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Abstract

This document examines the performance of a generic flat-mirror multi-
monochromatic imager (MMI), with special emphasis on existing instruments
at NIF and Omega. We begin by deriving the standard equation for the mean
number of photons detected per resolution element. The pinhole energy band-
width is a contributing factor; this is dominated by the finite size of the source
and may be considerable. The most common method for estimating the spatial
resolution of such a system (quadrature addition) is, technically, mathemat-
ically invalid for this case. However, under the proper circumstances it may
produce good estimates compared to a rigorous calculation based on the con-
volution of point-spread functions. Diffraction is an important contribution
to the spatial resolution. Common approximations based on Fraunhofer (far-
field) diffraction may be inappropriate and misleading, as the instrument may
reside in multiple regimes depending upon its configuration or the energy of
interest. It is crucial to identify the correct diffraction regime; Fraunhofer and
Fresnel (near-field) diffraction profiles are substantially different, the latter
being considerably wider. Finally, we combine the photonics and resolution
analyses to derive an expression for the minimum signal level such that the
resulting images are not dominated by photon statistics. This analysis is con-
sistent with observed performance of the NIF MMI.
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1 Introduction

This document contains a general analysis of the properties of a multi-monochromatic
x-ray imager (MMI) [1, 2, 3, 4, 5] with flat mirrors. Its secondary purpose is to gather
all available information relevant to such an analysis for the specific MMI diagnostics
described below. Much of this discussion applies to any pinhole imaging system, such
as the heavy emphasis on properly identifying the diffraction regime.

Although an MMI instrument is designed to produce an array of pinhole images, each
covering a unique energy domain, the discussion throughout this document pertains
to any single pinhole image within that array. Section 2 examines the photonics bud-
get of the instrument. Section 3 estimates the spatial and spectral resolution of the
instrument based on an examination of several factors, including both Fraunhofer
and Fresnel diffraction. The spatial resolution discussion compares the rigorous ap-
proach (based on the convolution of point-spread functions) to common and much
easier (but inapplicable in this context) approximations based on quadrature addi-
tion. In Section 4, we combine the preceding results to derive lower bounds on the
detectable signal level, and compare those limits to MMI data collected on NIF shot
N121119. Appendix A examines the relationship between a position on the pinhole
plane and the corresponding energy at the detector. Appendix B contains the Yorick
code used to calculate Fresnel diffraction profiles in Section 3.

Special emphasis is placed on existing MMI diagnostics at the National Ignition
Facility (“NIF”) and the University of Rochester Laboratory for Laser Energetics
(“Omega”). At the time of this writing, the NIF instrument covered approximately
8 - 13 keV [6]; the range of the Omega MMI instruments was originally approxi-
mately 4.5 - 6 keV, which is the focus of the present analysis, but with an additional
capability to image 3.3 - 5.5 keV. However, this analysis is applicable to any MMI
instrument using flat Bragg reflectors.

Acknowledgments: I wish to thank Peter Hakel (XCP-5) and Scott Hsu (P-24)
for feedback on this document, as well as Kirk Flippo (P-24), Rahul Shah (P-24)
and Steve Batha (P-DO) for several enlightening conversations. I also thank Tom
Murphy (P-24) for bringing my attention to his treatment of the relationship between
photon statistics and resolution, which proved crucial for unifying this document, and
Fred Wysocki (XCP-DO) for obtaining measurements of an as-built Omega MMI
system.
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2 Photonics Budget

2.1 Total Number of Photons Available to the Detector (I0)

Let the “signal level” of the x-ray emission from the capsule be

S
[
J · eV−1 · sr−1

]
. (2.1)

This is the spatially and temporally integrated emission. In general, it will depend
upon the time-varying electron temperature, Te, and electron density, ne, plus de-
tails of the atomic physics. S might be measured with an absolutely calibrated
spectroscopic diagnostic, such as the NIF Supersnout-II instrument, which produces
calibrated spectra measured in J eV−1 sr−1. Estimating or calculating S requires
an atomic physics calculation, either directly or through the use of opacity values.
Deriving meaningful constraints on S is the subject of Section 4.

If the burn duration in picoseconds is ∆bps, then the mean signal level per second
is

S [J · eV−1 · sr−1]

∆bps · 10−12 [s · ps−1]
= 1012

(
S

∆bps

) [
J · eV−1 · sr−1 · s−1

]
. (2.2)

If the total area of the radiating region in µm2 is Aµm2 , then the spectral radi-
ance of the source—i.e., the mean signal level per second per square centimeter of
source—is

ReV =
1012

(
S

∆bps

)
[J · eV−1 · sr−1 · s−1]

Aµm2 · 10−8 [cm2 · µm−2]

= 1020

(
S

∆bps · Aµm2

) [
J · eV−1 · sr−1 · s−1 · cm−2

]
. (2.3)

(The spectral radiance is equivalent to the specific intensity, Iν , also known as the
brightness [7]. This is the quantity obtained by solving the radiative transfer equation
along a geometrical ray, such as when post-processing a radiation-hydrodynamic
numerical simulation to compute the X-ray self-emission. For example, the Yorick
[8] DRAT package computes, for an energy corresponding to frequency ν,

Iν = Iν (0) e−τν + Sν

(
1− e−τν

)
2



where Iν(0) is the background intensity, Sν is the source function, and τν the optical
depth. Similar calculations in the NLTE regime can be found in [9] and [10], and
may be conducted using Peter Hakel’s FESTR code [11].)

If the bandwidth of the pinhole image (see Section 2.4) in eV is ∆EeV, then the
effective radiance of the source is approximately

R ≈ ReV ·∆EeV = 1020

(
S

∆bps · Aµm2

) [
J · eV−1 · sr−1 · s−1 · cm−2

]
·∆EeV [eV]

= 1020

(
S ·∆EeV

∆bps · Aµm2

) [
J · s−1 · cm−2 · sr−1

]
. (2.4)

The energy in Joules of a single emitted photon of energy δEkeV keV is

Eph = δEkeV · 1.602× 10−16
[
J · photon−1

]
.

The mean number of photons of this energy, Nph, emitted per second per steradian
per square centimeter of emitting area is therefore the radiance divided by the photon
energy, or

Nph =
R

Eph

=
1020

(
S·∆EeV

∆bps·Aµm2

)
[J · s−1 · cm−2 · sr−1]

1.602× 10−16δEkeV [J · photon−1]

= 6.242× 1035

(
S ·∆EeV

∆bps · Aµm2 · δEkeV

) [
photon · s−1 · cm−2 · sr−1

]
. (2.5)

Let the photon collection interval be ∆gps picoseconds (e.g., this may represent the
width of the gating voltage pulse). Then the number of photons emitted per steradian
per square centimeter of emitter that can be received at the detector during the gating
period is given by

I0 = Nph

[
photon · s−1 · cm−2 · sr−1

]
· 10−12∆gps [s]

and thus

I0 =6.242× 1023

(
S ·∆EeV ·∆gps

∆bps · Aµm2 · δEkeV

) [
photon · sr−1 · cm−2

]
(2.6)

=6.242× 1015

(
S ·∆EeV ·∆gps

∆bps · Aµm2 · δEkeV

) [
photon · sr−1 · µm−2

]
(2.7)
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where I0 is the total number of photons available to the detector emitted into a unit
solid angle per unit area of emitter.

Example: Ge “Jet” Feature

Bruce Hammel has estimated the Heα signal level from a Ge-doped symcap implosion
at NIF [12] might be S = 2× 10−4J eV−1 sr−1, given 20 ng of Ge-doped CH ablator
mixed into a hotspot with Te = 3.5 keV and ne = 3× 1024 cm−3. Given a 100 ps burn
width (∆bps = 100), a 100 eV bandwidth (∆EeV = 100), a 10µm× 10µm emitting
area (Aµm2 = 100), and a 70 ps gating window (∆gps = 70), the total number of
available photons in Ge Heα emission (δEkeV = 10.2) is

I0 = 6.242× 1023 ·
(

2× 10−4 · 100 · 70

100 · 100 · 10.2

)
= 8.6× 1018 photon · sr−1 · cm−2.

(Sean Regan’s HSXRS conceptual design review (CDR) presentation estimates I0 =
8.4× 1018 photon · sr−1 · cm−2 [12].)

Example: NIF Shot N121119

NIF shot N121119 (November 19, 2012) gave a total emission in the Ge Heα line [13] of
1.72 J sr−1. From an emission feature width of 0.353 keV (estimated from plots of the
absolutely calibrated spectrum [14]), this gives a signal level S = 4.87 J keV−1 sr−1 or
S = 4.87× 10−3 J eV−1 sr−1. (A subsequent reanalysis [15] of the capsule emission
for shot N121119 yields 0.872 J sr−1 over a line width of 0.14 keV. In that case, the
signal S = 6.23 J keV−1 sr−1. Using that measurement as a starting point would
therefore increase all subsequent estimates by ≈28%.) In this shot, the Ge dopant
was placed in the inner edge of the capsule shell, so the relevant emitting area is
likely much larger than the 100 µm2 used in the previous example (which pertained
to a small “jetlike” feature penetrating an imploding capsule core).

Given a 100 ps burn width (∆bps = 100), a 100 eV bandwidth (∆EeV = 100), a
roughly estimated emitting area of 100µm× 100µm (Aµm2 = 104), and a 70 ps gat-
ing window (∆gps = 70), the total number of available photons in Ge Heα emission
(δEkeV = 10.2) is

I0 = 6.242× 1023 ·
(

4.87× 10−3 · 100 · 70

100 · 104 · 10.2

)
≈ 2.1× 1018 photon · sr−1 · cm−2.
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2.2 Detected Photons (Nd)

An estimate for the number of photons detected per resolution element, Nd, is

Nd = I0 · Ωph · Ares · η (2.8)

where I0 is the total number of photons available to the detector, Ωph is the solid
angle subtended by the pinhole as seen from the source, Ares is the area of a resolution
element at the source, and η is the aggregate detection efficiency of the instrument.
This estimate counts discrete photons, although a given instrument is likely to have
a raw detection threshold based on a time-integrated flux or a signal level, S, rather
than a number of photons. This estimate also disregards noise (however, see Section
4).

(It is important to note that in this discussion “resolution element” is not synonymous
with “pixel,” as in general these will not be equivalent. The size of an independently
resolvable image element is an inherent property of the imaging system, as shown
below, and unrelated to the size of detector elements. A monochromatic point source
will be blurred into the size and shape of the instrument’s resolution element for that
energy, which may be larger or smaller than the detector elements.)

In the limit of infinitesimal solid angle and area, the product ΩphAres is the étendue

of the imager. (Étendue is also known as the “acceptance” or “throughput” of the
system.) This quantity is related to Lagrange and optical invariants of the system. It
never decreases as light propagates through an imaging system, and is conserved at
perfect refractions and reflections [16]. Thus in what follows we are free to disregard
reflections from the Bragg mirror while considering ray paths, with the understanding
that the resulting expressions for Nd may constitute a lower bound.

The solid angle of the pinhole is easily calculated from the fraction of the total sphere
(4π steradians):

Ωph

4π
=

Aph

4πL2
tp

=⇒ Ωph =
Aph

L2
tp

[sr] (2.9)

where Aph is the area of the pinhole aperture, π (D/2)2, D being the pinhole diameter,
and Ltp is the distance from TCC (target chamber center) to the pinhole plane.
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Figure 1: Geometrical blur. Reflection at the Bragg mirror can be disregarded owing to properties
of the étendue.

A resolution element on the detector plane is the region on the detector over which
a monochromatic point source will be smeared. Here we define the geometrical blur
region as the disk defined by the magnification of a single point source through the
aperture pinhole, as shown in Figure 1. (The edges of the blur disk define the shadow
of the aperture in geometrical optics.) The diameter of the geometrical blur region
on the detector, Bg, is determined by the relation

(Bg/2)

Ltd

=
(D/2)

Ltp

=⇒ Bg = D

(
Ltd

Ltp

)
= D (1 +M) (2.10)

where Ltd is the distance from TCC to the detector plane, and M is the instrument
magnification, (Ltd − Ltp) /Ltp. Thus the area of the geometrical blur region on the
detector is

Ablur = π

(
Bg

2

)2

=
(π

4

)
D2 (1 +M)2 . (2.11)

(This estimate ignores diffraction, which may be non-negligible (see Section 3.1.3.2).
However, a detailed treatment of Ablur is unnecessary for calculating the number of
photons detected per unit area, as shown below.)

The area of a resolution element on the detector is M2 times the area of a resolution
element at the source. Therefore the area of a resolution element at the source

6



is

Ares =
Ablur

M2
=

(π
4

)
D2 (1 +M)2

M2

[
cm2 · resolution element−1

]
(2.12)

and thus we obtain the étendue:

Ωph·Ares =

[
π (D/2)2

L2
tp

]
·

[(π
4

)
D2 (1 +M)2

M2

]
=
π2D4 (1 +M)2

16L2
tpM

2

[
sr · cm2 · res. elt.−1

]
.

(2.13)

The number of photons detected per independent resolution element at the detector
is therefore

Nd = I0 · Ωph · Ares · η = I0 ·
π2D4 (1 +M)2

16L2
tpM

2
· η

[
photon · res. element−1

]
(2.14)

(Note there is a typographical error in the first form of equation (11) in Koch et
al., RSI 76, 073708 (2005). The correct exponent on D for this expression is 4,
as obtained via the above derivation, rather than 2, as written in the above refer-
ence.)

Again, this is a measure of the number of photons per independent image element, not
per detector element (i.e., not per pixel). A more common measure is the number
of photons detected per unit area of detector, frequently per square micron. To
obtain that number, we normalize Nd by the area of the geometrical blur region at
the detector in the appropriate units (µm2 · res. element−1). Doing so yields

Nµm2 =
Nd

Ablur

=
I0 · Ωph · Ares · η

Ablur

= I0 ·
Ωph

M2
· η = I0 ·

πD2

4L2
tpM

2
· η

[
photon · µm−2

]
.

