
LA-UR-16-27206
Approved for public release; distribution is unlimited.

Title: DSD2D-FLS 2010: Bdzil's 2010 DSD Code Base; Computing tb and Dn with
Edits to Reduce the Noise in the Dn Field Near HE Boundaries

Author(s): Bdzil, John Bohdan

Intended for: Report

Issued: 2016-09-21



Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for
the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396.  By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes.  Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Department of Energy.  Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.



DSD2D-­‐FLS	
  2010:	
  Bdzil’s	
  2010	
  DSD	
  Code	
  Base	
  	
  
Computing	
  tb	
  and	
  Dn	
  with	
  Edits	
  to	
  	
  

Reduce	
  the	
  Noise	
  in	
  the	
  Dn	
  Field	
  Near	
  HE	
  Boundaries	
  	
  
J.	
  Bdzil	
  	
  

October	
  9,	
  2014	
  	
  
December	
  19,	
  2014	
  –	
  with	
  updated	
  figures	
  &	
  text	
  	
  

	
  
HISTORY	
  
	
  
The	
  full	
  level-­‐set	
  function	
  code,	
  DSD3D,	
  is	
  fully	
  described	
  in	
  LA-­‐14336	
  (2007)	
  [1].	
  
This	
  ASCI-­‐supported,	
  DSD	
  code	
  project	
  was	
  the	
  last	
  such	
  LANL	
  DSD	
  code	
  project	
  
that	
  I	
  was	
  involved	
  with	
  before	
  my	
  retirement	
  in	
  2007.	
  My	
  part	
  in	
  the	
  project	
  was	
  to	
  
design	
  and	
  build	
  the	
  core	
  DSD3D	
  solver,	
  which	
  was	
  to	
  include	
  a	
  robust	
  DSD	
  
boundary	
  condition	
  treatment.	
  A	
  robust	
  boundary	
  condition	
  treatment	
  was	
  
required,	
  since	
  for	
  an	
  important	
  local	
  “customer,”	
  the	
  only	
  description	
  of	
  the	
  
explosives’	
  boundary	
  was	
  through	
  volume	
  fraction	
  data.	
  Given	
  this	
  requirement,	
  the	
  
accuracy	
  issues	
  I	
  had	
  encountered	
  with	
  our	
  “fast-­‐tube,”	
  narrowband,	
  DSD2D	
  solver,	
  
and	
  the	
  difficulty	
  we	
  had	
  building	
  an	
  efficient	
  MPI-­‐parallel	
  version	
  of	
  the	
  
narrowband	
  DSD2D,	
  I	
  decided	
  DSD3D	
  should	
  be	
  built	
  as	
  a	
  full	
  level-­‐set	
  function	
  
code,	
  using	
  a	
  totally	
  local	
  DSD	
  boundary	
  condition	
  algorithm	
  for	
  the	
  level-­‐set	
  
function,	
  phi,	
  which	
  did	
  not	
  rely	
  on	
  the	
  gradient	
  of	
  the	
  level-­‐set	
  function	
  being	
  one,	
  
|grad(phi)|	
  =	
  1.	
  The	
  narrowband	
  DSD2D	
  solver	
  was	
  built	
  on	
  the	
  assumption	
  that	
  
|grad(phi)|	
  could	
  be	
  driven	
  to	
  one,	
  and	
  near	
  the	
  boundaries	
  of	
  the	
  explosive	
  this	
  
condition	
  was	
  not	
  being	
  satisfied.	
  Since	
  the	
  narrowband	
  is	
  typically	
  no	
  more	
  
than10*dx	
  wide,	
  narrowband	
  methods	
  are	
  discrete	
  methods	
  with	
  a	
  fixed,	
  non-­‐
resolvable	
  error,	
  where	
  the	
  error	
  is	
  related	
  to	
  the	
  thickness	
  of	
  the	
  band:	
  the	
  
narrower	
  the	
  band	
  the	
  larger	
  the	
  errors.	
  Such	
  a	
  solution	
  represents	
  a	
  discrete	
  
approximation	
  to	
  the	
  true	
  solution	
  and	
  does	
  not	
  limit	
  to	
  the	
  solution	
  of	
  the	
  
underlying	
  PDEs	
  under	
  grid	
  resolution.	
  	
  	
  
	
  
Given	
  a	
  material	
  interface	
  description	
  only	
  as	
  detailed	
  as	
  that	
  associated	
  with	
  the	
  
volume	
  fraction	
  of	
  the	
  materials	
  in	
  the	
  computational	
  cells,	
  there	
  can	
  be	
  no	
  unique	
  
sub-­‐cell	
  definition	
  of	
  the	
  location	
  of	
  the	
  material	
  interface.	
  Working	
  under	
  these	
  
constraints,	
  I	
  built	
  a	
  DSD3D	
  solver	
  whose	
  solution	
  errors	
  in	
  the	
  burn	
  time	
  field,	
  tb,	
  
diminished	
  as	
  O(d(dx)^2)	
  for	
  boundary-­‐free	
  problems	
  and	
  whose	
  solution	
  error	
  
diminished	
  as	
  O((dx))	
  for	
  problems	
  which	
  included	
  an	
  explosive’s	
  material	
  
boundaries.	
  These	
  convergence	
  rates	
  were	
  verified	
  by	
  comparing	
  the	
  DSD3D	
  
solver’s	
  numerical	
  solutions	
  with	
  exact	
  solutions.	
  Unlike	
  the	
  previous	
  three-­‐
dimensional	
  DSD	
  solvers,	
  DSD3D	
  was	
  built	
  using	
  a	
  totally	
  local	
  boundary	
  condition	
  
algorithm	
  that	
  required	
  no	
  region-­‐wide,	
  iterative	
  boundary	
  condition	
  updates	
  and	
  
that	
  should	
  have	
  been	
  no	
  more	
  difficult	
  to	
  “parallelize”	
  via	
  an	
  MPI,	
  domain-­‐
decomposition	
  strategy	
  than	
  would	
  be	
  a	
  heat-­‐equation	
  solver.	
  I	
  delivered	
  the	
  serial,	
  
full	
  level-­‐set	
  function	
  DSD3D	
  solver,	
  DSD3D-­‐FLS,	
  to	
  XCP-­‐4	
  (John	
  Walter)	
  in	
  mid-­‐
2007.	
  	
  
	
  



After	
  retiring	
  from	
  LANL,	
  in	
  2008	
  I	
  began	
  working	
  with	
  the	
  Department	
  of	
  
Mechanical	
  Sciences	
  and	
  Engineering	
  at	
  The	
  University	
  of	
  Illinois	
  (UIUC).	
  Work	
  
continued	
  at	
  LANL	
  on	
  developing	
  at	
  MPI	
  parallel	
  version	
  of	
  DSD3D-­‐FLS,	
  with	
  little	
  to	
  
no	
  serious	
  progress	
  being	
  reported	
  through	
  2009.	
  At	
  that	
  time,	
  I	
  happened	
  to	
  be	
  
working	
  with	
  a	
  UIUC	
  student	
  who	
  was	
  interested	
  in	
  scientific	
  computing,	
  and	
  
numerical	
  algorithms	
  for	
  the	
  solution	
  of	
  partial-­‐differential	
  equations	
  (PDEs).	
  
Together,	
  the	
  student	
  and	
  I	
  decided	
  that	
  developing	
  and	
  implementing	
  an	
  MPI,	
  
domain-­‐decomposition	
  solution	
  strategy	
  for	
  the	
  core	
  DSD3D-­‐FLS	
  solver	
  would	
  be	
  a	
  
good	
  Masters	
  degree	
  thesis	
  problem.	
  So	
  in	
  early	
  2010,	
  I	
  took	
  my	
  standalone,	
  one	
  
explosive,	
  DSD3D-­‐FLS	
  solver	
  and	
  built	
  the	
  basic	
  DSD2D-­‐FLS	
  solver,	
  whose	
  
properties	
  will	
  be	
  explored	
  later	
  in	
  these	
  notes.	
  Together,	
  the	
  student	
  and	
  I	
  
developed	
  a	
  strategy	
  and	
  built	
  an	
  MPI,	
  domain-­‐decomposition	
  model	
  with	
  which	
  to	
  
“parallelize”	
  DSD2D-­‐FLS.	
  It	
  is	
  worth	
  noting	
  that	
  the	
  student	
  successfully	
  completed	
  
this	
  project,	
  which	
  then	
  led	
  to	
  his	
  being	
  awarded	
  a	
  MS	
  in	
  Engineering	
  from	
  UIUC	
  by	
  
the	
  late	
  fall	
  of	
  2010.	
  That	
  work,	
  including	
  the	
  basic	
  DSD2D-­‐FLS	
  solution	
  algorithm,	
  is	
  
described	
  in	
  our	
  publication	
  on	
  this	
  work	
  [2].	
  	
  
	
  
The	
  single	
  explosive,	
  serial	
  version	
  of	
  the	
  2010	
  DSD2D-­‐FLS	
  solver	
  represents	
  the	
  
code	
  base	
  whose	
  properties	
  I	
  explore	
  here.	
  Later	
  in	
  2010,	
  I	
  passed	
  the	
  DSD2D-­‐FLS	
  
solver,	
  including	
  updates	
  to	
  include	
  F90	
  and	
  a	
  multiple	
  explosive	
  and	
  inert	
  material	
  
region	
  capabilities,	
  to	
  John	
  Walter	
  of	
  LANL	
  group	
  XCP-­‐4.	
  John	
  Walter	
  then	
  installed	
  
this	
  DSD2D-­‐FLS	
  solver	
  into	
  the	
  CASH-­‐based	
  LANL	
  DSD	
  solver	
  library.	
  At	
  some	
  point	
  
in	
  early	
  2014,	
  the	
  responsibility	
  for	
  the	
  DSD	
  solver	
  library	
  was	
  passed	
  to	
  James	
  
Quirk,	
  also	
  of	
  XCP-­‐4.	
  Since	
  that	
  time,	
  James	
  has	
  wrapped	
  the	
  DSD	
  solver	
  library	
  with	
  
hooks	
  to	
  his	
  Amrita	
  environment.	
  It	
  will	
  be	
  comparisons	
  of	
  results	
  from	
  this	
  XCP-­‐4	
  
twice	
  wrapped	
  DSD2D-­‐FLS	
  solver	
  library	
  and	
  my	
  2010,	
  DSD2D-­‐FLS	
  code	
  base	
  
results	
  that	
  I	
  will	
  explore	
  in	
  these	
  notes.	
  	
  
	
  
THE	
  PRESENT	
  
	
  
Late	
  during	
  the	
  summer	
  of	
  2014,	
  I	
  received	
  questions	
  from	
  Mark	
  Short,	
  LANL	
  WX-­‐9	
  
and	
  ASCI-­‐HE	
  program	
  lead,	
  and	
  James	
  Quirk	
  about	
  some	
  of	
  the	
  DSD	
  solutions	
  James	
  
was	
  seeing	
  with	
  the	
  CASH/Amrita	
  wrapped,	
  serial	
  DSD2D-­‐FLS	
  solver.	
  Before	
  we	
  
look	
  at	
  these	
  questions,	
  I	
  need	
  to	
  set	
  down	
  the	
  solutions	
  properties	
  that	
  we	
  expect	
  
to	
  see	
  coming	
  from	
  the	
  DSD2D-­‐FLS	
  solver.	
  	
  
	
  
First,	
  I	
  will	
  set	
  down	
  some	
  preliminaries.	
  For	
  problems	
  where	
  DSD	
  boundary	
  
conditions	
  are	
  applied,	
  the	
  convergence	
  properties	
  of	
  the	
  2010	
  code	
  base	
  DSD2D-­‐
FLS	
  generated	
  burn	
  time	
  field,	
  tb,	
  have	
  been	
  well-­‐established,	
  and	
  show	
  that	
  the	
  
errors	
  in	
  tb	
  diminish	
  in	
  an	
  O(dx)	
  fashion	
  as	
  the	
  mesh	
  size,	
  dx,	
  is	
  decreased.	
  
Importantly,	
  the	
  numerical	
  solutions	
  do	
  converge	
  to	
  the	
  solutions	
  of	
  the	
  PDEs	
  as	
  the	
  
mesh	
  size	
  is	
  reduced.	
  This	
  does	
  require	
  that	
  the	
  material	
  interface	
  description	
  itself	
  
be	
  resolvable	
  under	
  resolution.	
  A	
  detailed	
  convergence	
  study	
  was	
  presented	
  in	
  [2].	
  
For	
  a	
  number	
  of	
  simple	
  geometries,	
  here	
  I	
  show	
  detailed	
  comparisons	
  of	
  the	
  TOA	
  
(time	
  of	
  arrival	
  or	
  burn	
  table)	
  field	
  generated	
  with	
  DSD2D-­‐FLS	
  compared	
  to	
  the	
  
“exact”	
  TOA	
  field	
  generated	
  with	
  a	
  Maple	
  script.	
  	
  



	
  
Since	
  the	
  normal	
  detonation	
  speed,	
  dn,	
  is	
  directly	
  related	
  to	
  tb	
  through	
  the	
  relation,	
  
dn	
  =	
  1/abs(grad(phi)),	
  and	
  given	
  that	
  tb	
  comes	
  with	
  O(dx)	
  errors,	
  then	
  clearly	
  dn	
  
will	
  have	
  O(1)	
  errors.	
  To	
  have	
  a	
  situation	
  better	
  than	
  this	
  would	
  require	
  that	
  we	
  
have	
  an	
  algorithm	
  for	
  tb	
  with	
  errors	
  no	
  larger	
  than	
  O((dx)^2).	
  To	
  my	
  knowledge,	
  
there	
  are	
  no	
  such	
  DSD	
  boundary	
  algorithms	
  out	
  there	
  today.	
  In	
  addition,	
  this	
  would	
  
require	
  an	
  interface	
  description	
  with	
  errors	
  of	
  O((dx)^2).	
  So	
  given	
  that	
  we	
  will	
  have	
  
O(1)	
  errors	
  in	
  dn,	
  then	
  we	
  need	
  to	
  address	
  the	
  questions:	
  are	
  these	
  O(1)	
  errors	
  
0.1%,	
  1%,	
  10%,	
  100%,	
  1000%,	
  etc.,	
  where	
  are	
  these	
  errors	
  located	
  and	
  what	
  
properties	
  of	
  the	
  numerical	
  solution	
  algorithm	
  controls	
  these	
  errors?	
  	
  
	
  
In	
  late	
  August	
  to	
  early	
  September,	
  2014	
  I	
  received	
  some	
  results	
  and	
  questions	
  about	
  
the	
  solutions	
  James	
  was	
  seeing	
  for	
  detonation	
  propagation	
  in	
  an	
  explosive	
  rate	
  stick,	
  
when	
  he	
  solved	
  the	
  problems	
  with	
  his	
  CASH/Amrita	
  wrapped	
  version	
  of	
  DSD2D-­‐
FLS.	
  James	
  Quirk’s	
  results	
  are	
  displayed	
  in	
  Figures-­‐1),	
  and	
  the	
  problem	
  geometry	
  is	
  
displayed	
  in	
  Figure-­‐2).	
  I	
  believe	
  these	
  simulations	
  used	
  Dn	
  =	
  1	
  –	
  0.1*kappa	
  and	
  were	
  
performed	
  in	
  2D,	
  slab	
  geometry.	
  I	
  do	
  not	
  have	
  information	
  about	
  either	
  omega_s	
  or	
  
omega_c,	
  nor	
  for	
  any	
  of	
  the	
  numerical	
  parameters,	
  such	
  as	
  dx,	
  cfl,	
  etc.,	
  which	
  James	
  
used	
  in	
  his	
  simulations.	
  I’ve	
  not	
  seen	
  errors	
  in	
  dn	
  as	
  large	
  as	
  those	
  displayed	
  in	
  
Figure-­‐1),	
  particularly	
  on	
  the	
  upside,	
  in	
  any	
  simple	
  rate	
  stick	
  simulation	
  that	
  I’ve	
  
performed	
  and	
  in	
  none	
  of	
  the	
  simulations	
  I	
  report	
  on	
  here.	
  	
