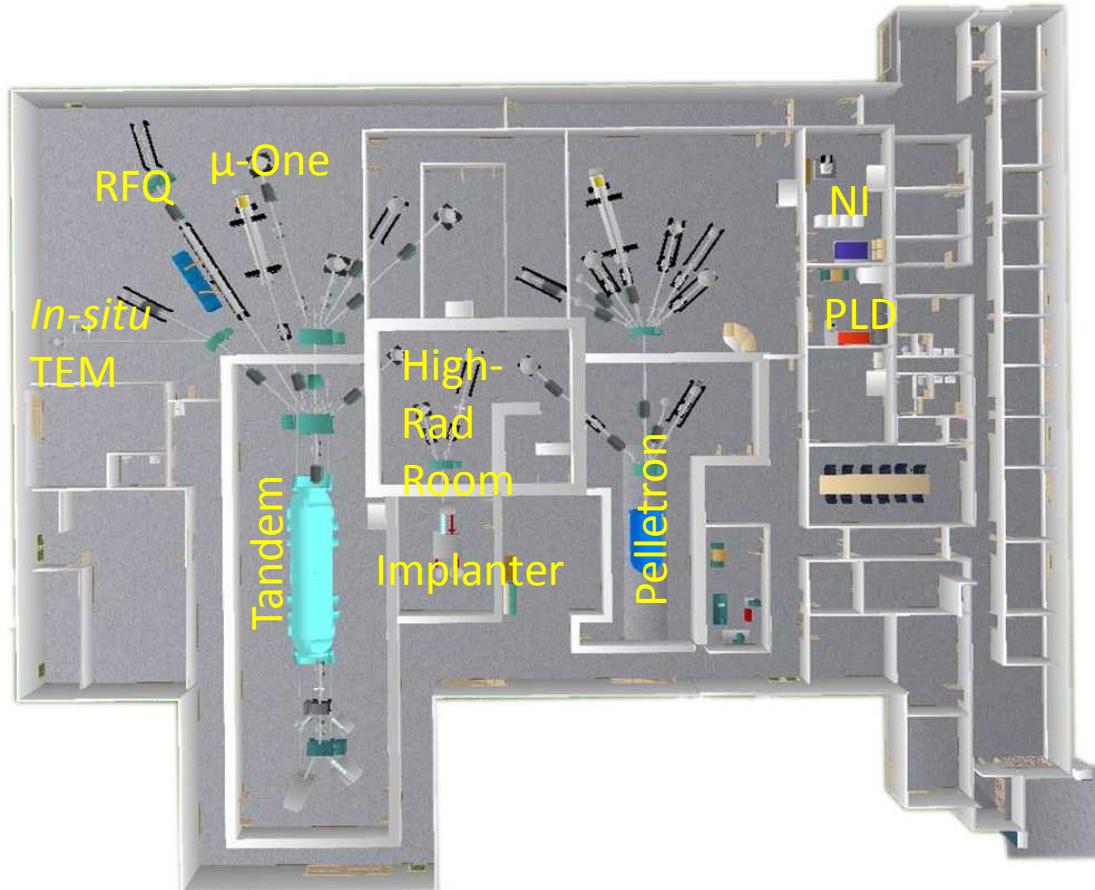
APPLIED PHYSICS LETTERS

1 July 1968

ANISOTROPIC THERMAL CONDUCTIVITY OF ELECTRON-IRRADIATED CdS*

Frederick L. Vook

Sandia Laboratories


Albuquerque, New Mexico 87115

(Received 26 April 1968)