(2.15)
Because this estimate is independent of Ares and Ablur, it doesn’t require a sophisti-
cated model for the blur disk size. Thus diffraction from the pinhole and Bragg re-
flector is immaterial to this discussion. These effects are analyzed in Section 3.

If the area of a detector pixel is Apix µm2, then

Npix = Nµm2 · Apix = I0 ·
πD2Apix

4L2
tpM

2
· η

[
photon · pixel−1

]
. (2.16)

Example: Ge “Jet” Feature

7



From above, we have I0 = 8.6× 1010 photon sr−1 µm−2.

For the NIF MMI, M = 6 and Ltp = 16.667 cm = 1.6667× 105µm. If the pinhole
diameter (D) is 10 µm, then we’d expect the NIF MMI to detect

Nµm2 = 8.6× 1010 · π102

4 · (1.6667× 105)2 · 62
· η = 6.75 η photon · µm−2.

Example: NIF Shot N121119

From above, I0 = 2.1× 1010 photon sr−1 µm−2.

Again using M = 6, Ltp = 16.667 cm, and D = 10 µm, we would expect the NIF
MMI to detect

Nµm2 = 2.1× 1010 · π102

4 · (1.6667× 105)2 · 62
· η = 1.65 η photon · µm−2. (2.17)

2.3 Detection Efficiency (η)

The aggregate detection efficiency, η, comprises contributions from three factors:

η = ηfilter · ηBragg · ηMCP .

The first factor, ηfilter, represents X-ray attenuation owing to propagation through
the blast shield and any additional filters. The second factor, ηBragg, accounts for the
reflectivity of the Bragg mirror. The final factor, ηMCP, is a catch-all that incorporates
the overall efficiency of the multichannel plate (MCP) and subsequent electronics.
All factors are energy-dependent. (Note that errors in the flat-fielding of the MMI
energy response can introduce significant errors in the inferred plasma quantities,
such as electron temperature [17].)

2.3.1 Blast Shield and Filters (ηfilter)

It is possible for the target to generate a significant amount of particulate debris.
The debris leaves TCC with a range of kinetic energies and sizes; the smallest pieces

8



may pass through the pinholes. It is therefore possible for particles to enter the
MMI and damage the instrument. Thus a blast shield (typically several layers of one
or more materials in multiple locations) is installed behind the pinhole array. The
blast shield also acts as an X-ray filter, and may produce significant attenuation. For
instance, the transmission through 2 mm of Kapton ranges from 18% at 8 keV to
67% at 12.85 keV. The X-ray transmission of the shield can be computing online via
the Center for X-ray Optics at Lawrence Berkeley National Laboratory [18].

2.3.2 Reflectivity (ηBragg)

MMI instruments use crystals or multilayer materials as low-incidence-angle gratings.
While the reflected intensity is a delta function of incidence angle for an ideal grating,
imperfections and other real-world effects give rise to nonzero reflected intensities at
small variations from the n = 1 Bragg condition. A plot of the reflected intensity
at a fixed detector location as a function of incidence angle is known as the rocking
curve [19] (see Section 3.1.4).

The Bragg mirrors for the NIF and Omega MMI instruments are multilayer ma-
terials comprising approximately 300 periods of alternating W and B4C layers de-
posited atop a substrate of crystalline silicon. The average inter-layer spacing of the
composite W/B4C material is d = 1.5± 0.0015 nm with a uniformity of ±0.007 nm
[20].

The performance of the multilayer has been calculated [20] for incident plane waves
between 9 and 12.5 keV. For pinhole image energies near the low end of the NIF
instrument range, 8 keV, an integrated Bragg reflectivity of 30% is characteristic
of the multilayer. For pinhole image energies near the upper end of the intrument
range, 13 keV, the average reflectivity is closer to 20%. The Bragg contribution to
the NIF MMI photonics budget is therefore weakly dependent upon energy.

No analogous data exist for energies within the domain of the Omega MMI.
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2.3.3 Multichannel Plate (ηMCP)

The efficiency of the multichannel plate (MCP) is determined by several factors
including (but not limited to) the gold photocathode response function [21] (which
measures the energy-dependent efficiency of producing an electron for the scintillator
fibers); the amplification of electrons within the scintillator fibers (which therefore
depends upon the gain); and the performance of the phosphor plate. Some of these
factors will be strongly energy dependent, such as the photocathode response func-
tion. The energy-dependent quantum efficiency of a gold photocathode can be found
in [21]. A common energy-independent estimate of the MCP efficiency [12] is 7%,
however a superior energy-dependent response function can be found in [22].

Example: Ge “Jet” Feature

At 10.2 keV, the transmission through 2.5 mm (98.43 mils) of Kapton is 37%. The
reflectivity of the NIF MMI Bragg mirror at this energy is 30%, and the energy-
independent MCP efficiency is roughly 7%. Thus

η = 0.37 · 0.30 · 0.07 = 7.77× 10−3

and, using our previous calculation,

Nµm2 = 6.75 · 7.77× 10−3 photon · µm−2 = 0.052 photon · µm−2

Example: NIF Shot N121119

Using the same η value as above, we get

Nµm2 = 1.65 · 7.77× 10−3 photon · µm−2 = 0.013 photon · µm−2

2.4 Monochromaticity of Pinhole Images (∆EeV)

The finite sizes of the source and pinhole lead to significant variation in the incidence
angles for geometrical rays arriving at the Bragg reflector. Thus, rather than being
truly monochromatic, each pinhole image in the MMI array will encompass a range
of energies, ∆EeV. The basic geometry is illustrated by the cartoon in Figure 2.
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Figure 2: Variation of incidence angles on the Bragg mirror.

A ray from the source to the Bragg mirror makes an angle α with the MMI centerline,
which depends on the emission location at the source (xs) and the location at which
the ray intersects the pinhole plane (xp). The tilt angle of the mirror is ψ, and the
Bragg angle for this ray is ϕ. From the diagram, we see that ϕ = α+ ψ. Thus the
n=1 Bragg condition yields

E (α) =
hc

2d sin (α+ ψ)
; α = tan−1

(
xp − xs

Ltp

)
(2.18)

and
dE

dα
= −hc

2d
cot (α+ ψ) csc (α+ ψ) . (2.19)

(While energy variation across the mirror is a strong function of xp it depends only
weakly on yp, as shown in Appendix A.)

We consider the individual contributions of the pinhole and source sizes separately.
In what follows, we consider source sizes of 200, 250, and 300 µm for the NIF MMI
(based on empirical observations of DIME shots) and source sizes of 100, 115, and
130 µm for the Omega MMI (these being the core sizes for which the various Omega
MMI pinhole designs were intended [23]). We consider NIF pinholes of 10, 35, and
50 µm, and Omega pinholes of 5, 10, and 15 µm. These choices give approximately
the same range of source/pinhole size ratios for both instruments (4 - 30 for the
NIF MMI, and 6.7 - 26 for the Omega MMI). If the aperture becomes too large
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compared to the source, it may be better modeled as a penumbral aperture rather
than a pinhole aperture [24, 25].

2.4.1 Point Source, Extended Pinhole

First, consider the case of a point source located at the origin (target chamber center,
or TCC) and a pinhole of diameter D centered at xph. Incidence angles will vary at
the mirror as illustrated in Figure 3.

Figure 3: Variation of incidence angles owing to a finite pinhole size.

In this case, we have xs = 0, xp = xph ± 1
2
D, and α2 = α1 + dφ. The energy variation

across the pinhole is therefore

∆EeV = |E(α2)− E(α1)|

Plots of ∆EeV for a reasonable range of xph values are shown in Figure 4 for the Omega
MMI and figure 5 for the NIF MMI. Both instruments use a W/B4C multilayer with
d ≈ 15Å interlayer spacing.
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Mirror Tilt Angle = 4.19 degrees
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Figure 4: Omega MMI ∆EeV for a point
source and extended pinhole, as a function of
pinhole location. Pinhole diameters are 5 µm
(black), 10 µm (blue), and 15 µm (red).

Mirror Tilt Angle = 0.08 degrees
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Figure 5: NIF MMI ∆EeV for a point source
and extended pinhole, as a function of pinhole
location. Pinhole diameters are 10 µm (black),
35 µm (blue), and 50 µm (red).

Pinholes on the Omega MMI instruments are distributed between 0.8495 mm above
and 1.4735 mm below the MMI centerline [23]; these values are marked in figure 4.
For the Omega MMI, ∆EeV ranges from 5 - 20 eV for 5 - 15 µm pinholes. In contrast,
on the NIF MMI, ∆EeV may exceed 100 eV for 10 µm pinholes within 2.4 mm of the
NIF MMI centerline, or for 50 µm pinholes within 5.6 mm of the centerline.

These estimates provide a lower bound on the bandwidth of point source images,
owing strictly by the finite size of the pinhole.

2.4.2 Extended Source, Infinitesimal Pinhole

Now consider the case of an extended source. If the source is sufficiently larger than
the pinhole aperture, the pinhole may be treated as an infinitesimal point. This
geometry is illustrated in Figure 6.
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Figure 6: Variation of incidence angles owing to a finite source size.

In this case xp = xph and xs = ±0.5 Ds where Ds is the source diameter. Plots of
∆EeV for a reasonable range of Ds values are shown in Figure 7 for the Omega MMI
and Figure 8 for the NIF MMI.

Mirror Tilt Angle = 4.19 degrees
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Figure 7: Omega MMI ∆EeV for an extended
source and infinitesimal pinhole, as a function
of pinhole location. Source sizes are 100 µm
(black), 115 µm (blue), and 130 µm (red).

Mirror Tilt Angle = 0.08 degrees

 2  4  6  8  10
 0

 1000

 2000

 3000

 4000

 5000

Source ∆EeV (NIF MMI)

xph [mm]

∆E
 [e

V
]

Figure 8: NIF MMI ∆EeV for an extended
source and infinitesimal pinhole, as a function
of pinhole location. Source sizes are 200 µm
(black), 250 µm (blue), and 300 µm (red).
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The Omega MMI pinhole designs are intended to accommodate core sizes between
100 and 130 µm [23]; as above, the range of allowed pinhole locations is marked on
Figure 7. ∆EeV values for this instrument range from 90 - 170 eV for these core sizes.
On the NIF MMI, we see that ∆EeV will exceed 150 eV for pinholes 1 cm from the
centerline. The bandwidth grows to several hundred eV at 5 mm.

Comparison of figures 4, 5, 7, and 8 shows the bandwidth contribution from the finite
source size is nearly an order of magnitude greater than the contribution from the
finite pinhole size. This is to be expected, as the pinhole apertures are required to be
negligible compared to the source size (as opposed to penumbral apertures).
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3 Spatial and Spectral Resolution

We begin by noting the resolution in the orthogonal directions of a 2D MMI pinhole
image may have different contributing factors. Typically the energy variation across
the MMI detector plane varies strongly with pinhole position in one direction but
only weakly in the orthogonal direction. (See appendix A.) We ignore the variation
in the weak direction. This is justified because most MMI analysis procedures im-
plicitly assume the spectral variation is strictly one-dimensional [26, 27]. In what
follows, we assume the instrument magnification does not vary across the field, and
is the same in the x- and y-directions. In practice it may vary, for instance if the
detector and reflector are misaligned. For the purpose of calculating the diffraction
contributions we assume all pinhole apertures to be perfectly circular, although in
practice fabrication difficulties may produce elliptical pinholes.

The spatial resolution limit is established by the width (not radius) of a monochro-
matic point-spread function (PSF) image. Throughout this section, we compare two
methods for estimating that width. A quadrature addition method is commonly used
in the literature [28, 29]. While straightforward, this method relies upon unjustified
physical assumptions, and may lead to significant underestimation of the PSF width,
depending on the diffraction regime. The correct approach, which involves comput-
ing a chain of distinct PSF convolutions, is more computationally intensive. How-
ever, we will derive approximations for the diffraction PSF in both the far- and near
field which greatly simplify the PSF convolution method and lead to semi-analytic
estimates consistent with results derived by rigorous numerical computation.

We conduct all calculations at the detector and convert to a source resolution at
the end. These estimates do not account for effects that stem from the finite time
gating of the detector at a particular location, and/or the finite interval for the
gating pulse to sweep across the photocathode. Such effects may include motion
blur within a particular pinhole image, or the translation of temporal variations in
the line/continuum ratio into spatial variations across the detector plane.
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3.1 Spatial Resolution

3.1.1 Convolution of Point Spread Functions

The final image on the detector plane is the convolution of the source profile with
the PSFs of the various instrument elements. In this case the pinhole, the Bragg
reflector (i.e., the crystal or multilayer), and the detector each contribute their own
PSF to the final image. Additional elements may contribute, but here we restrict
our attention to these factors. By denoting the radial image intensity by I(r) and
the radial source profile by S(r) (not to be confused with the signal level, S), and the
PSFs by P, the fundamental relationship can be written

I(r) =

{[(
S (r) ∗ Pph (r)

)
∗ PBragg (r)

]
∗ Pdet (r)

}
(3.1)

where “∗” denotes convolution. Each PSF represents a normalized distribution of
intensities or, equivalently, irradiances (power received per unit area). The normal-
ization is important for keeping each convolution operation flux-conservative.

The pinhole PSF, Pph, has two components: a contribution from the geometrical
shadow of the aperture (the ray-optics contribution), plus a contribution from diffrac-
tion [28, 29]. By applying the associative property of convolutions we obtain the
aggregate PSF of the system:

Psystem(r) = Pgeom (r) ∗ Pdiff (r) ∗ PBragg (r) ∗ Pdet (r) . (3.2)

Approximating the spatial resolution limit of the instrument means estimating the
width of the system PSF.

3.1.1.1 Special Case: Gaussian PSFs

Consider a case where the source profile and every PSF is Gaussian. Then let us
define σ2

S to be the variance of S(r), σ2
geom to be the variance of Pgeom, etc. The

convolution of a pair of Gaussians produces another Gaussian, and the resulting
variance is simply the sum of the original variances. In this circumstance I(r) will be
a Gaussian with variance given by

σ2
I = σ2

S + σ2
geom + σ2

diff + σ2
Bragg + σ2

det (3.3)
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When σ2
S → 0, the extended source becomes a point source, and

Σ2
0 ≡ σ2

geom + σ2
diff + σ2

Bragg + σ2
det (3.4)

is the variance of the system PSF. If we equate the radius of the system PSF with
its standard deviation (i.e., the square root of the variance), then 2 Σ0 is the spatial
resolution limit of the system (the PSF width).