  	
  
	
  

	
  
Figure-­‐1)	
  A	
  comparison	
  of	
  the	
  normal	
  detonation	
  speed,	
  dn,	
  measured	
  along	
  the	
  
upper	
  horizontal	
  boundary,	
  for	
  the	
  rate	
  stick	
  geometry	
  displayed	
  in	
  Figure-­‐2.	
  The	
  
smooth	
  green	
  curve	
  is	
  for	
  the	
  case	
  where	
  the	
  explosive	
  boundary	
  is	
  displaced	
  from	
  a	
  
mesh	
  line	
  by	
  some	
  fraction	
  of	
  the	
  mesh	
  spacing,	
  dx.	
  The	
  red	
  pluses	
  are	
  from	
  a	
  DSD	
  
simulation	
  where	
  the	
  nominal	
  upper	
  explosive	
  boundary	
  is	
  aligned	
  with	
  a	
  
horizontal	
  mesh	
  line,	
  and	
  an	
  error	
  is	
  added	
  to	
  the	
  geometry	
  defining	
  function,	
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psi(i,j).	
  The	
  errors	
  in	
  dn	
  for	
  the	
  mesh	
  aligned	
  simulation	
  can	
  be	
  greater	
  than	
  400%.	
  
These	
  errors	
  are	
  much	
  greater	
  than	
  anything	
  I	
  have	
  seen	
  in	
  such	
  a	
  calculation.	
  It	
  is	
  
my	
  understanding	
  that	
  for	
  these	
  simulations,	
  the	
  CFL	
  parameter	
  was	
  set	
  to	
  a	
  very-­‐
small	
  value.	
  The	
  above	
  results	
  come	
  from	
  a	
  simulation	
  performed	
  by	
  Quirk.	
  	
  
	
  

	
  
Figure-­‐2)	
  DSD	
  simulation	
  of	
  detonation	
  for	
  a	
  2D,	
  slab-­‐geometry	
  rate	
  stick.	
  
Detonation	
  is	
  initiated	
  at	
  t	
  =	
  0	
  along	
  a	
  vertical	
  line	
  (located	
  at	
  x	
  =	
  -­‐4)	
  and	
  then	
  
proceeds	
  to	
  the	
  right.	
  The	
  top-­‐to-­‐bottom	
  curved	
  lines	
  are	
  contours	
  of	
  the	
  tb-­‐field.	
  
The	
  color	
  palette	
  is	
  coordinated	
  with	
  the	
  values	
  of	
  dn.	
  The	
  values	
  of	
  dn	
  displayed	
  in	
  
Figure-­‐1)	
  are	
  measured	
  along	
  the	
  horizontal,	
  upper	
  boundary	
  of	
  the	
  explosive	
  
region.	
  For	
  this	
  simulation,	
  the	
  horizontal	
  explosive	
  boundaries	
  are	
  displaced	
  from	
  
mesh	
  lines	
  by	
  a	
  fraction	
  of	
  dx.	
  The	
  above	
  results	
  come	
  from	
  a	
  simulation	
  performed	
  
by	
  Quirk.	
  	
  
	
  



Given	
  the	
  lack	
  of	
  specific	
  information	
  about	
  the	
  physical/numerical	
  parameters	
  for	
  
this	
  rate	
  stick	
  problem,	
  I’ve	
  tried	
  to	
  guess	
  reasonable	
  parameters	
  for	
  the	
  problem	
  
displayed	
  in	
  Figure-­‐2)	
  and	
  then	
  reproduce	
  those	
  results.	
  My	
  2D,	
  slab	
  problem	
  
dimensions	
  will	
  be	
  the	
  same	
  as	
  those	
  shown	
  in	
  Figure-­‐2),	
  which	
  are	
  -­‐5	
  <=	
  x	
  <=	
  5	
  and	
  
-­‐2	
  <=	
  y	
  <=	
  2,	
  as	
  the	
  dimensions	
  of	
  the	
  rate	
  stick.	
  In	
  my	
  simulations,	
  I	
  nest	
  this	
  rate	
  
stick	
  in	
  the	
  computational	
  domain	
  -­‐6	
  <=	
  x	
  <=	
  6	
  and	
  -­‐6	
  <=	
  y	
  <=	
  6.	
  I	
  use	
  as	
  DSD	
  
parameters	
  dn	
  =	
  1	
  –	
  0.1*kappa,	
  dmin	
  =	
  0.1,	
  dmax	
  =	
  9.0,	
  omega_s	
  =	
  50	
  degrees	
  and	
  
omega_c	
  =	
  55	
  degrees	
  and	
  select	
  slab	
  geometry,	
  naxsym	
  =	
  0.	
  I	
  use	
  my	
  standard	
  set	
  of	
  
numerical	
  parameters,	
  cfl	
  =	
  0.9	
  and	
  run	
  with	
  re-­‐distancing	
  on,	
  where	
  the	
  re-­‐
distancing	
  parameters	
  are	
  taken	
  to	
  be	
  delta	
  =	
  0.1,	
  epsilon	
  =	
  0.1.	
  All	
  my	
  simulations	
  
are	
  serial	
  and	
  were	
  performed	
  on	
  a	
  Macbook	
  Pro	
  running	
  Mavericks-­‐10.9.5	
  and	
  
Xcode-­‐6.0.1	
  and	
  using	
  the	
  gfortran-­‐v4.8	
  compiler	
  running	
  mpif77	
  (under	
  openMPI-­‐
1.4.5)	
  with	
  vanilla	
  settings	
  and	
  no	
  optimization.	
  Two	
  mesh	
  sizes	
  were	
  used,	
  nxpts	
  =	
  
nypts	
  =	
  600	
  points	
  and	
  nxpts	
  =	
  nypts	
  =	
  601	
  points,	
  which	
  corresponds	
  to	
  the	
  actual	
  
top	
  boundary	
  along	
  the	
  mesh	
  line	
  y	
  =	
  2.00000	
  when	
  nxpts	
  =	
  nypts	
  =	
  600	
  and	
  the	
  
numerical	
  top	
  boundary	
  along	
  the	
  mesh	
  line	
  y	
  =	
  1.98669	
  when	
  nxpts	
  =	
  nypts	
  =	
  601.	
  
Displayed	
  in	
  Figure	
  3a)	
  is	
  a	
  plot	
  showing	
  dn	
  along	
  the	
  numerical	
  top	
  boundary	
  of	
  
the	
  rate	
  stick	
  (y	
  =	
  2.0	
  for	
  nxpts	
  =	
  nypts	
  =	
  600)	
  and	
  (y	
  =	
  1.98669	
  for	
  nxpts	
  =	
  nypts	
  =	
  
601).	
  Of	
  course,	
  the	
  physical	
  top	
  boundary	
  is	
  along	
  y	
  =	
  2.0.	
  NOTE:	
  Since	
  the	
  psi(i,j)=	
  
0.0	
  line	
  is	
  exactly	
  defined	
  in	
  my	
  standalone,	
  DSD2D-­‐FLS	
  code	
  (that	
  is,	
  to	
  within	
  
standard,	
  single	
  precision	
  accuracy,	
  psi(i,j)	
  =	
  0.0	
  is	
  along	
  y	
  =	
  2.0),	
  then	
  there	
  is	
  
effectively	
  no	
  noise	
  in	
  my	
  simple,	
  algebraically	
  defined	
  psi(i,j)=0.0	
  function	
  even	
  for	
  
the	
  case	
  where	
  the	
  physical	
  and	
  numerical	
  top	
  boundaries	
  are	
  coincident.	
  As	
  is	
  clear	
  
from	
  Figure-­‐3a),	
  the	
  two	
  curves	
  are	
  smooth,	
  noise	
  free	
  and	
  appear	
  nearly	
  identical	
  
in	
  the	
  “eyeball	
  norm.”	
  	
  
	
  
The	
  problem	
  geometry	
  displayed	
  in	
  Figure-­‐2)	
  is	
  sufficiently	
  simple	
  to	
  allow	
  the	
  DSD	
  
solution	
  to	
  be	
  found	
  by	
  solving	
  a	
  1D	
  initial-­‐value	
  problem	
  for	
  the	
  evolving	
  shock	
  
shape	
  as	
  a	
  function	
  of	
  the	
  y-­‐coordinate	
  and	
  time.	
  Such	
  a	
  high-­‐resolution	
  solution	
  of	
  a	
  
1D	
  problem,	
  developed	
  using	
  a	
  Maple	
  script,	
  can	
  essentially	
  be	
  considered	
  to	
  be	
  an	
  
“exact”	
  solution.	
  We	
  compare	
  this	
  “exact”	
  solution	
  (dashed	
  curves)	
  with	
  the	
  DSD2D-­‐
FLS	
  solution	
  (solid	
  curves)	
  in	
  Figures	
  3b)	
  &	
  3c),	
  where	
  the	
  TOA-­‐field	
  is	
  compared	
  
over	
  the	
  entire	
  HE	
  domain,	
  and	
  the	
  Dn-­‐field	
  is	
  compared	
  along	
  lines	
  of	
  constant-­‐y,	
  
respectively.	
  As	
  displayed	
  in	
  Figure	
  3b),	
  the	
  DSD2D-­‐FLS	
  simulated	
  TOA-­‐field	
  
(computed	
  at	
  0.02	
  resolution)	
  and	
  the	
  “exact”	
  Maple	
  script	
  solution	
  overlay	
  one	
  
another	
  very	
  well.	
  As	
  we	
  have	
  argued	
  above	
  and	
  demonstrated	
  in	
  [2],	
  the	
  DSD2D-­‐
FLS	
  algorithm	
  yields	
  a	
  solution	
  for	
  TOA	
  that	
  is	
  O(dx)	
  accurate	
  in	
  the	
  mesh	
  spacing,	
  
dx,	
  even	
  for	
  a	
  HE	
  interface	
  description	
  that	
  has	
  O(dx)	
  errors.	
  What	
  the	
  results	
  in	
  
Figure-­‐3c)	
  show	
  is	
  that	
  the	
  dn-­‐field,	
  which	
  can	
  be	
  obtained	
  from	
  dn	
  =	
  
1/abs(grad(phi))	
  and	
  thus	
  can	
  be	
  expected	
  to	
  have	
  O(1)	
  errors,	
  shows	
  rather	
  small	
  
differences	
  from	
  the	
  “exact”	
  solution.	
  As	
  shown	
  in	
  Figure	
  3a),	
  where	
  the	
  dn-­‐field	
  
along	
  the	
  top	
  boundary	
  of	
  the	
  rate	
  stick	
  is	
  displayed,	
  the	
  value	
  of	
  dn	
  along	
  the	
  
boundary	
  and	
  a	
  fraction	
  of	
  dx	
  below	
  the	
  boundary,	
  has	
  little	
  effect	
  on	
  the	
  computed	
  
result	
  and	
  where	
  both	
  results	
  are	
  essentially	
  noise-­‐free.	
  	
  



	
  
Figure-­‐3a)	
  dn	
  along	
  the	
  physical,	
  top	
  horizontal	
  boundary	
  of	
  the	
  rate	
  stick	
  geometry	
  
displayed	
  in	
  Figure-­‐2).	
  	
  The	
  red	
  curve	
  corresponds	
  to	
  dn	
  along	
  y	
  =	
  2.00000,	
  which	
  is	
  
the	
  top	
  boundary	
  for	
  the	
  nxpts=nypts=600	
  points	
  simulation,	
  and	
  the	
  blue	
  curve	
  
corresponds	
  to	
  dn	
  along	
  y	
  =	
  1.98669,	
  which	
  is	
  the	
  top	
  numerical	
  boundary	
  for	
  the	
  
DSD2D-­‐FLS	
  simulation	
  when	
  nxpts=nypts=601	
  points	
  are	
  used.	
  	
  The	
  initiating	
  wave	
  
enters	
  at	
  x	
  =	
  -­‐4,	
  and	
  the	
  detonation	
  exits	
  the	
  rate	
  stick	
  at	
  x	
  =	
  5.	
  The	
  value	
  of	
  dntable	
  
is	
  computed	
  using	
  the	
  curvature	
  of	
  the	
  level-­‐set	
  function.	
  The	
  background	
  value	
  of	
  
dn	
  stored	
  in	
  dntable	
  is	
  1.0,	
  and	
  so	
  that	
  value	
  is	
  to	
  be	
  ignored.	
  The	
  value	
  of	
  dn	
  =	
  0.1	
  at	
  
x	
  =	
  -­‐4	
  is	
  expected,	
  while	
  the	
  undershoot	
  and	
  overshoot	
  of	
  dn	
  at	
  x	
  =	
  5	
  is	
  an	
  artifact	
  of	
  
the	
  handover	
  of	
  control	
  of	
  the	
  boundary	
  condition	
  from	
  a	
  horizontal,	
  to	
  a	
  diagonal	
  
and	
  then	
  to	
  a	
  vertical	
  ghost	
  node	
  in	
  the	
  corner	
  of	
  the	
  explosive	
  domain.	
  This	
  artifact	
  
is	
  commonly	
  observed	
  in	
  corner	
  regions.	
  Importantly,	
  these	
  solutions	
  are	
  noise	
  free	
  
and	
  smooth.	
  	
  



	
  
Figure-­‐3b)	
  My	
  DSD2D-­‐FLS	
  calculation	
  of	
  the	
  rate	
  stick	
  TOA-­‐field	
  for	
  the	
  problem	
  
displayed	
  in	
  Figure-­‐2),	
  and	
  where	
  nx	
  =	
  ny	
  =	
  600.	
  The	
  DSD2D-­‐FLS	
  integrated	
  solution	
  
curves	
  are	
  shown	
  as	
  solid,	
  while	
  the	
  “exact”	
  Maple	
  script	
  generated	
  solution	
  curves	
  
are	
  shown	
  as	
  dashed.	
  The	
  solutions	
  obtained	
  with	
  the	
  two	
  methods	
  essentially	
  
overlay.	
  In	
  this	
  simulation,	
  the	
  upper	
  and	
  lower	
  boundaries	
  of	
  the	
  rate	
  stick	
  lie	
  along	
  
mesh	
  lines.	
  	
  



	
  
Figure-­‐3c)	
  My	
  DSD2D-­‐FLS	
  solution	
  for	
  the	
  dn-­‐field	
  (dntable),	
  using	
  the	
  curvature	
  of	
  
the	
  level-­‐set	
  function,	
  phi(i,j),	
  to	
  compute	
  dn,	
  	
  are	
  shown	
  as	
  the	
  solid	
  curves.	
  These	
  
are	
  compared	
  with	
  the	
  “exact”	
  Maple	
  script	
  generated	
  solution,	
  shown	
  as	
  dashed	
  
curves.	
  The	
  value	
  of	
  dn	
  are	
  displayed	
  along	
  five	
  lines,	
  which	
  are	
  displaced	
  by	
  a	
  
constant	
  distant,	
  y=	
  1.95	
  (lowest	
  curve),	
  1.90,	
  1.80,	
  1.60	
  and	
  1.40,	
  from	
  the	
  
centerline	
  of	
  the	
  rate	
  stick	
  (y	
  =	
  0),	
  for	
  the	
  problem	
  shown	
  in	
  Figure-­‐2).	
  The	
  
agreement	
  is	
  good,	
  with	
  the	
  differences	
  between	
  the	
  DSD2D-­‐FLS	
  solution	
  and	
  the	
  
“exact”	
  solution	
  being	
  attributable	
  to	
  finite	
  resolution	
  effects	
  in	
  the	
  DSD2D-­‐FLS	
  
solutions.	
  The	
  dynamics	
  of	
  the	
  detonation	
  are	
  substantially	
  different	
  near	
  the	
  upper	
  
and	
  lower	
  boundaries	
  than	
  near	
  the	
  centerline	
  of	
  the	
  rate	
  stick.	
  	