The (new) Ion Beam Laboratory

General Overview of Interior

6MV HVE EN Tandem

History

- Originally HV EN-14 (no EN-13)
- Installed at U. Penn in February 1962

A Negative-Ion Cookbook

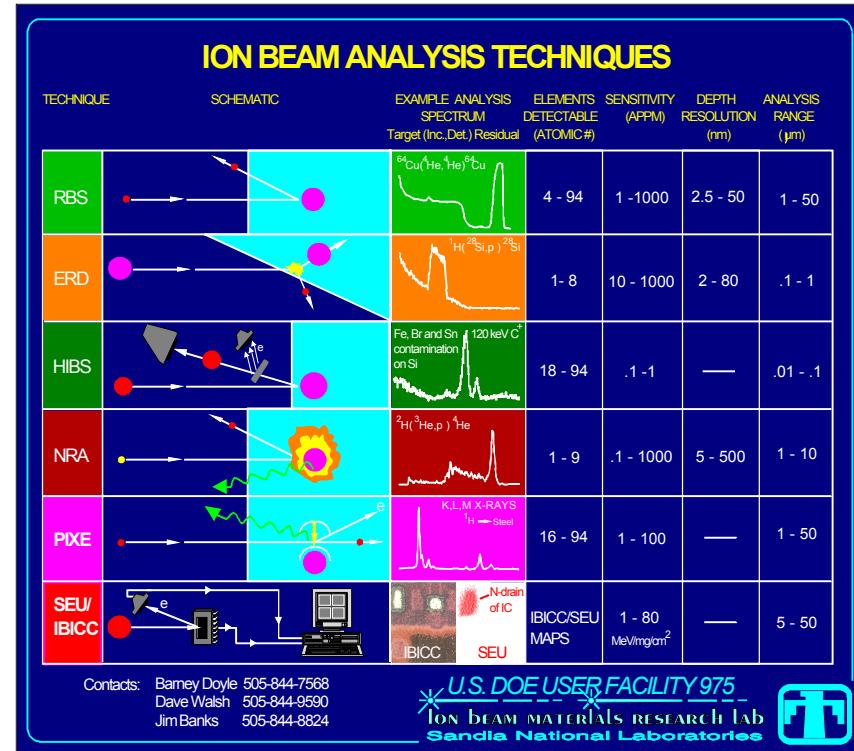
Roy Middleton

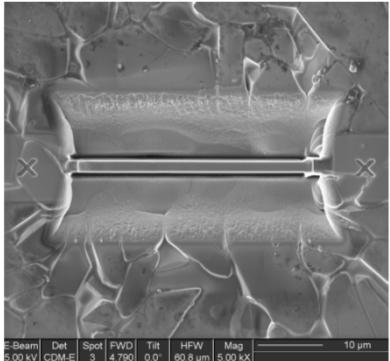
Department Of Physics, University of Pennsylvania
Philadelphia, PA 19104
October 1989 (Revised February 1990)

- Replaced with an FN Tandem ~1975
- Bought by SNL and installed in the (old) IBL in 1976
- Upgraded to Pelletron charging system in 1992
- Move 3/2010 to the (new) IBL