Calculating the quadratic sum is trivial for known Gaussian standard deviations, σ.
Thus, the convenience of Equation 3.4 makes it the basis of many resolution estimates
in the X-ray pinhole imaging literature [28, 29]. However, it is only applicable to a
chain of Gaussian point spread functions, or to PSFs that can be well-approximated
by a Gaussian. As shown below, the Gaussian assumption fails for Pdiff in the near-
field regime, and it is patently incorrect for Pgeom.

3.1.1.2 General Case: Non-Gaussian PSFs

In what follows, we will denote the effective width (diameter) of each PSF by D rather
than 2σ to emphasize that these functions might be non-Gaussian. An estimate for
the resolution limit at the detector, based on the Gaussian case but commonly used
in the literature, is [28, 29]

D2
x,y =D2

det +D2
ph +D2

Bragg

=D2
det +D2

geom +D2
diff +D2

Bragg (3.5)

where Dx and Dy are the axes of the ellipse into which a monochromatic point source
is blurred (here assumed to be equal).

3.1.2 Detector (Pdet, Ddet)

According to George Kyrala [30], the resolution of the MCP used by the NIF MMI
on shot N121119 was 50 µm. Kyrala also states [31] the resolutions of the NIF and
Omega MCPs are approximately the same (50 µm). (It should be noted that the
final scanned resolution of the film used for the Omega MMI instruments may be
20 µm or smaller, according to Rahul Shah [32]. However, this is distinct from the
resolution of the detector during data collection.)
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For simplicity, and lacking more specific information, we assume the detector PSF
to be Gaussian. In that case, the standard deviation σdet in Equation 3.4 is 10.62
µm, which yields a Gaussian FWHM = 2.3548σ = 25.0 µm. Alternatively, if we
estimated the resolution via Equation 3.5, we would use Ddet = 50µm.

3.1.3 Pinhole (Pph,Dph)

Two factors contribute to the pinhole point-spread function: a geometric component
arising from the finite size of the aperture, and a contribution from diffraction through
the aperture [28, 29].

3.1.3.1 Geometric Component (Pgeom, Dgeom)

The geometrical shadow of the pinhole aperture defines a region of diameter Dgeom.
This is the geometrical blur disk arising from the projection of a point source through
a single pinhole, as shown in Figure 1. (Recall that the Bragg mirror can be ignored
when examining this property of the system because the étendue, which is related
to optical invariants of the system, is conserved in perfect reflections, as described in
Section 2.2.) As shown in Equation 2.10, the diameter of the geometrical blur region
on the detector is simply D(1 + M), where D is the pinhole diameter and M is the
instrument magnification. Thus

Dgeom = D(1 +M) (3.6)

which, based on the design specifications, yields Dgeom ≈ 7D for the NIF MMI in-
strument and Dgeom ≈ 9.6D for the Omega MMI instruments. (The empirical mag-
nification of the as-built instruments may vary. Rahul Shah has obtained M = 7.5
for the Omega MMI, based on comparison of the known pinhole spacings and the
measured image spacings [33].)

Dgeom is sufficient to compute the ray-optics contribution to the system resolution
limit according to Equation 3.5. But in order to compute the convolutions correctly,
as in Equation 3.2, we must also derive a functional form for the PSF, Pgeom. Consider
Figure 1. Let the radiant flux arriving at the center of the detector (i.e., along the
central axis) be F0. Then, by the inverse square law, the radiant flux arriving at the
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detector screen a distance r from the central axis must be

F (r) =


F0

L2
td

L2
td + r2

=
F0

1 +
(

r
Ltd

)2 |r| < Rgeom

0 |r| ≥ Rgeom

(3.7)

where Rgeom = 0.5Dgeom. Note that Rgeom � Ltd for the system configurations under
consideration here. Then F(r) ≈ F0 for |r| < Rgeom and 0 elsewhere, meaning Pgeom

is well approximated by a normalized boxcar function:

Pgeom(r) =
1

2Rgeom

[
Θ (r +Rgeom)−Θ (r −Rgeom)

]
(3.8)

where Θ denotes the Heaviside step function. This cannot be approximated by a
Gaussian. Because the geometric contribution from the pinhole is always a factor in
the resolution, the quadrature addition method is never mathematically justified, as
at least one contributing factor is distinctly non-Gaussian. Nevertheless under certain
circumstances it may produce decent estimates, as shown in Section 3.1.6.

3.1.3.2 Diffraction (Pdiff , Ddiff)

A proper treatment of the diffraction contribution depends on whether the detector
lies in the far-field regime, in which case the Fraunhofer approximation applies, or in
the near-field regime, in which case a more complicated Fresnel diffraction calculation
is required. (Both approximations are derived from scalar diffraction theory.)

The regime is determined by the dimensionless Fresnel number

F =
R2

λL
=

(D/2)2

λL
(3.9)

where R is the aperture radius, λ is the wavelength, and L is the distance from the
aperture to the detector plane. (On axis, L = Ltd − Ltp. We use this approximation
for L when estimating F.) The Fraunhofer approximation applies for F � 1, while
the Fresnel approximation applies for F & 1 [34].

Given λ = hc/E = (12.4× 10−4/EkeV)µm, we have F = 2.02× 102 D2 EkeV/L where
D and L are measured in µm. As in Section 2.4, we consider 10, 35, and 50 µm NIF
MMI pinholes, and 5, 10, and 15 µm pinholes for the Omega MMI.
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The Fresnel number for the NIF MMI (L = 1.0 m) is

FNIF = 2.02× 10−4 D2 EkeV (3.10)

The energy range for the NIF MMI instrument is approximately 8-13 keV. Thus,
it has a Fresnel number FNIF ≈ 0.16− 0.26 for 10 µm pinholes, nominally in the
Fraunhofer (far field) regime, while for pinholes larger than 25 µm the Fresnel number
FNIF > 1, firmly in the Fresnel regime.

The Fresnel number for the Omega MMI (L = 27.0 cm) is

FOmega = 7.48× 10−4 D2 EkeV (3.11)

The energy range of the Omega MMI instrument is approximately 4.5 - 6.0 keV. Thus
FOmega < 1 for 5 and 10 µm pinholes. But for 15 µm pinholes, FOmega ≈ 0.76 for 4.5
keV and FOmega ≈ 1.01 for 6.0 keV. Thus when D = 15 µm, the diffraction resides
in a transitional regime between the far- and near-field approximations. (FOmega > 1
for all energies when D = 17.24 µm.)

The Fresnel numbers are plotted in Figures 9 and 10.
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Figure 9: Fresnel numbers for the Omega MMI.
Red: 5 µm pinhole; Green: 10 µm pinhole; Blue:
15 µm pinhole.
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Figure 10: Fresnel numbers for the NIF MMI.
Red: 10 µm pinhole; Green: 35 µm pinhole;
Blue: 50 µm pinhole.
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Fraunhofer (far-field) Diffraction The diffracted spot size for a circular aper-
ture in the Fraunhofer case is set by the angular radius of the Airy disk:

sin θ ≈ 1.22λ

D
(3.12)

where the numerical factor 1.22 ≈ 3.8317/π (3.8317 being the first nontrivial zero of
the Bessel function J1). The above relationship is the Rayleigh resolution criterion.
Again using λ = (12.4× 10−4/EkeV)µm, we have

sin θ ≈ 1.51× 10−3

D EkeV

(3.13)

where D is measured in microns, as usual. Thus we have sin θ � 1 for all relevant
energies and aperture sizes. Then sin θ ≈ θ and therefore the linear diameter of the
Airy disk, as used in the quadrature addition method, is

Ddiff ≈
2.44λL

D
≡ DAiry. (3.14)

The true far-field diffraction PSF is given by the Airy intensity pattern

Pdiff (r) = P0

[
J1(

r
r0

)

r

]2

(3.15)

where r0 = λL/πD = DAiry/2.44π and again the normalization constant is chosen to
ensure the total area under Pdiff is unity. This is well approximated by a normalized
Gaussian with standard deviation σ =

√
1.85 r0, as shown in Figure 11.

Figure 11: Ratio of the true Fraunhoffer PSF to a normalized Gaussian with σ = 1.85 r0, calculated
for the NIF MMI with 10 µm pinholes. Results for 8, 10.2, and 13 keV exactly overlay each other.
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Fresnel (near-field) Diffraction Estimates for Fresnel diffraction are less straight-
forward. However, estimates can be derived for the case of a circular aperture [35, 36].
Here we use the numerical algorithm described by Rees [37] to estimate the diffracted
intensity profile for a pinhole located on the instrument’s central axis. (See Appendix
B for the Yorick code used to implement the Rees algorithm.) This calculation ig-
nores oblique illumination; commonly, the pinholes do not reside along the central
axis. The calculation could be modified to account for off-axis apertures by adding
phase factors corresponding to the increased path lengths, but the fine structure of
the Fresnel diffraction pattern has little effect on the final result of the PSF convo-
lutions, as shown in Section 3.1.5.

Figures 12 - 14 show the estimated radial diffraction intensity profiles projected on
the detector plane for 10, 35, and 50 µm NIF MMI pinholes, along with the Airy disk
radii (RAiry ≡ 0.5 DAiry), the radius of the blur disk (Rgeom ≡ 0.5 Dgeom), and, in the
near-field regime, the radius containing 97.6% of the radially-integrated intensity (see
below). Figures 15 - 17 contain the analogous plots for the Omega MMI instrument
with 5, 10, and 15 µm pinholes.

8.00 keV: F = 0.161

10.20 keV: F = 0.206

13.00 keV: F = 0.262
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Figure 12: Radial diffraction profiles for the NIF MMI with 10 µm pinholes. Here F � 1, so
Fraunhofer diffraction is plotted. Dashed lines: Airy disk radii. Dotted line (black): Rgeom. Red:
8.0 keV; Green: 10.2 keV; Blue: 13.0 keV.
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8.00 keV: F = 1.976

10.20 keV: F = 2.519

13.00 keV: F = 3.211
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NIF MMI: 35 µm PH

Figure 13: Radial diffraction profiles for the NIF MMI with 35 µm pinholes. Here F > 1, so
Fresnel diffraction is plotted. Dashed lines: Airy disk radii. Dotted line (black): Rgeom. Dash-dot
lines: 97.6% radii (see text). Red: 8.0 keV; Green: 10.2 keV; Blue: 13.0 keV.

8.00 keV: F = 4.032

10.20 keV: F = 5.141

13.00 keV: F = 6.552
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Figure 14: Radial diffraction profiles for the NIF MMI with 50 µm pinholes. Here F > 1, so
Fresnel diffraction is plotted. Dashed lines: Airy disk radii. Dotted line (black): Rgeom. Dash-dot
lines: 97.6% radii (see text). Red: 8.0 keV; Green: 10.2 keV; Blue: 13.0 keV.
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4.50 keV: F = 0.084

5.25 keV: F = 0.098

6.00 keV: F = 0.112
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Figure 15: Radial diffraction profiles for the Omega MMI with 5 µm pinholes. Here F � 1, so
Fraunhofer diffraction is plotted. Dashed lines: Airy disk radii. Dotted line (black): Rgeom. Red:
4.5 keV; Green: 5.25 keV; Blue: 6.0 keV.

4.50 keV: F = 0.336

5.25 keV: F = 0.392

6.00 keV: F = 0.448
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Figure 16: Radial diffraction profiles for the Omega MMI with 10 µm pinholes. Here F . 1, so
Fraunhofer diffraction is plotted, although the far-field assertion is debatable here. Dashed lines:
Airy disk radii. Dotted line (black): Rgeom. Red: 4.5 keV; Green: 5.25 keV; Blue: 6.0 keV.
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4.50 keV: F = 0.756

5.25 keV: F = 0.882

6.00 keV: F = 1.008
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Figure 17: Radial diffraction profiles for the Omega MMI with 15 µm pinholes. Here F ≈ 1, so
Fresnel diffraction is plotted. Dashed lines: Airy disk radii. Dotted line (black): Rgeom. Dash-dot
lines: 97.6% radii (see text). Red: 4.5 keV; Green: 5.25 keV; Blue: 6.0 keV.

(Note that in the near-field regime (F & 1), the central illumination is no longer
a global maximum at all energies. This is characteristic of Fresnel diffraction [37].
Also note the Fresnel profiles are distinctly non-Gaussian.)

In all cases, the diffracted intensity falls within the geometrical blur radius, Rgeom.
Furthermore, in the near-field regime, the Fresnel-diffracted intensity profiles
extend significantly beyond the Airy disk radii, and fall to zero only near
Rgeom (Figures 13, 14, and 17). This is to be expected; calculations at very high
Fresnel numbers (F > 1000) show the diffracted intensity (or irradiance) approaches
a constant function of radius until falling sharply at Rgeom [36].

In the far-field regime, analytic integration of the Fraunhofer diffraction pattern
shows the Airy disk contains approximately 97.6% of the diffracted intensity. In
other words, DAiry is the width of the 97.6% intensity contour. Thus, when discussing
Fresnel diffraction profiles, it is useful to identify the radii that enclose 97.6% of the
diffracted intensity (R97.6%). This is the only way to ensure true “apples-to-apples”
comparisons across both diffraction regimes. These radii are denoted by dashed-
dotted lines in Figures 13, 14, and 17. In these cases, R97.6% ≈ 85-95% Rgeom.
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Thus, for the purposes of Equation 3.5, a convenient energy-independent estimate
for Ddiff in the Fresnel (near-field) regime is simply Ddiff ≈ Dgeom. (In this regime,
Dgeom > D97.6% >> DAiry.)

As shown below, the fine structure in the Fresnel diffraction PSF is largely irrel-
evant, as it will be smeared out by convolution with the geometric shadow and
detector PSFs. Thus we may approximate the Fresnel PSF by a normalized box-
car function of width Dgeom, which is exactly the geometric shadow PSF, Pgeom.
This energy-independent (and non-Gaussian) approximation leads to excellent semi-
analytic estimates for the system PSF (see Section 3.1.5).

