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Abstract

This document examines the performance of a generic flat-mirror multi-
monochromatic imager (MMI), with special emphasis on existing instruments
at NIF and Omega. We begin by deriving the standard equation for the mean
number of photons detected per resolution element. The pinhole energy band-
width is a contributing factor; this is dominated by the finite size of the source
and may be considerable. The most common method for estimating the spatial
resolution of such a system (quadrature addition) is, technically, mathemat-
ically invalid for this case. However, under the proper circumstances it may
produce good estimates compared to a rigorous calculation based on the con-
volution of point-spread functions. Diffraction is an important contribution
to the spatial resolution. Common approximations based on Fraunhofer (far-
field) diffraction may be inappropriate and misleading, as the instrument may
reside in multiple regimes depending upon its configuration or the energy of
interest. It is crucial to identify the correct diffraction regime; Fraunhofer and
Fresnel (near-field) diffraction profiles are substantially different, the latter
being considerably wider. Finally, we combine the photonics and resolution
analyses to derive an expression for the minimum signal level such that the
resulting images are not dominated by photon statistics. This analysis is con-
sistent with observed performance of the NIF MMI.
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1 Introduction

This document contains a general analysis of the properties of a multi-monochromatic
x-ray imager (MMI) [1, 2, 3, 4, 5] with flat mirrors. Its secondary purpose is to gather
all available information relevant to such an analysis for the specific MMI diagnostics
described below. Much of this discussion applies to any pinhole imaging system, such
as the heavy emphasis on properly identifying the diffraction regime.

Although an MMI instrument is designed to produce an array of pinhole images, each
covering a unique energy domain, the discussion throughout this document pertains
to any single pinhole image within that array. Section 2 examines the photonics bud-
get of the instrument. Section 3 estimates the spatial and spectral resolution of the
instrument based on an examination of several factors, including both Fraunhofer
and Fresnel diffraction. The spatial resolution discussion compares the rigorous ap-
proach (based on the convolution of point-spread functions) to common and much
easier (but inapplicable in this context) approximations based on quadrature addi-
tion. In Section 4, we combine the preceding results to derive lower bounds on the
detectable signal level, and compare those limits to MMI data collected on NIF shot
N121119. Appendix A examines the relationship between a position on the pinhole
plane and the corresponding energy at the detector. Appendix B contains the Yorick
code used to calculate Fresnel diffraction profiles in Section 3.

Special emphasis is placed on existing MMI diagnostics at the National Ignition
Facility (“NIF”) and the University of Rochester Laboratory for Laser Energetics
(“Omega”). At the time of this writing, the NIF instrument covered approximately
8 - 13 keV [6]; the range of the Omega MMI instruments was originally approxi-
mately 4.5 - 6 keV, which is the focus of the present analysis, but with an additional
capability to image 3.3 - 5.5 keV. However, this analysis is applicable to any MMI
instrument using flat Bragg reflectors.

Acknowledgments: I wish to thank Peter Hakel (XCP-5) and Scott Hsu (P-24)
for feedback on this document, as well as Kirk Flippo (P-24), Rahul Shah (P-24)
and Steve Batha (P-DO) for several enlightening conversations. I also thank Tom
Murphy (P-24) for bringing my attention to his treatment of the relationship between
photon statistics and resolution, which proved crucial for unifying this document, and
Fred Wysocki (XCP-DO) for obtaining measurements of an as-built Omega MMI
system.



2 Photonics Budget

2.1 Total Number of Photons Available to the Detector (I)

Let the “signal level” of the x-ray emission from the capsule be
S [J-eVvtosTH. (2.1)

This is the spatially and temporally integrated emission. In general, it will depend
upon the time-varying electron temperature, T, and electron density, n., plus de-
tails of the atomic physics. S might be measured with an absolutely calibrated
spectroscopic diagnostic, such as the NIF Supersnout-II instrument, which produces
calibrated spectra measured in J eV~! sr™!. Estimating or calculating S requires
an atomic physics calculation, either directly or through the use of opacity values.
Deriving meaningful constraints on S is the subject of Section 4.

If the burn duration in picoseconds is Abyg, then the mean signal level per second
is

S [J-eVTt.sr]
Ab,s - 10712 [s - ps~!

] — 102 <%ps> [J eVl Sfl} _ (2.2)

If the total area of the radiating region in pm? is A2, then the spectral radi-

ance of the source—i.e., the mean signal level per second per square centimeter of
source—is

102 (&) [J-eV™t.srt. g7

Rey = Az - 1078 [em? - pim2)
= 1020 (A@%W) [J . erl . SI'i1 . Si1 . CmiQ} . (23)

(The spectral radiance is equivalent to the specific intensity, 1,, also known as the
brightness [7]. This is the quantity obtained by solving the radiative transfer equation
along a geometrical ray, such as when post-processing a radiation-hydrodynamic
numerical simulation to compute the X-ray self-emission. For example, the Yorick
[8] DRAT package computes, for an energy corresponding to frequency v,

L =10)e™+5,(1-—e™)
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where I,,(0) is the background intensity, S, is the source function, and 7, the optical
depth. Similar calculations in the NLTE regime can be found in [9] and [10], and
may be conducted using Peter Hakel’s FESTR code [11].)

If the bandwidth of the pinhole image (see Section 2.4) in eV is AE.y, then the
effective radiance of the source is approximately

S
~ . — 1020 ( = . -1, 1,41, -27
R~ R.y-AE., =10 ( Abps_Am2> [J-eV st s7h em™?] - AE.y [eV]
S-AE,y _ PR
=102 [ =— gL Zosr 1. 4
0 (Abps'A;mﬂ) [J-s7h em™ - sr7!] (2.4)

The energy in Joules of a single emitted photon of energy dE, v keV is
Epp = 6By - 1.602 x 107'° [J - photon™'] .

The mean number of photons of this energy, Ny, emitted per second per steradian
per square centimeter of emitting area is therefore the radiance divided by the photon
energy, or

R 1020 (—Af'A_feV ) [J-s7t-em™2 - sr7
N., — — be pm?
ph Epn 1.602 x 107166 By [J - photon—]

S AFE.y
Abys - Aym2 - 0 Egey

= 6.242 x 10* ( > [photon -s™'-em™ -sr7'] . (2.5)

Let the photon collection interval be Agp picoseconds (e.g., this may represent the
width of the gating voltage pulse). Then the number of photons emitted per steradian
per square centimeter of emitter that can be received at the detector during the gating
period is given by

Ip = Ny, [photon-s™"-cm ™2 st - 107 Ag,, [s]

and thus
S . AEeV . Agps
Abys - Ay2 - 0 Eey
S - AE1eV : Agps
Abys - Apm2 - 0 Epey

Iy =6.242 x 10* ( ) [photon - sr™" - cm™?] (2.6)

=6.242 x 10" ( > [photon - sr™" - um™?] (2.7)



where Ij is the total number of photons available to the detector emitted into a unit
solid angle per unit area of emitter.

Example: Ge “Jet” Feature

Bruce Hammel has estimated the He, signal level from a Ge-doped symcap implosion
at NIF [12] might be S =2 x 107%J eV~! st given 20 ng of Ge-doped CH ablator
mixed into a hotspot with T, = 3.5 keV and n, = 3 x 10** cm™3. Given a 100 ps burn
width (Abps = 100), a 100 eV bandwidth (AE.y = 100), a 10pm x 10pm emitting
area (A,m2 =100), and a 70 ps gating window (Agps = 70), the total number of
available photons in Ge He, emission (§Ey.y = 10.2) is

2% 107*-100 - 70
100 - 100 - 10.2

Iy = 6.242 x 10% . ( ) = 8.6 x 10"® photon - st™! - cm ™2,

(Sean Regan’s HSXRS conceptual design review (CDR) presentation estimates [y =
8.4 x 10" photon - sr~! - em™2 [12].)

Example: NIF Shot N121119

NIF shot N121119 (November 19, 2012) gave a total emission in the Ge He,, line [13] of
1.72 J st~!. From an emission feature width of 0.353 keV (estimated from plots of the
absolutely calibrated spectrum [14]), this gives a signal level S = 4.87 J keV ™! sr™! or
S=4.87x10"3J eV~ srt. (A subsequent reanalysis [15] of the capsule emission
for shot N121119 yields 0.872 J sr~! over a line width of 0.14 keV. In that case, the
signal S = 6.23 J keV~! sr=!. Using that measurement as a starting point would
therefore increase all subsequent estimates by ~28%.) In this shot, the Ge dopant
was placed in the inner edge of the capsule shell, so the relevant emitting area is
likely much larger than the 100 p#m? used in the previous example (which pertained
to a small “jetlike” feature penetrating an imploding capsule core).

Given a 100 ps burn width (Ab,s = 100), a 100 eV bandwidth (AE.y = 100), a
roughly estimated emitting area of 100um x 100um (A2 = 10%), and a 70 ps gat-
ing window (Agp,s = 70), the total number of available photons in Ge He, emission
(5EkeV = 102) is

4.87 x 1072 -100 - 70
100 - 10* - 10.2

Iy = 6.242 x 10% - ( ) ~ 2.1 x 10" photon - st™! - cm™2.



2.2 Detected Photons (Ng)

An estimate for the number of photons detected per resolution element, Ng, is
Nd - IO : Qph : Ares -n (28)

where I is the total number of photons available to the detector, €2, is the solid
angle subtended by the pinhole as seen from the source, A, is the area of a resolution
element at the source, and n is the aggregate detection efficiency of the instrument.
This estimate counts discrete photons, although a given instrument is likely to have
a raw detection threshold based on a time-integrated flux or a signal level, S, rather
than a number of photons. This estimate also disregards noise (however, see Section

1),

(It is important to note that in this discussion “resolution element” is not synonymous
with “pixel,” as in general these will not be equivalent. The size of an independently
resolvable image element is an inherent property of the imaging system, as shown
below, and unrelated to the size of detector elements. A monochromatic point source
will be blurred into the size and shape of the instrument’s resolution element for that
energy, which may be larger or smaller than the detector elements.)

In the limit of infinitesimal solid angle and area, the product €2, A,cs is the étendue
of the imager. (Etendue is also known as the “acceptance” or “throughput” of the
system.) This quantity is related to Lagrange and optical invariants of the system. It
never decreases as light propagates through an imaging system, and is conserved at
perfect refractions and reflections [16]. Thus in what follows we are free to disregard
reflections from the Bragg mirror while considering ray paths, with the understanding
that the resulting expressions for Ny may constitute a lower bound.

The solid angle of the pinhole is easily calculated from the fraction of the total sphere

(47 steradians):

Qo Apn Aph

- TP = O, = 2 2.9

ir  AnL}, =1z [ (29)
where Ay, is the area of the pinhole aperture, w (D/2)?, D being the pinhole diameter,
and Ly, is the distance from TCC (target chamber center) to the pinhole plane.



.,_< D Geometrical blur disk:
i diameter Bg

TCC

Pinhole plane

Detector plane

Figure 1: Geometrical blur. Reflection at the Bragg mirror can be disregarded owing to properties
of the étendue.

A resolution element on the detector plane is the region on the detector over which
a monochromatic point source will be smeared. Here we define the geometrical blur
region as the disk defined by the magnification of a single point source through the
aperture pinhole, as shown in Figure 1. (The edges of the blur disk define the shadow
of the aperture in geometrical optics.) The diameter of the geometrical blur region
on the detector, By, is determined by the relation

where Liq is the distance from TCC to the detector plane, and M is the instrument
magnification, (Liq — Ltp) /Ltp. Thus the area of the geometrical blur region on the
detector is )
B

Appr = T (79> — G) D* (14 M)*. (2.11)
(This estimate ignores diffraction, which may be non-negligible (see Section 3.1.3.2).
However, a detailed treatment of Ay, is unnecessary for calculating the number of
photons detected per unit area, as shown below.)

The area of a resolution element on the detector is M? times the area of a resolution
element at the source. Therefore the area of a resolution element at the source
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Ares =

Apiar 1+ M)
blur_ (E) lﬂg [cm2 - resolution elementfl] (2.12)

M? 4 M?

and thus we obtain the étendue:

™ (D/2)" (g) L+ M)
pr 4 M?

DY (1+ M)’
- 16L%,M?

[sr -cm? - res. elt._l] )

Qph'Ares = [

(2.13)
The number of photons detected per independent resolution element at the detector
is therefore

D (1+ M)*
16L3,M?

Nag=1Io-Qpp - Apes - =1 - n [photon - Tes. element_l} (2.14)
(Note there is a typographical error in the first form of equation (11) in Koch et
al., RSI 76, 073708 (2005). The correct exponent on D for this expression is 4,
as obtained via the above derivation, rather than 2, as written in the above refer-
ence.)

Again, this is a measure of the number of photons per independent image element, not
per detector element (i.e., not per pixel). A more common measure is the number
of photons detected per unit area of detector, frequently per square micron. To
obtain that number, we normalize N4 by the area of the geometrical blur region at
the detector in the appropriate units (um? - res. element™!). Doing so yields

N, Iy - Q- Aves - Q wD? _

Nymz = Ablzr = IiZblur : :IO.M_MQZ'UZ O'W'n [photon - ™7}
(2.15)

Because this estimate is independent of A,. and Ay, it doesn’t require a sophisti-
cated model for the blur disk size. Thus diffraction from the pinhole and Bragg re-

flector is immaterial to this discussion. These effects are analyzed in Section 3.

If the area of a detector pixel is Apix pm?, then

WDQApiI

Npim = N,qu : Apix = ]O : W

-n  [photon - pixel '] . (2.16)

Example: Ge “Jet” Feature



From above, we have Iy = 8.6 x 10! photon sr~! ym=2.

For the NIF MMI, M = 6 and Ly, = 16.667 cm = 1.6667 x 10°um. If the pinhole
diameter (D) is 10 pum, then we’'d expect the NIF MMI to detect

7102

N, 2
4-(1.6667 x 105)%- 6

w

m2 = 8.6 x 1019

5= 6.75 1 photon - pm 2.