Moving the Tandem

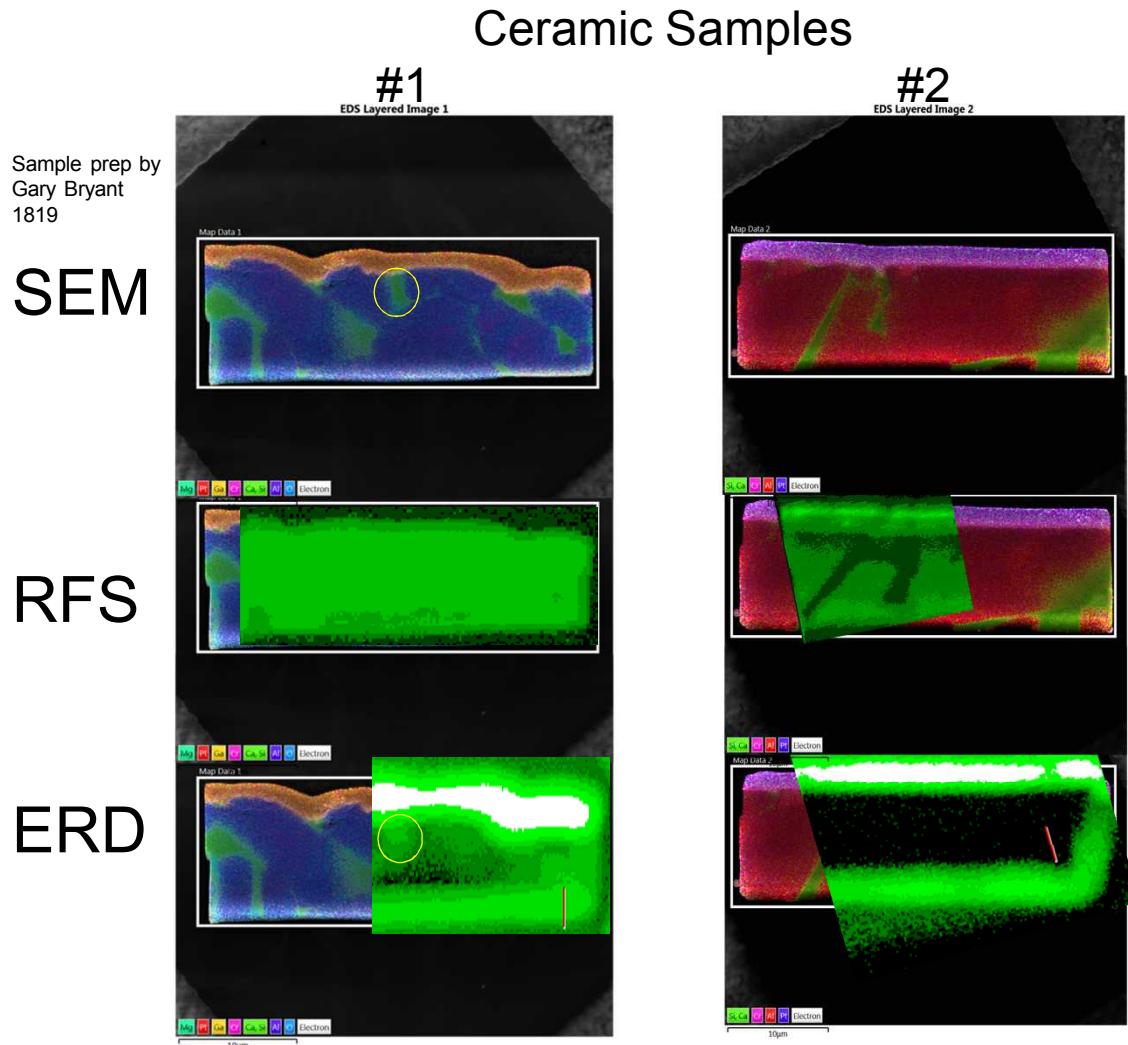
3MV Pelletron for Ion Beam Analysis


3MV single-ended NEC Pelletron being installed. Can maintain ± 100 V on terminal



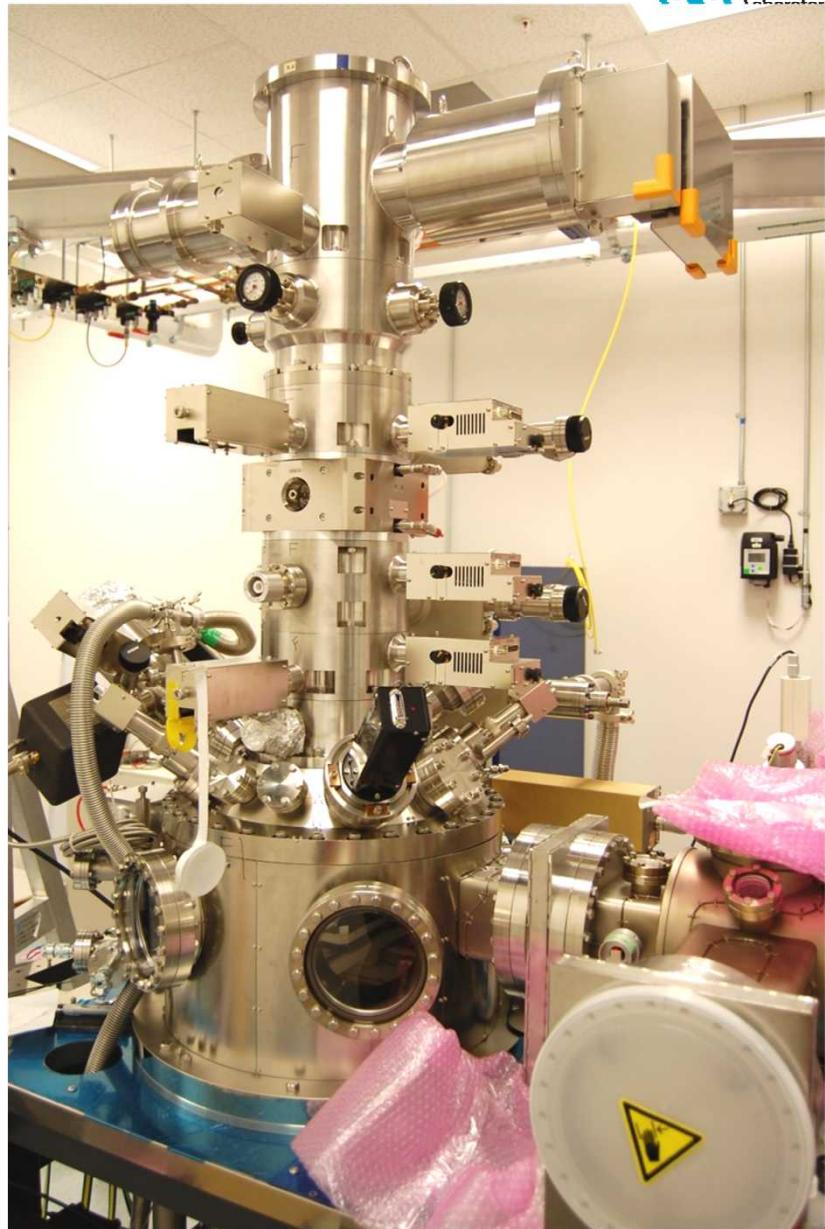
uBEAM line – $1\text{ }\mu\text{m}$ spot for IBA,
 200nm spot for SEU, nm
resolution stage.

All of the major IBA techniques are available on the uBEAM


- RBS - Rutherford BackScattering
- ERD - Elastic Recoil Detection
- HIBS – Heavy Ion BackScattering
- NRA - Nuclear Reaction Analysis
- PIXE - Proton Induced X-ray Emission
- SEU/IBIC – Single Event Upset and Ion Beam Induced Current Imaging

Microbeam IBA experiments in the IBL

- Elemental concentration distributions in 3D
- TEM samples can be analyzed
- H profiling using uERD
 - Sintered Ceramics
 - H_2O well known to modify voltilization behavior of common commercial glasses
 - Where is H_2O (i.e. H) localized?
 - microERD used to map H
 - microRFS performed at same time to measure sample thickness variations


HVEE Ion Implanter

- Research ion implant system
 - Cockcroft-Walton type voltage supply
- 400kV at sea level
- 350kV in Albuquerque (less air)
- Many ion sources
 - gas, sputter, oven, ...
- The primary calibration standard in the US for pulsed neutron detectors
 - Accelerate D or D₂ into deuterated or tritiated targets

Nanolmplanter

- FIB “on steroids”
- 100kV column
- Liquid metal source
- ExB filter to select ion/charge

- 20 nm spot size
- Li, Si, P, Cu, Pt, Au, Sb, ... run

- High resolution lithography stage and electrical contacts

The 'Baby' Tandem

- Installing a new (to us) 1MV NEC Tandem

The New IBL

- Tour is on Wednesday afternoon!
- See most of the building, all of the accelerators
- See you then!