3.1.3.3 Combined Geometric and Diffracted Contributions

The final result for the pinhole contribution to the spatial resolution varies widely,
depending on whether the correct but cumbersome Equation 3.2 or the incorrect but
standard Equation 3.5 is used.

Addition in Quadrature (Equation 3.5)

From above:

• In the far-field regime (F � 1), Ddiff = DFraunhofer ≡ DAiry =
2.44λL

D
.

• In the near-field regime (F & 1), Ddiff = DFresnel ≡ Dgeom = (1 + M) D.

Representative values of these Ddiff expressions are summarized in Table 1.
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NIF, 10 µm pinholes Omega, 5 µm pinholes

E [keV] DAiry [µm] D97.6% [µm] E [keV] DAiry [µm] D97.6% [µm]
8.0 37.8 37.8 4.5b 36.3 36.3

10.2a 29.7 29.7 5.25 31.1 31.1
13.0 23.3 23.3 6.0 27.2 27.2

NIF, 35 µm pinholes Omega, 10 µm pinholes

E [keV] Dgeom [µm] D97.6% [µm] E [keV] DAiry [µm] D97.6% [µm]
8.0 245.0 217.6 4.5b 18.2 18.2

10.2a 245.0 213.6 5.25 15.6 15.6
13.0 245.0 209.6 6.0 13.6 13.6

NIF, 50 µm pinholes Omega, 15 µm pinholes

E [keV] Dgeom [µm] D97.6% [µm] E [keV] Dc
geom [µm] D97.6% [µm]

8.0 350.0 295.2 4.5b 143.3 138.0
10.2a 350.0 291.2 5.25 143.3 130.8
13.0 350.0 291.2 6.0 143.3 129.2

Table 1: Diameter of the diffraction contribution to the quadature method on the detector plane.
We define Ddiff ≡ DAiry in the far-field regime and Ddiff ≡ Dgeom in the near-field regime. a10.2
keV is the Ge Heα line. b4.76 keV is the Ti Heα line. cThe Omega 15 µm pinhole configuration
resides in the transitional regime between the near- and far-field approximations; we classify this
case as belonging to the near-field regime because here the Fresnel number F = 1.01 at 6.0 keV.

Note the substantial difference between the far-field and near-field values. The tran-
sition from the far-field to the near-field regime can increase the diffraction width by
an order of magnitude. However, the geometrical blur disk diameter, Dgeom, exceeds
D97.6% in the Fresnel regime by only 4 - 20%.

In the far-field regime, the quadrature method yields a net pinhole contribution

D2
ph = D2

geom +D2
Airy = D2

geom +

(
2.44λL

D

)2

. (3.16)

As long as the configuration remains within the far-field regime (i.e., F� 1), the error
incurred by disregarding diffraction diminishes with increasing aperture size. But
F ∝ D2, so larger apertures rapidly drive the configuration out of the far-field.

In the near-field regime, the quadrature method yields a net contribution

D2
ph = D2

geom +D2
geom = 2D2

geom. (3.17)

28



PSF Convolution (Equation 3.2)

The true pinhole PSF is given by the convolution Pgeom ∗ Pdiff .

Results for the far-field regime are plotted in Figures 18-20. Although the diffraction
is well-approximated by a Gaussian, the resulting pinhole PSF is not.

Figure 18: NIF MMI pinhole PSF in the far field (10 µm pinholes). Results using the exact (Bessel
function) solutions are shown for 8 keV (blue), 10.2 keV (red), and 13 keV (yellow) alongside the
Gaussian approximation for 13 keV (green).

Figure 19: Omega MMI pinhole PSF in the far
field (5 µm pinholes). Results using the Bessel
function solutions are shown for 4.5 keV (blue),
5.25 keV (red), and 6.0 keV (yellow) alongside
the Gaussian approximation for 6 keV (green).

Figure 20: Omega MMI pinhole PSF in the far
field (10 µm pinholes). Results using the Bessel
function solutions are shown for 4.5 keV (blue),
5.25 keV (red), and 6.0 keV (yellow) alongside
the Gaussian approximation for 6 keV (green).

The FWHM is Dgeom in all cases. R97.6% resides at 1.149, 1.096, and 1.057 Rgeom for
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10 µm NIF pinholes (8, 10.2, and 13 keV, respectively). With 5 µm Omega pinholes,
R97.6% sits at 1.261, 1.204, and 1.164 Rgeom; with 10 µm pinholes, those contours sit
at 1.006, 0.9985, and 0.9930 Rgeom (4, 5.25, and 6 keV, respectively).

The near-field pinhole PSF arises from autocorrelation of a boxcar function:

Figure 21: Left: approximate NIF MMI pinhole PSF in the Fresnel regime, calculated for 35 µm
(blue) and 50 µm (red) pinholes. Right: approximate Omega MMI pinhole PSF in the Fresnel
regime, calculated for 15 µm pinholes. These calculations are based on representing the Fresnel-
diffraction PSF as an energy-independent boxcar with width 2Rgeom (see text).

This triangular pinhole PSF is an excellent approximation for the “true” near-field
pinhole PSF. This will be shown rigorously, below (see Section 3.1.5), but it is demon-
strated by an exercise depicted in Figures 22 and 23.

Figure 22: Analytic function representing an
exaggerated Fresnel diffraction PSF. Compare
Figure 14.

Figure 23: Convolution of the exaggerated
Fresnel PSF with the geometrical shadow PSF
for 35 µm pinholes. Compare Figure 21.
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For the purpose of calculating an aggregate pinhole PSF, treating the Fresnel diffrac-
tion PSF as a boxcar is an excellent energy-independent approximation. When this
is done, R97.6% = 1.69 Rgeom.

Recall that in the NIF far-field case, R97.6% ≈ 1.057− 1.149 Rgeom. Thus we find the
NIF pinhole PSF is effectively ∼50% - 60% wider in the near-field regime
than in the far field. Recall also that in the Omega far-field cases, we found
R97.6% ≈ 1.164− 1.261 Rgeom for 5 µm pinholes, and R97.6% ≈ 0.99− 1.01 Rgeom for
10 µm pinholes. Thus we find the Omega pinhole PSF is effectively ∼35% -
70% wider in the near field than in the far field.

In summary, the aggregate pinhole PSF in the near-field (Fresnel) regime will always
be significantly wider than the pinhole PSF in the far-field (Fraunhofer) regime.
Estimates that incorrectly apply Frauhhofer diffraction everywhere will always un-
derpredict the system PSF width (thereby overestimating the resolution).

Comparison of Quadratic and PSF Methods for Computing Dph

Figure 24 summarizes the results for Dph. In the Fraunhofer regime, the quadratic
approximation (red dashes, Equation 3.5) is an acceptable estimate for the 97.6%
contour width (green diamonds). In the Fresnel regime, this approximation under-
estimates the PSF width. It is insufficient to replace the Airy disk width with Dgeom

within the quadratic approximation (blue dashes). The aggregate pinhole contribu-
tion in the near field is correctly computed via PSF convolution (green dots).
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Figure 24: Dph at the detector plotted as a function of the pinhole aperture, D, computed by
several methods. Left: NIF MMI, 10.2 keV. Right: LLE MMI, 5.25 keV. Black, dashed: Dgeom.
Red: quadrature addition method with Fraunhofer diffraction assumed everywhere. Blue, dashed:
quadrature addition method with Frauhofer diffraction (Ddiff = DAiry) applied for F < 1 and Fresnel
diffraction (Ddiff = Dgeom) applied for F > 1. Green diamonds: Empirical R97.6% contours derived
from PSF convolution in the far-field regime, by depicting the Fraunhofer diffraction PSF as a
Gaussian. Green, dotted: Analytic R97.6% contours derived from PSF convolution in the near-field
regime, by depicting the Fresnel diffraction PSF as a boxcar function of width Dgeom. Black, dotted:
F = 1. The true boundary between the far- and near-field regimes is not abrupt, but a smooth
transition from F � 1 to F & 1.

3.1.4 Bragg Reflector (PBragg, DBragg)

A perfect monochomatic point source will not be reflected into a perfect geomet-
rical point at the detector. The Bragg PSF arises from several causes, including
imperfections in the surface finish and internal lattice dislocations.

The intensity distribution at the detector is a function of several geometrical factors.
These include the angle between the incident ray and the reflector surface (typically
denoted by ω in the X-ray diffraction literature); the angle between the incident
ray and the direction to the detector location (commonly 2θ in the literature); and
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the orientation of the diffracting plane within the Bragg lattice. (This geometry is
depicted in Figure 25.) Consequently, several kinds of intensity measurements are
common in the X-ray diffraction literature [38]:

• A rocking curve is a plot of the X-ray intensity versus ω for a fixed 2θ value.

• A detector scan is a plot of the X-ray intensity vs 2θ for a fixed ω value.

• A coupled scan is a plot of X-ray intensity vs 2θ, where ω = 1
2
2θ + C0 and C0

is a fixed constant offset.

Additionally, the energy-dependent reflectivity can be measured by varying the
source energy while keeping ω and 2θ fixed. Monochromatic reflectivity can be mea-
sured as a function of ω via a ω − 2θ scan (also referred to as a θ − 2θ scan).

Figure 25: Geometry for estimating DBragg. Here we use definitions consistent with much of the
X-ray diffraction literature (see text). The angular spread d2θ is measured by a detector scan.

A lower bound on DBragg comes from considering the detector-plane angular spread of
a monochromatic point source shining onto the reflector via an infinitesimal pinhole.
Empirically, this is approximated by a detector scan. Given suitable detector scan
data, we may estimate

DBragg ≈ Lmd |d2θ| (3.18)

where Lmd is the distance from the point of incidence on the mirror to the point
of incidence on the detector. Unfortunately, at present, we lack empirical detector
scan data for the specific W/B4C multilayers used in the NIF and Omega MMI

33



instruments. Discussions of W/B4C multilayers are common in the literature [39,
40, 41, 42, 43, 44]. However, while reflectivity measurements are prevalent in such
discussions, detector scan data do not appear to be readily available.

For the multilayers installed in the NIF MMI, we have vendor-furnished calculations
of the energy-dependent plane-wave reflectivity (where C0 = 0 and ω = θ is the
n=1 Bragg condition) for energies between 9 and 12.5 keV [45]. For the multilayers
installed in the Omega MMI instruments, we have vendor-furnished measurements of
the θ− 2θ reflectivity for the Cu Kα line (8.05 keV) [46]. Neither dataset is relevant
or suitable for estimating DBragg; attempts to apply these measurements can lead to
gross overestimates, as shown below in Sections 3.1.4.1 and 3.1.4.2. When estimating
DBragg, it is crucial that detector-scan data are used.

3.1.4.1 Misestimation of DBragg from Reflectivity Data

Using plane-wave reflectivity data can give rise to anomalous estimates for DBragg,
as shown here.

We start with the Bragg condition

nλ = 2d sin θ (3.19)

When n=1, we have

E =
hc

λ
=

hc

2d sin θ
≡ K

sin θ
(3.20)

dE

dθ
= −K cos θ

sin2 θ
; |dθ| =

(
sin2 θ

cos θ

) (
dE

K

)
(3.21)

Let dθ be the angular blurring on the mirror based on the plane-wave reflectivity
[45] and let

DBragg ≈ Lmd |dθ| = Lmd

(
sin2 θ

cos θ

) (
dE

K

)
. (3.22)

The interlayer spacing, d, of the W/B4C multilayer used in the NIF MMI instrument
is 1.5 nm. Thus K = 12.4 keV · Å/30Å = 0.413 keV. At θ = 2.318◦, the FWHM of
the computed plane-wave reflectivity curve is 67.33 eV, which happens to be the
narrowest FWHM in the 9-13 keV range. This angle corresponds to an energy E
= 10.2 keV, close to the Ge Heα line. If dE = 0.06733 keV and θ = 2.318◦, then
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dθ = 2.67× 10−4 radians at this energy. For the NIF MMI instrument, Lmd = 63.06
cm = 6.306 ×105 µm at the mirror center. (According to the engineering diagrams,
the mirror center is situated 53.649 cm along the target/detector plane centerline,
and displaced laterally 2.206 cm from that line.) Thus, for the Ge Heα line, we obtain
DBragg = 6.31× 105 µm · 2.67× 10−4 radians = 168 µm.

Empirically, DBragg is expected to be a minor factor in the instrument resolution.
However, misapplying the plane-wave reflectivity data to compute DBragg overes-
timates its contribution to the NIF MMI resolution, putting it on par with the
diffraction contribution for the smallest pinholes.

3.1.4.2 Misestimation of DBragg from θ − 2θ Scan Data

Using θ − 2θ reflectivity scan data can also produce anomalous estimates for DBragg,
as shown here.

The W/B4C reflectivity scan data in the Cu Kα line (8.05 keV) [46] corrsponds to an
n=1 Bragg angle of 2.94◦. The FWHM of the reflectivity curve at 8.05 keV is ≈ 0.75◦.
For d = 1.5 nm, E(2.94◦ − 0.375◦) = 9.228 keV, and E(2.94◦ + 0.375◦) = 7.142 keV.
This yields an extremely wide energy FWHM of approximately 2.09 keV. Similarly,
using the above expression for dE/dθ with dθ = 0.75◦ yields an energy FWHM of
2.05 keV. If dE = 2.05 keV and θ = 2.94◦, then from above, dθ = 1.31×10−2 radians
in the Cu Kα line.

For the Omega MMI instrument, Lmd = 11.7618 cm ≈ 1.18 ×105 µm at the mirror
center. (This value is derived from measurements performed on one of the as-built
Omega MMI instruments, rather than the nominal values in the AutoCAD file [47].)
Thus, if we use the θ − 2θ data for the Cu Kα line, we get
DBragg = 1.18× 105 µm · 1.31× 10−2 radians = 1546 µm.