  



Next,	
  I	
  study	
  multiple	
  cases	
  including	
  those	
  where	
  the	
  psi(i,j)	
  function	
  defining	
  the	
  
explosive	
  interface	
  and	
  distance	
  to	
  the	
  interface	
  is	
  exact	
  and	
  those	
  where	
  noise	
  is	
  
added	
  to	
  the	
  psi(i,j)	
  distance	
  function	
  which	
  defines	
  the	
  HE	
  boundary	
  geometry.	
  	
  
	
  
HOW	
  NOISE	
  ADDED	
  TO	
  PSI(i,j)	
  AFFECTS	
  THE	
  COMPUTED	
  DN(i,j)-­‐FIELD	
  	
  	
  
	
  
To	
  both	
  replicate	
  and	
  better	
  understand	
  the	
  behavior	
  displayed	
  in	
  Figure-­‐1)	
  and	
  
Figure-­‐2),	
  I	
  performed	
  a	
  number	
  of	
  simulations	
  where	
  controlled	
  noise	
  was	
  added	
  
to	
  the	
  exact	
  psi(i,j)	
  function	
  that	
  defines	
  the	
  rate	
  stick	
  geometry	
  displayed	
  in	
  Figure-­‐
2).	
  The	
  noise	
  I	
  added	
  had	
  a	
  sinusoidal	
  distribution	
  and	
  was	
  of	
  the	
  form	
  	
  
	
  
(1)	
   A*sin(f*(i+j))	
  ,	
  	
  
	
  
and	
  was	
  added	
  to	
  the	
  exact	
  psi(i,j)	
  function,	
  to	
  get	
  	
  
	
  
(2)	
   psi(i,j)	
  =	
  psi(i,j)	
  +	
  A*sin(f*(i+j))	
  .	
  	
  
	
  
I	
  ran	
  cases	
  where	
  the	
  frequency	
  factor,	
  f,	
  had	
  the	
  values	
  of	
  f	
  =	
  0.1	
  and	
  0.2,	
  and	
  the	
  
amplitudes	
  were	
  A	
  =	
  1.0e-­‐3,	
  1.0e-­‐4,	
  1.0e-­‐6	
  and	
  1.0e-­‐7.	
  Since	
  the	
  goal	
  was	
  not	
  only	
  to	
  
understand	
  how	
  the	
  noise	
  in	
  the	
  psi(i,j)	
  function	
  affects	
  the	
  location	
  of	
  psi(i,j)	
  =	
  0.0	
  
and	
  how	
  that	
  passes	
  into	
  the	
  simulated	
  results	
  but	
  also	
  to	
  find	
  a	
  way	
  of	
  filtering	
  the	
  
noise,	
  I	
  setup	
  the	
  noise	
  filter	
  (displayed	
  below	
  for	
  the	
  cutoff	
  of	
  1.0e-­‐7)	
  for	
  smearing	
  
the	
  location	
  of	
  psi(i,j)	
  =	
  0.0	
  to	
  a	
  band	
  where	
  psi(i,j)	
  is	
  zero,	
  thus	
  reducing	
  the	
  
sensitivity	
  of	
  the	
  simulation	
  to	
  noise	
  in	
  psi(i,j).	
  	
  
	
  
FILTER	
  ADDED	
  TO	
  2010	
  DSD2D-­‐FLS	
  driver.f,	
  AFTER	
  THE	
  CALL	
  TO	
  setpsi.f	
  	
  
###################################################	
  
	
  
c	
  Set	
  psi(i,j)	
  =	
  0	
  if(	
  abs(psi(i,j)).le.1.0e-­‐7	
  )	
  psi(i,j)	
  =	
  0.0	
  
	
  
	
  	
  	
  	
  	
  	
  do	
  i	
  =	
  -­‐2,nxpts+2	
  
	
  	
  	
  	
  	
  	
  	
  x	
  =	
  xmin	
  +	
  (xmax-­‐xmin)*real(i)/real(nxpts)	
  
	
  	
  	
  	
  	
  	
  	
  do	
  j	
  =	
  -­‐2,nypts+2	
  
	
  	
  	
  	
  	
  	
  	
  	
  y	
  =	
  ymin	
  +	
  (ymax-­‐ymin)*real(j)/real(nypts)	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  if(	
  (abs(psi(i,j)).le.1.0e-­‐7)	
  )	
  psi(i,j)	
  =	
  0.0	
  
	
  	
  	
  	
  	
  	
  	
  enddo	
  
	
  	
  	
  	
  	
  	
  enddo	
  
	
  
####################################################	
  
	
  
To	
  put	
  the	
  results	
  on	
  sensitivity	
  to	
  noise	
  in	
  the	
  psi(i,j)	
  function	
  into	
  some	
  
perspective,	
  I	
  first	
  describe	
  how	
  explosive	
  boundaries	
  are	
  defined	
  in	
  DSD2D-­‐FLS.	
  
Explosive	
  boundaries	
  are	
  defined	
  similarly	
  to	
  how	
  material	
  boundaries	
  are	
  defined	
  
in	
  fixed,	
  Eulerian-­‐grid,	
  high-­‐speed	
  flow	
  solvers	
  that	
  use	
  the	
  Cartesian/immersed	
  
boundary	
  method	
  to	
  deal	
  with	
  material	
  interfaces.	
  Displayed	
  in	
  Figure-­‐4)	
  is	
  a	
  
Cartesian	
  grid	
  on	
  which	
  one	
  (interior)	
  explosive	
  region	
  is	
  shown,	
  psi(i,j)	
  <=	
  0.0,	
  and	
  



two	
  (exterior)	
  ghost	
  node	
  regions,	
  psi(i,j)	
  >	
  0.0	
  are	
  shown.	
  The	
  near-­‐boundary	
  
points	
  in	
  the	
  ghost	
  node	
  regions	
  are	
  used	
  to	
  set	
  the	
  DSD	
  boundary	
  conditions.	
  	
  
	
  

	
  
	
  
Figure-­‐4)	
  The	
  Eulerian	
  grid	
  used	
  in	
  DSD2D-­‐FLS	
  simulations	
  is	
  displayed,	
  showing	
  
the	
  explosive	
  (HE)	
  region,	
  psi(i,j)	
  <=	
  0.0,	
  and	
  the	
  ghost	
  node	
  regions,	
  psi(i,j)	
  >	
  0.0,	
  
which	
  are	
  used	
  to	
  set	
  the	
  DSD	
  boundary	
  conditions.	
  A	
  four-­‐point	
  central-­‐difference	
  
stencil	
  is	
  used	
  to	
  compute	
  gradients	
  of	
  both	
  psi(i,j),	
  the	
  distance	
  function	
  to	
  the	
  
explosive	
  boundary,	
  and	
  phi(i,j),	
  the	
  level-­‐set	
  function	
  in	
  which	
  the	
  propagating	
  
detonation	
  front	
  is	
  embedded.	
  The	
  DSD	
  front	
  curvature	
  is	
  computed	
  with	
  a	
  nine-­‐
point	
  stencil	
  involving	
  phi(i,j)	
  and	
  centered	
  at	
  (i,j).	
  The	
  heavy	
  circular	
  line	
  in	
  the	
  
upper	
  right	
  hand	
  side	
  of	
  the	
  figure	
  and	
  the	
  heavy	
  vertical	
  line	
  breaking	
  into	
  a	
  zigzag	
  
line	
  represent	
  the	
  HE	
  interfaces,	
  psi(i,j)	
  =	
  0.0,	
  where	
  the	
  zigzag	
  section	
  is	
  meant	
  to	
  
represent	
  the	
  effect	
  of	
  numerical	
  noise	
  on	
  the	
  definition	
  of	
  an	
  HE	
  interface	
  that	
  is	
  
coincident	
  with	
  a	
  mesh	
  line.	
  The	
  two	
  dashed	
  vertical	
  lines	
  denote	
  the	
  expanded	
  
region	
  where	
  psi(i,j)	
  =	
  0.0,	
  which	
  is	
  how	
  I	
  propose	
  to	
  eliminate	
  the	
  effect	
  of	
  
numerical	
  noise	
  on	
  mesh-­‐line	
  coincident	
  HE	
  interfaces.	
  	
  
	
  
In	
  our	
  first-­‐order	
  (in	
  the	
  mesh	
  spacing,	
  dx)	
  boundary	
  treatment,	
  there	
  is	
  no	
  sub-­‐cell	
  
resolution	
  of	
  the	
  HE	
  material	
  interface.	
  Thus,	
  points	
  with	
  psi(i,j)	
  <=	
  0.0	
  are	
  
considered	
  to	
  be	
  in	
  the	
  HE,	
  and	
  points	
  with	
  psi(i,j)	
  >	
  0.0	
  are	
  considered	
  as	
  outside	
  
the	
  HE	
  and	
  are	
  ghost	
  node	
  points.	
  For	
  the	
  HE	
  boundary	
  represented	
  by	
  the	
  section	
  
of	
  a	
  circular	
  arc	
  in	
  the	
  upper	
  right	
  hand	
  side	
  of	
  Figure-­‐4),	
  noise	
  added	
  to	
  the	
  circular	
  
boundary	
  would	
  not	
  represent	
  any	
  particular	
  problem,	
  since	
  the	
  definition	
  of	
  the	
  



circle	
  in	
  DSD2D-­‐FLS	
  lacks	
  sub-­‐cell	
  resolution	
  and	
  thus	
  comes	
  with	
  an	
  O(dx)	
  
uncertainty	
  in	
  the	
  definition	
  of	
  the	
  boundary.	
  With	
  a	
  noise-­‐free	
  psi(i,j)	
  
representation	
  of	
  the	
  boundary,	
  the	
  circular	
  arc	
  would	
  occasionally	
  pass	
  very	
  near,	
  
but	
  to	
  either	
  side	
  of	
  the	
  boundary.	
  So	
  occasionally,	
  an	
  (i,j)-­‐point	
  would	
  be	
  just	
  inside	
  
or	
  outside	
  the	
  real	
  HE	
  material	
  boundary,	
  which	
  would	
  lead	
  to	
  O(dx)	
  noise	
  in	
  the	
  HE	
  
material	
  interface.	
  Such	
  exceptional	
  points	
  represent	
  no	
  particular	
  problem,	
  and	
  
adding	
  a	
  low-­‐level	
  noise	
  to	
  the	
  psi(i,j)	
  function	
  will	
  have	
  very	
  little	
  overall	
  effect	
  on	
  
how	
  DSD2D-­‐FLS	
  interprets	
  the	
  circular	
  boundary.	
  	
  However,	
  for	
  the	
  case	
  shown	
  in	
  
Figure-­‐4)	
  where	
  a	
  vertical	
  HE	
  interface	
  is	
  aligned	
  with	
  a	
  mesh	
  line,	
  adding	
  noise	
  
(which	
  is	
  schematically	
  represented	
  by	
  the	
  zigzag	
  section	
  trailing	
  off	
  downwards)	
  
would	
  have	
  a	
  significant	
  effect.	
  This	
  would	
  produce	
  an	
  HE	
  interface	
  with	
  a	
  zigzag	
  
shape	
  on	
  the	
  O(dx)	
  mesh	
  scale	
  and	
  not	
  the	
  actual	
  smooth	
  vertical	
  HE	
  boundary.	
  This	
  
roughened	
  interface	
  could	
  then	
  affect	
  the	
  DSD	
  simulation	
  results.	
  This	
  issue	
  would	
  
only	
  arise	
  in	
  the	
  circumstance	
  when	
  either	
  a	
  truly	
  vertical	
  or	
  horizontal	
  HE	
  
boundary	
  was	
  coincident	
  with	
  a	
  mesh	
  line.	
  	
  
	
  
In	
  the	
  next	
  few	
  figures,	
  I	
  display	
  some	
  of	
  my	
  results	
  for	
  James	
  Quirk’s	
  rate	
  stick	
  
problem	
  displayed	
  in	
  Figure-­‐2),	
  where	
  I	
  purposely	
  add	
  noise	
  to	
  the	
  psi(i,j)	
  function	
  
defining	
  this	
  rate	
  stick.	
  For	
  these	
  examples,	
  I	
  use	
  the	
  nxpts=nypts=600	
  mesh	
  with	
  a	
  
noisy	
  psi(i,j)	
  function	
  given	
  by	
  	
  
	
  
(3)	
   psi(i,j)	
  =	
  psi(i,j)	
  +	
  1.0e-­‐7*sin(0.2*(i+j))	
  .	
  	
  
	
  
Here	
  I’m	
  adding	
  a	
  very	
  small	
  amplitude	
  noise	
  to	
  psi(i,j).	
  The	
  advantage	
  of	
  this	
  noise	
  
function	
  is	
  that	
  the	
  noise	
  only	
  occasionally	
  moves	
  the	
  interface	
  so	
  that	
  a	
  mesh	
  point	
  
moves	
  from	
  the	
  HE	
  to	
  the	
  ghost	
  node	
  regions.	
  Displayed	
  in	
  Figure-­‐5a)	
  is	
  a	
  
comparison	
  of	
  the	
  DSD2D-­‐FLS	
  simulated	
  TOA-­‐field	
  with	
  the	
  “exact”	
  Maple	
  script	
  
generated	
  solution.	
  Comparing	
  the	
  HE	
  boundary	
  displayed	
  in	
  Figure-­‐5a)	
  with	
  the	
  HE	
  
boundary	
  in	
  Figure-­‐3b),	
  reveals	
  the	
  O(dx)	
  noise	
  we	
  are	
  seeing	
  in	
  the	
  DSD2D-­‐FLS	
  
boundary	
  location.	
  The	
  slight	
  oscillation	
  on	
  the	
  boundary	
  location	
  has	
  essentially	
  no	
  
effect	
  on	
  the	
  comparison	
  of	
  the	
  DSD2D-­‐FLS	
  TOA-­‐field	
  with	
  the	
  “exact”	
  TOA-­‐field.	
  	
  
	
  
Displayed	
  in	
  Figure-­‐5b)	
  are	
  the	
  DSD2D-­‐FLS	
  computed	
  values	
  of	
  dn	
  along	
  y	
  =	
  2.0	
  
(red)	
  and	
  y	
  =	
  1.98	
  (blue).	
  The	
  plotted	
  points	
  correspond	
  to	
  the	
  simulation	
  where	
  the	
  
psi(i,j)-­‐function	
  has	
  added	
  noise,	
  according	
  to	
  Eq.	
  (3).	
  The	
  solid	
  curves	
  correspond	
  
to	
  the	
  results	
  from	
  the	
  noise-­‐free	
  simulation.	
  The	
  noise	
  in	
  dn	
  is	
  substantial,	
  although	
  
considerably	
  less	
  than	
  what	
  Quirk’s	
  results,	
  displayed	
  in	
  Figure-­‐1),	
  show.	
  The	
  dn	
  
values	
  from	
  the	
  simulation	
  containing	
  noise	
  in	
  psi(i,j),	
  mostly	
  cluster	
  around	
  the	
  
curves	
  for	
  the	
  noise-­‐free	
  simulations.	
  The	
  plateaus	
  consisting	
  of	
  points	
  (and	
  
displayed	
  in	
  red)	
  correspond	
  to	
  the	
  default	
  value	
  of	
  dn	
  that	
  is	
  initialized	
  into	
  the	
  
ghost-­‐node	
  region.	
  	