Example: NIF Shot N121119
From above, Iy = 2.1 x 10! photon sr~! ym™2.

Again using M = 6, Ly, = 16.667 cm, and D = 10 pm, we would expect the NIF
MMI to detect

7102
4-(1.6667 x 10°)* - 6

Nz = 2.1 x 10" ;7 = 1.65 1) photon - pm=2. (2.17)

2.3 Detection Efficiency (n)

The aggregate detection efficiency, 1, comprises contributions from three factors:

11 = Nfilter * NBragg " 1M CP-

The first factor, naier, represents X-ray attenuation owing to propagation through
the blast shield and any additional filters. The second factor, 1page, accounts for the
reflectivity of the Bragg mirror. The final factor, nycp, is a catch-all that incorporates
the overall efficiency of the multichannel plate (MCP) and subsequent electronics.
All factors are energy-dependent. (Note that errors in the flat-fielding of the MMI
energy response can introduce significant errors in the inferred plasma quantities,
such as electron temperature [17].)

2.3.1 Blast Shield and Filters (7ger)

It is possible for the target to generate a significant amount of particulate debris.
The debris leaves TCC with a range of kinetic energies and sizes; the smallest pieces

8



may pass through the pinholes. It is therefore possible for particles to enter the
MMI and damage the instrument. Thus a blast shield (typically several layers of one
or more materials in multiple locations) is installed behind the pinhole array. The
blast shield also acts as an X-ray filter, and may produce significant attenuation. For
instance, the transmission through 2 mm of Kapton ranges from 18% at 8 keV to
67% at 12.85 keV. The X-ray transmission of the shield can be computing online via
the Center for X-ray Optics at Lawrence Berkeley National Laboratory [18].

2.3.2 Reflectivity (nBragg)

MMI instruments use crystals or multilayer materials as low-incidence-angle gratings.
While the reflected intensity is a delta function of incidence angle for an ideal grating,
imperfections and other real-world effects give rise to nonzero reflected intensities at
small variations from the n = 1 Bragg condition. A plot of the reflected intensity
at a fixed detector location as a function of incidence angle is known as the rocking
curve [19] (see Section 3.1.4).

The Bragg mirrors for the NIF and Omega MMI instruments are multilayer ma-
terials comprising approximately 300 periods of alternating W and B,C layers de-
posited atop a substrate of crystalline silicon. The average inter-layer spacing of the
composite W/B4C material is d = 1.5 + 0.0015 nm with a uniformity of £0.007 nm
[20].

The performance of the multilayer has been calculated [20] for incident plane waves
between 9 and 12.5 keV. For pinhole image energies near the low end of the NIF
instrument range, 8 keV, an integrated Bragg reflectivity of 30% is characteristic
of the multilayer. For pinhole image energies near the upper end of the intrument
range, 13 keV, the average reflectivity is closer to 20%. The Bragg contribution to
the NIF MMI photonics budget is therefore weakly dependent upon energy.

No analogous data exist for energies within the domain of the Omega MMI.



2.3.3 Multichannel Plate (ncp)

The efficiency of the multichannel plate (MCP) is determined by several factors
including (but not limited to) the gold photocathode response function [21] (which
measures the energy-dependent efficiency of producing an electron for the scintillator
fibers); the amplification of electrons within the scintillator fibers (which therefore
depends upon the gain); and the performance of the phosphor plate. Some of these
factors will be strongly energy dependent, such as the photocathode response func-
tion. The energy-dependent quantum efficiency of a gold photocathode can be found
in [21]. A common energy-independent estimate of the MCP efficiency [12] is 7%,
however a superior energy-dependent response function can be found in [22].

Example: Ge “Jet” Feature

At 10.2 keV, the transmission through 2.5 mm (98.43 mils) of Kapton is 37%. The
reflectivity of the NIF MMI Bragg mirror at this energy is 30%, and the energy-
independent MCP efficiency is roughly 7%. Thus

n=0.37-0.30-0.07="7.77 x 1073

and, using our previous calculation,

N

um2 = 6.75 - 7.77 X 1072 photon - yum 2 = 0.052 photon - ym 2

Example: NIF Shot N121119

Using the same n value as above, we get

Nym2 = 1.65-7.77 x 10~% photon - yum ™2 = 0.013 photon - pm 2

2.4 Monochromaticity of Pinhole Images (AE.y)

The finite sizes of the source and pinhole lead to significant variation in the incidence
angles for geometrical rays arriving at the Bragg reflector. Thus, rather than being
truly monochromatic, each pinhole image in the MMI array will encompass a range
of energies, AE.y. The basic geometry is illustrated by the cartoon in Figure 2.

10



X MMI centerline

pinhole
plane

Figure 2: Variation of incidence angles on the Bragg mirror.

A ray from the source to the Bragg mirror makes an angle o with the MMI centerline,
which depends on the emission location at the source (x4) and the location at which
the ray intersects the pinhole plane (x,). The tilt angle of the mirror is ¢, and the
Bragg angle for this ray is ¢. From the diagram, we see that ¢ = a + . Thus the
n=1 Bragg condition yields

B he ‘ Ty =
E(a)= 2dsin(a 1 9) a = tan < I ) (2.18)
and iB A
c
% = —ﬁCOt(CY‘Fw)CSC(CY—Fw). (219)

(While energy variation across the mirror is a strong function of x, it depends only
weakly on y,, as shown in Appendix A.)

We consider the individual contributions of the pinhole and source sizes separately.
In what follows, we consider source sizes of 200, 250, and 300 pum for the NIF MMI
(based on empirical observations of DIME shots) and source sizes of 100, 115, and
130 pm for the Omega MMI (these being the core sizes for which the various Omega
MMI pinhole designs were intended [23]). We consider NIF pinholes of 10, 35, and
50 pm, and Omega pinholes of 5, 10, and 15 um. These choices give approximately
the same range of source/pinhole size ratios for both instruments (4 - 30 for the
NIF MMI, and 6.7 - 26 for the Omega MMI). If the aperture becomes too large
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compared to the source, it may be better modeled as a penumbral aperture rather
than a pinhole aperture [24, 25].

2.4.1 Point Source, Extended Pinhole

First, consider the case of a point source located at the origin (target chamber center,
or TCC) and a pinhole of diameter D centered at x,,. Incidence angles will vary at
the mirror as illustrated in Figure 3.

MMI centerline

pinhole
plane

Figure 3: Variation of incidence angles owing to a finite pinhole size.

In this case, we have x5 = 0, x, = xpp £ %D, and oy = a1 + d¢. The energy variation
across the pinhole is therefore

AE.y = |E(az) — E(ay)|

Plots of AE.y for a reasonable range of x,,;, values are shown in Figure 4 for the Omega
MMI and figure 5 for the NIF MMI. Both instruments use a W/B,C multilayer with
d ~ 15A interlayer spacing.
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Figure 4: Omega MMI AE.y; for a point
source and extended pinhole, as a function of

pinhole location. Pinhole diameters are 5 pm
(black), 10 pum (blue), and 15 pum (red).

Pinhole AEey (NIF MMI)

Mirror Tilt Angle = 0.08 degrees

200
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Figure 5: NIF MMI AE.y for a point source
and extended pinhole, as a function of pinhole
location. Pinhole diameters are 10 ym (black),
35 pum (blue), and 50 pym (red).

Pinholes on the Omega MMI instruments are distributed between 0.8495 mm above
and 1.4735 mm below the MMI centerline [23]; these values are marked in figure 4.
For the Omega MMI, AE.y ranges from 5 - 20 eV for 5 - 15 um pinholes. In contrast,
on the NIF MMI, AE.y may exceed 100 ¢V for 10 um pinholes within 2.4 mm of the
NIF MMI centerline, or for 50 um pinholes within 5.6 mm of the centerline.

These estimates provide a lower bound on the bandwidth of point source images,
owing strictly by the finite size of the pinhole.

2.4.2 Extended Source, Infinitesimal Pinhole

Now consider the case of an extended source. If the source is sufficiently larger than
the pinhole aperture, the pinhole may be treated as an infinitesimal point. This

geometry is illustrated in Figure 6.



Ds$ MMI centerline

pinhole
plane

Figure 6: Variation of incidence angles owing to a finite source size.

In this case x, = xpn and x3 = £0.5 Dy where Dy is the source diameter. Plots of
AEgy for a reasonable range of Dy values are shown in Figure 7 for the Omega MMI
and Figure 8 for the NIF MMI.

Source AEev (Omega MMI) Source AEev (NIF MMI)
2507‘\\\\\\\\\‘\\\\\\\\\‘\\\\\\\\\‘7 SOOOJ\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\L
- Mirror Tilt Angle = 4.19 degrees - - Mirror Tilt Angle = 0.08 degrees -
200— 1 1 — —
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w - | | _ _
< 100— | ‘ - -
50— | | — —
0 ‘ I ‘ I ‘ I ‘ } ‘ I ‘ I ‘ I ‘ I ‘ I ‘ \‘ ‘ I ‘ I ‘ I ‘ I ‘ I ‘7 OT [ ‘ [ ‘ [ ‘ [ ‘ [ ‘ [ ‘ [ ‘ [ ’7
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Figure 7: Omega MMI AE.y for an extended Figure 8: NIF MMI AEqy for an extended
source and infinitesimal pinhole, as a function  source and infinitesimal pinhole, as a function
of pinhole location. Source sizes are 100 ym  of pinhole location. Source sizes are 200 pm
(black), 115 pm (blue), and 130 pum (red). (black), 250 pum (blue), and 300 pym (red).
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The Omega MMI pinhole designs are intended to accommodate core sizes between
100 and 130 pm [23]; as above, the range of allowed pinhole locations is marked on
Figure 7. AE.y values for this instrument range from 90 - 170 eV for these core sizes.
On the NIF MMI, we see that AE.y will exceed 150 eV for pinholes 1 cm from the
centerline. The bandwidth grows to several hundred eV at 5 mm.

Comparison of figures 4, 5, 7, and 8 shows the bandwidth contribution from the finite
source size is nearly an order of magnitude greater than the contribution from the
finite pinhole size. This is to be expected, as the pinhole apertures are required to be
negligible compared to the source size (as opposed to penumbral apertures).
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3 Spatial and Spectral Resolution

We begin by noting the resolution in the orthogonal directions of a 2D MMI pinhole
image may have different contributing factors. Typically the energy variation across
the MMI detector plane varies strongly with pinhole position in one direction but
only weakly in the orthogonal direction. (See appendix A.) We ignore the variation
in the weak direction. This is justified because most MMI analysis procedures im-
plicitly assume the spectral variation is strictly one-dimensional [26, 27]. In what
follows, we assume the instrument magnification does not vary across the field, and
is the same in the x- and y-directions. In practice it may vary, for instance if the
detector and reflector are misaligned. For the purpose of calculating the diffraction
contributions we assume all pinhole apertures to be perfectly circular, although in
practice fabrication difficulties may produce elliptical pinholes.

The spatial resolution limit is established by the width (not radius) of a monochro-
matic point-spread function (PSF) image. Throughout this section, we compare two
methods for estimating that width. A quadrature addition method is commonly used
in the literature [28, 29]. While straightforward, this method relies upon unjustified
physical assumptions, and may lead to significant underestimation of the PSF width,
depending on the diffraction regime. The correct approach, which involves comput-
ing a chain of distinct PSF convolutions, is more computationally intensive. How-
ever, we will derive approximations for the diffraction PSF in both the far- and near
field which greatly simplify the PSF convolution method and lead to semi-analytic
estimates consistent with results derived by rigorous numerical computation.

We conduct all calculations at the detector and convert to a source resolution at
the end. These estimates do not account for effects that stem from the finite time
gating of the detector at a particular location, and/or the finite interval for the
gating pulse to sweep across the photocathode. Such effects may include motion
blur within a particular pinhole image, or the translation of temporal variations in
the line/continuum ratio into spatial variations across the detector plane.
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3.1 Spatial Resolution

3.1.1 Convolution of Point Spread Functions

The final image on the detector plane is the convolution of the source profile with
the PSFs of the various instrument elements. In this case the pinhole, the Bragg
reflector (i.e., the crystal or multilayer), and the detector each contribute their own
PSF to the final image. Additional elements may contribute, but here we restrict
our attention to these factors. By denoting the radial image intensity by I(r) and
the radial source profile by S(r) (not to be confused with the signal level, S), and the
PSFs by P, the fundamental relationship can be written

1) = { (50 % P (1)) # Pray ()] = Pa 1) } 31)

where “x” denotes convolution. Each PSF represents a normalized distribution of
intensities or, equivalently, irradiances (power received per unit area). The normal-
ization is important for keeping each convolution operation flux-conservative.

The pinhole PSF, Py, has two components: a contribution from the geometrical
shadow of the aperture (the ray-optics contribution), plus a contribution from diffrac-
tion [28, 29]. By applying the associative property of convolutions we obtain the
aggregate PSF of the system:

Paystem (1) = Poeom (1) % Paify (1) * Phragg (1) * Paet (7) - (3.2)

Approximating the spatial resolution limit of the instrument means estimating the
width of the system PSF.

3.1.1.1 Special Case: Gaussian PSF's

Consider a case where the source profile and every PSF is Gaussian. Then let us
define ¢§ to be the variance of S(r), 02, to be the variance of Pgyeom, etc. The
convolution of a pair of Gaussians produces another Gaussian, and the resulting
variance is simply the sum of the original variances. In this circumstance I(r) will be
a Gaussian with variance given by

2 2 2 2 2 2
07 = 0g + Ugeom + Odiff + UBTagg + O det (33)
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When o2 — 0, the extended source becomes a point source, and
2 2 2 2 2
E() = Ogeom + Odiff + O Bragg + Odet (34)

is the variance of the system PSF. If we equate the radius of the system PSF with
its standard deviation (i.e., the square root of the variance), then 2 ¥, is the spatial
resolution limit of the system (the PSF width).