Again, DBragg is expected to be relatively minor, and not a dominant factor in
the instrument resolution. But misapplying the θ − 2θ reflectivity scan data to
compute DBragg makes it the dominant contribution to the Omega MMI by an order
of magnitude or more.
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3.1.5 System Point Spread Functions (Psystem)

By combining all known contributions, we can compute an aggregate PSF for the
system (Psystem). By taking advantage of the commutative and associative properties
of convolution, as well as regime-appropriate approximations for Pdiff , the computa-
tion of the final PSF in either diffraction regime can be turned into the convolution
of a known Gaussian with a known analytic function. This can be carried out with
low computational overhead using FFT methods.

In the far-field regime, the detector and Fraunhofer diffraction PSFs are both ap-
proximated as Gaussians with known variances. Their convolution is therefore also
a known Gaussian. The final PSF in this regime is therefore a convolution of the
composite detector-diffraction Gaussian with the boxcar function Pgeom.

In the near-field regime, the Fresnel diffraction PSF is suitably approximated by
the geometric shadow PSF, and their convolution gives rise to a known triangular
function. The final PSF in this regime is therefore the convolution of this triangle
with the Gaussian Pdet.

To illustrate the effects of the various contributions, we have calculated the convo-
lution of the numerically computed Pdiff with Pdet, and then the convolution of that
result with Pgeom, which gives Psystem. We also compare the numerically computed
Psystem with the aggregate PSF derived by approximating the diffraction PSF as
either a Gaussian or boxcar function, depending on the regime.

3.1.5.1 NIF

The final point spread functions for the NIF MMI are shown in Figures 26 - 28.
In both regimes, using an analytic function for Pdiff (right-side plots, dotted lines)
leads to an excellent approximation of the numerically computed final system PSF
(right-side plots, solid lines). Additionally, in all cases, R97.6% exhibits only a weak
energy dependence.
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Figure 26: PSFs for 10 µm NIF MMI pinholes. Left: Numerical Fraunhofer Pdiff (compare
Figure 12) convolved with Pdet. Dashed lines: Airy disk radii. Dash-dot lines: 97.6% contour
radii. Right: Psystem. Solid lines: Numerically computed Fraunhofer diffraction. Dotted lines:
Gaussian approximation for Fraunhofer diffraction. Dashed lines: 97.6% contour radii derived from
the approximated Pdiff . Dash-dot lines: 97.6% contour radii derived from the numerical Pdiff . Red:
8.0 keV. Green: 10.2 keV. Blue: 13.0 keV. Black (dotted line): Rgeom.
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Figure 27: PSFs for 35 µm NIF MMI pinholes. Left: Numerical Fresnel Pdiff (compare Figure
13) convolved with Pdet. Dashed lines: Airy disk radii. Dash-dot lines: 97.6% contour radii. Right:
Psystem. Solid lines: Numerically computed Fresnel diffraction. Dotted lines: Boxcar approximation
for Fresnel diffraction. Dashed lines: 97.6% contour radii derived from the approximated Pdiff .
Dash-dot lines: 97.6% contour radii derived from the numerical Pdiff . Red: 8.0 keV. Green: 10.2
keV. Blue: 13.0 keV. Black (dotted line): Rgeom.

37



8.00 keV: F = 4.032

10.20 keV: F = 5.141

13.00 keV: F = 6.552

 50  100  150  200
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

xdetector [µm]

NIF MMI: 50 µm PH
Pdiff * Pdet

8.00 keV: F = 4.032
10.20 keV: F = 5.141
13.00 keV: F = 6.552

 50  100  150  200  250  300  350
0.00

0.05

0.10

0.15

0.20

0.25

0.30

xdetector [µm]

 

NIF MMI: 50 µm PH
Pdiff * Pdet * Pgeom

Figure 28: PSFs for 50 µm NIF MMI pinholes. Left: Numerical Fresnel Pdiff (compare Figure
14) convolved with Pdet. Dashed lines: Airy disk radii. Dash-dot lines: 97.6% contour radii. Right:
Psystem. Solid lines: Numerically computed Fresnel diffraction. Dotted lines: Boxcar approximation
for Fresnel diffraction. Dashed lines: 97.6% contour radii derived from the approximated Pdiff .
Dash-dot lines: 97.6% contour radii derived from the numerical Pdiff . Red: 8.0 keV. Green: 10.2
keV. Blue: 13.0 keV. Black (dotted line): Rgeom.

3.1.5.2 Omega

The final point spread functions for the Omega MMI are shown in Figures 29 - 31.
As with the Psystem calculations for the NIF MMI, we find R97.6% exhibits a very
weak energy dependence. Using an analytic function for Pdiff yields an excellent
approximation for the numerically computed final system PSF when the diffraction
resides firmly in the far- or near field regime. As expected, the approximation may be
less effective in the transitional regime, such as where D = 15 µm. The approximated
Fresnel diffraction PSF was applied to that case (in keeping with Figure 17), though
the Fraunhofer approximation may be equally effective there.
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Figure 29: PSFs for 5 µm Omega MMI pinholes. Left: Numerical Fraunhofer Pdiff (compare
Figure 15) convolved with Pdet. Dashed lines: Airy disk radii. Dash-dot lines: 97.6% contour
radii. Right: Psystem. Solid lines: Numerically computed Fraunhofer diffraction. Dotted lines:
Gaussian approximation for Fraunhofer diffraction. Dashed lines: 97.6% contour radii derived from
the approximated Pdiff . Dash-dot lines: 97.6% contour radii derived from the numerical Pdiff . Red:
4.5 keV. Green: 5.25 keV. Blue: 6.0 keV. Black (dotted line): Rgeom.
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Figure 30: PSFs for 10 µm Omega MMI pinholes. Left: Numerical Fraunhofer Pdiff (compare
Figure 16) convolved with Pdet. Dashed lines: Airy disk radii. Dash-dot lines: 97.6% contour
radii. Right: Psystem. Solid lines: Numerically computed Fraunhofer diffraction. Dotted lines:
Gaussian approximation for Fraunhofer diffraction. Dashed lines: 97.6% contour radii derived from
the approximated Pdiff . Dash-dot lines: 97.6% contour radii derived from the numerically Pdiff .
Red: 4.5 keV. Green: 5.25 keV. Blue: 6.0 keV. Black (dotted line): Rgeom.
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Figure 31: PSFs for 15 µm Omega MMI pinholes. Left: Numerically Fresnel Pdiff (compare Figure
17) convolved with Pdet. Dashed lines: Airy disk radii. Dash-dot lines: 97.6% contour radii. Right:
Psystem. Solid lines: Numerically computed Fresnel diffraction. Dotted lines: Boxcar approximation
for Fresnel diffraction. Dashed lines: 97.6% contour radii derived from the approximated Pdiff .
Dash-dot lines: 97.6% contour radii derived from the numerical Pdiff . Red: 4.5 keV. Green: 5.25
keV. Blue: 6.0 keV. Black (dotted line): Rgeom.

3.1.6 Resolution Estimates

The analytic function convolutions can be used to place a lower bound on the size of
a monochromatic point source on the MMI image plane. (A lower bound because,
lacking data, the present calculations cannot account for the Bragg contribution.) In
particular, we compute the width of the 97.6% contour for Psystem. For comparison,
we can also compute Dx,y using the quadature addition method. Owing to the weak
energy dependence of R97.6%, as demonstrated in Section 3.1.5, it is sufficient to
examine the system resolution at a single energy.

Table 2 summarizes the results for the NIF MMI resolution at the source given a Ge
Heα (10.2 keV) point source. The results were obtained by several methods: numer-
ically (PSF convolution with no approximations); semi-analytically, approximating
the diffraction PSFs; and via the quadrature method. The detector-plane sizes are
obtained by multiplying these values by the instrument magnification, M = 6.
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D [µm] D97.6% [µm] D97.6% [µm] Dx,y [µm] Dx,y [µm] Dx,y [µm]
(PSF; (PSF; (Quadrature; (Quadrature; (Quadrature;

numeric.) approx.) far- & near-field) far-field only) no diffraction)
10a >15.8 >15.7 >15.2 >15.2 >14.3
35b >62.0 >69.0 >58.3 >41.7 >41.7
50b >88.4 >98.2 >82.9 >58.9 >58.9

Table 2: NIF MMI resolution at the source for a monochromatic Ge Heα point source. The
calculation in the second column applied convolutions to the numerically calculated diffraction
profiles. The calculation in the third column approximated the diffraction PSFs with analytic
functions. The quadrature estimate in the fourth column accounted for the distinction between
Fraunhofer and Fresnel diffraction, per Equations 3.16 and 3.17. The fifth column contains the
results from incorrectly applying Fraunhofer diffraction, regardless of the diffraction regime, to the
quadrature estimate. Values in the sixth column were obtained by disregarding diffraction entirely.
aFar-field regime. bNear-field regime.

In the far field, the error in the analytic approximation is less than 1%, while the
quadrature method yields 4% error when including diffraction, and 10% error when
disregarding it. In the near field, the analytic approximation produces an 11% over-
estimate, while the regime-aware quadrature method using Pdiff = Pgeom produces
only a 6% underestimate, compared to a 30% underestimate when diffraction is dis-
regarded or the incorrect (far-field) regime applied.

It is useful to consider the area of an independent resolution element (see Section 4).
The resolved area is Ares = π

4
D2

97.6% or Ares = π
4
DxDy, as appropriate.

D [µm] Ares [µm2] Ares [µm2] Ares [µm2] Ares [µm2] Ares [µm2]
(PSF; (PSF; (Quadrature; (Quadrature; (Quadrature;

numeric.) approx.) far- & near-field) far-field only) no diffraction)
10 >200 >190 >180 >180 >160
35 >3020 >3740 >2670 >1370 >1360
50 >6140 >7570 >5400 >2730 >2730

Table 3: Area at the source of the resolved ellipse of a Ge Heα point source.

Similarly, we can place a lower bound on the size of a monochromatic 5.25 keV
point source on the Omega MMI image plane. Table 4 summarizes the results for
the resolution at the source plane (the detector plane resolutions are obtained by
multiplying these values by the instrument magnification, M = 8.6), and Table 5
summarizes estimates for the area of the resolved ellipse, Ares.
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D [µm] D97.6% [µm] D97.6% [µm] Dx,y [µm] Dx,y [µm] Dx,y [µm]
(PSF; (PSF; (Quadrature; (Quadrature; (Quadrature;

numeric.) approx.) far- & near-field) far-field only) no diffraction)
5a >9.3 >9.1 >8.9 >8.9 >8.1
10a >13.3 >13.3 >12.7 >12.7 >12.6
15b >25.0 >28.7 >24.4 >17.8 >17.7

Table 4: Omega MMI resolution at the source for a monochromatic 5.25 keV point source. The
calculation in the second column applied convolutions to the numerically calculated diffraction
profiles. The calculation in the third column approximated the diffraction PSFs with analytic
functions. The quadrature estimate in the fourth column accounted for the distinction between
Fraunhofer and Fresnel diffraction, per Equations 3.16 and 3.17. The fifth column contains the
results from incorrectly applying Fraunhofer diffraction, regardless of the diffraction regime, to the
quadrature estimate. Values in the sixth column were obtained by disregarding diffraction entirely.
aFar-field regime. bNear-field regime.

D [µm] Ares [µm2] Ares [µm2] Ares [µm2] Ares [µm2] Ares [µm2]
(PSF; (PSF; (Quadrature; (Quadrature; (Quadrature;

numeric.) approx.) far- & near-field) far-field only) no diffraction)
5 >70 >70 >60 >60 >50
10 >140 >140 >130 >130 >120
15 >490 >650 >470 >250 >250

Table 5: Area at the source of the resolved ellipse for a monochromatic 5.25 keV point source.

Results here are similar to those for the NIF MMI. In the far field, the error in
the analytic approximation is less than 3%, while the quadrature method yields 4%
error when including diffraction, and 5-12% error when disregarding it. In the near
field, the analytic approximation produces a 15% overestimate, while the regime-
aware quadrature method using Pdiff = Pgeom produces only a 2% underestimate,
compared to a 30% underestimate when diffraction is disregarded or the incorrect
(far-field) regime applied.

We should expect the quadrature method to perform well in this scenario, because
we have explicitly chosen to represent the unknown detector PSF by a Gaussian.
Numerical experiments using a Lorentzian form for Pdet (while maintaining the same
FWHM) find the regime-aware quadrature method performs significantly worse in
the far field (≈ 19 - 30% error for NIF and Omega, respectively, as opposed to ≈
4%), but not significantly differently in the near field. Furthermore, these results do
not account for PBragg, which may have a non-Gaussian form.
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3.2 Spectral Resolution

Let the strip length of the framing camera be Ls microns. If one complete MMI
image covers a fraction fs of that strip for the full energy domain, then a simple
estimate for the energy variation along the strip is

dE

dL
=

(Emax − Emin)

fsLs

[keV µm−1] (3.23)

The maximum spectral resolution, Re is this value times the detector plane spatial
resolution in the energy direction, Dx or D97.6%. The energy resolution of a single
detector element is this value times Ddet.

3.2.1 NIF

The nGXI2-000-000 camera has a maximum strip length of 39.42 mm = 3.942 cm
[48]. (This is the length measured in the timing direction of the strip, which for the
NIF MMI is also the energy direction.) If one complete MMI image uses 60% of the
strip [49], then a single image convering the NIF MMI energy domain has

dE

dL
=

13.0− 8.0 keV

0.60 · 3.942× 104 µm
= 2.11× 10−4 [keV µm−1] = 0.211 [eV µm−1]. (3.24)

Using Ddet = 50 µm, as above, we deduce the spectral resolution of a single element
on the MCP is roughly 0.211 eV µm−1 · 50 µm pixel−1 = 10.6 eV pixel−1. Estimates
for Re are listed in Table 6.

D [µm] Re [eV] Re [eV] Re [eV] Re [eV] Re [eV]
(PSF; (PSF; (Quadrature; (Quadrature; (Quadrature;

numeric.) approx.) far- & near-field) far-field only) no diffraction)
10 >20.0 >19.9 >19.2 >19.2 >18.1
35 >78.5 >87.4 >73.8 >52.8 >52.8
50 >111.9 >124.3 >105.0 >74.6 >74.6

Table 6: NIF MMI spectral resolution at the detector plane. These values are based on spatial
resolution estimates for a Ge Heα point source from Section 3.1.6.
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According to George Kyrala [50] the resolving power of the NIF MMI is

E

∆E
=

10keV

75eV
≈ 133.