  Shown	
  in	
  Figure-­‐5c)	
  is	
  dn,	
  computed	
  with	
  DSD2D-­‐FLS	
  for	
  the	
  
noise	
  containing	
  psi(i,j)-­‐field	
  simulations,	
  compared	
  with	
  the	
  “exact”	
  solutions	
  for	
  
the	
  noise-­‐free	
  problem,	
  in	
  both	
  cases	
  displayed	
  along	
  lines	
  of	
  constant-­‐y	
  as	
  in	
  
Figure-­‐3c).	
  What	
  these	
  results	
  show	
  is	
  that	
  the	
  noise	
  in	
  dn	
  at	
  the	
  HE	
  boundary	
  can	
  
be	
  substantial	
  (although	
  much	
  less	
  than	
  that	
  displayed	
  if	
  Figure-­‐1)),	
  but	
  that	
  the	
  
noise	
  in	
  dn	
  decreases	
  in	
  amplitude	
  the	
  further	
  one	
  moves	
  into	
  the	
  HE	
  region.	
  	
  



	
  
Figure-­‐5a)	
  My	
  DSD2D-­‐FLS	
  calculation	
  of	
  the	
  rate	
  stick	
  TOA-­‐field	
  for	
  the	
  problem	
  
displayed	
  in	
  Figure-­‐2),	
  where	
  nx	
  =	
  ny	
  =	
  600,	
  and	
  with	
  noise	
  added	
  to	
  psi(i,j)	
  as	
  
described	
  by	
  Eq.	
  (3).	
  This	
  noise	
  leads	
  to	
  the	
  slight	
  oscillation	
  that	
  is	
  visible	
  in	
  the	
  HE	
  
boundary.	
  The	
  DSD2D-­‐FLS	
  integrated	
  solution	
  curves	
  are	
  shown	
  as	
  solid	
  curves,	
  
while	
  the	
  “exact”	
  Maple	
  script	
  generated	
  solution	
  curves	
  are	
  shown	
  as	
  dashed	
  
curves.	
  The	
  solutions	
  obtained	
  with	
  the	
  two	
  methods	
  essentially	
  overlay.	
  No	
  noise	
  is	
  
apparent	
  in	
  the	
  DSD2D-­‐FLS	
  computed	
  TOA-­‐field,	
  which	
  is	
  the	
  expected	
  result.	
  	
  



	
  
Figure-­‐5b)	
  My	
  DSD2D-­‐FLS	
  calculation	
  of	
  the	
  rate	
  stick	
  dn-­‐field	
  (dntable),	
  using	
  the	
  
curvature	
  of	
  the	
  level-­‐set	
  function,	
  phi(i,j),	
  to	
  compute	
  dn.	
  The	
  data	
  displayed	
  in	
  red	
  
corresponds	
  to	
  dn	
  along	
  y	
  =	
  2.00000,	
  which	
  is	
  the	
  top	
  boundary	
  for	
  the	
  nx=ny=600	
  
points	
  simulation.	
  The	
  points	
  are	
  from	
  the	
  DSD2D-­‐FLS	
  simulation	
  with	
  noise,	
  while	
  
the	
  solid	
  line	
  comes	
  from	
  the	
  simulation	
  without	
  noise	
  added	
  to	
  psi(i,j).	
  The	
  data	
  
displayed	
  in	
  blue	
  corresponds	
  to	
  dn	
  along	
  y	
  =	
  1.98,	
  which	
  is	
  at	
  a	
  distance	
  of	
  dx	
  into	
  
the	
  HE,	
  again	
  with	
  and	
  without	
  noise.	
  	
  The	
  problem	
  geometry	
  is	
  that	
  displayed	
  in	
  
Figure-­‐2),	
  where	
  nx	
  =	
  ny	
  =	
  600,	
  and	
  with	
  noise	
  added	
  to	
  psi(i,j)	
  as	
  described	
  by	
  Eq.	
  
(3).	
  Substantial	
  noise	
  is	
  evident.	
  The	
  dn	
  =	
  1.0	
  plateaus	
  correspond	
  to	
  the	
  
background	
  value	
  in	
  the	
  ghost-­‐node	
  region.	
  	
  
	
  



	
  
Figure-­‐5c)	
  My	
  DSD2D-­‐FLS	
  solution	
  for	
  the	
  dn-­‐field	
  (dntable)	
  for	
  the	
  case	
  when	
  the	
  
noise	
  described	
  in	
  Eq.	
  (3)	
  is	
  added	
  to	
  psi(i,j).	
  	
  Substantial	
  noise	
  is	
  now	
  visible	
  in	
  the	
  
dn-­‐field,	
  displayed	
  as	
  the	
  solid	
  curves.	
  These	
  are	
  compared	
  with	
  the	
  “exact”	
  Maple	
  
script	
  generated	
  solution,	
  shown	
  as	
  dashed	
  curves.	
  The	
  values	
  of	
  dn	
  are	
  displayed	
  
along	
  five	
  lines,	
  which	
  are	
  displaced	
  by	
  a	
  constant	
  distant,	
  y=	
  1.95	
  (red,	
  lowest	
  
curve),	
  1.90	
  (blue),	
  1.80	
  (green),	
  1.60	
  (light	
  blue)	
  and	
  1.40	
  (light	
  red),	
  from	
  the	
  
centerline	
  of	
  the	
  rate	
  stick	
  (y	
  =	
  0),	
  for	
  the	
  problem	
  shown	
  in	
  Figure-­‐2).	
  This	
  noise	
  in	
  
the	
  dn-­‐field	
  is	
  seen	
  to	
  diminish	
  as	
  one	
  moves	
  into	
  the	
  explosive,	
  and	
  away	
  from	
  the	
  
boundaries.	
  	
  
	
  



Summarizing,	
  we	
  find	
  that	
  noise	
  in	
  the	
  description	
  of	
  the	
  HE	
  boundary	
  coming	
  from	
  
the	
  psi(i,j)-­‐function	
  has	
  little	
  affect	
  on	
  the	
  computed	
  TOA-­‐field	
  (tb-­‐field)	
  near	
  the	
  
boundary	
  but	
  has	
  a	
  substantial	
  affect	
  on	
  the	
  dn-­‐field	
  near	
  the	
  boundary.	
  This	
  result	
  
was	
  anticipated,	
  given	
  that	
  dn	
  =	
  1/abs(grad(TOA(i,j)))	
  and	
  knowing	
  that	
  TOA(i,j)	
  is	
  
first-­‐order	
  accurate	
  in	
  the	
  mesh	
  spacing,	
  dx.	
  That	
  is	
  what	
  my	
  testing,	
  some	
  of	
  which	
  
is	
  described	
  above,	
  shows.	
  Testing	
  also	
  shows	
  that	
  the	
  noise	
  observed	
  in	
  the	
  results	
  
does	
  not	
  depend	
  strongly	
  on	
  the	
  level	
  of	
  noise	
  in	
  the	
  geometry	
  describing,	
  psi(i,j)-­‐
function.	
  Since	
  DSD2D-­‐FLS	
  sees	
  the	
  HE	
  boundary	
  as	
  the	
  collection	
  of	
  interior	
  HE	
  
nodes	
  that	
  are	
  closest	
  to	
  psi(i,j)	
  =	
  0,	
  then	
  the	
  HE	
  boundary	
  will	
  appear	
  as	
  a	
  zigzag	
  
boundary,	
  on	
  the	
  O(dx)	
  scale,	
  due	
  to	
  small	
  variations	
  in	
  the	
  location	
  of	
  psi(i,j)	
  =	
  0.	
  
Thus,	
  a	
  low-­‐level	
  of	
  noise	
  in	
  psi(i,j)	
  =	
  0	
  can	
  lead	
  to	
  O(dx)	
  scale	
  variations	
  in	
  the	
  
boundary,	
  which	
  in	
  turn	
  will	
  lead	
  to	
  the	
  detonation	
  front	
  being	
  sequentially	
  
accelerated	
  and	
  decelerated	
  as	
  the	
  front	
  interacts	
  with	
  what	
  it	
  sees	
  as	
  a	
  zigzag	
  
boundary.	
  This	
  is	
  displayed	
  in	
  Figure-­‐5d)	
  below.	
  Such	
  artificial	
  variations	
  in	
  the	
  HE	
  
boundary	
  shape	
  are	
  what	
  DSD2D-­‐FLS	
  sees	
  as	
  the	
  HE	
  boundary.	
  Thus,	
  one	
  might	
  
consider	
  how	
  such	
  O(dx),	
  artificial	
  variations	
  in	
  the	
  boundary	
  might	
  be	
  smoothed.	
  	
  

	
  
	
  

Figure-­‐5d)	
  Noise	
  in	
  psi(i,j)	
  =	
  0,	
  and	
  also	
  a	
  slowly	
  changing	
  HE	
  boundary,	
  can	
  
generate	
  a	
  rough	
  HE	
  boundary	
  within	
  the	
  DSD2D-­‐FLS	
  solver,	
  as	
  the	
  boundary	
  
weaves	
  between	
  HE	
  nodes	
  (displayed	
  as	
  purple	
  squares)	
  and	
  ghost	
  nodes	
  
(displayed	
  as	
  open	
  circles).	
  	
  In	
  the	
  vicinity	
  of	
  #1,	
  this	
  can	
  lead	
  to	
  4-­‐points	
  in	
  the	
  9-­‐
point	
  curvature	
  stencil	
  being	
  ghost	
  nodes,	
  which	
  can	
  lead	
  to	
  dn	
  being	
  poorly	
  
calculated	
  near	
  such	
  a	
  point	
  on	
  the	
  HE	
  boundary.	
  	
  
	
  
Given	
  that	
  near	
  such	
  a	
  zigzag	
  boundary	
  the	
  9-­‐point	
  curvature	
  stencil	
  can	
  require	
  4-­‐
points	
  from	
  the	
  ghost	
  node	
  region,	
  and	
  given	
  that	
  the	
  ghost	
  nodes	
  are	
  populated	
  
mostly	
  such	
  that	
  the	
  DSD	
  angle	
  boundary	
  condition	
  is	
  satisfied,	
  then	
  we	
  might	
  
consider	
  how	
  to	
  make	
  the	
  curvature	
  calculation	
  near	
  the	
  boundary	
  less	
  dependent	
  
on	
  ghost	
  node	
  values.	
  In	
  the	
  next	
  section	
  we	
  consider	
  how	
  to	
  reduce	
  the	
  sensitivity	
  
of	
  the	
  curvature	
  calculation	
  near	
  the	
  boundary	
  to	
  ghost	
  node	
  values.	
  To	
  do	
  this,	
  we	
  
utilize	
  the	
  fact	
  that	
  in	
  our	
  boundary	
  treatment,	
  we	
  have	
  considered	
  that	
  the	
  phi(i,j)	
  
function	
  can	
  be	
  assumed	
  to	
  be	
  locally	
  planar	
  near	
  the	
  boundary.	
  	
  
	
  
NEW	
  WORK:	
  THE	
  REDUCTION	
  OF	
  NOISE	
  IN	
  THE	
  DN	
  FIELD	
  NEAR	
  BOUNDARIES	
  	
  
	
  
Over	
  the	
  years,	
  the	
  “customer”	
  base	
  has	
  reported	
  that	
  the	
  computed	
  dn	
  fields	
  were	
  
noisy	
  near	
  the	
  boundaries	
  of	
  the	
  explosive.	
  This	
  was	
  never	
  directly	
  reported	
  to	
  me	
  
until	
  recently,	
  when	
  Mark	
  Short	
  brought	
  this	
  to	
  my	
  attention.	
  Now,	
  as	
  I	
  explained	
  at	
  
the	
  beginning	
  of	
  these	
  notes,	
  the	
  method	
  I	
  have	
  is	
  first-­‐order	
  in	
  the	
  mesh	
  spacing,	
  
dx,	
  for	
  the	
  burn	
  time	
  field,	
  tb(i,j)	
  (the	
  TOA(i,j)	
  field).	
  	
  Given	
  that	
  information	
  and	
  



given	
  that	
  dn	
  =	
  1/abs(grad(tb)),	
  then	
  it	
  follows	
  that	
  order	
  one	
  errors	
  can	
  be	
  
expected	
  in	
  the	
  computed	
  dn(i,j)	
  field.	
  Now,	
  in	
  applying	
  the	
  DSD	
  boundary	
  
conditions,	
  we	
  use	
  a	
  layer	
  of	
  first-­‐nearest	
  neighbor	
  ghost	
  nodes	
  to	
  apply	
  the	
  DSD	
  
angle	
  boundary	
  conditions.	
  The	
  DSD	
  front	
  curvature	
  involves	
  second	
  derivatives	
  of	
  
the	
  level-­‐set	
  function,	
  which	
  in	
  turn	
  requires	
  data	
  from	
  a	
  nine-­‐point	
  stencil.	
  Near	
  the	
  
boundary,	
  this	
  nine-­‐point	
  stencil	
  can	
  require	
  not	
  only	
  data	
  from	
  first-­‐nearest	
  
neighbor	
  ghost	
  nodes	
  but	
  also	
  from	
  second-­‐nearest	
  neighbor	
  ghost	
  nodes.	
  To	
  help	
  
alleviate	
  the	
  noise	
  in	
  dn(i,j)	
  near	
  the	
  explosive	
  boundaries,	
  I	
  recently	
  changed	
  my	
  
method	
  for	
  populating	
  these	
  second-­‐nearest	
  neighbor	
  ghost	
  nodes.	
  To	
  maintain	
  
consistency	
  with	
  the	
  assumption	
  that	
  as	
  far	
  as	
  applying	
  DSD	
  boundary	
  conditions	
  is	
  
concerned,	
  the	
  level-­‐set	
  function	
  is	
  assumed	
  to	
  be	
  planar	
  near	
  the	
  boundary,	
  I’ve	
  
replaced	
  my	
  extrapolation	
  method	
  for	
  populating	
  second-­‐nearest	
  neighbor	
  ghost	
  
nodes	
  with	
  simple	
  linear	
  extrapolation.	
  Expressed	
  in	
  DSD2D-­‐FLS	
  notation,	
  	
  	
  
	
  
(4)	
   phi(i,j)	
  =	
  -­‐p2	
  +	
  2.*p1	
  .	
  	
  
	
  
This	
  set	
  of	
  consistent	
  assumptions	
  then	
  brings	
  with	
  it	
  a	
  reduced	
  dependency	
  of	
  the	
  
curvature	
  of	
  the	
  level-­‐set	
  function,	
  phi(i,j),	
  on	
  second-­‐nearest	
  neighbor	
  ghost	
  nodes,	
  
leading	
  to	
  the	
  cross	
  second	
  derivative	
  being	
  identically	
  zero	
  	
  	
  
	
  
(5)	
  phixy(i,j)	
  =	
  [phi(i+1,j+1)	
  +	
  phi(i-­‐1,j-­‐1)	
  –	
  phi(i-­‐1,j+1)	
  –	
  phi(i+1,j+1)]/4*dx*dy	
  ,	
  	
  
	
  	
  	
  	
  	
  	
  	
  phixy(i,j)	
  =	
  0.0	
  .	
  	
  
	
  
Thus,	
  the	
  values	
  of	
  the	
  second-­‐nearest	
  ghost	
  nodes	
  neither	
  enter	
  the	
  curvature	
  
calculation	
  nor	
  the	
  dn(i,j)	
  calculation	
  near	
  the	
  boundary.	
  Changes	
  are	
  required	
  in	
  
the	
  DSD2D-­‐FLS	
  subroutines	
  ibextra.f	
  and	
  ibupdate.f	
  at	
  the	
  point	
  where	
  the	
  second-­‐
nearest	
  neighbor	
  ghost	
  nodes	
  are	
  populated.	
  	
  Those	
  one-­‐line	
  changes	
  are	
  detailed	
  
immediately	
  below.	
  	