Calculating the quadratic sum is trivial for known Gaussian standard deviations, o.
Thus, the convenience of Equation 3.4 makes it the basis of many resolution estimates
in the X-ray pinhole imaging literature [28, 29]. However, it is only applicable to a
chain of Gaussian point spread functions, or to PSFs that can be well-approzimated
by a Gaussian. As shown below, the Gaussian assumption fails for Pgig in the near-
field regime, and it is patently incorrect for Pgeom.

3.1.1.2 General Case: Non-Gaussian PSF's

In what follows, we will denote the effective width (diameter) of each PSF by D rather
than 20 to emphasize that these functions might be non-Gaussian. An estimate for
the resolution limit at the detector, based on the Gaussian case but commonly used
in the literature, is [28, 29

Di,y :D26t+D]2)h+D2

Bragg
:D?let + Dzeom + D?isz + DZBragg (35)

where Dy and Dy are the axes of the ellipse into which a monochromatic point source
is blurred (here assumed to be equal).

3.1.2 Detector (Pget, Dyet)

According to George Kyrala [30], the resolution of the MCP used by the NIF MMI
on shot N121119 was 50 pum. Kyrala also states [31] the resolutions of the NIF and
Omega MCPs are approximately the same (50 pm). (It should be noted that the
final scanned resolution of the film used for the Omega MMI instruments may be
20 pm or smaller, according to Rahul Shah [32]. However, this is distinct from the
resolution of the detector during data collection.)
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For simplicity, and lacking more specific information, we assume the detector PSF
to be Gaussian. In that case, the standard deviation og4e; in Equation 3.4 is 10.62
pm, which yields a Gaussian FWHM = 2.35480 = 25.0 um. Alternatively, if we
estimated the resolution via Equation 3.5, we would use Dge; = H0pum.

3.1.3 Pinhole (P,y,Dpp)

Two factors contribute to the pinhole point-spread function: a geometric component
arising from the finite size of the aperture, and a contribution from diffraction through
the aperture [28, 29].

3.1.3.1 Geometric Component (Pgeom; Dgeom)

The geometrical shadow of the pinhole aperture defines a region of diameter Dgeom.
This is the geometrical blur disk arising from the projection of a point source through
a single pinhole, as shown in Figure 1. (Recall that the Bragg mirror can be ignored
when examining this property of the system because the étendue, which is related
to optical invariants of the system, is conserved in perfect reflections, as described in
Section 2.2.) As shown in Equation 2.10, the diameter of the geometrical blur region
on the detector is simply D(1 + M), where D is the pinhole diameter and M is the
instrument magnification. Thus

Dyeom = D(1 + M) (3.6)

which, based on the design specifications, yields Dgeom ~ 7D for the NIF MMI in-
strument and Dgeom & 9.6D for the Omega MMI instruments. (The empirical mag-
nification of the as-built instruments may vary. Rahul Shah has obtained M = 7.5
for the Omega MMI, based on comparison of the known pinhole spacings and the
measured image spacings [33].)

Dgeom is sufficient to compute the ray-optics contribution to the system resolution
limit according to Equation 3.5. But in order to compute the convolutions correctly,
as in Equation 3.2, we must also derive a functional form for the PSF, Pgeqn. Consider
Figure 1. Let the radiant flux arriving at the center of the detector (i.e., along the
central axis) be Fy. Then, by the inverse square law, the radiant flux arriving at the

19



detector screen a distance r from the central axis must be

L2 F
FO 2 i = 0 ) |T| < Rgeom
L, + 1r?
F(r) = id 1+ (—L:d> (3.7)

0 |T| Z Rgeom

where Rgeom = 0.5Dgeom- Note that Reeom < Lig for the system configurations under
consideration here. Then F(r) ~ F for |r| < Rgeom and 0 elsewhere, meaning Pyeom
is well approximated by a normalized boxcar function:

Pyeom(r) {@ (1 + Ryeom) — O (1 — Ryeom) (3.8)

2Rgeom
where © denotes the Heaviside step function. This cannot be approximated by a
Gaussian. Because the geometric contribution from the pinhole is always a factor in
the resolution, the quadrature addition method is never mathematically justified, as
at least one contributing factor is distinctly non-Gaussian. Nevertheless under certain
circumstances it may produce decent estimates, as shown in Section 3.1.6.

3.1.3.2 Diffraction (Pgg, Daig)

A proper treatment of the diffraction contribution depends on whether the detector
lies in the far-field regime, in which case the Fraunhofer approximation applies, or in
the near-field regime, in which case a more complicated Fresnel diffraction calculation
is required. (Both approximations are derived from scalar diffraction theory.)

The regime is determined by the dimensionless Fresnel number

o R (D))’

DYDY
where R is the aperture radius, A is the wavelength, and L is the distance from the
aperture to the detector plane. (On axis, L = Lig — Ly,. We use this approximation

for L when estimating F.) The Fraunhofer approximation applies for F < 1, while
the Fresnel approximation applies for F > 1 [34].

(3.9)

Given A = he/E = (12.4 x 107*/Eyev) pm, we have F = 2.02 x 10? D? Ey.y /L where
D and L are measured in gm. As in Section 2.4, we consider 10, 35, and 50 ym NIF
MMI pinholes, and 5, 10, and 15 um pinholes for the Omega MMI.
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The Fresnel number for the NIF MMI (L = 1.0 m) is

Fnip =2.02 x 107* D? By (3.10)

The energy range for the NIF MMI instrument is approximately 8-13 keV. Thus,
it has a Fresnel number Fyr ~ 0.16 — 0.26 for 10 um pinholes, nominally in the
Fraunhofer (far field) regime, while for pinholes larger than 25 gm the Fresnel number
Fxire > 1, firmly in the Fresnel regime.

The Fresnel number for the Omega MMI (L = 27.0 cm) is

Fomega = 748 x 107* D? Ejy (3.11)

The energy range of the Omega MMI instrument is approximately 4.5 - 6.0 keV. Thus
Fomega < 1 for 5 and 10 pm pinholes. But for 15 pm pinholes, Fomega ~ 0.76 for 4.5
keV and Fomega ~ 1.01 for 6.0 keV. Thus when D = 15 pm, the diffraction resides
in a transitional regime between the far- and near-field approximations. (Fomega > 1
for all energies when D = 17.24 pm.)

The Fresnel numbers are plotted in Figures 9 and 10.

Fresnel Numbers:
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Figure 9: Fresnel numbers for the Omega MMI.
Red: 5 pm pinhole; Green: 10 ym pinhole; Blue:
15 pm pinhole.
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Figure 10: Fresnel numbers for the NIF MMI.
Red: 10 pm pinhole; Green: 35 pm pinhole;
Blue: 50 pm pinhole.
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Fraunhofer (far-field) Diffraction The diffracted spot size for a circular aper-
ture in the Fraunhofer case is set by the angular radius of the Airy disk:

1.22\
inf ~ —— 3.12
sin 5 (3.12)

where the numerical factor 1.22 ~ 3.8317/m (3.8317 being the first nontrivial zero of
the Bessel function J;). The above relationship is the Rayleigh resolution criterion.
Again using A = (12.4 x 107 /Eyey) pm, we have

1.51 x 1073

inf 8 ——— 1
sin D By (3.13)

where D is measured in microns, as usual. Thus we have sinf < 1 for all relevant
energies and aperture sizes. Then sinf ~ 6 and therefore the linear diameter of the
Airy disk, as used in the quadrature addition method, is

244NL

Ddiff = D = UAiry- (314)
The true far-field diffraction PSF is given by the Airy intensity pattern
Ji(5)1”
Fuigs(r) = Po | — == (3.15)

where 19 = AL/7D = Dajy/2.447 and again the normalization constant is chosen to
ensure the total area under Pgig is unity. This is well approximated by a normalized
Gaussian with standard deviation ¢ = v/1.851g, as shown in Figure 11.

Fraunhofer PSF / Gaussian PSF

~1.0 —05 0.5 1.0 Rairy

Figure 11: Ratio of the true Fraunhoffer PSF to a normalized Gaussian with ¢ = 1.85 rg, calculated
for the NIF MMI with 10 pgm pinholes. Results for 8, 10.2, and 13 keV exactly overlay each other.
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Fresnel (near-field) Diffraction Estimates for Fresnel diffraction are less straight-
forward. However, estimates can be derived for the case of a circular aperture [35, 36].
Here we use the numerical algorithm described by Rees [37] to estimate the diffracted
intensity profile for a pinhole located on the instrument’s central axis. (See Appendix
B for the Yorick code used to implement the Rees algorithm.) This calculation ig-
nores oblique illumination; commonly, the pinholes do not reside along the central
axis. The calculation could be modified to account for off-axis apertures by adding
phase factors corresponding to the increased path lengths, but the fine structure of
the Fresnel diffraction pattern has little effect on the final result of the PSF convo-
lutions, as shown in Section 3.1.5.

Figures 12 - 14 show the estimated radial diffraction intensity profiles projected on
the detector plane for 10, 35, and 50 pm NIF MMI pinholes, along with the Airy disk
radii (Rairy = 0.5 Dairy), the radius of the blur disk (Rgeom = 0.5 Dgeom ), and, in the
near-field regime, the radius containing 97.6% of the radially-integrated intensity (see
below). Figures 15 - 17 contain the analogous plots for the Omega MMI instrument
with 5, 10, and 15 um pinholes.
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Figure 12: Radial diffraction profiles for the NIF MMI with 10 pm pinholes. Here F < 1, so
Fraunhofer diffraction is plotted. Dashed lines: Airy disk radii. Dotted line (black): Rgeom. Red:
8.0 keV; Green: 10.2 keV; Blue: 13.0 keV.
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NIF MMI: 35 um PH

8.00 keV: F = 1.976
10.20:keV: F = 2.519
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Figure 13: Radial diffraction profiles for the NIF MMI with 35 pgm pinholes. Here F > 1, so
Fresnel diffraction is plotted. Dashed lines: Airy disk radii. Dotted line (black): Rgeom. Dash-dot
lines: 97.6% radii (see text). Red: 8.0 keV; Green: 10.2 keV; Blue: 13.0 keV.

NIF MMI: 50 um PH
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Figure 14: Radial diffraction profiles for the NIF MMI with 50 pgm pinholes. Here F > 1, so
Fresnel diffraction is plotted. Dashed lines: Airy disk radii. Dotted line (black): Rgeom. Dash-dot
lines: 97.6% radii (see text). Red: 8.0 keV; Green: 10.2 keV; Blue: 13.0 keV.
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Omega MMI: 5 um PH
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Figure 15: Radial diffraction profiles for the Omega MMI with 5 pym pinholes. Here F < 1, so
Fraunhofer diffraction is plotted. Dashed lines: Airy disk radii. Dotted line (black): Rgeom. Red:
4.5 keV; Green: 5.25 keV; Blue: 6.0 keV.

Omega MMI: 10 pm PH

0.20

I

4.50 keV: F =0.336
5.25 keV: F = 0.392
6.00 keV: F = 0.448

o
[N
(6]
Dol bttt

Diffracted Intensity
5
\

0.05—

0.00;H\\‘HH‘\H\‘\H\‘HH‘HH‘\H\‘\H\‘HH‘\\:\\‘
10 20 30 40 50

Xdetector [M]

Figure 16: Radial diffraction profiles for the Omega MMI with 10 pum pinholes. Here F < 1, so
Fraunhofer diffraction is plotted, although the far-field assertion is debatable here. Dashed lines:
Airy disk radii. Dotted line (black): Rgeom. Red: 4.5 keV; Green: 5.25 keV; Blue: 6.0 keV.
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Omega MMI: 15 pm PH
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Figure 17: Radial diffraction profiles for the Omega MMI with 15 um pinholes. Here F ~ 1, so
Fresnel diffraction is plotted. Dashed lines: Airy disk radii. Dotted line (black): Rgeom. Dash-dot
lines: 97.6% radii (see text). Red: 4.5 keV; Green: 5.25 keV; Blue: 6.0 keV.
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a global maximum at all energies. This is characteristic of Fresnel diffraction [37].
Also note the Fresnel profiles are distinctly non-Gaussian.)

(Note that in the near-field regime (F 2 1), the central illumination is no longer

In all cases, the diffracted intensity falls within the geometrical blur radius, Rgeom-
Furthermore, in the near-field regime, the Fresnel-diffracted intensity profiles
extend significantly beyond the Airy disk radii, and fall to zero only near
Rgeom (Figures 13, 14, and 17). This is to be expected; calculations at very high
Fresnel numbers (F > 1000) show the diffracted intensity (or irradiance) approaches
a constant function of radius until falling sharply at Rgeom [36].

In the far-field regime, analytic integration of the Fraunhofer diffraction pattern
shows the Airy disk contains approximately 97.6% of the diffracted intensity. In
other words, D iy is the width of the 97.6% intensity contour. Thus, when discussing
Fresnel diffraction profiles, it is useful to identify the radii that enclose 97.6% of the
diffracted intensity (Ro7.6%). This is the only way to ensure true “apples-to-apples”
comparisons across both diffraction regimes. These radii are denoted by dashed-
dotted lines in Figures 13, 14, and 17. In these cases, Rg7.6% ~ 85-95% Regcom-
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Thus, for the purposes of Equation 3.5, a convenient energy-independent estimate
for Dgig in the Fresnel (near-field) regime is simply Dgig & Dgeom. (In this regime,
Dgeom > D97.6% >> DAiry-)

As shown below, the fine structure in the Fresnel diffraction PSF is largely irrel-
evant, as it will be smeared out by convolution with the geometric shadow and
detector PSFs. Thus we may approximate the Fresnel PSF by a normalized box-
car function of width Dgeom, which is exactly the geometric shadow PSF, Pgeom.
This energy-independent (and non-Gaussian) approximation leads to excellent semi-
analytic estimates for the system PSF (see Section 3.1.5).

3.1.3.3 Combined Geometric and Diffracted Contributions

The final result for the pinhole contribution to the spatial resolution varies widely,
depending on whether the correct but cumbersome Equation 3.2 or the incorrect but
standard Equation 3.5 is used.