3.2.2 Omega

According to Scott Hsu [17], the Omega X-ray framing cameras have a photocathode
length of approximately 34 mm. According to Taisuke Nagayama [27], the resolving
power of the Omega MMI is

E

∆E
≈ 150.

According to Roberto Mancini [51], the spectral resolution of the Omega MMI in-
struments using 10 µm pinholes with the W/B4C multilayer Bragg reflectors is 20
eV.
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4 Constraints on the Signal Level

Given the preceding analyses of the MMI photonics budget (Section 2) and spatial
resolution (Section 3), we can derive meaningful constraints on the signal level, S
(see Section 2.1).

4.1 Photon Statistics and the Resolvable Contrast Between
Image Elements

It is possible to derive a simple relationship between the number of detected photons
and the resolvable contrast between two adjacent image elements. We begin by
summarizing an analysis by Tom Murphy [52, 53].

Consider a pair of adjacent image elements with equal area, A µm−2. Let (detected)
photons fall on element 1 with a density of n photons µm−2, and let the the density
of detected photons on element 2 be n(1− δ) photons µm−2. Here δ is the contrast
between elements. Then the total number of photons on element 1 is N1 = nA, and
the total number of photons on element 2 is N2 = n(1− δ)A.

For these image elements to be individually resolvable, the absolute difference in
their detected photons must exceed the statistical uncertainty in the difference. If
the photon distribution is dominated by Poisson noise, as expected when the signal
level is low, the statistical uncertainty in the number of photons for each individual
element is

σN1 =
√
N1 =

√
nA (4.1)

σN2 =
√
N2 =

√
n (1− δ)A (4.2)

The absolute difference is simply

∆N = N1 −N2 = nA− nA (1− δ) = nAδ (4.3)

while the statistical uncertainty in the difference is given by

σ∆N =

√(
∂∆N

∂N1

)2

σ2
N1

+

(
∂∆N

∂N2

)2

σ2
N2

=
√
σ2

N1
+ σ2

N2
=

√
nA (2− δ). (4.4)
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Thus, if these elements are to be independently resolvable, we require ∆N > σ∆N,
or

nAδ >
√
nA (2− δ) =⇒ nA >

2− δ

δ2
. (4.5)

Recall that nA is the total number of detected photons falling on element 1, i.e.,
on the brighter of the two image elements. Thus nA is equivalent to the number
of photons detected per independent resolution element, Nd, which was derived in
Section 2.2. We may obtain the minimum resolvable contrast, δmin, as a function of
the detected photons, Nd:

Nd =
2− δmin

δ2
min

=⇒ δmin =
−1 +

√
1 + 8Nd

2Nd

(4.6)

where we have disregarded one solution owing to the requirement that δ > 0. This
expression tells us that if an element receives Nd (detected) photons, the contrast
with its neighbor must exceed δmin in order for those adjacent resolution elements to
be resolvable.

The resolution constraint on Nd is plotted in figure 32, and the minimum contrast,
δmin, is plotted in Figure 33. (Recall that larger δ values correspond to larger bright-
ness differences between adjacent elements, by virtue of 1− δ.)
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Figure 32: Nd as a function of minimum resolv-
able contrast, δmin.
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Figure 33: Minimum resolvable contrast, δmin,
as a function of Nd.
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4.2 Relationship Between Signal Level (S) and Resolution

In the preceding discussion, we used n to denote the number of detected photons
falling per square micron. This is exactly the quantity Nµm2 derived in Section 2.2.
We can therefore write the following requirement for adjacent resolution elements to
be independently resolvable:

Nµm2A >
2− δ

δ2
=⇒ A∗ ≡ 2− δ

Nµm2 · δ2
. (4.7)

Here A∗ is the minimum area of an image element such that it can be independently
resolved from its neighbors at contrast level δ, owing to Poisson statistical fluctua-
tions, given an areal density of detected photons Nµm2 . In other words, A∗ is the
minimum collecting area of a resolution element such that it will accumulate suffi-
cient photons to reduce the fluctuations below the level at which adjacent elements
will be resolvable with contrast δ.

From Section 2.2, Nµm2 is known as a function of the signal level, burn width,
and various properties of the instrument. Namely, by combining equations 2.7 and
2.15,

Nµm2 = 6.242× 1015

(
S ·∆EeV ·∆gps

∆bps · Aµm2 · δEkeV

)
· πD2

4L2
tpM

2
· η [photon · µm−2] (4.8)

or
Nµm2 ≡ S ·G (∆gps,∆bps,∆EeV , δEkeV , Aµm2 ,M,D,Ltp, η) . (4.9)

Thus we can write A∗ as an explicit function of the signal level, S:

A∗ ≡ 1

S

(
2− δ

G · δ2

)
(4.10)

From Section 3, we know the inherent size of an independent resolution element (i.e.,
determined by the instrument properties) is

Ares =
π

4
DxDy

and perhaps Dx = Dy = D97.6% depending upon the calculation method. Thus, for a
given contrast level δ:

• When A∗ < Ares, the resolution is determined by the inherent properties of the
instrument.
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• When A∗ > Ares, the resolution is limited by photon statistics.

We therefore seek the minimum signal level Smin such that A∗ < Ares. Our condition
on A∗ becomes

1

Smin

(
2− δ

G · δ2

)
= A∗ <

π

4
DxDy

or

Smin =
4 (2− δ)

GπDxDyδ2
[J · eV−1 · sr−1] (4.11)

where

G = 6.242× 1015

(
∆EeV ·∆gps

∆bps · Aµm2 · δEkeV

)
· πD2

4L2
tpM

2
· η [photon · sr · eV · J−1 · µm−2].

(4.12)
For a given contrast level, δ, Smin is the signal level at which the minimum size
of a statistically resolvable image element is smaller than the instrument’s inherent
resolution element size. In other words:

• When S > Smin, the resolution is determined by the instrument prop-
erties.

• When S < Smin, the image is dominated by photon statistics.

Because Smin ∝ D−2, Smin grows as the pinhole diameter decreases. This is to be ex-
pected: if the pinhole size decreases while everything else is held constant, the image
will become dimmer and thus noisier, owing to Poisson fluctuations. So the signal
must increase in order to prevent photon statistics from swamping the image.

Note also that because Smin ∝ (DxDy)
−1, underestimating the diffraction contribu-

tion to the PSF width (e.g., by disregarding it entirely, or by mistakenly applying
Fraunhofer diffraction estimates to the near-field regime) will increase Smin.

This derivation considers only Poisson noise. Additional noise will increase Smin.

4.3 Examples: Smin Estimates for the NIF MMI

Smin depends upon specific properties of the instrument, some of which are energy
dependent, as well as details of the experiment: the burn width, the area of the
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emitting region, and so forth. For the purposes of the following examples we take
the burn width (∆bps) to be 100 ps, the gating time (∆gps) to be 70 ps, and the
pinhole bandwidth (∆EeV) to be 100 eV. We also take ηMCP = 0.07 and estimate
ηBragg ∼ 0.30. We include a Kapton blast shield of 2.5 mm. We take the pixel size
to be 50 µm. The target-pinhole plane distance for the NIF MMI, Ltp, is 16.667 cm
= 1.6667× 105µm.

As noted above, the total number of photons available to the detector depends upon
the area of the emitting region, Aµm2 . In what follows, we apply the results from
sections 2 and 3 as appropriate to compute Nµm2 , Npix, Dx, Dy, etc.

4.3.1 Uniformly Mixed Hot Dopant

Consider the case where the emitting dopant is uniformly mixed through a core 300
µm in diameter. Via Equations 2.7, 2.16, 4.11, and 4.12 we derive the following:
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Figure 34: Photons per pixel vs signal, for uni-
form emission. Signal levels such that Npix = 1
are marked with dashed lines. Red: 8.0 keV;
Green: 9.6 keV; Blue: 10.2 keV; Black: 12.0 keV;
Magenta: 13.0 keV.
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Figure 35: Minimum signal level vs contrast,
for uniform emission. Image resolution is domi-
nated by photon statistics for signals below the
solid curves. Signal levels such that Npix = 1 are
marked with dashed lines.
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We see that for a 10 µm pinhole, the small size of the resolution element forces
Smin high enough that the number of photons detected per pixel will always exceed
unity. However, the high Smin levels required may be unattainable, in which case the
images will always be dominated by photon statistics, even at the highest contrast
levels.
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Figure 36: Photons per pixel vs signal, for uni-
form emission. Signal levels such that Npix = 1
are marked with dashed lines. Red: 8.0 keV;
Green: 9.6 keV; Blue: 10.2 keV; Black: 12.0 keV;
Magenta: 13.0 keV.
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Figure 37: Minimum signal level vs contrast,
for uniform emission. Image resolution is domi-
nated by photon statistics for signals below the
solid curves. Signal levels such that Npix = 1 are
marked with dashed lines.

As expected, the signal levels required to avoid photon statistics are lower for 35 µm
pinholes than for 10 µm pinholes. Furthermore, the requirement that every pixel
receives at least one photon (which is a very weak lower bound on the intensity;
other considerations may place tighter lower bounds) constrains the signal only at
the very highest contrast levels.
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Figure 38: Photons per pixel vs signal, for uni-
form emission. Signal levels such that Npix = 1
are marked with dashed lines. Red: 8.0 keV;
Green: 9.6 keV; Blue: 10.2 keV; Black: 12.0 keV;
Magenta: 13.0 keV.
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Figure 39: Minimum signal level vs contrast,
for uniform emission. Image resolution is domi-
nated by photon statistics for signals below the
solid curves. Signal levels such that Npix = 1 are
marked with dashed lines.

When the pinhole diameter is 50 µm, the required signal levels are lower still, but
now the requirement that every pixel receive at least one photon puts an additional
constraint on the signal. For instance, constrast levels above∼ 70% are not resolvable
when S = Smin and thus require higher signal levels.

4.3.2 Hot Dopant Mixed into a Shell of Thickness 10 µm

Now consider the case where the hot core is still 300 µm in diameter, but the emitting
dopant is mixed into a thin 10 µm region surrounding the core. In this case, the
emitting area Aµm2 is considerably smaller than in the uniformly mixed case. As
seen in figures 40 - 45, we see trends similar to those found above in the uniformly
mixed case, but the thresholds are lower because Smin ∝ Aµm2 .
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Figure 40: Photons per pixel vs signal, for emis-
sion confined to a 10 µm region. Signal levels
such that Npix = 1 are marked with dashed lines.
Red: 8.0 keV; Green: 9.6 keV; Blue: 10.2 keV;
Black: 12.0 keV; Magenta: 13.0 keV.
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Figure 41: Minimum signal level vs contrast,
for emission confined to a 10 µm region. Image
resolution is dominated by photon statistics for
signals below the solid curves. Signal levels such
that Npix = 1 are marked with dashed lines.
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Figure 42: Photons per pixel vs signal, for emis-
sion confined to a 10 µm region. Signal levels
such that Npix = 1 are marked with dashed lines.
Red: 8.0 keV; Green: 9.6 keV; Blue: 10.2 keV;
Black: 12.0 keV; Magenta: 13.0 keV.
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Figure 43: Minimum signal level vs contrast,
for emission confined to a 10 µm region. Image
resolution is dominated by photon statistics for
signals below the solid curves. Signal levels such
that Npix = 1 are marked with dashed lines.52
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Figure 44: Photons per pixel vs signal, for emis-
sion confined to a 10 µm region. Signal levels
such that Npix = 1 are marked with dashed lines.
Red: 8.0 keV; Green: 9.6 keV; Blue: 10.2 keV;
Black: 12.0 keV; Magenta: 13.0 keV.
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Figure 45: Minimum signal level vs contrast,
for emission confined to a 10 µm region. Image
resolution is dominated by photon statistics for
signals below the solid curves. Signal levels such
that Npix = 1 are marked with dashed lines.

4.3.3 NIF Shot N121119

The Ge Heα signal measured by the NIF Supersnout-II instrument for shot N121119
was approximately [15] 6.2 J keV−1 sr−1 or 6.2 × 10−3 J eV−1 sr−1 (see the exam-
ple calculation in Section 2.1). Furthermore, George Kyrala has estimated [15] the
emission in that line corresponded to 6.2× 10−5 J keV−1 sr−1 µm−2, which suggests
the effective emitting area, Aµm2 was ∼ 105 µm2.

This is below the stated NIF MMI specification for signal detectability, 8 × 10−4 J
keV−1 sr−1 µm−2 [54]. Yet a spectral line feature is clearly visible in strips 2 and
3 (and perhaps strip 1) of the raw MMI hGXI (MCP) image, as shown in Figure
46.
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Figure 46: Raw MMI hGXI (multichannel plate) image for NIF shot N121119. Strips 2 and 3
contain a clear feature corresponding to the strongest emission line, Ge Heα (10.2 keV); the line is
faintly visible in strip 1 (top). Strip 4 (bottom) corresponds to a later time.

The appearance of such a feature is unexpected based on the stated threshold for
detectability. Indeed, when we compute Smin as a function of contrast for this case
(Aµm2 ∼ 105 µm2, and assuming ∆EeV = 100, ∆bps = 100, ∆gps = 70), we conclude
this level of Ge Heα emission is not resolvable with 10 µm pinholes at any contrast
level. (The detected signal level in this case corresponds to approximately 4 photons
per pixel, or a signal-to-noise ratio of 2.) However, we find it should be resolvable
with 35 µm pinholes for δ > 18%. In this case, the detected signal level corresponds
to 2.0× 10−2 photons µm−2, or approximately 49 photons per pixel (i.e., a signal-to-
noise ratio of 7).