  	
  
	
  
######################################################	
  	
  
	
  
c	
  	
  	
  	
  	
  	
  	
  phi(i,j)	
  =	
  p2	
  -­‐	
  2.*dxl*(di*phix	
  +dj*phiy)	
  
	
  
c	
  Let	
  the	
  second	
  derivative	
  along	
  the	
  given	
  45-­‐degree	
  	
  
c	
  line	
  be	
  zero,	
  thus	
  staying	
  with	
  the	
  planarity	
  of	
  phi	
  	
  
c	
  locally.	
  It	
  is	
  important	
  to	
  note	
  that	
  doing	
  this	
  keeps	
  	
  
c	
  the	
  IB2	
  nodes	
  from	
  entering	
  into	
  the	
  curvature	
  calculation.	
  	
  
c	
  This	
  is	
  consistent	
  with	
  what	
  re-­‐distancing	
  does	
  in	
  	
  
c	
  the	
  interior	
  regions.	
  So	
  here	
  we	
  are	
  assuming	
  that	
  	
  
c	
  re-­‐distancing	
  is	
  on,	
  with	
  linear	
  extrapolation	
  then	
  	
  
c	
  being	
  the	
  consistent	
  thing	
  to	
  do.	
  Even	
  with	
  re-­‐distancing	
  	
  
c	
  off,	
  performing	
  linear	
  extrapolation	
  keeps	
  the	
  IB2	
  nodes	
  	
  
c	
  from	
  entering	
  into	
  the	
  curvature	
  calculation	
  near	
  the	
  	
  
c	
  HE	
  boundaries.	
  	
  	
  
	
  
	
  	
  	
  	
  	
  	
  	
  phi(i,j)	
  =	
  -­‐p2	
  +	
  2.*p1	
  



	
  
####################################################	
  	
  
	
  
From	
  this	
  point	
  forward	
  in	
  these	
  notes,	
  I	
  will	
  use	
  these	
  modified	
  ibextra.f	
  and	
  
ibupdate.f	
  subroutines	
  in	
  the	
  DSD2D-­‐FLS	
  simulations	
  that	
  I	
  report	
  on.	
  [NOTE:	
  I	
  also	
  
will	
  be	
  using	
  the	
  change	
  to	
  driver.f	
  that	
  implements	
  the	
  noise-­‐reduction	
  strategy	
  
reported	
  earlier	
  in	
  these	
  notes.]	
  	
  
	
  
Here	
  I	
  return	
  to	
  the	
  Quirk	
  rate	
  stick,	
  displayed	
  in	
  Figure-­‐2)	
  and	
  for	
  which	
  my	
  
DSD2D-­‐FLS	
  results	
  are	
  shown	
  in	
  Figures-­‐3)	
  and	
  Figures-­‐5a)-­‐5c),	
  and	
  repeat	
  the	
  
DSD2D-­‐FLS	
  simulations	
  so	
  as	
  to	
  include	
  the	
  changes	
  detailed	
  directly	
  above	
  for	
  
populating	
  ghost	
  nodes.	
  For	
  these	
  simulations	
  (and	
  these	
  simulations	
  only),	
  I	
  will	
  
not	
  be	
  applying	
  the	
  noise	
  filtering	
  that	
  is	
  now	
  a	
  part	
  of	
  driver.f,	
  and	
  the	
  psi(i,j)	
  
function	
  will	
  contain	
  noise	
  as	
  given	
  by	
  Eq.	
  (3).	
  	
  
	
  
As	
  expected,	
  the	
  TOA-­‐field,	
  displayed	
  in	
  Figure-­‐6a),	
  appears	
  unchanged	
  when	
  
compared	
  with	
  Figure-­‐5a)	
  and	
  shows	
  good	
  agreement	
  with	
  the	
  “exact”	
  Maple	
  script	
  
solution.	
  Displayed	
  in	
  Figure-­‐6b)	
  are	
  the	
  DSD2D-­‐FLS	
  computed	
  values	
  of	
  dn	
  along	
  y	
  
=	
  2.0	
  (red)	
  and	
  y	
  =	
  1.98	
  (blue).	
  Again,	
  the	
  plotted	
  points	
  correspond	
  to	
  the	
  
simulation	
  where	
  the	
  psi(i,j)-­‐function	
  has	
  added	
  noise,	
  according	
  to	
  Eq.	
  (3).	
  The	
  
solid	
  curves	
  correspond	
  to	
  the	
  results	
  from	
  the	
  noise-­‐free	
  simulation.	
  The	
  noise	
  in	
  
dn	
  is	
  roughly	
  half	
  of	
  that	
  observed	
  in	
  Figure-­‐5b).	
  The	
  dn	
  values	
  from	
  the	
  simulation	
  
containing	
  noise	
  in	
  psi(i,j),	
  mostly	
  cluster	
  around	
  the	
  curves	
  for	
  the	
  noise-­‐free	
  
simulations.	
  Again,	
  the	
  plateaus	
  consisting	
  of	
  points	
  (and	
  displayed	
  in	
  red)	
  
correspond	
  to	
  the	
  default	
  value	
  of	
  dn	
  that	
  is	
  initialized	
  into	
  the	
  ghost-­‐node	
  region.	
  	
  
Shown	
  in	
  Figure-­‐6c)	
  is	
  dn,	
  computed	
  with	
  DSD2D-­‐FLS	
  for	
  the	
  noise	
  containing	
  
psi(i,j)-­‐field	
  simulations,	
  compare	
  with	
  the	
  “exact”	
  solutions	
  for	
  the	
  noise-­‐free	
  
problem,	
  in	
  both	
  cases	
  displayed	
  along	
  lines	
  of	
  constant-­‐y	
  as	
  in	
  Figure-­‐3c).	
  What	
  
these	
  results	
  show	
  is	
  that	
  the	
  noise	
  in	
  dn	
  is	
  roughly	
  half	
  of	
  what	
  is	
  observed	
  in	
  
Figure-­‐5c),	
  and	
  where	
  again	
  the	
  noise	
  is	
  seen	
  to	
  decrease	
  as	
  one	
  moves	
  further	
  into	
  
the	
  HE	
  region.	
  	
  
	
  



	
  
Figure-­‐6a)	
  My	
  DSD2D-­‐FLS	
  calculation	
  of	
  the	
  rate	
  stick	
  TOA-­‐field	
  for	
  the	
  problem	
  
displayed	
  in	
  Figure-­‐2),	
  where	
  nx	
  =	
  ny	
  =	
  600,	
  and	
  with	
  noise	
  added	
  to	
  psi(i,j)	
  as	
  
described	
  by	
  Eq.	
  (3).	
  This	
  noise	
  leads	
  to	
  the	
  slight	
  oscillation	
  that	
  is	
  visible	
  in	
  the	
  HE	
  
boundary.	
  The	
  DSD2D-­‐FLS	
  integrated	
  solution	
  curves	
  are	
  shown	
  as	
  solid,	
  while	
  the	
  
“exact”	
  Maple	
  script	
  generated	
  solution	
  curves	
  are	
  shown	
  as	
  dashed.	
  The	
  solutions	
  
obtained	
  with	
  the	
  two	
  methods	
  essentially	
  overlay.	
  As	
  before,	
  no	
  noise	
  is	
  apparent	
  
in	
  the	
  DSD2D-­‐FLS	
  computed	
  TOA-­‐field,	
  which	
  is	
  the	
  expected	
  result	
  and	
  which	
  is	
  
similar	
  to	
  what	
  is	
  displayed	
  in	
  Figure-­‐5a).	
  	
  
	
  



	
  
Figure-­‐6b)	
  My	
  DSD2D-­‐FLS	
  calculation	
  of	
  the	
  rate	
  stick	
  dn-­‐field	
  (dntable),	
  using	
  the	
  
curvature	
  of	
  the	
  level-­‐set	
  function,	
  phi(i,j),	
  to	
  compute	
  dn.	
  The	
  data	
  displayed	
  in	
  red	
  
corresponds	
  to	
  dn	
  along	
  y	
  =	
  2.00000,	
  which	
  is	
  the	
  top	
  boundary	
  for	
  the	
  nx=ny=600	
  
points	
  simulation.	
  The	
  points	
  are	
  from	
  the	
  DSD2D-­‐FLS	
  simulation	
  with	
  noise,	
  while	
  
the	
  solid	
  line	
  comes	
  from	
  the	
  simulation	
  without	
  noise	
  added	
  to	
  psi(i,j).	
  The	
  data	
  
displayed	
  in	
  blue	
  corresponds	
  to	
  dn	
  along	
  y	
  =	
  1.98,	
  which	
  is	
  at	
  a	
  distance	
  of	
  dx	
  into	
  
the	
  HE,	
  again	
  with	
  and	
  without	
  noise.	
  	
  The	
  problem	
  geometry	
  is	
  that	
  displayed	
  in	
  
Figure-­‐2),	
  where	
  nx	
  =	
  ny	
  =	
  600,	
  and	
  with	
  noise	
  added	
  to	
  psi(i,j)	
  as	
  described	
  by	
  Eq.	
  
(3).	
  The	
  noise	
  in	
  Dn	
  is	
  reduced	
  substantially	
  from	
  what	
  is	
  displayed	
  in	
  Figure	
  5b).	
  
Again,	
  the	
  dn	
  =	
  1.0	
  plateaus	
  correspond	
  to	
  the	
  background	
  value	
  in	
  the	
  ghost-­‐node	
  
region.	
  	
  



	
  
	
  

	
  
Figure-­‐6c)	
  My	
  DSD2D-­‐FLS	
  solution	
  for	
  the	
  dn-­‐field	
  (dntable)	
  for	
  the	
  case	
  when	
  the	
  
noise	
  described	
  in	
  Eq.	
  (3)	
  is	
  added	
  to	
  psi(i,j).	
  	
  Although	
  substantial	
  noise	
  is	
  still	
  
evident	
  in	
  the	
  dn-­‐field,	
  displayed	
  as	
  the	
  solid	
  curves,	
  it	
  is	
  roughly	
  cut	
  in	
  half	
  from	
  
what	
  is	
  displayed	
  in	
  Figure-­‐5c).	
  As	
  before,	
  these	
  are	
  compared	
  with	
  the	
  “exact”	
  
Maple	
  script	
  generated	
  solution,	
  shown	
  as	
  dashed	
  curves.	
  The	
  values	
  of	
  dn	
  are	
  
displayed	
  along	
  five	
  lines,	
  which	
  are	
  displaced	
  by	
  a	
  constant	
  distant,	
  y=	
  1.95	
  (red,	
  
lowest	
  curve),	
  1.90	
  (blue),	
  1.80	
  (green),	
  1.60	
  (light	
  blue)	
  and	
  1.40	
  (light	
  red),	
  from	
  
the	
  centerline	
  of	
  the	
  rate	
  stick	
  (y	
  =	
  0),	
  for	
  the	
  problem	
  shown	
  in	
  Figure-­‐2).	
  Again,	
  



this	
  noise	
  in	
  the	
  dn-­‐field	
  is	
  seen	
  to	
  diminish	
  as	
  one	
  moves	
  into	
  the	
  explosive,	
  and	
  
away	
  from	
  the	
  boundaries.	
  	
  
	
  
COMPUTING	
  DN	
  FROM	
  1/abs(grad(toa))	
  USING	
  SMOOTHING	
  STENCILS	
  	
  
	
  
The	
  values	
  I’ve	
  displayed	
  for	
  the	
  dn-­‐field	
  (dntable)	
  were	
  obtained	
  directly	
  from	
  the	
  
curvature	
  of	
  the	
  level-­‐set	
  function,	
  phi(i,j),	
  that	
  is,	
  dn	
  =	
  1	
  –	
  alpha*kappa,	
  where	
  
kappa	
  =	
  div(grad(phi)/abs(grad(phi))).	
  Once	
  the	
  TOA-­‐field	
  (tb-­‐field)	
  is	
  obtained	
  
over	
  the	
  entire	
  solution	
  space,	
  dn	
  can	
  also	
  be	
  obtained	
  in	
  a	
  post-­‐processing	
  step	
  
through	
  the	
  gradient	
  of	
  the	
  tb-­‐field,	
  dn	
  =	
  1/abs(grad(tb)).	
  Here	
  I	
  consider	
  how	
  
higher-­‐order,	
  smoothing	
  stencils	
  for	
  derivatives	
  can	
  be	
  applied	
  to	
  the	
  tb-­‐field	
  to	
  
obtain	
  another	
  rendition	
  of	
  the	
  dn-­‐field,	
  referred	
  to	
  as	
  dn_tb_ho,	
  that	
  is	
  less	
  noisy	
  
near	
  the	
  HE	
  boundaries.	
  My	
  results	
  show	
  that	
  dntable	
  and	
  dn_tb_ho	
  are	
  essentially	
  
coincident	
  in	
  regions	
  away	
  from	
  the	
  HE	
  boundaries.	
  	
  As	
  part	
  of	
  my	
  study,	
  I	
  
considered	
  a	
  variety	
  of	
  different	
  post-­‐processing	
  strategies,	
  most	
  of	
  which	
  can	
  be	
  
found	
  coded	
  in	
  driver.f.	
  Here	
  I	
  focus	
  on	
  using	
  higher-­‐order	
  stencils	
  for	
  computing	
  
derivatives,	
  using	
  one-­‐sided	
  versions	
  of	
  those	
  stencils	
  near	
  boundaries.	
  Displayed	
  
below	
  is	
  the	
  driver.f	
  code	
  section	
  that	
  I	
  use	
  to	
  compute	
  dn_tb_ho.	
  	
  
	
  
#####################################################	
  
c	
  direct	
  evaluation	
  of	
  dn	
  from	
  gradient	
  of	
  tb	
  field,	
  using	
  higher-­‐order	
  	
  
c	
  smoothing	
  difference	
  formulas	
  from	
  Pavel	
  Holoborodko	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  tbx	
  =	
  (2.*(tb(i+1,j)-­‐tb(i-­‐1,j))+tb(i+2,j)-­‐tb(i-­‐2,j))/(8.*dx)	
  
	
  	
  	
  	
  	
  	
  	
  	
  if(	
  (tb(i+1,j).eq.-­‐100.0).or.(tb(i+2,j).eq.-­‐100.0)	
  )	
  then	
  
c	
  	
  	
  	
  	
  	
  	
  	
  	
  tbx	
  =	
  (3.*tb(i,j)-­‐	
  4.*tb(i-­‐1,j)+tb(i-­‐2,j))/(2.*dx)	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  tbx	
  =	
  (tb(i,j)+tb(i-­‐1,j)-­‐tb(i-­‐2,j)-­‐tb(i-­‐3,j))/(4.*dx)	
  
	
  	
  	
  	
  	
  	
  	
  	
  endif	
  
	
  	
  	
  	
  	
  	
  	
  	
  if(	
  (tb(i-­‐1,j).eq.-­‐100.0).or.(tb(i-­‐2,j).eq.-­‐100.0)	
  )	
  then	
  
c	
  	
  	
  	
  	
  	
  	
  	
  	
  tbx	
  =	
  (3.*tb(i,j)-­‐	
  4.*tb(i+1,j)+tb(i+2,j))/(2.*dx)	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  tbx	
  =	
  (tb(i,j)+tb(i+1,j)-­‐tb(i+2,j)-­‐tb(i+3,j))/(4.*dx)	
  
	
  	
  	
  	
  	
  	
  	
  	
  endif	
  
	
  	
  	
  	
  	
  	
  	
  	
  tby	
  =	
  (2.*(tb(i,j+1)-­‐tb(i,j-­‐1))+tb(i,j+2)-­‐tb(i,j-­‐2))/(8.*dx)	
  
	
  	
  	
  	
  	
  	
  	
  	
  if(	
  (tb(i,j+1).eq.-­‐100.0).or.(tb(i,j+2).eq.-­‐100.0)	
  )	
  then	
  
c	
  	
  	
  	
  	
  	
  	
  	
  	
  tby	
  =	
  (3.*tb(i,j)-­‐	
  4.*tb(i,j-­‐1)+tb(i,j-­‐2))/(2.*dx)	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  tby	
  =	
  (tb(i,j)+tb(i,j-­‐1)-­‐tb(i,j-­‐2)-­‐tb(i,j-­‐3))/(4.*dx)	
  
	
  	
  	
  	
  	
  	
  	
  	
  endif	
  
	
  	
  	
  	
  	
  	
  	
  	
  if(	
  (tb(i,j-­‐1).eq.-­‐100.0).or.(tb(i,j-­‐2).eq.-­‐100.0)	
  )	
  then	
  
c	
  	
  	
  	
  	
  	
  	
  	
  	
  tby	
  =	
  (3.*tb(i,j)-­‐	
  4.*tb(i,j+1)+tb(i,j+2))/(2.*dx)	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  tby	
  =	
  (tb(i,j)+tb(i,j+1)-­‐tb(i,j+2)-­‐tb(i,j+3))/(4.*dx)	
  
	
  	
  	
  	
  	
  	
  	
  	
  endif	
  
	
  	
  	
  	
  	
  	
  	
  	
  dn_tb_ho(i,j)	
  =	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  &	
  
	
  	
  	
  	
  	
  &	
  	
  	
  max(dmin,min(dmax,1./sqrt(tbx**2+tby**2+zeps2)))	
  
	
  
#####################################################	
  	
  
	
  



Displayed	
  below	
  in	
  Figures	
  6d)	
  &	
  6e)	
  are	
  the	
  dn_tb_ho	
  results	
  for	
  dn	
  corresponding	
  
to	
  what	
  is	
  displayed	
  for	
  dntable	
  in	
  Figures	
  6b)	
  &	
  6c).	
  What	
  the	
  comparison	
  shows	
  is	
  
that	
  the	
  noise	
  near	
  the	
  HE	
  boundaries	
  is	
  further	
  reduced	
  by	
  applying	
  the	
  smoothing	
  
stencils	
  to	
  compute	
  dn	
  (i.e.,	
  dn_tb_ho)	
  from	
  the	
  tb-­‐field,	
  which	
  itself	
  uses	
  the	
  
modifications	
  to	
  the	
  procedure	
  for	
  populating	
  ghost	
  nodes	
  that	
  I’ve	
  described.	
  	