Addition in Quadrature (Equation 3.5)

From above:

2.44)\L

e In the far-field regime (F < 1), Dait = Drvaunhoter = Dairy = D

e In the near-field regime (F 2 1), Dagig = Dryesnel = Dgeom = (1 + M) D.

Representative values of these Dy expressions are summarized in Table 1.
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NIF, 10 ym pinholes

Omega, 5 ym pinholes

E [keV] | Dany [pm] | Dozey [pm] | E [keV] | Daiy [pm] | Do7gy [pm]
8.0 37.8 37.8 4.5° 36.3 36.3
10.2¢ 29.7 29.7 5.25 31.1 31.1
13.0 23.3 23.3 6.0 27.2 27.2

NIF, 35 ym pinholes

Omega, 10 ym pinholes

E [keV] | Dgeom [#m] | Do7ey [tm] | E [keV] | Dayy [pm] | Do7ey [pm]
8.0 245.0 217.6 4.5 18.2 18.2
10.2¢ 245.0 213.6 5.25 15.6 15.6
13.0 245.0 209.6 6.0 13.6 13.6
NIF, 50 ym pinholes Omega, 15 ym pinholes

E [keV] | Dgeom [#m] | Dorgy [pm] | E [keV] Déeom [pm] | D7y [pm]
8.0 350.0 295.2 4.5° 143.3 138.0
10.2¢ 350.0 291.2 5.25 143.3 130.8
13.0 350.0 291.2 6.0 143.3 129.2

Table 1: Diameter of the diffraction contribution to the quadature method on the detector plane.
We define Dgig = Dairy in the far-field regime and Dgig = Dgeom in the near-field regime. ¢10.2
keV is the Ge He, line. °4.76 keV is the Ti He, line. “The Omega 15 pm pinhole configuration
resides in the transitional regime between the near- and far-field approximations; we classify this
case as belonging to the near-field regime because here the Fresnel number F = 1.01 at 6.0 keV.

Note the substantial difference between the far-field and near-field values. The tran-
sition from the far-field to the near-field regime can increase the diffraction width by
an order of magnitude. However, the geometrical blur disk diameter, Dgeom, exceeds
Dg7 6% in the Fresnel regime by only 4 - 20%.

In the far-field regime, the quadrature method yields a net pinhole contribution

(AL ?
5 .
Aslong as the configuration remains within the far-field regime (i.e., F < 1), the error

incurred by disregarding diffraction diminishes with increasing aperture size. But
F o< D2, so larger apertures rapidly drive the configuration out of the far-field.

2 _ N2 2 _ N2
Dph - Dgeom+DAiry - Dgeom

(3.16)

In the near-field regime, the quadrature method yields a net contribution

2 _ N2 2 _ 2
Dph =D + Dgeom - 2Dgeom'

geom

(3.17)
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PSF Convolution (Equation 3.2)

The true pinhole PSF is given by the convolution Pgeom * P

Results for the far-field regime are plotted in Figures 18-20. Although the diffraction
is well-approximated by a Gaussian, the resulting pinhole PSF is not.

NIF Pinhole PSF (Fraunhofer, 10 um PH)
Pg_eom * Psgr

1 2 Rgcvum

Figure 18: NIF MMI pinhole PSF in the far field (10 pum pinholes). Results using the exact (Bessel
function) solutions are shown for 8 keV (blue), 10.2 keV (red), and 13 keV (yellow) alongside the

Gaussian approximation for 13 keV (green).

LLE Pinhole PSF (Fraunhofer, 5 um PH)
Pgeoru # Pdiff

r

-2 1 2 Rgeom
Figure 19: Omega MMI pinhole PSF in the far
field (5 pm pinholes). Results using the Bessel
function solutions are shown for 4.5 keV (blue),
5.25 keV (red), and 6.0 keV (yellow) alongside
the Gaussian approximation for 6 keV (green).

LLE Pinhole PSF (Fraunhofer, 10 ym PH)
Pge,om * Pigr
0.010

0.008

0.006

0.004

0.002
r

-2 -1 1 2 Ryeom
Figure 20: Omega MMI pinhole PSF in the far
field (10 pm pinholes). Results using the Bessel
function solutions are shown for 4.5 keV (blue),
5.25 keV (red), and 6.0 keV (yellow) alongside
the Gaussian approximation for 6 keV (green).

The FWHM is Dgeom in all cases. Rgrgy resides at 1.149, 1.096, and 1.057 Rgeom for



10 pm NIF pinholes (8, 10.2, and 13 keV, respectively). With 5 ym Omega pinholes,
Ro7.6% sits at 1.261, 1.204, and 1.164 Rgeom; with 10 pm pinholes, those contours sit
at 1.006, 0.9985, and 0.9930 Rgeom (4, 5.25, and 6 keV, respectively).

The near-field pinhole PSF arises from autocorrelation of a boxcar function:

NIF Pinhole PSF (Fresnel) LLE Pinhole PSF (Fresnel)
chom * Pdiff Pgeom * Pife

r

1 2 Rgcum -2 —1 1 2 Rgeom

Figure 21: Left: approximate NIF MMI pinhole PSF in the Fresnel regime, calculated for 35 ym
(blue) and 50 pm (red) pinholes. Right: approximate Omega MMI pinhole PSF in the Fresnel
regime, calculated for 15 pm pinholes. These calculations are based on representing the Fresnel-
diffraction PSF as an energy-independent boxcar with width 2Rgeom (see text).

This triangular pinhole PSF is an excellent approximation for the “true” near-field
pinhole PSF. This will be shown rigorously, below (see Section 3.1.5), but it is demon-
strated by an exercise depicted in Figures 22 and 23.

Analytic Fresnel Diffraction PSF Pgeom # Paifr (analytic)
0.007 0.004f
0.006}f
0.005 0.003f
0.004}f
0.003} 00024
0.002}

0.0017

0.001¢

T r

02 04 06 08 1.0 12 14 HReom 0.5 1.0 15 20  2.5Rgom

Figure 22: Analytic function representing an Figure 23: Convolution of the exaggerated
exaggerated Fresnel diffraction PSF. Compare Fresnel PSF with the geometrical shadow PSF
Figure 14. for 35 pm pinholes. Compare Figure 21.
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For the purpose of calculating an aggregate pinhole PSF| treating the Fresnel diffrac-
tion PSF as a boxcar is an excellent energy-independent approximation. When this
is done, Rg76% = 1.69 Rgeom-

Recall that in the NIF far-field case, Ror¢% ~ 1.057 — 1.149 Rgeom. Thus we find the
NIF pinhole PSF is effectively ~50% - 60% wider in the near-field regime
than in the far field. Recall also that in the Omega far-field cases, we found
Ro7.69% ~ 1.164 — 1.261 Rgeom for 5 pm pinholes, and Rz 6% ~ 0.99 — 1.01 Rgeom for
10 pm pinholes. Thus we find the Omega pinhole PSF is effectively ~35% -
70% wider in the near field than in the far field.

In summary, the aggregate pinhole PSF in the near-field (Fresnel) regime will always
be significantly wider than the pinhole PSF in the far-field (Fraunhofer) regime.
Estimates that incorrectly apply Frauhhofer diffraction everywhere will always un-
derpredict the system PSF width (thereby overestimating the resolution).

Comparison of Quadratic and PSF Methods for Computing D,

Figure 24 summarizes the results for Dy,. In the Fraunhofer regime, the quadratic
approximation (red dashes, Equation 3.5) is an acceptable estimate for the 97.6%
contour width (green diamonds). In the Fresnel regime, this approximation under-
estimates the PSF width. It is insufficient to replace the Airy disk width with Dgeom
within the quadratic approximation (blue dashes). The aggregate pinhole contribu-
tion in the near field is correctly computed via PSF convolution (green dots).
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Dph vs Pinhole Diameter Dph vs Pinhole Diameter

NIF MMI, 10.20 [keV] LLE MMI, 5.25 [keV]
7\\H‘H\\‘\H\‘\\H‘H;H‘\H\‘\\H‘\\H‘H\\‘\H\L 7\\\\‘\\\\‘\\\\‘!\\\‘\\\\‘\\\\‘7
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Figure 24: Dy, at the detector plotted as a function of the pinhole aperture, D, computed by
several methods. Left: NIF MMI, 10.2 keV. Right: LLE MMI, 5.25 keV. Black, dashed: Dgeom-
Red: quadrature addition method with Fraunhofer diffraction assumed everywhere. Blue, dashed:
quadrature addition method with Frauhofer diffraction (Daig = Dairy) applied for F < 1 and Fresnel
diffraction (Daig = Dgeom) applied for F > 1. Green diamonds: Empirical Rg7 g% contours derived
from PSF convolution in the far-field regime, by depicting the Fraunhofer diffraction PSF as a
Gaussian. Green, dotted: Analytic Rg7 gy, contours derived from PSF convolution in the near-field
regime, by depicting the Fresnel diffraction PSF as a boxcar function of width Dgeom. Black, dotted:
F = 1. The true boundary between the far- and near-field regimes is not abrupt, but a smooth
transition from F < 1 to F' 2 1.

3.1.4 Bragg Reflector (Pprage, DBrags)

A perfect monochomatic point source will not be reflected into a perfect geomet-
rical point at the detector. The Bragg PSF arises from several causes, including
imperfections in the surface finish and internal lattice dislocations.

The intensity distribution at the detector is a function of several geometrical factors.
These include the angle between the incident ray and the reflector surface (typically
denoted by w in the X-ray diffraction literature); the angle between the incident
ray and the direction to the detector location (commonly 26 in the literature); and
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the orientation of the diffracting plane within the Bragg lattice. (This geometry is
depicted in Figure 25.) Consequently, several kinds of intensity measurements are
common in the X-ray diffraction literature [38]:

e A rocking curve is a plot of the X-ray intensity versus w for a fixed 26 value.

e A detector scan is a plot of the X-ray intensity vs 26 for a fixed w value.

o A coupled scan is a plot of X-ray intensity vs 26, where w = %29 + Cp and C
is a fixed constant offset.

Additionally, the energy-dependent reflectivity can be measured by varying the
source energy while keeping w and 26 fixed. Monochromatic reflectivity can be mea-
sured as a function of w via a w — 26 scan (also referred to as a # — 26 scan).

’/47
? Dirage

Detector

Bragg mirror /

Figure 25: Geometry for estimating Dp;ags. Here we use definitions consistent with much of the
X-ray diffraction literature (see text). The angular spread d26 is measured by a detector scan.

A lower bound on Dgy,ge comes from considering the detector-plane angular spread of
a monochromatic point source shining onto the reflector via an infinitesimal pinhole.
Empirically, this is approximated by a detector scan. Given suitable detector scan

data, we may estimate
Dpragg = Lina |d26)] (3.18)

where L,,q is the distance from the point of incidence on the mirror to the point
of incidence on the detector. Unfortunately, at present, we lack empirical detector
scan data for the specific W/B,C multilayers used in the NIF and Omega MMI
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instruments. Discussions of W/B4C multilayers are common in the literature [39,
40, 41, 42, 43, 44]. However, while reflectivity measurements are prevalent in such
discussions, detector scan data do not appear to be readily available.

For the multilayers installed in the NIF MMI, we have vendor-furnished calculations
of the energy-dependent plane-wave reflectivity (where Cy = 0 and w = 6 is the
n=1 Bragg condition) for energies between 9 and 12.5 keV [45]. For the multilayers
installed in the Omega MMI instruments, we have vendor-furnished measurements of
the 0 — 20 reflectivity for the Cu K, line (8.05 keV) [46]. Neither dataset is relevant
or suitable for estimating Dpyage; attempts to apply these measurements can lead to
gross overestimates, as shown below in Sections 3.1.4.1 and 3.1.4.2. When estimating
Dgragg, it is crucial that detector-scan data are used.

3.1.4.1 Misestimation of Dg,,,, from Reflectivity Data

Using plane-wave reflectivity data can give rise to anomalous estimates for Dgyag,,
as shown here.

We start with the Bragg condition
nA = 2dsinf (3.19)

When n=1, we have

@_ he _ K
A 2dsinf  sin#

. 9
dE __KCOSG g = (sm 9) <d_E> (3.21)

(3.20)

a9 sin?6 ’ cos 0 K
Let df be the angular blurring on the mirror based on the plane-wave reflectivity
[45] and let
sin? 6 dE
D ~ L =1L — . 22
Bragg md ‘del md ( CoS 9 ) ( K ) (3 )

The interlayer spacing, d, of the W/B4C multilayer used in the NIF MMI instrument
is 1.5 nm. Thus K = 12.4 keV - A/30A = 0.413 keV. At 6 = 2.318°, the FWHM of
the computed plane-wave reflectivity curve is 67.33 eV, which happens to be the
narrowest FWHM in the 9-13 keV range. This angle corresponds to an energy E
= 10.2 keV, close to the Ge He, line. If dE = 0.06733 keV and 6 = 2.318°, then
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df = 2.67 x 10~* radians at this energy. For the NIF MMI instrument, L,,; = 63.06
cm = 6.306 x10° pum at the mirror center. (According to the engineering diagrams,
the mirror center is situated 53.649 cm along the target/detector plane centerline,
and displaced laterally 2.206 cm from that line.) Thus, for the Ge He,, line, we obtain
Dprage = 6.31 X 10° pm - 2.67 x 10~* radians = 168 pm.

Empirically, Dpyq4y is expected to be a minor factor in the instrument resolution.
However, misapplying the plane-wave reflectivity data to compute Dpyqq4q Overes-
timates its contribution to the NIF MMI resolution, putting it on par with the
diffraction contribution for the smallest pinholes.

3.1.4.2 Misestimation of Dg,,g from ¢ — 20 Scan Data

Using 8 — 20 reflectivity scan data can also produce anomalous estimates for Dg;agg,
as shown here.