This analysis is plotted in figures 47 - 52.
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Smin  > 6.2 x 10−3 everywhere
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Figure 47: Minimum signal level as a function of contrast in the Ge Heα line (10.2 keV), for NIF
shot N121119 with 10 µm pinholes. The estimated signal level for this shot, S = 6.2× 10−3 J eV−1

sr−1, falls below the resolvability threshold at all contrast levels.
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Figure 48: Minimum signal level as a function of contrast in the Ge Heα line (10.2 keV), for NIF
shot N121119 with 35 µm pinholes. The estimated signal level for this shot, S = 6.2× 10−3 J eV−1

sr−1, exceeds the resolvability threshold Smin as long as the contrast, δ, exceeds 18%.
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S = 6.2 x 10−3

Nµm
2 = 1.6e−03
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Figure 49: Detected photons per square mi-
cron in the Ge Heα line (10.2 keV), for NIF shot
N121119 with 10 µm pinholes.
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Figure 50: Detected photons per pixel in the
Ge Heα line (10.2 keV), for NIF shot N121119
with 10 µm pinholes.
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Figure 51: Detected photons per square mi-
cron in the Ge Heα line (10.2 keV), for NIF shot
N121119 with 35 µm pinholes.

S = 6.2 x 10−3

Npix  = 49.0
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Figure 52: Detected photons per pixel in the
Ge Heα line (10.2 keV), for NIF shot N121119
with 35 µm pinholes.
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5 Summary

The mean number of photons detected per unit area of the MMI image plane (Equa-
tions 2.14 - 2.16) is a function of several quantities including the emission signal
level (S), the étendue of the imaging system, the burn width, the gating period, and
the bandwidth of the individual pinhole images. The bandwidth will vary across
the detector plane, and may be considerable (& 100 eV). This nonmonochromaticity
arises from the finite sizes of both the pinhole and source, although source size is the
dominant factor by an order of magnitude.

The spatial resolution of the instrument is properly derived from a calculation of
the monochromatic point spread function (PSF) image width. In practice, spatial
resolution estimates are commonly obtained by adding the contributing function
widths in quadrature. However, this approach is only mathematically valid when
all contributing functions are Gaussian and the half-widths are equated with the
associated standard deviations. Yet the geometrical shadow (ray optics) PSF is
highly non-Gaussian and cannot be approximated as such, so the quadrature method
is, technically, never valid. Nevertheless, under very particular circumstances, the
quadrature method may yield decent estimates, as explained below.

When estimating the diffraction contribution, it is crucial to assess the regime, i.e.,
whether the instrument resides in the near- or far field for scalar diffraction theory.
(In fact, as shown in Section 3.1.3.2, a single instrument may inhabit different regimes
at different energies, depending upon its configuration.) Far-field (Fraunhofer) and
near-field (Fresnel) diffraction are substantially different. The Fraunhofer diffraction
PSF is adequately approximated as a Gaussian. The Fresnel PSF is adequately
approximated by the geometrical shadow (ray optics) PSF, which is a boxcar.

In the far field, estimates of the diffraction contribution from a circular aperture
typically and sensibly refer to the Airy disk width. (This is the basis of the Rayleigh
resolution criterion.) But this width is a useful fiducial because it contains nearly
all the flux transmitted through the aperture: approximately 97.6%. Therefore, in
any analysis which inherently refers to the Airy disk when in the far-field regime,
the only way to ensure true “apples-to-apples”comparisons of different contributions
is to compare the widths of the 97.6% flux contours. This is the most consistent
method of comparing and measuring PSF widths.
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Resolution estimates which disregard diffraction can be highly inaccurate, particu-
larly when the system resides in the near field. Resolution estimates that mistakenly
apply the Fraunhofer estimate to the Fresnel regime are no better. This is a common
error, because the Fraunhofer (Airy disk) width decreases with increasing aperture
size as D−1, which leads to the misconception that diffraction may be disregarded for
larger pinholes. However, the dimensionless Fresnel number F ∝ D2, which means
the far-field diffraction regime becomes irrelevant faster than it becomes negligible.
The near field (Fresnel) diffraction width is proportional to D, not D−1.

Correct calculation of the final system PSF width requires numerical or analytic
estimates for the diffraction, detector, and Bragg mirror PSFs, which subsequently
must be convolved. Namely,

Psystem(r) = Pph (r) ∗ PBragg (r) ∗ Pdet (r) .

When using this approach, the pinhole PSF is itself the convolution of geometric
(Pgeom) and diffraction (Pdiff) contributions, where

• Pgeom is a boxcar function of width Dgeom (see below).

• Pdiff depends on F, the Fresnel number for the system (Equation 3.9), which
varies as a function of energy and aperture size:

– When F � 1, pinhole diffraction resides in the far-field (Fraunhofer) regime,
in which case Pdiff can be approximated as a Gaussian with standard de-
viation σ =

√
1.85 DAiry/2.44π.

– When F & 1, pinhole diffraction is more appropriately described by the
near-field (Fresnel) regime, in which case a simple but effective energy-
independent approximation is Pdiff = Pgeom.

The PSF convolution technique may be cumbersome or infeasible. In that case, one
may obtain acceptable estimates via the quadrature method if the detector and Bragg
mirror contributions can be justifiably modeled as Gaussians, and if the diffraction
contribution is treated properly.

In that situation, the width of the monochromatic point spread function (PSF) on
the detector is estimated by

D2
x,y ≈ D2

det +D2
ph +D2

Bragg ≈ D2
det +D2

geom +D2
diff +D2

Bragg
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where

• Ddet is an inherent aggregate property of the detector (e.g., 50 µm).

• Dgeom is the diameter of the geometrical blur disk from ray optics: (1 +M)D.

• Ddiff again depends on F:

– When F � 1 (the far-field regime)

Ddiff = DAiry =
2.44λL

D

– When F & 1 (the near-field regime)

Ddiff ≈ Dgeom = (1 +M)D

• DBragg can be estimated from good detector-scan data for the relevant crystal
or multilayer reflector, but other types of scan datasets may lead to gross
overestimates. When lacking detector-scan data, DBragg may be omitted to
obtain a lower bound on Dx,y.

The PSF width relative to the source is Dx,y/M.

By considering the resolvable contrast between adjacent image elements, and ap-
plying this to the mean number of detected photons per unit area, it is possible to
define the minimum area of an image element, A∗, such that it may be resolved from
its neighbors at a given contrast level, δ (Equation 4.7). Comparison of A∗ and the
area of the detector-plane PSF leads to a simple expression for Smin, the minimum
acceptable signal level of emission (Equations 4.11 - 4.12).

• When S > Smin, the image resolution is determined by the instrument proper-
ties, rather than photon statistics.

• When S < Smin, the image is dominated by photon (Poisson) statistics.

This Smin analysis is consistent with the detection of Ge Heα emission by the NIF
MMI on shot N121119, which occurred despite emission in that line falling an order of
magnitude below the instrument’s design specification for signal detectability.
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A Relationship Between Energy and Position on

the Pinhole Plane

It is often useful to relate a position on the MMI pinhole plane to an energy at
the detector plane. For an MMI instrument with flat Bragg mirrors (such as those
fielded at NIF and Omega), the relevant geometry can be depicted with a simple
cartoon:

Figure 53: Geometrical relationship between position on the pinhole plane and energy on the
detector plane.

Here the central axis of the instrument lies in the z-direction; the pinhole plane is
orthogonal to this and located at z = Ltp (Ltp is the distance from target chamber
center (TCC) to the pinhole plane). A geometrical ray from the capsule (located
at the origin, TCC) passes through the pinhole plane at (xph, yph) to impinge on
the Bragg reflector with incidence angle ϕ, which corresponds to an energy E at the
detector. We seek to understand how E varies as a function of xph and yph. For the
purposes of this discussion it is sufficient to assume ideal n=1 Bragg reflection.

Let n̂ denote the unit vector normal to the mirror surface at the point where the ray
impinges, and let v̂ denote the unit vector from the mirror along the ray through the
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pinhole plane toward TCC. Then

E =
hc

2d sinϕ
≡ K

sinϕ
=

K

sin
(

π
2
− θ

) =
K

cos θ
=

K

n̂ · v̂
. (A.1)

Given

n̂ = (nx, ny, nz) (A.2)

v̂ = − (xph, yph, Ltp)√
x2

ph + y2
ph + L2

tp

(A.3)

we obtain the following equation for E as a function of xph and yph:

E =
−K

√
x2

ph + y2
ph + L2

tp

nxxph + nyyph + nzLtp

. (A.4)

When the mirror is tilted only in the (x,z) plane, as is the case for the NIF and
Omega MMI instruments, then nx and nz become simple functions of the tilt angle,
ψ, while ny = 0. Then we can write

E =
−K

√
x2

ph + y2
ph + L2

tp

nxxph + nzLtp

. (A.5)

This gives the energy on the detector plane, E, as a simple function of the position
on the pinhole plane. (Notice that in the above cartoon, nx and Ltp are positive while
nz and xph are negative. Careful consideration of the geometry will always ensure
the above expression produces E > 0.)

It is useful to note that frequently (as is the case in the NIF and Omega MMI instru-
ments) allowable values of xph and yph may be an order of magnitude smaller than
Ltp. (For instance, the usable area of the pinhole plane may be several millimeters
across, while Ltp is typically several centimeters or more.) In that case, x2

ph � L2
tp

and y2
ph � L2

tp, which gives rise to the following approximation:

E ≈ −KLtp

nxxph + nzLtp

. (A.6)

This treatment shows the Bragg energy can be regarded as a strong function of xph

but a weak function of yph.
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Alternatively, we may write

n̂ · v̂ = sinϕ =⇒ −nxxph − nyyph − nzLtp√
x2

ph + y2
ph + L2

tp

= sinϕ. (A.7)

If we again choose the coordinate system for the flat-mirror system such that ny = 0,
then this leads to a quadratic equation in xph:(

n2
x − sin2 ϕ

)
x2

ph + (2Ltpnxnz)xph +
(
n2

zL
2
tp − sin2 ϕ

[
y2

ph + L2
tp

])
= 0 (A.8)

Generally, the maximum allowable value of yph will be at least an order of magnitude
lower than Ltp, so y2

ph << L2
tp. In such a case the y-dependence becomes negligible,

and the above expression simplifies to(
n2

x − sin2 ϕ
)
x2

ph + (2Ltpnxnz)xph + L2
tp

(
n2

z − sin2 ϕ
)

= 0 (A.9)

So we again find the Bragg energy has a negligible dependence upon yph, as long
as Ltp > yph. In that case, the x-position on the pinhole plane is determined by the
Bragg angle, ϕ, as follows:

xph =
−2Ltpnxnz ±

√
4L2

tpn
2
xn

2
z − 4L2

tp

(
n2

x − sin2 ϕ
) (
n2

z − sin2 ϕ
)

2
(
n2

x − sin2 ϕ
)

=
−Ltpnxnz ± Ltp

√
n2

xn
2
z −

(
n2

xn
2
z − n2

x sin2 ϕ− n2
z sin2 ϕ+ sin4 ϕ

)
n2

x − sin2 ϕ
. (A.10)

Because n̂ is a unit vector and since we have chosen the coordinate system such that
ny = 0, n2

x + n2
z = 1. Thus

xph = Ltp

(
−nxnz ± sinϕ cosϕ

n2
x − sin2 ϕ

)
. (A.11)

Using the above definition of K, we can write xph as an explicit function of Bragg
energy, E:

xph = Ltp

(
−nxnzE

2 ±K
√
E2 −K2

n2
xE

2 −K2

)
(A.12)
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B Yorick Code for Calculating Fresnel Diffraction

A simple BASIC routine for calculating Fresnel diffraction can be found in Rees et
al. [37]. The estimates in Section 3.1.3.2 were computed using a Yorick translation
of the Rees algorithm, listed here.

/*----------------------------------------------------------------------------*/
/* Script for estimating Fresnel diffraction at the detector plane of an MMI */
/* instrument. The output is a plot of intensity versus radial distance from */
/* the center of the diffraction pattern. */
/* */
/* Solid R, G, B: diffracted intensity via Fresnel (phase zone) calculation */
/* Dashed R, G, B: Airy disk radius (Fraunhofer) */
/* Dotted black: geometrical blur radius: 0.5*D*(1+mag) (ray optics) */
/* */
/* For now, the aperture is assumed to be centered on a line connecting the */
/* source and the detector plane. We can add phases to account for off-axis */
/* pinholes. */
/* */
/* Calculations are based on the numerical algorithm published in */
/* Rees, W. G. Eur J. Phys. 8 (1987) 49-52 */
/* which is based on */
/* Burch, D. S. Am J. Phys. 53 (1985) 255-260 */
/* */
/* The algorithm was translated as directly as possible from BASIC to Yorick. */
/* The test cases (MMI=9,10) compare quite favorably to the plots in Figures */
/* 4 & 5 of the Rees paper. Thus we infer the algorithm is coded accurately. */
/* */
/* For Franhofer diffraction, the illumination within the first zero of the */
/* Bessel function (i.e., the Airy disk) represents 97.6% of the radially- */
/* integrated intensity profile. */
/* */
/* Therefore, in the Fresnel case, it is useful to identify the radius */
/* that encloses 97.6% of the radially-integrated intensity profile. */
/* */
/* Last rev: IT; 08 Feb 2016 */
/*----------------------------------------------------------------------------*/

/*------------*/
/* Parameters */
/*------------*/

m2mu = 1.e+6; // 1 meter = 1.e6 microns
mu2m = 1.e-6; // 1 micron = 1.e-6 meters
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m2mm = 1.e+3; // 1 meter = 1.e3 millimeters
mm2m = 1.e-3; // 1 mm = 1.e-3 m
npts = 500;

// MMI defines the instrument setup
// 1 = NIF, 10 micron pinholes
// 2 = NIF, 35 micron pinholes
// 3 = NIF, 50 micron pinholes
// 4 = Omega, 5 micron pinholes
// 5 = Omega, 10 micron pinholes
// 6 = Omega, 15 micron pinholes // This is right on the near/far boundary