  
	
  
In	
  the	
  next	
  section	
  of	
  this	
  report,	
  I	
  go	
  on	
  to	
  consider	
  other	
  problem	
  geometries,	
  
using	
  all	
  the	
  improvements	
  I’ve	
  detailed	
  above	
  to	
  compute	
  the	
  dn-­‐field.	
  In	
  all	
  the	
  
examples	
  that	
  are	
  to	
  follow,	
  I	
  do	
  not	
  add	
  noise	
  to	
  the	
  HE	
  boundary	
  definition,	
  psi(i,j).	
  
Roughness	
  now	
  enters	
  what	
  DSD2D-­‐FLS	
  sees	
  as	
  the	
  HE	
  boundary	
  due	
  to	
  the	
  fact	
  
that	
  the	
  HE	
  boundary	
  crosses	
  the	
  mesh	
  either	
  obliquely	
  to	
  the	
  mesh	
  or	
  as	
  a	
  circular	
  
boundary,	
  as	
  displayed	
  in	
  the	
  upper	
  right	
  hand	
  side	
  of	
  Figure-­‐4).	
  	
  
	
  



	
  
Figure-­‐6d)	
  My	
  DSD2D-­‐FLS	
  calculation	
  of	
  the	
  rate	
  stick	
  dn-­‐field	
  (dn_tb_ho),	
  using	
  the	
  
smoothing	
  stencils	
  on	
  tb(i,j)=TOA(i,j)	
  to	
  compute	
  dn.	
  The	
  data	
  displayed	
  in	
  red	
  
corresponds	
  to	
  dn	
  along	
  y	
  =	
  2.00000,	
  which	
  is	
  the	
  top	
  boundary	
  for	
  the	
  nx=ny=600	
  
points	
  simulation.	
  The	
  points	
  are	
  from	
  the	
  DSD2D-­‐FLS	
  simulation	
  with	
  noise,	
  while	
  
the	
  solid	
  line	
  comes	
  from	
  the	
  simulation	
  without	
  noise	
  added	
  to	
  psi(i,j).	
  The	
  data	
  
displayed	
  in	
  blue	
  corresponds	
  to	
  dn	
  along	
  y	
  =	
  1.98,	
  which	
  is	
  at	
  a	
  distance	
  of	
  dx	
  into	
  
the	
  HE,	
  again	
  with	
  and	
  without	
  noise.	
  	
  The	
  problem	
  geometry	
  is	
  that	
  displayed	
  in	
  
Figure-­‐2),	
  where	
  nx	
  =	
  ny	
  =	
  600,	
  and	
  with	
  noise	
  added	
  to	
  psi(i,j)	
  as	
  described	
  by	
  Eq.	
  
(3).	
  The	
  noise	
  in	
  Dn	
  is	
  reduced	
  once	
  again,	
  now	
  from	
  what	
  is	
  already	
  the	
  reduced	
  
noise	
  displayed	
  in	
  Figure	
  6b).	
  Again,	
  the	
  dn	
  =	
  1.0	
  plateaus	
  correspond	
  to	
  the	
  
background	
  value	
  in	
  the	
  ghost-­‐node	
  region.	
  	
  



	
  
	
  

	
  
Figure-­‐6e)	
  My	
  DSD2D-­‐FLS	
  solution	
  for	
  the	
  dn-­‐field	
  (dn_tb_ho)	
  for	
  the	
  case	
  when	
  the	
  
noise	
  described	
  in	
  Eq.	
  (3)	
  is	
  added	
  to	
  psi(i,j).	
  	
  Although	
  noise	
  is	
  still	
  evident	
  in	
  the	
  
dn-­‐field,	
  displayed	
  as	
  the	
  solid	
  curves,	
  it	
  is	
  reduced	
  again	
  from	
  what	
  is	
  displayed	
  in	
  
Figure-­‐6c).	
  As	
  before,	
  these	
  are	
  compared	
  with	
  the	
  “exact”	
  Maple	
  script	
  generated	
  
solution,	
  shown	
  as	
  dashed	
  curves.	
  The	
  value	
  of	
  dn	
  are	
  displayed	
  along	
  five	
  lines,	
  
which	
  are	
  displaced	
  by	
  a	
  constant	
  distant,	
  y=	
  1.95	
  (red,	
  lowest	
  curve),	
  1.90	
  (blue),	
  
1.80	
  (green),	
  1.60	
  (light	
  blue)	
  and	
  1.40	
  (light	
  red),	
  from	
  the	
  centerline	
  of	
  the	
  rate	
  



stick	
  (y	
  =	
  0),	
  for	
  the	
  problem	
  shown	
  in	
  Figure-­‐2).	
  Again,	
  this	
  noise	
  in	
  the	
  dn-­‐field	
  is	
  
seen	
  to	
  diminish	
  as	
  one	
  moves	
  into	
  the	
  explosive,	
  away	
  from	
  the	
  boundaries.	
  	
  
	
  
PROBLEMS	
  WITH	
  HE	
  BOUNDARIES	
  OBLIQUE	
  TO	
  MESH:	
  DSD2D-­‐FLS	
  SOLUTIONS	
  	
  	
  
	
  
All	
  the	
  solutions	
  we	
  display	
  in	
  this	
  and	
  the	
  following	
  sections	
  use	
  the	
  modifications	
  
I’ve	
  described	
  that	
  have	
  been	
  made	
  to	
  driver.f,	
  ibextra.f	
  and	
  ibupdate.f.	
  No	
  noise	
  is	
  
explicitly	
  added	
  to	
  the	
  geometry	
  definition	
  function,	
  psi(i,j).	
  The	
  roughness	
  that	
  
DSD2D-­‐FLS	
  sees	
  in	
  the	
  boundary	
  results	
  from	
  the	
  physical	
  HE	
  boundary	
  
crosscutting	
  over	
  the	
  mesh	
  lines/points	
  used	
  in	
  the	
  DSD2D-­‐FLS	
  solution.	
  	
  
	
  
To	
  serve	
  as	
  a	
  further	
  validation	
  of	
  the	
  above,	
  simple	
  procedure	
  for	
  reducing	
  the	
  
near-­‐boundary	
  noise	
  in	
  the	
  dn-­‐field,	
  I	
  next	
  show	
  the	
  results	
  for	
  a	
  rate	
  stick	
  that	
  
makes	
  an	
  angle	
  of	
  30-­‐degrees	
  with	
  the	
  direction	
  of	
  the	
  vertical	
  mesh	
  lines.	
  Figure-­‐
7a)	
  shows	
  a	
  sub-­‐region	
  of	
  the	
  computational	
  mesh	
  (for	
  a	
  problem	
  with	
  coarse	
  to	
  
moderate	
  resolution)	
  superimposed	
  on	
  which	
  is	
  the	
  psi	
  =	
  0.0	
  line	
  describing	
  the	
  HE	
  
boundary.	
  The	
  purple-­‐shaded	
  squares	
  are	
  the	
  interior	
  HE	
  region	
  points	
  that	
  are	
  
closest	
  to	
  the	
  boundary.	
  DSD2D-­‐FLS	
  sees	
  the	
  boundary	
  through	
  these	
  points.	
  Little	
  
to	
  no	
  symmetry	
  exists	
  between	
  the	
  mesh	
  and	
  the	
  HE	
  boundary,	
  although	
  there	
  is	
  a	
  
long	
  wavelength	
  repeat	
  pattern.	
  This	
  example,	
  where	
  the	
  boundary	
  crosscuts	
  the	
  
mesh,	
  is	
  the	
  typical	
  way	
  in	
  which	
  noise	
  is	
  introduced	
  into	
  the	
  dn(i,j)-­‐field	
  near	
  HE	
  
boundaries	
  in	
  a	
  DSD2D-­‐FLS	
  simulation.	
  	
  
	
  
I	
  solve	
  this	
  problem	
  using	
  the	
  same	
  DSD	
  parameters	
  that	
  I	
  set	
  down	
  earlier	
  
(omega_s	
  =	
  50	
  degrees,	
  omega_c	
  =	
  55	
  degrees,	
  dmin	
  =	
  0.1,	
  dmax	
  =	
  9.0,	
  cfl	
  =	
  0.9	
  and	
  
re-­‐distancing	
  on).	
  The	
  resolution	
  used	
  for	
  this	
  example	
  is	
  nxpts	
  =	
  nypts	
  =	
  1408.	
  The	
  
results	
  displayed	
  in	
  Figures	
  7b)-­‐7d)	
  show	
  the	
  tb(i,j)	
  and	
  dn(i,j)	
  fields	
  from	
  both	
  
dntable	
  and	
  dn_tb_ho.	
  Although	
  the	
  dn(i,j)-­‐field	
  formally	
  can	
  have	
  O(1)	
  errors,	
  one	
  
finds	
  the	
  field	
  is	
  smooth	
  and	
  relatively	
  noise	
  free,	
  even	
  near	
  the	
  boundaries.	
  As	
  
before,	
  the	
  tb(i,j)-­‐field	
  has	
  O(dx)	
  errors,	
  which	
  vanish	
  under	
  mesh	
  resolution.	
  As	
  
displayed	
  in	
  Figure-­‐7b),	
  the	
  DSD2D-­‐FLS	
  tb(i,j)-­‐field	
  and	
  the	
  “exact”	
  Maple	
  script	
  
solution	
  are	
  coincident.	
  Figures	
  7c)	
  &	
  7d)	
  show	
  that	
  the	
  noise,	
  at	
  comparable	
  
fractional	
  radii	
  to	
  those	
  consider	
  for	
  the	
  noise-­‐peppered	
  Quirk	
  rate	
  stick,	
  is	
  smaller	
  
than	
  what	
  we	
  saw	
  for	
  the	
  Quirk	
  rate	
  stick.	
  Some	
  part	
  of	
  this	
  reduction	
  is	
  due	
  to	
  the	
  
higher	
  mesh	
  resolution	
  used	
  in	
  this	
  run.	
  It	
  should	
  be	
  noted,	
  and	
  I	
  do	
  so	
  here,	
  that	
  the	
  
near-­‐boundary	
  noise	
  we	
  observe	
  is	
  confined	
  to	
  a	
  narrower	
  and	
  narrower	
  region	
  in	
  
physical	
  space	
  as	
  the	
  resolution	
  is	
  increased.	
  	
  
	
  
Generally,	
  the	
  noise	
  imparted	
  to	
  the	
  near-­‐boundary	
  dn(i,j)-­‐fields	
  by	
  the	
  the	
  psi	
  =	
  0	
  
line	
  crosscutting	
  the	
  mesh	
  is	
  more	
  random	
  and	
  appears	
  to	
  be	
  smaller	
  in	
  magnitude	
  
(at	
  least	
  for	
  the	
  dn_tb_ho	
  field)	
  than	
  what	
  we	
  saw	
  for	
  the	
  Quirk	
  rate	
  stick,	
  where	
  
noise	
  was	
  purposely	
  added	
  to	
  the	
  psi(i,j)-­‐field.	
  My	
  next	
  example	
  problem	
  considers	
  
detonation	
  propagation	
  in	
  an	
  arc	
  of	
  explosive.	
  	
  
	
  



	
  
Figure-­‐7a)	
  A	
  highly	
  expanded	
  view	
  of	
  the	
  mesh	
  and	
  psi	
  =	
  0.0	
  line	
  for	
  the	
  30-­‐degree	
  
rate	
  stick	
  problem	
  example.	
  The	
  HE	
  region	
  is	
  above	
  and	
  to	
  the	
  left	
  of	
  the	
  psi	
  =	
  0.0	
  
line.	
  The	
  solid-­‐purple	
  squares,	
  which	
  make	
  a	
  zigzag	
  pattern,	
  denote	
  the	
  interior	
  HE	
  
points	
  closest	
  to	
  the	
  boundary.	
  These	
  points	
  are	
  how	
  DSD2D-­‐FLS	
  sees	
  the	
  HE	
  
boundary.	
  	
  
	
  



	
  
Figure-­‐7b)	
  My	
  DSD2D-­‐FLS	
  calculation	
  of	
  the	
  TOA-­‐field	
  for	
  the	
  30-­‐degree	
  rate	
  stick	
  
problem.	
  This	
  figure	
  also	
  serves	
  to	
  define	
  the	
  problem	
  geometry.	
  Here,	
  nxpts	
  =	
  nypts	
  
=	
  1408.	
  The	
  DSD2D-­‐FLS	
  integrated	
  solution	
  curves	
  are	
  shown	
  as	
  solid,	
  while	
  the	
  
“exact”	
  Maple	
  script	
  generated	
  solution	
  curves	
  are	
  shown	
  as	
  dashed.	
  The	
  solutions	
  
obtained	
  with	
  the	
  two	
  methods	
  essentially	
  overlay.	
  As	
  before,	
  no	
  noise	
  is	
  apparent	
  
in	
  the	
  DSD2D-­‐FLS	
  computed	
  TOA-­‐field,	
  which	
  is	
  the	
  expected	
  result.	
  I	
  note	
  that	
  
whatever	
  noise	
  is	
  generated	
  in	
  the	
  DSD2D-­‐FLS	
  solution	
  is	
  due	
  to	
  the	
  crosscutting	
  of	
  
the	
  HE	
  boundary	
  across	
  the	
  mesh,	
  as	
  displayed	
  in	
  Figure-­‐7a).	
  	
  
	
  



	
  
Figure-­‐7c)	
  My	
  DSD2D-­‐FLS	
  solution	
  for	
  the	
  dn-­‐field	
  (dntable)	
  for	
  the	
  30-­‐degree	
  rate	
  
stick	
  problem.	
  	