The W/B4C reflectivity scan data in the Cu K, line (8.05 keV) [46] corrsponds to an
n=1 Bragg angle of 2.94°. The FWHM of the reflectivity curve at 8.05 keV is ~ 0.75°.
For d = 1.5 nm, E(2.94° — 0.375°) = 9.228 keV, and E(2.94° 4 0.375°) = 7.142 keV.
This yields an extremely wide energy FWHM of approximately 2.09 keV. Similarly,
using the above expression for dE/df with df = 0.75° yields an energy FWHM of
2.05 keV. If dE = 2.05 keV and 6 = 2.94°, then from above, df = 1.31 x 10~2 radians
in the Cu K, line.

For the Omega MMI instrument, L,,q = 11.7618 cm =~ 1.18 x10° um at the mirror
center. (This value is derived from measurements performed on one of the as-built
Omega MMI instruments, rather than the nominal values in the AutoCAD file [47].)
Thus, if we use the 6 — 20 data for the Cu K, line, we get

Dprage = 1.18 X 10 pym - 1.31 x 1072 radians = 1546 pm.

Again, Dp,a4, is expected to be relatively minor, and not a dominant factor in
the instrument resolution. But misapplying the 6 — 20 reflectivity scan data to
compute Dp,qgy makes it the dominant contribution to the Omega MMI by an order
of magnitude or more.
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3.1.5 System Point Spread Functions (Pgystem)

By combining all known contributions, we can compute an aggregate PSF for the
system (Pgystem ). By taking advantage of the commutative and associative properties
of convolution, as well as regime-appropriate approximations for P, the computa-
tion of the final PSF in either diffraction regime can be turned into the convolution
of a known Gaussian with a known analytic function. This can be carried out with
low computational overhead using FFT methods.

In the far-field regime, the detector and Fraunhofer diffraction PSFs are both ap-
proximated as Gaussians with known variances. Their convolution is therefore also
a known Gaussian. The final PSF in this regime is therefore a convolution of the
composite detector-diffraction Gaussian with the boxcar function Pgeop.

In the near-field regime, the Fresnel diffraction PSF is suitably approximated by
the geometric shadow PSF, and their convolution gives rise to a known triangular
function. The final PSF in this regime is therefore the convolution of this triangle
with the Gaussian Pget.

To illustrate the effects of the various contributions, we have calculated the convo-
lution of the numerically computed Py with Pg4e, and then the convolution of that
result with Pgeom, Which gives Pgygtem. We also compare the numerically computed
Pgystem With the aggregate PSEF derived by approximating the diffraction PSE as
either a Gaussian or boxcar function, depending on the regime.

3.1.5.1 NIF

The final point spread functions for the NIF MMI are shown in Figures 26 - 28.
In both regimes, using an analytic function for Py (right-side plots, dotted lines)
leads to an excellent approximation of the numerically computed final system PSF
(right-side plots, solid lines). Additionally, in all cases, Rg76% exhibits only a weak
energy dependence.
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Figure 26: PSFs for 10 pm NIF MMI pinholes. Left: Numerical Fraunhofer Py (compare
Figure 12) convolved with Pge;. Dashed lines: Airy disk radii. Dash-dot lines: 97.6% contour
radii. Right: Pgystem. Solid lines: Numerically computed Fraunhofer diffraction. Dotted lines:
Gaussian approximation for Fraunhofer diffraction. Dashed lines: 97.6% contour radii derived from

the approximated Pg;g. Dash-dot lines: 97.6% contour radii derived from the numerical Pg;¢. Red:
8.0 keV. Green: 10.2 keV. Blue: 13.0 keV. Black (dotted line): Rgeom.
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Figure 27: PSFs for 35 ym NIF MMI pinholes. Left: Numerical Fresnel Py (compare Figure
13) convolved with Pger. Dashed lines: Airy disk radii. Dash-dot lines: 97.6% contour radii. Right:
Pgystem. Solid lines: Numerically computed Fresnel diffraction. Dotted lines: Boxcar approximation
for Fresnel diffraction. Dashed lines: 97.6% contour radii derived from the approximated Pgif.
Dash-dot lines: 97.6% contour radii derived fr0§17the numerical Pgig. Red: 8.0 keV. Green: 10.2
keV. Blue: 13.0 keV. Black (dotted line): Rgeom.
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Figure 28: PSFs for 50 ym NIF MMI pinholes. Left: Numerical Fresnel Py (compare Figure
14) convolved with Pge. Dashed lines: Airy disk radii. Dash-dot lines: 97.6% contour radii. Right:
Pgystem. Solid lines: Numerically computed Fresnel diffraction. Dotted lines: Boxcar approximation
for Fresnel diffraction. Dashed lines: 97.6% contour radii derived from the approximated Pgig.
Dash-dot lines: 97.6% contour radii derived from the numerical Pgijg. Red: 8.0 keV. Green: 10.2
keV. Blue: 13.0 keV. Black (dotted line): Rgeom.

3.1.5.2 Omega

The final point spread functions for the Omega MMI are shown in Figures 29 - 31.
As with the Pgygem calculations for the NIF MMI, we find Rg7 g% exhibits a very
weak energy dependence. Using an analytic function for Pgg yields an excellent
approximation for the numerically computed final system PSF when the diffraction
resides firmly in the far- or near field regime. As expected, the approximation may be
less effective in the transitional regime, such as where D = 15 ym. The approximated
Fresnel diffraction PSF was applied to that case (in keeping with Figure 17), though
the Fraunhofer approximation may be equally effective there.
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Figure 29: PSFs for 5 pum Omega MMI pinholes. Left: Numerical Fraunhofer Pgig (compare
Figure 15) convolved with Pge;. Dashed lines: Airy disk radii. Dash-dot lines: 97.6% contour
radii. Right: Pgyetem. Solid lines: Numerically computed Fraunhofer diffraction. Dotted lines:
Gaussian approximation for Fraunhofer diffraction. Dashed lines: 97.6% contour radii derived from
the approximated Pg;g. Dash-dot lines: 97.6% contour radii derived from the numerical Pg;g. Red:
4.5 keV. Green: 5.25 keV. Blue: 6.0 keV. Black (dotted line): Rgeom-
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Figure 30: PSFs for 10 pm Omega MMI pinholes. Left: Numerical Fraunhofer Pg;gx (compare
Figure 16) convolved with Pge;. Dashed lines: Airy disk radii. Dash-dot lines: 97.6% contour
radii. Right: Pgystem. Solid lines: Numerically computed Fraunhofer diffraction. Dotted lines:
Gaussian approximation for Fraunhofer diffraction. Dashed lines: 97.6% contour radii derived from
the approximated Pgig. Dash-dot lines: 97.6%«a¢pntour radii derived from the numerically Pg;g.
Red: 4.5 keV. Green: 5.25 keV. Blue: 6.0 keV. Black (dotted line): Rgeom.
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Figure 31: PSFs for 15 um Omega MMI pinholes. Left: Numerically Fresnel Py (compare Figure
17) convolved with Pge. Dashed lines: Airy disk radii. Dash-dot lines: 97.6% contour radii. Right:
Pgystem. Solid lines: Numerically computed Fresnel diffraction. Dotted lines: Boxcar approximation
for Fresnel diffraction. Dashed lines: 97.6% contour radii derived from the approximated Pgig.
Dash-dot lines: 97.6% contour radii derived from the numerical Pgig. Red: 4.5 keV. Green: 5.25
keV. Blue: 6.0 keV. Black (dotted line): Rgeom.

3.1.6 Resolution Estimates

The analytic function convolutions can be used to place a lower bound on the size of
a monochromatic point source on the MMI image plane. (A lower bound because,
lacking data, the present calculations cannot account for the Bragg contribution.) In
particular, we compute the width of the 97.6% contour for Pgysem. For comparison,
we can also compute Dy y using the quadature addition method. Owing to the weak
energy dependence of Rgrg%, as demonstrated in Section 3.1.5, it is sufficient to
examine the system resolution at a single energy.

Table 2 summarizes the results for the NIF MMI resolution at the source given a Ge
He, (10.2 keV) point source. The results were obtained by several methods: numer-
ically (PSF convolution with no approximations); semi-analytically, approximating
the diffraction PSF's; and via the quadrature method. The detector-plane sizes are
obtained by multiplying these values by the instrument magnification, M = 6.
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D (] | Do [pm] [ Dorge [m] | Day o] Doy ] | Day [im]

(PSF; (PSF; (Quadrature; (Quadrature; | (Quadrature;

numeric.) approx.) | far- & near-field) | far-field only) | no diffraction)
10¢ >15.8 >15.7 >15.2 >15.2 >14.3
35° >62.0 >69.0 >58.3 >41.7 >41.7
50° >88.4 >98.2 >82.9 >58.9 >58.9

Table 2: NIF MMI resolution at the source for a monochromatic Ge He, point source.

The

calculation in the second column applied convolutions to the numerically calculated diffraction

profiles.

The calculation in the third column approximated the diffraction PSFs with analytic

functions. The quadrature estimate in the fourth column accounted for the distinction between
Fraunhofer and Fresnel diffraction, per Equations 3.16 and 3.17. The fifth column contains the
results from incorrectly applying Fraunhofer diffraction, regardless of the diffraction regime, to the
quadrature estimate. Values in the sixth column were obtained by disregarding diffraction entirely.
@Far-field regime. ?Near-field regime.

In the far field, the error in the analytic approximation is less than 1%, while the
quadrature method yields 4% error when including diffraction, and 10% error when
disregarding it. In the near field, the analytic approximation produces an 11% over-

estimate, while the regime-aware quadrature method using Pys; =

P

weom Droduces

only a 6% underestimate, compared to a 30% underestimate when diffraction is dis-
regarded or the incorrect (far-field) regime applied.

It is useful to consider the area of an independent resolution element (see Section 4).

The resolved area is A, = %ng% or Aes = 7DxDy, as appropriate.
D [pm] | Ay [MmQ] Aves [MmQ] Ases [MmZ] Ases [,um2] Ases [MmQ]
(PSF; (PSF; (Quadrature; (Quadrature; | (Quadrature;
numeric.) | approx.) | far- & near-field) | far-field only) | no diffraction)
10 >200 >190 >180 >180 >160
35 >3020 >3740 >2670 >1370 >1360
50 >6140 >7570 >5400 >2730 >2730

Table 3: Area at the source of the resolved ellipse of a Ge He,, point source.

Similarly, we can place a lower bound on the size of a monochromatic 5.25 keV
point source on the Omega MMI image plane. Table 4 summarizes the results for
the resolution at the source plane (the detector plane resolutions are obtained by
multiplying these values by the instrument magnification, M = 8.6), and Table 5
summarizes estimates for the area of the resolved ellipse, A, .
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D ] | Dorg ] | Dorgre [am] | Diy ] Doy ] | Day [im]
(PSF; (PSF; (Quadrature; (Quadrature; | (Quadrature;
numeric.) approx.) | far- & near-field) | far-field only) | no diffraction)
5 >9.3 >9.1 >8.9 >8.9 >8.1
10¢ >13.3 >13.3 >12.7 >12.7 >12.6
15° >25.0 >28.7 >24.4 >17.8 >17.7

Table 4: Omega MMI resolution at the source for a monochromatic 5.25 keV point source. The
calculation in the second column applied convolutions to the numerically calculated diffraction
profiles. The calculation in the third column approximated the diffraction PSFs with analytic
functions. The quadrature estimate in the fourth column accounted for the distinction between
Fraunhofer and Fresnel diffraction, per Equations 3.16 and 3.17. The fifth column contains the
results from incorrectly applying Fraunhofer diffraction, regardless of the diffraction regime, to the
quadrature estimate. Values in the sixth column were obtained by disregarding diffraction entirely.
@Far-field regime. ?Near-field regime.

D [pm] | A [pm?] | Ay [pm?] Ares [pm?] A,es [pm?] Ares [pm?]
(PSF; (PSF; (Quadrature; (Quadrature; | (Quadrature;
numeric.) | approx.) | far- & near-field) | far-field only) | no diffraction)
5 >T70 >70 >60 >60 >50
10 >140 >140 >130 >130 >120
15 >490 >650 >470 >250 >250

Table 5: Area at the source of the resolved ellipse for a monochromatic 5.25 keV point source.

Results here are similar to those for the NIF MMI. In the far field, the error in
the analytic approximation is less than 3%, while the quadrature method yields 4%
error when including diffraction, and 5-12% error when disregarding it. In the near
field, the analytic approximation produces a 15% overestimate, while the regime-
aware quadrature method using Puifr = Pyeom produces only a 2% underestimate,
compared to a 30% underestimate when diffraction is disregarded or the incorrect
(far-field) regime applied.

We should expect the quadrature method to perform well in this scenario, because
we have explicitly chosen to represent the unknown detector PSF by a Gaussian.
Numerical experiments using a Lorentzian form for Pge (while maintaining the same
FWHM) find the regime-aware quadrature method performs significantly worse in
the far field (=~ 19 - 30% error for NIF and Omega, respectively, as opposed to
4%), but not significantly differently in the near field. Furthermore, these results do
not account for Pgyags, Which may have a non-Gaussian form.

~
~
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3.2 Spectral Resolution

Let the strip length of the framing camera be Lg microns. If one complete MMI
image covers a fraction f; of that strip for the full energy domain, then a simple
estimate for the energy variation along the strip is

dE o (Emax - Emin)
dL fsLs

[keV pm™] (3.23)

The maximum spectral resolution, R is this value times the detector plane spatial
resolution in the energy direction, Dy or Dg;g5,. The energy resolution of a single
detector element is this value times Dge.

3.2.1 NIF

The nGXI2-000-000 camera has a maximum strip length of 39.42 mm = 3.942 cm
[48]. (This is the length measured in the timing direction of the strip, which for the
NIF MMTI is also the energy direction.) If one complete MMI image uses 60% of the
strip [49], then a single image convering the NIF MMI energy domain has

dE  13.0 — 8.0 keV

—F — fd —4 -1 — -1
dL 060 3.002 x 100 pm 21X 107 keVpom ] = 0211 [eV a7, (3.24)

Using Dget = 50 pm, as above, we deduce the spectral resolution of a single element
on the MCP is roughly 0.211 eV pm™! - 50 pm pixel™! = 10.6 eV pixel ™. Estimates
for R, are listed in Table 6.