// (At 17.25 mu, all energies are Fresnel)
// 7 = Omega, 35 micron pinholes
// 8 = Omega, 50 micron pinholes
// 9 = Test: Burch/Rees, 3 Fresnel zones
// 10 = Test: Burch/Rees, 5 Fresnel zones

for(MMI = 1; MMI <=6; MMI++){
//for(MMI = 9; MMI <=10; MMI++){
/*------------------------------------*/
/* Loop over MMI settings begins here */
/*------------------------------------*/

lle_geom = nif_geom = 0;

if(MMI==1){ // NIF MMI, 10 micron pinholes
nif_geom = 1;
D = 10.0 * 1.e-6; // [m]
file = "nif_10mu_rees_fresnel";
//xmax = 200.0 * mu2m; // 200 microns
xmax = 50.0 * mu2m; // 50 microns
plot_fraun = 0;

}

if(MMI==2){ // NIF MMI, 35 micron pinholes
nif_geom = 1;
D = 35.0 * 1.e-6; // [m]
file = "nif_35mu_rees_fresnel";
xmax = 200.0 * mu2m; // 200 microns
plot_fraun = 0;

}

if(MMI==3){ // NIF MMI, 50 micron pinholes
nif_geom = 1;
D = 50.0 * 1.e-6; // [m]
file = "nif_50mu_rees_fresnel";
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xmax = 200.0 * mu2m; // 200 microns
plot_fraun = 0;

}

if(MMI==4){ // Omega MMI, 5 micron pinholes
lle_geom = 1;
D = 5.0 * 1.e-6; // [m]
file = "lle_05mu_rees_fresnel";
//xmax = 150.0 * mu2m; // 150 microns
xmax = 50.0 * mu2m; // 50 microns
plot_fraun = 0;

}

if(MMI==5){ // Omega MMI, 10 micron pinholes
lle_geom = 1;
D = 10.0 * 1.e-6; // [m]
file = "lle_10mu_rees_fresnel";
//xmax = 150.0 * mu2m; // 150 microns
xmax = 50.0 * mu2m; // 50 microns
plot_fraun = 0;

}

if(MMI==6){ // Omega MMI, 15 micron pinholes
lle_geom = 1;
D = 15.0 * 1.e-6; // [m]
file = "lle_15mu_rees_fresnel";
//xmax = 150.0 * mu2m; // 150 microns
xmax = 100.0 * mu2m; // 100 microns
plot_fraun = 0;

}

if(MMI==7){ // Omega MMI, 35 micron pinholes
lle_geom = 1;
D = 35.0 * 1.e-6; // [m]
file = "lle_35mu_rees_fresnel";
xmax = 250.0 * mu2m; // 250 microns
plot_fraun = 0;

}

if(MMI==8){ // Omega MMI, 50 micron pinholes; RMS
lle_geom = 1;
D = 50.0 * 1.e-6; // [m]
file = "lle_50mu_rees_fresnel";
xmax = 250.0 * mu2m; // 250 microns
plot_fraun = 0;

}

65



if(MMI==9){ // Test case: Burch/Rees with 3 Fresnel zones
mmi_str = "Burch/Rees: 3 Zones";
radius = 997.0 * 1.e-6; // [m] pinhole radius was 997 microns
D = 2.0 * radius;
nlam = 1;
lambda = 632.8 * 1.e-9; // [m] laser wavelength is 632.8 nm
EkeV = 12.40/(lambda*1.e10);
L0 = 0.5236; // [m] this distance corresponds to 3 Fresnel zones
mag = (494.0-56.7-4.52)/4.52; // From Burch paper
file = "burch_rees_3zones";
xmax = 120.0 * mm2m; // 120 mm
plot_fraun = 0; // coplot Fraunhofer diffraction profile?

}

if(MMI==10){ // Test case: Burch/Rees with 5 Fresnel zones
mmi_str = "Burch/Rees: 5 Zones";
radius = 997.0 * 1.e-6; // [m] pinhole radius was 997 microns
D = 2.0 * radius;
nlam = 1;
lambda = 632.8 * 1.e-9; // [m] laser wavelength is 632.8 nm
EkeV = 12.40/(lambda*1.e10);
L0 = 0.3142; // [m] this distance corresponds to 5 Fresnel zones
mag = (494.0-35.9-4.52)/4.52; // From Burch paper
file = "burch_rees_5zones";
xmax = 120.0 * mm2m; // 120 mm
plot_fraun = 0;

}

if(lle_geom){
mmi_str = "Omega MMI";
ph_str = swrite(format="%2.0f",D*m2mu)+" !mm PH";
nlam = 3;
EkeV = [4.5, 5.25, 6.0]; // [keV] titanium
lambda = (12.4 * 1.e-10)/EkeV; // [m] lam = hc/E = 12.4 (keV-Ang.)/E_keV
Ltd = 30.145 * 1.0e-2; // [m] TCC / detector distance
Ltp = 3.155 * 1.0e-2; // [m] TCC / pinhole plane distance
L0 = Ltd - Ltp;
mag = L0/Ltp;

}

if(nif_geom){
mmi_str = "NIF MMI";
ph_str = swrite(format="%2.0f",D*m2mu)+" !mm PH";
nlam = 3;
EkeV = [8.0, 10.2, 13.0]; // [keV] min, Ge He_alpha, max
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lambda = (12.4 * 1.e-10)/EkeV; // [m] lam = hc/E = 12.4 (keV-Ang.)/E_keV
Ltd = 116.667 * 1.0e-2; // [m] TCC / detector distance
Ltp = 16.667 * 1.0e-2; // [m] TCC / pinhole plane distance
L0 = Ltd - Ltp;
mag = L0/Ltp;

}

ph_str = swrite(format="%2.0f",D*m2mu)+" !mm PH";
xscale = (xmax/mag)/npts;

/*----------------------------*/
/* Define F0 (Fresnel number) */
/*----------------------------*/
F0 = (0.5*D)^2 / (lambda*L0); // radius

// Note that F0~1 is actually a transitional region. A hard distinction at
// F0=1 is a bit artificial; it’s worthwhile to investigate nearby values.
// Here we use F0 = 0.75 based on examination of the F0 variations over pinhole
// size and energy for both the Omega and NIF MMI systems.
fresnel = fraunhofer = 0;
if (max(F0)>=0.75) {fresnel = 1; regime_str = "FRESNEL (near field)";}
if (max(F0)<0.75) {fraunhofer = 1; regime_str = "FRAUNHOFER (far field)";}

/*---------------------------------------------------------------------*/
/* Define radius of geometrical blur disk at the detector (ray optics) */
/*---------------------------------------------------------------------*/
R_geom = 0.5 * D * (1 + mag);
R_geom *= m2mu;

/*---------------------------------------------------*/
/* For comparison, the Fraunhofer diffraction radius */
/* (i.e. the first zero of the Airy disk). */
/*---------------------------------------------------*/
R_Airy = 1.22 * lambda * L0 / D; // All values are in [m] here
R_Airy *= m2mu; // This is DEFINED at the detector, so no mag factor [mu]

/*--------------------------------------------------------------------------*/
/* Calculate intensity variation as a function of x, via the Rees algorithm */
/* r0 is the pinhole radius (D/2) */
/* z is the axial distance from the PH center to the detector plane (L0) */
/* x is the lateral distance on the PH plane, measured from the axis */
/*--------------------------------------------------------------------------*/
r0 = 0.5 * D;
z = L0;
I = array(0.00, nlam, npts); // Fresnel intensity pattern
Ifraun = array(0.00, nlam, npts); // Fraunhofer intensity pattern (analytic)
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x1mag = array(0.00, nlam);
x2mag = array(0.00, nlam);
platrms = array(0.00, nlam);
R_97 = array(0.00, nlam);

for(ie=1;ie<=nlam;ie++){ // Loop over wavelengths

xpt = array(0.00, npts);
ypt = array(0.00, npts);

lam = lambda(ie);

for(ipt=1;ipt<=npts;ipt++){ // Loop over x position (points)

x = ipt * xscale;
xpt(ipt) = x; // units on this are meters, as with D, z, lambda, r0, etc.

azon = pi*lam*z;
aap = pi*r0^2;

// floor function returns "double" rather than "long";
// doubles are not allowed as array indices
nmin = long(floor( (r0-x)^2 / (lam*z) ));
nmax = long(floor( (r0+x)^2 / (lam*z) ));

zarea = array(0.00,nmax+1);

if( (x<=r0) & (nmin!=0) ){ // line 100
for(i=1;i<=nmin;i++){zarea(i) = azon*i;}

}

if(nmin!=nmax){ // line 140
for(i=nmin+1;i<=nmax;i++){

rz = sqrt(i*z*lam);
phi_arg = (r0^2-rz^2-x^2)/(2*x*rz);
psi_arg = (r0^2-rz^2+x^2)/(2*x*r0);
// Float errors in the above can lead to arg > 1 or arg < -1
phi_arg = max(-1.0, phi_arg); phi_arg = min(1.0, phi_arg);
psi_arg = max(-1.0, psi_arg); psi_arg = min(1.0, psi_arg);
phi = acos(phi_arg);
psi = acos(psi_arg);
zarea(i) = rz^2*(pi-phi+0.5*sin(2*phi)) + r0^2*(psi-0.5*sin(2*psi));

}
}

// line 210
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zarea(nmax+1) = aap;
for(i=nmax;i>=1;i--){
zarea(i+1) = zarea(i+1) - zarea(i);

}

intensity = 0;
flag = 1;

for(i=1;i<=nmax+1;i++){
intensity += zarea(i)*flag/azon;
flag *= -1;

}

intensity *= intensity;
ypt(ipt) = intensity;

} // end of loop over x (radial) position, ipt

I(ie,:) = ypt(:);

// Compute the Fraunhofer diffraction pattern for comparison
// R_Airy should land at the first 0
// I = I_0 * (2*J_1(s)/s)^2
// where J_1 is the Bessel function of the first kind of order 1 and
// s = k*a*sin(theta) where k=2pi/lambda, a=D/2, and theta = observation angle
// s = (pi * D / lambda) * (x/sqrt(L0^2 + x^2))
// Note that x here is measured ON THE DETECTOR PLANE, thus it is mag*xpt
s = (pi * D / lam) * mag * xpt/sqrt(L0^2 + (mag*xpt)^2);
Ifraun(ie,:) = I(ie,1)*(2.0 * bessj1(s)/s)^2;

// Identify the 97.6% radius for the radially-integrated Fresnel intensity
dx = mag * m2mu * xpt(dif);
grow, dx, dx(0);
IFresnel_total = I(ie,+)*dx(+); // Radially-integrated intensity to maximum x
IFresnel_incremental = array(0.0, npts);
for(idx = 1; idx<=npts; idx++){
IFresnel_incremental(idx) = sum(I(ie,1:idx)*dx(1:idx));

}
Ifraction = IFresnel_incremental / IFresnel_total;
R_97idx = max(where(Ifraction < 0.976));
R_97(ie) = mag * m2mu * xpt(R_97idx);

} // end of loop over wavelengths, ie

// Report R_airy, R_geom, and (if Fresnel) R_97.6%
// R_airy should be appropriate radius when F << 1
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// R_geom appears to be a good approximation in the Fresnel (F ~>1) regime
if(fresnel){
write,"\t"+mmi_str+"\t"+ph_str+"\t"+regime_str;
write,"\tE\t\tR_Airy\t\tR_geom\t\tR_97.6%";
for(ie=1;ie<=nlam;ie++){
write,EkeV(ie),R_Airy(ie),R_geom,R_97(ie);

}
}
if(fraunhofer){
write,"\t"+mmi_str+"\t"+ph_str+"\t"+regime_str;
write,"\tE\t\tR_Airy\t\tR_geom";
for(ie=1;ie<=nlam;ie++){
write,EkeV(ie),R_Airy(ie),R_geom;

}
}

/*---------------------------------------------------------------------*/
/* Plot intensity distribution as a function of distance from the axis */
/*---------------------------------------------------------------------*/
colors = ["red", "green", "blue", "black", "magenta", "cyan", "yellow",
"red", "green", "blue", "black", "magenta", "cyan", "yellow",
"red", "green", "blue", "black", "magenta", "cyan", "yellow"];

types = ["solid","solid","solid","solid","solid","solid","solid",
"dash","dash","dash","dash","dash","dash","dash",
"dot","dot","dot","dot","dot","dot","dot"];

e_str = swrite(format="%4.2f",EkeV)+" keV";
F0_str = "F = "+swrite(format="%5.3f", F0);
ptitle = mmi_str+": "+ph_str;
leg_str = colors(1:nlam)+": "+e_str+" "+F0_str;
leg_str2 = e_str+": "+F0_str;
leg_str3 = colors(1:nlam)+" dashdot: Fraunhofer";

plot_dir = "../Plots/diffraction/";

psfile = plot_dir + file + ".ps";
epsfile = plot_dir + file + ".eps";
pdffile = plot_dir + file + ".pdf";

window, MMI, hcp=psfile;
fma;
for(ie=1;ie<=nlam;ie++){
if(fraunhofer){myI = Ifraun(ie,:);}
if(fresnel){myI = I(ie,:);}
// Plot radial intensity profile
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plg, myI(:), mag*xpt*m2mu, marks=0, width=2.0, color=colors(ie), legend=leg_str(ie);
// Mark Airy disk radii
plg, [0.0, max(I)], [R_Airy(ie),R_Airy(ie)], marks=0, width=2.0, color=colors(ie), type="dash", legend=" ";
// Mark geometrical shadow radius (blur disk)
plg, [0.0, max(I)], [R_geom, R_geom], marks=0, width=2.0, color="black", type="dot", legend = " ";
// Mark the 97.6% radius, for the Fresnel cases
if(fresnel){
plg, [0.0, 0.66*max(I)], [R_97(ie),R_97(ie)], marks=0, width=2.0,
color=colors(ie), type="dashdot", legend=" ";

}
// Write F value for each energy
plt, leg_str2(ie), 0.5*mag*xpt(0)*m2mu, max(I)*(0.95-0.07*ie),tosys=1;

}
xytitles,"x_detector_ [!mm]", "Diffracted Intensity", [-0.005, 0.00];
pltitle,ptitle;
limits;
hcp;
hcp_finish;
eps,epsfile;
pdf,pdffile;

/*--------------------------------*/
/* End of loop over MMI settings. */
/*--------------------------------*/
}
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