  The	
  noise	
  in	
  dntable	
  for	
  the	
  outer-­‐most	
  radius	
  is	
  comparable	
  to	
  that	
  
displayed	
  in	
  Figure-­‐6c).	
  As	
  before,	
  these	
  are	
  compared	
  with	
  the	
  “exact”	
  Maple	
  script	
  
generated	
  solution,	
  shown	
  as	
  dashed	
  curves.	
  The	
  values	
  of	
  dn	
  are	
  displayed	
  along	
  
five	
  lines,	
  which	
  are	
  displaced	
  by	
  a	
  constant	
  radial	
  distant,	
  r=	
  1.975r	
  (red,	
  lowest	
  
curve),	
  1.95r	
  (blue),	
  1.90r	
  (green),	
  1.80r	
  (light	
  blue)	
  and	
  1.70r	
  (light	
  red),	
  from	
  the	
  
centerline	
  of	
  the	
  rate	
  stick	
  (r	
  =	
  0).	
  Again,	
  this	
  noise	
  in	
  the	
  dn-­‐field	
  is	
  seen	
  to	
  diminish	
  
as	
  one	
  moves	
  into	
  the	
  explosive,	
  and	
  away	
  from	
  the	
  boundaries.	
  	
  
	
  



	
  
Figure-­‐7d)	
  My	
  DSD2D-­‐FLS	
  solution	
  for	
  the	
  dn-­‐field	
  (dn_tb_ho)	
  for	
  the	
  30-­‐degree	
  
rate	
  stick	
  problem.	
  	
  The	
  noise	
  in	
  dn_tb_ho	
  for	
  the	
  outer-­‐most	
  radius	
  is	
  reduced	
  to	
  
that	
  displayed	
  in	
  both	
  Figure-­‐6d)	
  and	
  Figure-­‐7c).	
  As	
  before,	
  these	
  are	
  compared	
  
with	
  the	
  “exact”	
  Maple	
  script	
  generated	
  solution,	
  shown	
  as	
  dashed	
  curves.	
  The	
  
values	
  of	
  dn	
  are	
  displayed	
  along	
  five	
  lines,	
  which	
  are	
  displaced	
  by	
  a	
  constant	
  radial	
  
distant,	
  r=	
  1.975r	
  (red,	
  lowest	
  curve),	
  1.95r	
  (blue),	
  1.90r	
  (green),	
  1.80r	
  (light	
  blue)	
  
and	
  1.70r	
  (light	
  red),	
  from	
  the	
  centerline	
  of	
  the	
  rate	
  stick	
  (r	
  =	
  0).	
  Again,	
  this	
  noise	
  in	
  
the	
  dn-­‐field	
  is	
  seen	
  to	
  diminish	
  as	
  one	
  moves	
  into	
  the	
  explosive,	
  and	
  away	
  from	
  the	
  
boundaries.	
  	
  
	
  



DSD2D-­‐FLS	
  SIMULATIONS	
  OF	
  DETONATION	
  IN	
  AN	
  ARC	
  OF	
  EXPLOSIVE	
  	
  
	
  
As	
  part	
  of	
  the	
  ASC-­‐PEM-­‐HE	
  Program	
  FY14	
  project	
  management	
  review	
  of	
  progress	
  
on	
  their	
  L2	
  Milestone,	
  James	
  Quirk	
  presented	
  a	
  DSD	
  simulation,	
  performed	
  with	
  the	
  
August	
  2014	
  version	
  of	
  his	
  CASH/Amrita	
  wrapped	
  2010-­‐code	
  base	
  DSD2D-­‐FLS	
  
solver,	
  for	
  the	
  problem	
  of	
  detonation	
  in	
  a	
  180-­‐degree	
  arc	
  of	
  explosive.	
  The	
  results	
  
from	
  his	
  simulation	
  are	
  displayed	
  in	
  Figure-­‐8a).	
  These	
  results	
  do	
  not	
  show	
  any	
  
obvious	
  problems	
  or	
  inconsistencies.	
  	
  
	
  
Lacking	
  information	
  on	
  any	
  V&V	
  that	
  was	
  performed	
  on	
  the	
  CASH/Amrita	
  wrapped	
  
2010-­‐code	
  base	
  DSD2D-­‐FLS	
  solver,	
  here	
  I’ll	
  present	
  results	
  for	
  a	
  270	
  degree	
  
explosive	
  arc	
  that	
  has	
  the	
  same	
  inner	
  and	
  outer	
  radii,	
  r_inner	
  =	
  2.0	
  and	
  r_outer	
  =	
  4.0,	
  
as	
  those	
  shown	
  in	
  Figure-­‐8a).	
  All	
  my	
  results	
  were	
  generated	
  with	
  the	
  DSD	
  
parameters	
  I	
  listed	
  earlier	
  for	
  the	
  Dn	
  law	
  and	
  for	
  dmin	
  and	
  dmax.	
  Although,	
  I’ve	
  
done	
  a	
  resolution	
  study	
  of	
  my	
  results,	
  here	
  I’ll	
  present	
  a	
  cross	
  section	
  of	
  my	
  results	
  
for	
  nxpts=nypts=704.	
  	
  

	
  
Figure-­‐8a)	
  A	
  DSD	
  simulation,	
  performed	
  using	
  the	
  CASH/Amrita	
  wrapped	
  2010-­‐
code	
  base	
  DSD2D-­‐FLS	
  solver,	
  of	
  detonation	
  in	
  a	
  180-­‐degree	
  arc	
  of	
  explosive	
  as	
  
discussed	
  in	
  LA-­‐14277.	
  The	
  fixed	
  boundary	
  condition	
  (omega_c	
  =	
  90	
  degrees)	
  is	
  
applied	
  on	
  the	
  outside	
  of	
  the	
  arc,	
  and	
  the	
  free	
  boundary	
  condition	
  (omega_c	
  =	
  
omega_s)	
  is	
  applied	
  on	
  the	
  inside	
  of	
  the	
  arc.	
  Contours	
  of	
  the	
  tb(i,j)-­‐field	
  are	
  
displayed	
  over	
  a	
  color	
  palette	
  plot	
  of	
  the	
  dn(i,j)-­‐field.	
  Localized	
  large	
  departures	
  of	
  
dn(i,j)	
  values	
  off	
  of	
  the	
  mean	
  would	
  not	
  be	
  noticeable	
  in	
  such	
  a	
  plot.	
  Although	
  most	
  
details	
  of	
  the	
  DSD	
  parameters	
  used	
  in	
  this	
  simulation	
  are	
  not	
  know	
  to	
  me,	
  Mark	
  
Short	
  did	
  reveal	
  that	
  the	
  CFL	
  parameter	
  was	
  set	
  at	
  a	
  very	
  low	
  value,	
  perhaps	
  with	
  
CFL	
  =	
  0.09.	
  This	
  indicates	
  that	
  there	
  is	
  some	
  degree	
  of	
  stiffness	
  to	
  the	
  problem,	
  



which	
  is	
  due	
  to	
  either	
  the	
  problem	
  not	
  being	
  temporally	
  or	
  spatially	
  resolved,	
  and	
  
raises	
  questions	
  about	
  the	
  quality	
  of	
  these	
  results	
  and/or	
  the	
  implementation.	
  	
  
	
  
In	
  my	
  simulations	
  of	
  the	
  arc	
  problem,	
  I	
  extend	
  the	
  arc	
  by	
  90	
  degrees	
  to	
  a	
  270-­‐degree	
  
arc	
  and	
  consider	
  a	
  wide	
  range	
  of	
  values	
  for	
  omega_s	
  and	
  omega_c	
  (for	
  the	
  results	
  for	
  
wide-­‐ranging	
  values	
  of	
  omega_s	
  and	
  omega_c,	
  the	
  reader	
  should	
  consult	
  an	
  
Appendix).	
  To	
  display	
  these	
  results	
  in	
  a	
  more	
  quantitative	
  manner,	
  I	
  plot	
  contours	
  of	
  
the	
  tb(i,j)-­‐field	
  as	
  before	
  and	
  plot	
  the	
  dn(i,j)-­‐field	
  along	
  curves	
  of	
  constant	
  radius,	
  r.	
  
As	
  will	
  become	
  apparent,	
  the	
  dn(i,j)	
  fields	
  show	
  noise	
  near	
  the	
  inner	
  boundary	
  of	
  
the	
  arc	
  with	
  the	
  noise	
  diminishing	
  as	
  one	
  moves	
  further	
  into	
  the	
  arc.	
  My	
  results	
  
appear	
  in	
  the	
  few	
  figures	
  that	
  follow,	
  and	
  where	
  the	
  values	
  of	
  omega_s	
  =	
  50-­‐degrees	
  
and	
  omega_c	
  	
  =	
  55-­‐degrees	
  are	
  used.	
  NOTE:	
  In	
  my	
  standalone	
  DSD2D-­‐FLS	
  research	
  
code,	
  omega_s	
  and	
  omega_c	
  have	
  the	
  same	
  values	
  on	
  all	
  boundaries	
  of	
  the	
  explosive	
  
region.	
  I	
  use	
  my	
  standalone	
  DSD2D-­‐FLS	
  code	
  which	
  I	
  used	
  for	
  the	
  30-­‐degree	
  rate	
  
stick	
  problem	
  discussed	
  in	
  the	
  previous	
  section.	
  I	
  display	
  only	
  the	
  dn_tb_ho	
  field	
  for	
  
the	
  dn(i,j)-­‐field	
  from	
  this	
  point	
  forward.	
  	
  
	
  
As	
  before,	
  I	
  compare	
  the	
  DSD2D-­‐FLS	
  solution	
  of	
  the	
  270-­‐degree	
  arc	
  problem	
  with	
  
the	
  “exact”	
  solution	
  generated	
  with	
  a	
  Maple	
  script.	
  The	
  solution	
  developed	
  with	
  the	
  
Maple	
  script	
  solves	
  the	
  front	
  propagation	
  problem.	
  That	
  is,	
  first	
  the	
  PDE	
  for	
  the	
  
detonation-­‐front	
  normal	
  angle,	
  phi(r,t),	
  is	
  solved	
  as	
  a	
  function	
  of	
  the	
  radial	
  
coordinate,	
  r,	
  and	
  time,	
  t,	
  with	
  a	
  high-­‐resolution,	
  error	
  controlled	
  PDE	
  solver	
  
available	
  in	
  Maple.	
  Then	
  in	
  a	
  second	
  step,	
  the	
  motion	
  of	
  the	
  front	
  over	
  a	
  Cartesian	
  
grid	
  is	
  solved	
  for	
  with	
  an	
  ODE	
  solver.	
  Displayed	
  in	
  Figure-­‐9a)	
  is	
  a	
  comparison	
  of	
  the	
  
DSD2D-­‐FLS	
  simulation	
  of	
  the	
  TOA(i,j)-­‐field	
  for	
  the	
  case	
  omega_s	
  =	
  50-­‐degree,	
  omega	
  
=	
  55-­‐degrees	
  and	
  run	
  at	
  nxpts	
  =	
  nypts	
  =	
  1408	
  points,	
  with	
  the	
  “exact”	
  solution	
  of	
  the	
  
problem.	
  The	
  agreement	
  of	
  the	
  DSD2D-­‐FLS	
  TOA-­‐field	
  solution	
  with	
  the	
  “exact”	
  
Maple	
  script	
  solution	
  is	
  generally	
  good.	
  One	
  can	
  however	
  see	
  some	
  finite-­‐resolution	
  
effects,	
  showing	
  the	
  DSD2D-­‐FLS	
  wave	
  front	
  at	
  t	
  =	
  12	
  microseconds	
  being	
  slightly	
  
behind	
  the	
  “exact”	
  solution.	
  	
  
	
  



	
  
Figure-­‐9a)	
  My	
  DSD2D-­‐FLS	
  calculation	
  of	
  the	
  TOA-­‐field	
  for	
  the	
  270	
  degree,	
  explosive-­‐
arc	
  problem.	
  This	
  figure	
  also	
  serves	
  to	
  define	
  the	
  problem	
  geometry.	
  The	
  detonation	
  
begins	
  at	
  the	
  6	
  o’clock	
  position	
  and	
  runs	
  counterclockwise,	
  exiting	
  the	
  arc	
  at	
  t	
  =	
  
13.18	
  microseconds.	
  Here,	
  nxpts	
  =	
  nypts	
  =	
  1408.	
  The	
  DSD2D-­‐FLS	
  integrated	
  
solution	
  curves	
  are	
  shown	
  as	
  solid,	
  while	
  the	
  “exact”	
  Maple	
  script	
  generated	
  solution	
  
curves	
  are	
  shown	
  as	
  the	
  labeled	
  “curves.”	
  The	
  solutions	
  obtained	
  with	
  the	
  two	
  
methods	
  essentially	
  overlay.	
  As	
  before,	
  no	
  noise	
  is	
  apparent	
  in	
  the	
  DSD2D-­‐FLS	
  
computed	
  TOA-­‐field,	
  which	
  is	
  the	
  expected	
  result.	
  I	
  note	
  that	
  whatever	
  noise	
  is	
  
generated	
  in	
  the	
  DSD2D-­‐FLS	
  solution	
  is	
  due	
  to	
  the	
  crosscutting	
  of	
  the	
  HE	
  boundary	
  
across	
  the	
  mesh,	
  similar	
  to	
  what	
  is	
  displayed	
  in	
  Figures	
  4)	
  &	
  7a).	
  	
  
	
  



	
  
Figure-­‐9b)	
  My	
  DSD2D-­‐FLS	
  solution	
  for	
  the	
  dn-­‐field	
  (dn_tb_ho)	
  for	
  the	
  270	
  degree	
  
explosive-­‐arc	
  problem.	
  	
  The	
  noise	
  in	
  dn_tb_ho	
  is	
  greatest	
  for	
  the	
  inner-­‐most	
  radius,	
  
being	
  of	
  O(10%).	
  The	
  noise	
  is	
  seen	
  to	
  diminish	
  as	
  one	
  moves	
  into	
  the	
  explosive	
  arc.	
  
As	
  before,	
  the	
  DSD2D-­‐FLS	
  solutions	
  (displayed	
  as	
  20%	
  of	
  the	
  data	
  points)	
  are	
  
compared	
  with	
  the	
  “exact”	
  Maple	
  script	
  generated	
  solution,	
  shown	
  here	
  as	
  dashed	
  
curves.	
  The	
  value	
  of	
  dn	
  are	
  displayed	
  along	
  five	
  circular	
  arcs,	
  which	
  are	
  located	
  at	
  
the	
  fixed	
  radial	
  distances	
  of,	
  r	
  =	
  2.025	
  (red,	
  lowest	
  curve),	
  2.05	
  (blue),	
  2.1	
  (green),	
  
2.2	
  (black),	
  2.5	
  (pink),	
  3.0	
  (light	
  blue)	
  and	
  3.5	
  (light	
  brown).	
  Again,	
  this	
  noise	
  in	
  the	
  
dn-­‐field	
  is	
  seen	
  to	
  diminish	
  as	
  one	
  moves	
  into	
  the	
  explosive,	
  and	
  away	
  from	
  the	
  
boundary.	
  The	
  noise	
  is	
  at	
  its	
  greatest	
  at	
  the	
  3,	
  12	
  and	
  9	
  o’clock	
  locations	
  on	
  the	
  arc.	
  	