D [pm] | Re [eV] Re [eV] R. [eV] R. [eV] R. [eV]
(PSF; (PSF; (Quadrature; (Quadrature; | (Quadrature;
numeric.) | approx.) | far- & near-field) | far-field only) | no diffraction)
10 >20.0 >19.9 >19.2 >19.2 >18.1
35 >T78.5 >87.4 >T73.8 >52.8 >52.8
50 >111.9 >124.3 >105.0 >74.6 >74.6

Table 6: NIF MMI spectral resolution at the detector plane. These values are based on spatial
resolution estimates for a Ge He, point source from Section 3.1.6.
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According to George Kyrala [50] the resolving power of the NIF MMI is

E 10keV
AE ~ Thoy " 133

3.2.2 Omega

According to Scott Hsu [17], the Omega X-ray framing cameras have a photocathode
length of approximately 34 mm. According to Taisuke Nagayama [27], the resolving
power of the Omega MMI is

E
— ~ 150.
AFE

According to Roberto Mancini [51], the spectral resolution of the Omega MMI in-
struments using 10 gm pinholes with the W /B,C multilayer Bragg reflectors is 20
eV.
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4 Constraints on the Signal Level

Given the preceding analyses of the MMI photonics budget (Section 2) and spatial
resolution (Section 3), we can derive meaningful constraints on the signal level, S
(see Section 2.1).

4.1 Photon Statistics and the Resolvable Contrast Between
Image Elements

It is possible to derive a simple relationship between the number of detected photons
and the resolvable contrast between two adjacent image elements. We begin by
summarizing an analysis by Tom Murphy [52, 53].

Consider a pair of adjacent image elements with equal area, A um~2. Let (detected)
photons fall on element 1 with a density of n photons ym~2, and let the the density
of detected photons on element 2 be n(1 — §) photons um~=2. Here § is the contrast
between elements. Then the total number of photons on element 1 is N; = nA, and
the total number of photons on element 2 is Ny = n(1 — §)A.

For these image elements to be individually resolvable, the absolute difference in
their detected photons must exceed the statistical uncertainty in the difference. If
the photon distribution is dominated by Poisson noise, as expected when the signal
level is low, the statistical uncertainty in the number of photons for each individual
element is

on, =/ Ny = VnA (4.1)
on, =V Ny =+/n(1—0)A (4.2)

The absolute difference is simply
AN = N; — Ny =nA—nA(l1—-46) =nAé (4.3)

while the statistical uncertainty in the difference is given by

OANN\? OANN\? [ o
UAN_\/( aNl) UN1+((9N2) T = Yot = VAR =0 (4
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Thus, if these elements are to be independently resolvable, we require AN > oan,
or

2—9

o
Recall that nA is the total number of detected photons falling on element 1, i.e.,
on the brighter of the two image elements. Thus nA is equivalent to the number
of photons detected per independent resolution element, N4, which was derived in
Section 2.2. We may obtain the minimum resolvable contrast, o, as a function of
the detected photons, Ng:

nAd > \/nA(2—-05) = nA> (4.5)

2 — 5im —1+I+8N,
2

Nj=—" = 5min:
4T g2 Ny

(4.6)

mwn
where we have disregarded one solution owing to the requirement that 6 > 0. This
expression tells us that if an element receives N4 (detected) photons, the contrast
with its neighbor must exceed d,,;, in order for those adjacent resolution elements to

be resolvable.

The resolution constraint on Ny is plotted in figure 32, and the minimum contrast,
Omin, 18 plotted in Figure 33. (Recall that larger § values correspond to larger bright-
ness differences between adjacent elements, by virtue of 1 — 4.)
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Figure 32: Ng as a function of minimum resolv-  Figure 33: Minimum resolvable contrast, dumin,
able contrast, din. as a function of Ny.
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4.2 Relationship Between Signal Level (S) and Resolution

In the preceding discussion, we used n to denote the number of detected photons
falling per square micron. This is exactly the quantity N> derived in Section 2.2.
We can therefore write the following requirement for adjacent resolution elements to
be independently resolvable:

2—9 2—9

— A= (4.7)

NquA > 52 Numz ] 52.

Here A* is the minimum area of an image element such that it can be independently
resolved from its neighbors at contrast level §, owing to Poisson statistical fluctua-
tions, given an areal density of detected photons N,.,2. In other words, A* is the
minimum collecting area of a resolution element such that it will accumulate suffi-
cient photons to reduce the fluctuations below the level at which adjacent elements
will be resolvable with contrast 9.

From Section 2.2, N2 is known as a function of the signal level, burn width,
and various properties of the instrument. Namely, by combining equations 2.7 and
2.15,

S-AFE. - Ag nD?
Nym2 = 6.242 x 10" i ek -7 [photon - pm™?] (4.8
3 X (Abps-Aumz-éEke) ERTE n [photon - ym ™) (4.8)
or
Nym2 = 8- G (Agps, Abys, AEey, 0 Eyev, Aymz, M, D, Ly, 1) - (4.9)
Thus we can write A* as an explicit function of the signal level, S:

L 1 (2-9%

From Section 3, we know the inherent size of an independent resolution element (i.e.,
determined by the instrument properties) is

T
4

and perhaps Dy = Dy = Dg7 6% depending upon the calculation method. Thus, for a
given contrast level d:

Ares - Da:Dy

e When A* < A, the resolution is determined by the inherent properties of the
instrument.
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e When A* > A, the resolution is limited by photon statistics.

We therefore seek the minimum signal level S,;;, such that A* < A,.. Our condition

on A* becomes | 5 s
( - ) — A" <Zp,D,

Smin \ G - 02 4
o 42— 6)
o ) 7oVt gt 4.11
szn GWDny52 [J eV ST ] ( )
where

-7 [photon - sr-eV - J7! . ym™2).

(4.12)
For a given contrast level, §, Sy, is the signal level at which the minimum size
of a statistically resolvable image element is smaller than the instrument’s inherent
resolution element size. In other words:

G = 6.242 x 10" ( AFey - Agps ) 7 D>

Abys - Ay - 6Bper ) 4L, M?

e When S > S, the resolution is determined by the instrument prop-
erties.

e When S < S,;;,, the image is dominated by photon statistics.
Because Spmin o< D72, Siin grows as the pinhole diameter decreases. This is to be ex-
pected: if the pinhole size decreases while everything else is held constant, the image
will become dimmer and thus noisier, owing to Poisson fluctuations. So the signal
must increase in order to prevent photon statistics from swamping the image.
Note also that because Sy, o (DXDy)_l7 underestimating the diffraction contribu-
tion to the PSF width (e.g., by disregarding it entirely, or by mistakenly applying

Fraunhofer diffraction estimates to the near-field regime) will increase Spiy.

This derivation considers only Poisson noise. Additional noise will increase Sy,.

4.3 Examples: S,;, Estimates for the NIF MMI

Smin depends upon specific properties of the instrument, some of which are energy
dependent, as well as details of the experiment: the burn width, the area of the
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emitting region, and so forth. For the purposes of the following examples we take
the burn width (Ab,) to be 100 ps, the gating time (Agys) to be 70 ps, and the
pinhole bandwidth (AEey) to be 100 eV. We also take mycp = 0.07 and estimate
NBrage ~ 0.30. We include a Kapton blast shield of 2.5 mm. We take the pixel size
to be 50 um. The target-pinhole plane distance for the NIF MMI, Ly, is 16.667 cm
= 1.6667 x 10°um.

As noted above, the total number of photons available to the detector depends upon

the area of the emitting region, A,,2. In what follows, we apply the results from
sections 2 and 3 as appropriate to compute N2, Npiy, Dy, Dy, etc.

4.3.1 Uniformly Mixed Hot Dopant

Consider the case where the emitting dopant is uniformly mixed through a core 300
pm in diameter. Via Equations 2.7, 2.16, 4.11, and 4.12 we derive the following;:

Photons per Pixel; 10 um Pinhole

Min. Signal vs Contrast; 10 um Pinhole
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Figure 34: Photons per pixel vs signal, for uni-
form emission. Signal levels such that Npix =1
are marked with dashed lines. Red: 8.0 keV;
Green: 9.6 keV; Blue: 10.2 keV; Black: 12.0 keV;
Magenta: 13.0 keV.
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Figure 35: Minimum signal level vs contrast,
for uniform emission. Image resolution is domi-
nated by photon statistics for signals below the
solid curves. Signal levels such that Npix = 1 are
marked with dashed lines.
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We see that for a 10 pm pinhole, the small size of the resolution element forces
Smin high enough that the number of photons detected per pixel will always exceed
unity. However, the high S, levels required may be unattainable, in which case the
images will always be dominated by photon statistics, even at the highest contrast
levels.

Photons per Pixel; 35 um Pinhole Min. Signal vs Contrast; 35 um Pinhole
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Figure 36: Photons per pixel vs signal, for uni- Figure 37: Minimum signal level vs contrast,
form emission. Signal levels such that Ny, =1 for uniform emission. Image resolution is domi-
are marked with dashed lines. Red: 8.0 keV; nated by photon statistics for signals below the
Green: 9.6 keV; Blue: 10.2 keV; Black: 12.0 keV; solid curves. Signal levels such that Ny, =1 are
Magenta: 13.0 keV. marked with dashed lines.

As expected, the signal levels required to avoid photon statistics are lower for 35 pm
pinholes than for 10 um pinholes. Furthermore, the requirement that every pixel
receives at least one photon (which is a very weak lower bound on the intensity;
other considerations may place tighter lower bounds) constrains the signal only at
the very highest contrast levels.
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Photons per Pixel; 50 um Pinhole
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Figure 38: Photons per pixel vs signal, for uni-
form emission. Signal levels such that Npix =1
are marked with dashed lines. Red: 8.0 keV;
Green: 9.6 keV; Blue: 10.2 keV; Black: 12.0 keV;
Magenta: 13.0 keV.

Min. Signal vs Contrast; 50 pum Pinhole
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Figure 39: Minimum signal level vs contrast,
for uniform emission. Image resolution is domi-
nated by photon statistics for signals below the
solid curves. Signal levels such that Npix = 1 are
marked with dashed lines.

When the pinhole diameter is 50 pum, the required signal levels are lower still, but
now the requirement that every pixel receive at least one photon puts an additional
constraint on the signal. For instance, constrast levels above ~ 70% are not resolvable
when S = S,;;;, and thus require higher signal levels.

4.3.2 Hot Dopant Mixed into a Shell of Thickness 10 ym

Now consider the case where the hot core is still 300 pm in diameter, but the emitting
dopant is mixed into a thin 10 pgm region surrounding the core. In this case, the
emitting area A2 is considerably smaller than in the uniformly mixed case. As
seen in figures 40 - 45, we see trends similar to those found above in the uniformly
mixed case, but the thresholds are lower because Sy o¢ A 2.
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Photons per Pixel; 10 um Pinhole

Npix [photons pixel™]

L L T e A B I B B
101 10 10"

S[Pevisry

Figure 40: Photons per pixel vs signal, for emis-
sion confined to a 10 pum region. Signal levels
such that Npix = 1 are marked with dashed lines.
Red: 8.0 keV; Green: 9.6 keV; Blue: 10.2 keV;
Black: 12.0 keV; Magenta: 13.0 keV.
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Figure 42: Photons per pixel vs signal, for emis-
sion confined to a 10 pum region. Signal levels
such that Npix = 1 are marked with dashed lines.
Red: 8.0 keV; Green: 9.6 keV; Blue: 10.2 keV;
Black: 12.0 keV; Magenta: 13.0 keV.
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Figure 41: Minimum signal level vs contrast,
for emission confined to a 10 pum region. Image
resolution is dominated by photon statistics for
signals below the solid curves. Signal levels such
that Npix = 1 are marked with dashed lines.

Min. Signal vs Contrast; 35 pum Pinhole

Smin [J eV 1sr]

0.2

\
0.4 0.6

0

Figure 43: Minimum signal level vs contrast,
for emission confined to a 10 pum region. Image
resolution is dominated by photon statistics for
signals below the solid curves. Signal levels such
hat Npix = 1 are marked with dashed lines.



Photons per Pixel; 50 um Pinhole

lo+2

Npix [photons pixel™]

" |
105 104 10 102 10! 10*0 10"

S[Pevisry

Figure 44: Photons per pixel vs signal, for emis-
sion confined to a 10 pum region. Signal levels
such that Npix = 1 are marked with dashed lines.
Red: 8.0 keV; Green: 9.6 keV; Blue: 10.2 keV;
Black: 12.0 keV; Magenta: 13.0 keV.

4.3.3 NIF Shot N121119

Min. Signal vs Contrast; 50 pum Pinhole
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Figure 45: Minimum signal level vs contrast,
for emission confined to a 10 pum region. Image
resolution is dominated by photon statistics for
signals below the solid curves. Signal levels such
that Npix = 1 are marked with dashed lines.

The Ge He, signal measured by the NIF Supersnout-II instrument for shot N121119
was approximately [15] 6.2 J keV~! sr™! or 6.2 x 1072 J eV~! sr™! (see the exam-
ple calculation in Section 2.1). Furthermore, George Kyrala has estimated [15] the
emission in that line corresponded to 6.2 x 107° J keV~! st~ ym~2, which suggests
the effective emitting area, A 2 was ~ 10° pm?.

This is below the stated NIF MMI specification for signal detectability, 8 x 1074 J
keV~! st ym~2 [54]. Yet a spectral line feature is clearly visible in strips 2 and
3 (and perhaps strip 1) of the raw MMI hGXI (MCP) image, as shown in Figure

46.
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Figure 46: Raw MMI hGXI (multichannel plate) image for NIF shot N121119. Strips 2 and 3
contain a clear feature corresponding to the strongest emission line, Ge He,, (10.2 keV); the line is
faintly visible in strip 1 (top). Strip 4 (bottom) corresponds to a later time.

The appearance of such a feature is unexpected based on the stated threshold for
detectability. Indeed, when we compute S, as a function of contrast for this case
(Aymz ~ 10° pm?, and assuming AEey = 100, Abp,s = 100, Ag,s = 70), we conclude
this level of Ge He, emission is not resolvable with 10 um pinholes at any contrast
level. (The detected signal level in this case corresponds to approximately 4 photons
per pixel, or a signal-to-noise ratio of 2.) However, we find it should be resolvable
with 35 um pinholes for 6 > 18%. In this case, the detected signal level corresponds
to 2.0 x 1072 photons um™2, or approximately 49 photons per pixel (i.e., a signal-to-
noise ratio of 7).

This analysis is plotted in figures 47 - 52.
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Min. Signal vs Contrast; 10 um Pinhole
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Figure 47: Minimum signal level as a function of contrast in the Ge He,, line (10.2 keV), for NIF
shot N121119 with 10 xm pinholes. The estimated signal level for this shot, S = 6.2 x 1073 J eV !
sr—1, falls below the resolvability threshold at all contrast levels.
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Figure 48: Minimum signal level as a function of contrast in the Ge He,, line (10.2 keV), for NIF
shot N121119 with 35 um pinholes. The estimated signal level for this shot, S = 6.2 x 1073 J eV~!

st~ !, exceeds the resolvability threshold S, as long as the contrast, &, exceeds 18%.
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Figure 49: Detected photons per square mi-
cron in the Ge He, line (10.2 keV), for NIF shot
N121119 with 10 pm pinholes.
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Figure 51: Detected photons per square mi-

cron in the Ge He, line (10.2 keV), for NIF shot
N121119 with 35 pum pinholes.
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Figure 50: Detected photons per pixel in the
Ge He, line (10.2 keV), for NIF shot N121119
with 10 gm pinholes.
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Figure 52: Detected photons per pixel in the

Ge He, line (10.2 keV), for NIF shot N121119
with 35 pm pinholes.
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5 Summary

The mean number of photons detected per unit area of the MMI image plane (Equa-
tions 2.14 - 2.16) is a function of several quantities including the emission signal
level (S), the étendue of the imaging system, the burn width, the gating period, and
the bandwidth of the individual pinhole images. The bandwidth will vary across
the detector plane, and may be considerable (2 100 eV). This nonmonochromaticity
arises from the finite sizes of both the pinhole and source, although source size is the
dominant factor by an order of magnitude.

The spatial resolution of the instrument is properly derived from a calculation of
the monochromatic point spread function (PSF) image width. In practice, spatial
resolution estimates are commonly obtained by adding the contributing function
widths in quadrature. However, this approach is only mathematically valid when
all contributing functions are Gaussian and the half-widths are equated with the
associated standard deviations. Yet the geometrical shadow (ray optics) PSF is
highly non-Gaussian and cannot be approximated as such, so the quadrature method
is, technically, never valid. Nevertheless, under very particular circumstances, the
quadrature method may yield decent estimates, as explained below.

When estimating the diffraction contribution, it is crucial to assess the regime, i.e.,
whether the instrument resides in the near- or far field for scalar diffraction theory.
(In fact, as shown in Section 3.1.3.2, a single instrument may inhabit different regimes
at different energies, depending upon its configuration.) Far-field (Fraunhofer) and
near-field (Fresnel) diffraction are substantially different. The Fraunhofer diffraction
PSF is adequately approximated as a Gaussian. The Fresnel PSF is adequately
approximated by the geometrical shadow (ray optics) PSF, which is a boxcar.

In the far field, estimates of the diffraction contribution from a circular aperture
typically and sensibly refer to the Airy disk width. (This is the basis of the Rayleigh
resolution criterion.) But this width is a useful fiducial because it contains nearly
all the flux transmitted through the aperture: approximately 97.6%. Therefore, in
any analysis which inherently refers to the Airy disk when in the far-field regime,
the only way to ensure true “apples-to-apples” comparisons of different contributions
is to compare the widths of the 97.6% flux contours. This is the most consistent
method of comparing and measuring PSF widths.
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Resolution estimates which disregard diffraction can be highly inaccurate, particu-
larly when the system resides in the near field. Resolution estimates that mistakenly
apply the Fraunhofer estimate to the Fresnel regime are no better. This is a common
error, because the Fraunhofer (Airy disk) width decreases with increasing aperture
size as D!, which leads to the misconception that diffraction may be disregarded for
larger pinholes. However, the dimensionless Fresnel number F o< D2, which means
the far-field diffraction regime becomes irrelevant faster than it becomes negligible.
The near field (Fresnel) diffraction width is proportional to D, not D™!.

Correct calculation of the final system PSF width requires numerical or analytic
estimates for the diffraction, detector, and Bragg mirror PSF's, which subsequently
must be convolved. Namely,

Psystem(r) = Pph (’I") * PBragg (’I“) * Pdet (T) .

When using this approach, the pinhole PSF is itself the convolution of geometric
(Pgeom) and diffraction (Pgig) contributions, where

® Poeom is a boxcar function of width Dgeom (see below).

e Pyg depends on F, the Fresnel number for the system (Equation 3.9), which
varies as a function of energy and aperture size:

— When F <« 1, pinhole diffraction resides in the far-field (Fraunhofer) regime,

in which case Pg;g can be approximated as a Gaussian with standard de-
viation o = v/1.85 Djry/2.447.

— When F 2 1, pinhole diffraction is more appropriately described by the
near-field (Fresnel) regime, in which case a simple but effective energy-
independent approximation is Pgig = Pgeom-

The PSF convolution technique may be cumbersome or infeasible. In that case, one
may obtain acceptable estimates via the quadrature method if the detector and Bragg
mirror contributions can be justifiably modeled as Gaussians, and if the diffraction
contribution is treated properly.

In that situation, the width of the monochromatic point spread function (PSF) on
the detector is estimated by

D3, ~ D + Dy + Diragy = Digey + Do + Dy + Dt

Bragg geom Bragg
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where
e Dy is an inherent aggregate property of the detector (e.g., 50 pum).
® Dyeom is the diameter of the geometrical blur disk from ray optics: (14 M) D.
e Dgig again depends on F:

— When F <« 1 (the far-field regime)

2.44\L
D

Ddiff - DAiry -

— When F 2 1 (the near-field regime)
Ddsz ~ Dgeom = (1 + M) D

® Dg.age can be estimated from good detector-scan data for the relevant crystal
or multilayer reflector, but other types of scan datasets may lead to gross
overestimates. When lacking detector-scan data, Dpaee may be omitted to
obtain a lower bound on Dy .

The PSF width relative to the source is Dy /M.

By considering the resolvable contrast between adjacent image elements, and ap-
plying this to the mean number of detected photons per unit area, it is possible to
define the minimum area of an image element, A*, such that it may be resolved from
its neighbors at a given contrast level, 6 (Equation 4.7). Comparison of A* and the
area of the detector-plane PSF leads to a simple expression for S, the minimum
acceptable signal level of emission (Equations 4.11 - 4.12).

e When S > S,;,, the image resolution is determined by the instrument proper-
ties, rather than photon statistics.

e When S < S, the image is dominated by photon (Poisson) statistics.
This Sy, analysis is consistent with the detection of Ge He, emission by the NIF

MMI on shot N121119, which occurred despite emission in that line falling an order of
magnitude below the instrument’s design specification for signal detectability.
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A Relationship Between Energy and Position on
the Pinhole Plane

It is often useful to relate a position on the MMI pinhole plane to an energy at
the detector plane. For an MMI instrument with flat Bragg mirrors (such as those
fielded at NIF and Omega), the relevant geometry can be depicted with a simple
cartoon:

X
Ltp
z
MMI centerline
TOC ™ g &
i_\\_.‘”(‘)\(Ph:yph) /| detector
plane
pinhole
plane

Figure 53: Geometrical relationship between position on the pinhole plane and energy on the
detector plane.

Here the central axis of the instrument lies in the z-direction; the pinhole plane is
orthogonal to this and located at z = Ly, (Ly, is the distance from target chamber
center (TCC) to the pinhole plane). A geometrical ray from the capsule (located
at the origin, TCC) passes through the pinhole plane at (xpn,ypn) to impinge on
the Bragg reflector with incidence angle ¢, which corresponds to an energy E at the
detector. We seek to understand how E varies as a function of xp, and yp,. For the
purposes of this discussion it is sufficient to assume ideal n=1 Bragg reflection.

Let n denote the unit vector normal to the mirror surface at the point where the ray
impinges, and let v denote the unit vector from the mirror along the ray through the
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pinhole plane toward TCC. Then
he K K K K

:2dsin<pzsing0:sin(§—0) T cosf a0 (A1)
Given
n = (ng, ny,n,) (A.2)
o (@ Ypny L) (A.3)
\/:cgh +y2 + L3,
we obtain the following equation for E as a function of x,, and ypu:
o —K\/xgh +y2 + L3, "

Nz Tph + Ty Yph + nthp

When the mirror is tilted only in the (x,z) plane, as is the case for the NIF and
Omega MMI instruments, then n, and n, become simple functions of the tilt angle,
t, while ny, = 0. Then we can write

K \Jek i+ I

E= (A.5)

NzTph + nthp

This gives the energy on the detector plane, E, as a simple function of the position
on the pinhole plane. (Notice that in the above cartoon, n, and Ly, are positive while
n, and xp, are negative. Careful consideration of the geometry will always ensure
the above expression produces E > 0.)

It is useful to note that frequently (as is the case in the NIF and Omega MMI instru-
ments) allowable values of x,, and y,, may be an order of magnitude smaller than
Li,. (For instance, the usable area of the pinhole plane may be several millimeters
across, while Ly, is typically several centimeters or more.) In that case, x% < L,

and yf)h < pr, which gives rise to the following approximation:

—KLy,

P~ —m
Ny Tph + nthp

(A.6)

This treatment shows the Bragg energy can be regarded as a strong function of x,j
but a weak function of ypp.
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Alternatively, we may write

~ . —NgTph — NyYph — nthp

\/th + yf)h + L?p

= sin . (A7)

If we again choose the coordinate system for the flat-mirror system such that ny, = 0,
then this leads to a quadratic equation in xpy:

(n2 —sin® @) a2 + (2Lypngn.) xp, + (n2L;, — sin® ¢ [y, + L;,]) =0 (A.8)

Generally, the maximum allowable value of y,, will be at least an order of magnitude
lower than Ly, so ygh << pr. In such a case the y-dependence becomes negligible,
and the above expression simplifies to

(n2 —sin® ) 22, + (2Lypnan.) xp, + L7, (n2 —sin ) =0 (A.9)
So we again find the Bragg energy has a negligible dependence upon y,, as long
as L¢p > ypn. In that case, the x-position on the pinhole plane is determined by the
Bragg angle, ¢, as follows:

—2Lyyngn, + \/4L2 nn2 — 4L7, (n% — sin? cp) (n2 — sin? <p)

tp' Pz’ vz z

ok = 2 (n2 — sin®p)

—Lyyngn, £ Ly, \/ngnz — (n2n2 — n2sin”® ¢ — n2sin® p + sin’ p)
= . (A.10)

2 102
ng — s’ @

Because 1 is a unit vector and since we have chosen the coordinate system such that
_ 2 2 _
ny, = 0, n{ +n; = 1. Thus

—n,n, + sin ¢ cos 4,0>
2 in? )
n2 —sin” ¢

Tpn = Ltp ( (All)

Using the above definition of K, we can write x,, as an explicit function of Bragg
energy, E:

(A.12)

—ngn,B*+ K\/E? — K2
Tph = Lip 2 E2 _ K2
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B Yorick Code for Calculating Fresnel Diffraction

A simple BASIC routine for calculating Fresnel diffraction can be found in Rees et
al. [37]. The estimates in Section 3.1.3.2 were computed using a Yorick translation
of the Rees algorithm, listed here.

/* Script for estimating Fresnel diffraction at the detector plane of an MMI */
/* instrument. The output is a plot of intensity versus radial distance from */

/* the center of the diffraction pattern. */
/% */
/* Solid R, G, B: diffracted intensity via Fresnel (phase zone) calculation */
/* Dashed R, G, B: Airy disk radius (Fraunhofer) */
/* Dotted black: geometrical blur radius: 0.5*D*(l+mag) (ray optics) */
/* */

/* For now, the aperture is assumed to be centered on a line connecting the */
/* source and the detector plane. We can add phases to account for off-axis */

/* pinholes. */
/* */
/* Calculations are based on the numerical algorithm published in */
/* Rees, W. G. Eur J. Phys. 8 (1987) 49-52 */
/* which is based on x/
/* Burch, D. S. Am J. Phys. 53 (1985) 255-260 */
/* */

/* The algorithm was translated as directly as possible from BASIC to Yorick. */
/* The test cases (MMI=9,10) compare quite favorably to the plots in Figures */
/* 4 & 5 of the Rees paper. Thus we infer the algorithm is coded accurately. */

/% x/
/* For Franhofer diffraction, the illumination within the first zero of the */
/* Bessel function (i.e., the Airy disk) represents 97.6% of the radially- */
/* integrated intensity profile. */
/* */
/* Therefore, in the Fresnel case, it is useful to identify the radius */
/* that encloses 97.6% of the radially-integrated intensity profile. */
/% */
/* Last rev: IT; 08 Feb 2016 */
K */
[Hk—m *x/

/* Parameters */

[KRm——m———————— */

m2mu = 1.e+6; // 1 meter = 1.e6 microns
mu2m = 1.e-6; // 1 micron = 1.e-6 meters
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m2mm = 1.e+3; // 1 meter = 1.e3 millimeters
mm2m = 1.e-3; // 1 mm = 1.e-3 m
npts = 500;

// MMI defines the instrument setup

// 1 = NIF, 10 micron pinholes

// 2 = NIF, 35 micron pinholes

// 3 = NIF, 50 micron pinholes

// 4 = Omega, 5 micron pinholes

// 5 = Omega, 10 micron pinholes

// 6 = Omega, 15 micron pinholes // This is right on the near/far boundary
// (At 17.25 mu, all energies are Fresnel)

// 7 = Omega, 35 micron pinholes

// 8 = Omega, 50 micron pinholes

// 9 = Test: Burch/Rees, 3 Fresnel zones

// 10 = Test: Burch/Rees, 5 Fresnel zones

for(MMI = 1; MMI <=6; MMI++){
//for(MMI = 9; MMI <=10; MMI++){

R */
/* Loop over MMI settings begins here */
[k *x/

lle_geom = nif_geom = 0;

if (MMI==1){ // NIF MMI, 10 micron pinholes
nif_geom = 1;
D = 10.0 * 1.e-6; // [m]
file = "nif_10mu_rees_fresnel";
//xmax = 200.0 * mu2m; // 200 microns
xmax = 50.0 * mu2m; // 50 microns
plot_fraun = 0;

}

if (MMI==2){ // NIF MMI, 35 micron pinholes
nif_geom = 1;
D =35.0 x 1.e-6; // [m]
file = "nif_35mu_rees_fresnel";
xmax = 200.0 * mu2m; // 200 microns
plot_fraun = O;

}

if (MMI==3){ // NIF MMI, 50 micron pinholes
nif_geom = 1;
D =50.0 % 1.e-6; // [m]
file = "nif_5Omu_rees_fresnel";
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xmax = 200.0 * mu2m; // 200 microns
plot_fraun = O;
}

if (MMI==4){ // Omega MMI, 5 micron pinholes
lle_geom = 1;
D=5.0%*1.e-6; // [m]
file = "lle_Ob5mu_rees_fresnel";
//xmax = 150.0 * mu2m; // 150 microns
xmax = 50.0 * mu2m; // 50 microns
plot_fraun = O;

}

if (MMI==5){ // Omega MMI, 10 micron pinholes
lle_geom = 1;
D = 10.0 * 1.e-6; // [m]
file = "lle_10mu_rees_fresnel";
//xmax = 150.0 * mu2m; // 150 microns
xmax = 50.0 * mu2m; // 50 microns
plot_fraun = 0;

}

if (MMI==6){ // Omega MMI, 15 micron pinholes
lle_geom = 1;
D =15.0 * 1.e-6; // [m]
file = "lle_15mu_rees_fresnel";
//xmax = 150.0 * mu2m; // 150 microns
xmax = 100.0 * mu2m; // 100 microns
plot_fraun = 0O;

}

if (MMI==7){ // Omega MMI, 35 micron pinholes
lle_geom = 1;
D=235.0%* 1.e-6; // [mn]
file = "lle_35mu_rees_fresnel";
xmax = 250.0 * mu2m; // 250 microns
plot_fraun = 0;

}

if (MMI==8){ // Omega MMI, 50 micron pinholes; RMS
lle_geom = 1;
D = 50.0 * 1.e-6; // [m]
file = "lle_bOmu_rees_fresnel";
xmax = 250.0 * mu2m; // 250 microns
plot_fraun = O;
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if (MMI==9){ // Test case: Burch/Rees with 3 Fresnel zones
mmi_str = "Burch/Rees: 3 Zones";
radius = 997.0 * 1.e-6; // [m] pinhole radius was 997 microns
D = 2.0 * radius;
nlam = 1;
lambda = 632.8 * 1.e-9; // [m] laser wavelength is 632.8 nm
EkeV = 12.40/(lambdax*1.e10);
LO = 0.5236; // [m] this distance corresponds to 3 Fresnel zones
mag = (494.0-56.7-4.52)/4.52; // From Burch paper
file = "burch_rees_3zones";
xmax = 120.0 * mm2m; // 120 mm
plot_fraun = 0; // coplot Fraunhofer diffraction profile?

}

if (MMI==10){ // Test case: Burch/Rees with 5 Fresnel zones
mmi_str = "Burch/Rees: 5 Zones";
radius = 997.0 * 1.e-6; // [m] pinhole radius was 997 microns
D = 2.0 * radius;
nlam = 1;
lambda = 632.8 * 1.e-9; // [m] laser wavelength is 632.8 nm
EkeV = 12.40/(lambda*1.e10);
LO = 0.3142; // [m] this distance corresponds to 5 Fresnel zones
mag = (494.0-35.9-4.52)/4.52; // From Burch paper
file = "burch_rees_bzones";
xmax = 120.0 * mm2m; // 120 mm
plot_fraun = O;

}

if (1le_geom){
mmi_str = "Omega MMI";
ph_str = swrite(format="%2.0f",D*m2mu)+" 'mm PH";

EkeV = [4.5, 5.25, 6.0]; // [keV] titanium
lambda = (12.4 * 1.e-10)/EkeV; // [m] lam = hc/E = 12.4 (keV-Ang.)/E_keV
Ltd = 30.145 * 1.0e-2; // [m] TCC / detector distance
Ltp = 3.155 * 1.0e-2; // [m] TCC / pinhole plane distance
LO = Ltd - Ltp;
mag = LO/Ltp;
}

if (nif_geom){
mmi_str = "NIF MMI";
ph_str = swrite(format="%2.0f",D*m2mu)+" 'mm PH";
nlam = 3;
EkeV = [8.0, 10.2, 13.0]; // [keV] min, Ge He_alpha, max
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lambda = (12.4 * 1.e-10)/EkeV; // [m] lam = hc/E = 12.4 (keV-Ang.)/E_keV
Ltd = 116.667 * 1.0e-2; // [m] TCC / detector distance

Ltp = 16.667 * 1.0e-2; // [m] TCC / pinhole plane distance

LO = Ltd - Ltp;

mag = LO/Ltp;

ph_str = swrite(format="%2.0f",D*m2mu)+" !mm PH";
xscale = (xmax/mag)/npts;

[k m */
/* Define FO (Fresnel number) x*/
Y e et */

FO = (0.5%D)"2 / (lambda*L0); // radius

// Note that FO“1 is actually a transitional region. A hard distinction at

// FO=1 is a bit artificial; it’s worthwhile to investigate nearby values.

// Here we use FO = 0.75 based on examination of the FO variations over pinhole
// size and energy for both the Omega and NIF MMI systems.

fresnel = fraunhofer = 0;

if (max(F0)>=0.75) {fresnel = 1; regime_str
if (max(F0)<0.75) A{fraunhofer = 1; regime_str

"FRESNEL (near field)";}
"FRAUNHOFER (far field)";}

R */
/* Define radius of geometrical blur disk at the detector (ray optics) */
KR *x/

R_geom = 0.5 * D * (1 + mag);
R_geom *= m2mu;

[ R */
/* For comparison, the Fraunhofer diffraction radius */
/* (i.e. the first zero of the Airy disk). */
e e *x/

R_Airy = 1.22 * lambda * LO / D; // All values are in [m] here
R_Airy *= m2mu; // This is DEFINED at the detector, so no mag factor [mu]

K */
/* Calculate intensity variation as a function of x, via the Rees algorithm */
/* r0 is the pinhole radius (D/2) x/
/* z 1is the axial distance from the PH center to the detector plane (LO) */
/* x 1is the lateral distance on the PH plane, measured from the axis */
K */
r0 = 0.5 x D;

z = LO;

I = array(0.00, nlam, npts); // Fresnel intensity pattern

Ifraun = array(0.00, nlam, npts); // Fraunhofer intensity pattern (analytic)
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xlmag = array(0.00, nlam);
x2mag = array(0.00, nlam);
platrms = array(0.00, nlam);
R_97 = array(0.00, nlam);

for(ie=1;ie<=nlam;ie++){ // Loop over wavelengths

xpt = array(0.00, npts);
ypt = array(0.00, npts);

lam = lambda(ie);
for(ipt=1;ipt<=npts;ipt++){ // Loop over x position (points)

X = ipt * xscale;
xpt(ipt) = x; // units on this are meters, as with D, z, lambda, rO, etc.

azon = pixlam*z;
aap pi*r0°2;

// floor function returns "double" rather than "long";
// doubles are not allowed as array indices

nmin = long(floor( (r0-x)~2 / (lam*z) ));

nmax = long(floor( (r0+x)"2 / (lam*z) ));

zarea = array(0.00,nmax+1) ;

if ( (x<=r0) & (amin'=0) ){ // line 100
for(i=1;i<=nmin;i++){zarea(i) = azonx*i;}

}

if (nmin!=nmax){ // line 140
for(i=nmin+1;i<=nmax;i++){
rz = sqrt(i*z*lam);
phi_arg = (r07°2-rz"2-x72)/(2*x*rz) ;
psi_arg = (r072-rz"2+x"2)/(2*x*r0) ;
// Float errors in the above can lead to arg > 1 or arg < -1
phi_arg = max(-1.0, phi_arg); phi_arg = min(1.0, phi_arg);
psi_arg = max(-1.0, psi_arg); psi_arg = min(1.0, psi_arg);
phi = acos(phi_arg);
psi = acos(psi_arg);
zarea(i) = rz”"2*(pi-phi+0.5*sin(2*phi)) + r0~2*(psi-0.5*sin(2*psi));
}
}

// line 210
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zarea(nmax+1) = aap;
for(i=nmax;i>=1;i--){
zarea(i+1) = zarea(i+1l) - zarea(i);

3

intensity = 0;
flag = 1;

for(i=1;i<=nmax+1;i++){
intensity += zarea(i)*flag/azon;
flag *= -1;

}

intensity *= intensity;
ypt(ipt) = intensity;

} // end of loop over x (radial) position, ipt
I(ie,:) = ypt(:);

// Compute the Fraunhofer diffraction pattern for comparison

// R_Airy should land at the first O

// I =1_0%* (2¢¥J_1(s)/s)"2

// where J_1 is the Bessel function of the first kind of order 1 and

// s = k*axsin(theta) where k=2pi/lambda, a=D/2, and theta = observation angle
// s = (pi * D / lambda) * (x/sqrt(L0"2 + x~2))

// Note that x here is measured ON THE DETECTOR PLANE, thus it is mag*xpt

s = (pi * D / lam) * mag * xpt/sqrt(LO"2 + (mag*xpt) ~2);

Ifraun(ie,:) = I(ie,1)*(2.0 * bessjl(s)/s)"2;

// Identify the 97.6% radius for the radially-integrated Fresnel intensity
dx = mag * m2mu * xpt(dif);
grow, dx, dx(0);
IFresnel_total = I(ie,+)*dx(+); // Radially-integrated intensity to maximum x
IFresnel_incremental = array(0.0, npts);
for(idx = 1; idx<=npts; idx++){
IFresnel_incremental (idx) = sum(I(ie,1:idx)*dx(1:idx));
}
Ifraction = IFresnel_incremental / IFresnel_total;
R_97idx = max(where(Ifraction < 0.976));
R_97(ie) = mag * m2mu * xpt(R_97idx);

} // end of loop over wavelengths, ie

// Report R_airy, R_geom, and (if Fresnel) R_97.6%
// R_airy should be appropriate radius when F << 1
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// R_geom appears to be a good approximation in the Fresnel (F “>1) regime
if (fresnel) {
write,"\t"+mmi_str+"\t"+ph_str+"\t"+regime_str;
write,"\tE\t\tR_Airy\t\tR_geom\t\tR_97.6%";
for(ie=1;ie<=nlam;ie++){
write,EkeV(ie) ,R_Airy(ie),R_geom,R_97(ie);
}
}
if (fraunhofer) {
write,"\t"+mmi_str+"\t"+ph_str+"\t"+regime_str;
write,"\tE\t\tR_Airy\t\tR_geom";
for(ie=1;ie<=nlam;ie++){
write,EkeV(ie) ,R_Airy(ie),R_geom;

}
}
R *x/
/* Plot intensity distribution as a function of distance from the axis */
J e et it *x/
colors = ["red", "green", "blue", "black", "magenta", "cyan", "yellow",
"red", "green", "blue", "black", "magenta", "cyan", "yellow",
"red", "green", "blue", "black", "magenta", "cyan", "yellow"];

types = ["solid","solid","solid","solid","solid","solid","solid",
"dash" , "dash" R "dash" s "dash" s "dash" R "dash" s "dash" R
"dot" R "dot" , "dot" s "dot" R "dot" R "dot" , "dOt"] ;

e_str = swrite(format="%4.2f" ,EkeV)+" keV";
FO_str = "F = "+swrite(format="%5.3f", FO);
ptitle = mmi_str+": "+ph_str;

leg_str = colors(l:nlam)+": "+e_str+" "+FO_str;
leg_str2 = e_str+": "+FO_str;

leg_str3 = colors(l:nlam)+" dashdot: Fraunhofer";

plot_dir "../Plots/diffraction/";
psfile = plot_dir + file + ".ps";

epsfile = plot_dir + file + ".eps";
pdffile = plot_dir + file + ".pdf";

window, MMI, hcp=psfile;

fma;

for(ie=1;ie<=nlam;ie++){
if (fraunhofer){myI = Ifraun(ie,:);}
if (fresnel){myI = I(ie,:);}
// Plot radial intensity profile
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plg, myI(:), mag*xpt*m2mu, marks=0, width=2.0, color=colors(ie), legend=leg_str(ie);
// Mark Airy disk radii
plg, [0.0, max(I)], [R_Airy(ie),R_Airy(ie)], marks=0, width=2.0, color=colors(ie), type="dash", l¢
// Mark geometrical shadow radius (blur disk)
plg, [0.0, max(I)], [R_geom, R_geom], marks=0, width=2.0, color="black", type="dot", legend = " ",
// Mark the 97.6% radius, for the Fresnel cases
if (fresnel){

plg, [0.0, 0.66*max(I)], [R_97(ie),R_97(ie)], marks=0, width=2.0,

color=colors(ie), type="dashdot", legend=" ";

}
// Write F value for each energy
plt, leg_str2(ie), 0.5*mag*xpt(0)*m2mu, max(I)*(0.95-0.07*ie),tosys=1;

}

xytitles,"x_detector_ [!mm]", "Diffracted Intemnsity", [-0.005, 0.00];
pltitle,ptitle;

limits;

hcp;

hcp_finish;

eps,epsfile;

pdf ,pdffile;

e et e *x/
/* End of loop over MMI settings. */
[ */
}
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