  
	
  



SUMMARY	
  	
  
	
  
The	
  DSD2D-­‐FLS	
  V9,	
  which	
  was	
  used	
  to	
  perform	
  the	
  simulations	
  appearing	
  in	
  the	
  last	
  
few	
  sections,	
  adds	
  only	
  a	
  few	
  minor	
  changes	
  to	
  my	
  serial,	
  2010	
  DSD2D-­‐FLS	
  code	
  
base.	
  The	
  two	
  changes,	
  which	
  are	
  detailed	
  in	
  these	
  notes,	
  improve	
  the	
  computation	
  
of	
  the	
  normal	
  detonation	
  speed	
  near	
  the	
  explosive’s	
  boundaries.	
  The	
  most	
  
significant	
  of	
  these	
  changes	
  concerns	
  how	
  second-­‐nearest	
  neighbor	
  ghost	
  nodes	
  are	
  
populated	
  in	
  the	
  subroutines,	
  ibextra.f	
  and	
  ibupdate.f.	
  I	
  now	
  use	
  linear	
  extrapolation	
  
along	
  45-­‐degree	
  lines	
  to	
  set	
  the	
  second-­‐nearest	
  neighbor	
  nodes.	
  This	
  change	
  then	
  
leads	
  to	
  the	
  cross	
  derivative,	
  phi_xy,	
  being	
  zero,	
  and	
  thus	
  the	
  second-­‐nearest	
  
neighbors	
  are	
  not	
  contributing	
  to	
  the	
  curvature	
  calculation	
  near	
  the	
  boundary.	
  In	
  
that	
  way,	
  my	
  longstanding	
  questions	
  about	
  how	
  second-­‐nearest	
  neighbor	
  ghost	
  
nodes	
  values	
  should	
  be	
  populated	
  becomes	
  a	
  moot	
  point,	
  since	
  now	
  the	
  values	
  at	
  
these	
  nodes	
  do	
  not	
  influence	
  the	
  curvature	
  calculation	
  near	
  the	
  boundary.	
  The	
  other	
  
minor	
  changes	
  are	
  in	
  driver.	
  A	
  few	
  statements	
  are	
  added	
  to	
  reduce	
  the	
  sensitivity	
  of	
  
the	
  geometry	
  defining	
  function,	
  psi(i,j),	
  to	
  random	
  numerical	
  noise,	
  and	
  higher-­‐
order,	
  smoothing	
  derivative	
  stencils	
  are	
  used	
  to	
  compute	
  dn_tb_ho,	
  via	
  the	
  
expression,	
  dn	
  =	
  1/abs(grad(tb)).	
  	
  
	
  
I	
  suggest	
  that	
  the	
  few	
  changes	
  to	
  DSD2D-­‐FLS	
  V9	
  described	
  here	
  be	
  implemented	
  in	
  
Quirk’s	
  CASH/Amrita	
  wrapped	
  DSD2D-­‐FLS	
  solver.	
  In	
  addition,	
  the	
  problems	
  and	
  
results	
  described	
  in	
  this	
  report	
  would	
  provide	
  data	
  V&V	
  for	
  Quirk’s	
  CASH/Amrita	
  
wrapped	
  DSD2D-­‐FLS	
  solver.	
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APPENDIX-­‐A:	
  ASSORTED	
  OTHER	
  SOLUTIONS	
  OF	
  THE	
  30-­‐DEGREE	
  RATE	
  STICK	
  	
  	
  
	
  
In	
  this	
  appendix,	
  I	
  display	
  a	
  collection	
  of	
  other	
  solutions	
  constructed	
  in	
  this	
  study.	
  
All	
  these	
  DSD2D-­‐FLS	
  solutions	
  used	
  the	
  modified	
  driver.f,	
  ibextra.f	
  and	
  ibupdate.f	
  
that	
  I	
  described	
  above.	
  The	
  DSD	
  model	
  is	
  the	
  same	
  as	
  used	
  above,	
  with	
  the	
  exception	
  
that	
  some	
  of	
  the	
  omega_s	
  and	
  omega_c	
  values	
  are	
  different.	
  	
  
	
  



	
  
Figure-­‐10a)	
  Contours	
  of	
  the	
  burn	
  time	
  field,	
  tb(i,j),	
  and	
  the	
  dntable	
  field,	
  dn(i,j),	
  for	
  
the	
  problem	
  of	
  detonation	
  in	
  a	
  rate	
  stick.	
  To	
  explore	
  how	
  the	
  orientation	
  of	
  the	
  rate	
  
stick	
  relative	
  to	
  the	
  mesh	
  affects	
  the	
  results,	
  the	
  rate	
  stick’s	
  axis	
  of	
  symmetry	
  is	
  
tilted	
  by	
  30	
  degrees	
  off	
  of	
  the	
  vertical	
  direction.	
  Only	
  minor	
  noise	
  in	
  the	
  dn(i,j)	
  field	
  
is	
  observed	
  near	
  the	
  side	
  boundaries	
  of	
  the	
  rate	
  stick.	
  Omega_s	
  =	
  50-­‐degrees	
  and	
  
omega_c	
  =	
  55-­‐degrees.	
  The	
  numerical	
  resolution	
  is	
  nxpts	
  =	
  nypts	
  =	
  704.	
  	
  
	
  



	
  
Figure-­‐10b)	
  Expanded	
  view	
  in	
  the	
  lower	
  left	
  hand	
  corner	
  showing	
  contours	
  of	
  the	
  
burn	
  time	
  field,	
  tb(i,j),	
  and	
  the	
  dntable	
  field,	
  dn(i,j),	
  for	
  the	
  problem	
  of	
  detonation	
  in	
  
a	
  rate	
  stick.	
  To	
  explore	
  how	
  the	
  orientation	
  of	
  the	
  rate	
  stick	
  relative	
  to	
  the	
  mesh	
  
affects	
  the	
  results,	
  the	
  rate	
  stick’s	
  axis	
  of	
  symmetry	
  is	
  tilted	
  by	
  30	
  degrees	
  off	
  of	
  the	
  
vertical	
  direction.	
  Only	
  minor	
  noise	
  in	
  the	
  dn(i,j)	
  field	
  is	
  observed	
  near	
  the	
  side	
  
boundaries	
  of	
  the	
  rate	
  stick.	
  Omega_s	
  =	
  50-­‐degrees,	
  and	
  omega_c	
  =	
  55-­‐degrees.	
  The	
  
numerical	
  resolution	
  is	
  nxpts	
  =	
  nypts	
  =	
  704.	
  	
  



	
  
	
  
Figure-­‐10c)	
  Expanded	
  view	
  along	
  the	
  lateral	
  boundary	
  showing	
  contours	
  of	
  the	
  
burn	
  time	
  field,	
  tb(i,j),	
  and	
  the	
  dntable	
  field,	
  dn(i,j),	
  for	
  the	
  problem	
  of	
  detonation	
  in	
  
a	
  rate	
  stick.	
  To	
  explore	
  how	
  the	
  orientation	
  of	
  the	
  rate	
  stick	
  relative	
  to	
  the	
  mesh	
  
affects	
  the	
  results,	
  the	
  rate	
  stick’s	
  axis	
  of	
  symmetry	
  is	
  tilted	
  by	
  30	
  degrees	
  off	
  of	
  the	
  
vertical	
  direction.	
  Only	
  minor	
  noise	
  in	
  the	
  dn(i,j)	
  field	
  is	
  observed	
  near	
  the	
  side	
  
boundaries	
  of	
  the	
  rate	
  stick.	
  Omega_s	
  =	
  50-­‐degrees,	
  and	
  omega_c	
  =	
  55-­‐degrees.	
  The	
  
numerical	
  resolution	
  is	
  nxpts	
  =	
  nypts	
  =	
  704.	
  	
  



	
  
	
  
Figure-­‐10d)	
  Contours	
  of	
  the	
  burn	
  time	
  field,	
  tb(i,j),	
  and	
  the	
  dn_tb_ho	
  field,	
  dn(i,j),	
  for	
  
the	
  problem	
  of	
  detonation	
  in	
  a	
  rate	
  stick.	
  To	
  explore	
  how	
  the	
  orientation	
  of	
  the	
  rate	
  
stick	
  relative	
  to	
  the	
  mesh	
  affects	
  the	
  results,	
  the	
  rate	
  stick’s	
  axis	
  of	
  symmetry	
  is	
  
tilted	
  by	
  30	
  degrees	
  off	
  of	
  the	
  vertical	
  direction.	
  Only	
  minor	
  noise	
  in	
  the	
  dn(i,j)	
  field	
  
is	
  observed	
  near	
  the	
  side	
  boundaries	
  of	
  the	
  rate	
  stick.	
  Omega_s	
  =	
  50-­‐degrees,	
  and	
  
omega_c	
  =	
  55-­‐degrees.	
  The	
  numerical	
  resolution	
  is	
  nxpts	
  =	
  nypts	
  =	
  704.	
  	
  



	
  
	
  
Figure-­‐10e)	
  Expanded	
  view	
  along	
  the	
  lateral	
  boundary	
  showing	
  contours	
  of	
  the	
  
burn	
  time	
  field,	
  tb(i,j),	
  and	
  the	
  dn_tb_ho	
  field,	
  dn(i,j),	
  for	
  the	
  problem	
  of	
  detonation	
  
in	
  a	
  rate	
  stick.	
  To	
  explore	
  how	
  the	
  orientation	
  of	
  the	
  rate	
  stick	
  relative	
  to	
  the	
  mesh	
  
affects	
  the	
  results,	
  the	
  rate	
  stick’s	
  axis	
  of	
  symmetry	
  is	
  tilted	
  by	
  30	
  degrees	
  off	
  of	
  the	
  
vertical	
  direction.	
  Only	
  minor	
  noise	
  in	
  the	
  dn(i,j)	
  field	
  is	
  observed	
  near	
  the	
  side	
  
boundaries	
  of	
  the	
  rate	
  stick.	
  Omega_s	
  =	
  50-­‐degrees,	
  and	
  omega_c	
  =	
  55-­‐degrees.	
  The	
  
numerical	
  resolution	
  is	
  nxpts	
  =	
  nypts	
  =	
  704.	
  	
  
	
  
	
  
APPENDIX-­‐B:	
  ASSORTED	
  SIMULATIONS	
  OF	
  DETONATION	
  IN	
  AN	
  ARC	
  OF	
  
EXPLOSIVE	
  	
  	
  
	
  
I	
  begin	
  by	
  comparing	
  the	
  DSD2D-­‐FLS	
  solution	
  of	
  the	
  270-­‐degree	
  arc	
  problem	
  with	
  
the	
  “exact”	
  solution	
  obtained	
  from	
  a	
  Maple	
  script.	
  The	
  solution	
  developed	
  with	
  the	
  
Maple	
  script	
  solves	
  the	
  front	
  propagation	
  problem.	
  That	
  is,	
  first	
  the	
  PDE	
  for	
  the	
  
detonation-­‐front	
  normal	
  angle,	
  phi(r,t),	
  is	
  solved	
  as	
  a	
  function	
  of	
  the	
  radial	
  



coordinate,	
  r,	
  and	
  time,	
  t,	
  with	
  a	
  high-­‐resolution,	
  error	
  controlled	
  PDE	
  solver	
  
available	
  in	
  Maple.	
  Then	
  in	
  a	
  second	
  step,	
  the	
  motion	
  of	
  the	
  front	
  over	
  a	
  Cartesian	
  
grid	
  is	
  solved	
  for	
  with	
  an	
  ODE	
  solver.	
  Displayed	
  in	
  Figure-­‐11)	
  is	
  a	
  comparison	
  of	
  the	
  
DSD2D-­‐FLS	
  simulation	
  for	
  the	
  case	
  omega_s	
  =	
  0.0,	
  omega	
  =	
  60-­‐degrees	
  and	
  run	
  at	
  
nxpts	
  =	
  nypts	
  =	
  1408	
  points,	
  with	
  the	
  “exact”	
  solution	
  of	
  the	
  problem.	
  	
  

	
  
Figure-­‐11)	
  Contours	
  of	
  the	
  tb(i,j)-­‐field	
  and	
  dn(i,j)-­‐field	
  for	
  the	
  DSD2D-­‐FLS	
  
simulation	
  of	
  detonation	
  in	
  a	
  270-­‐degree,	
  slab	
  geometry	
  explosive	
  arc	
  run	
  at	
  a	
  
resolution	
  of	
  nxpts	
  =	
  nypts	
  =	
  1408	
  points.	
  The	
  DSD	
  boundary	
  angles	
  are	
  omega_s	
  =	
  0	
  
degrees,	
  and	
  omega_c	
  =	
  60	
  degrees.	
  Also	
  displayed	
  are	
  the	
  very-­‐high	
  resolution	
  
Maple	
  script	
  generated	
  solutions	
  of	
  the	
  front	
  evolution	
  equations,	
  which	
  can	
  be	
  
considered	
  to	
  be	
  the	
  exact	
  solution	
  (labeled	
  as	
  “curve”).	
  The	
  agreement	
  between	
  
these	
  DSD2D-­‐FLS	
  simulation	
  results	
  and	
  the	
  exact	
  solution	
  for	
  this	
  initial	
  value	
  
problem	
  are	
  good.	
  The	
  dn(i,j)	
  field	
  is	
  computed	
  with	
  a	
  smoothing	
  stencil	
  for	
  the	
  
gradient	
  applied	
  to	
  tb(i,j),	
  designated	
  as	
  dn_tb_ho.	
  	
  
	
  
	
  



	
  
Figure-­‐12a)	
  Contours	
  of	
  the	
  tb(i,j)	
  field	
  and	
  dn(i,j)	
  field	
  for	
  the	
  DSD2D-­‐FLS	
  
simulation	
  of	
  detonation	
  in	
  a	
  270-­‐degree,	
  slab	
  geometry	
  explosive	
  arc.	
  The	
  DSD	
  
boundary	
  angles	
  are	
  omega_s	
  =	
  44	
  degrees	
  and	
  omega_c	
  =	
  45	
  degrees.	
  Also	
  
displayed	
  are	
  the	
  very-­‐high	
  resolution	
  Maple	
  script	
  generated	
  solutions	
  of	
  the	
  front	
  
evolution	
  equations,	
  which	
  can	
  be	
  considered	
  to	
  be	
  the	
  exact	
  solution	
  (labeled	
  as	
  
“curve”).	
  The	
  agreement	
  between	
  these	
  DSD2D-­‐FLS	
  simulation	
  results	
  and	
  the	
  exact	
  
solution	
  for	
  this	
  initial	
  value	
  problem	
  are	
  good.	
  There	
  is	
  a	
  slight	
  amount	
  of	
  noise	
  
visible	
  in	
  the	
  dntable	
  generated	
  dn(i,j)	
  contours	
  near	
  the	
  90	
  degree	
  and	
  180	
  degree	
  
locations,	
  and	
  is	
  likely	
  related	
  to	
  the	
  closeness	
  of	
  omega_s	
  and	
  omega_c.	
  The	
  dn(i,j)	
  
field	
  is	
  computed	
  with	
  a	
  smoothing	
  stencil	
  for	
  the	
  gradient	
  applied	
  to	
  tb(i,j),	
  
designated	
  as	
  dn_tb_ho.	
  The	
  numerical	
  resolution	
  used	
  is	
  nxpts	
  =	
  nypts	
  =	
  704.	
  	
  



	
  
Figure-­‐12b)	
  Here	
  we	
  increase	
  the	
  resolution	
  to	
  nxpts=nypts=1408	
  points	
  from	
  the	
  
nxpts=nypts=704	
  points	
  used	
  to	
  produce	
  Figure-­‐12a).	
  The	
  level	
  of	
  the	
  noise	
  at	
  the	
  
90	
  degree	
  and	
  180	
  degree	
  locations	
  is	
  reduced.	
  Otherwise,	
  things	
  look	
  much	
  the	
  
same	
  as	
  they	
  do	
  in	
  Figure-­‐12a).	
  The	
  numerical	
  resolution	
  used	
  is	
  nxpts	
  =	
  nypts	
  =	
  
1408.	
  	
  



	
  
Figure-­‐13)	
  Contours	
  of	
  the	
  tb(i,j)-­‐field	
  and	
  dn(i,j)-­‐field	
  for	
  the	
  DSD2D-­‐FLS	
  
simulation	
  of	
  detonation	
  in	
  a	
  270-­‐degree,	
  slab	
  geometry	
  explosive	
  arc.	
  The	
  DSD	
  
boundary	
  angles	
  are	
  omega_s	
  =	
  44	
  degrees	
  and	
  omega_c	
  =	
  50	
  degrees.	
  The	
  dn_tb_ho	
  
contours	
  are	
  displayed	
  for	
  dn(i,j).	
  The	
  numerical	
  resolution	
  used	
  is	
  nxpts	
  =	
  nypts	
  =	
  
704.	
  	
  
	
  
	
  
	
  
	
  
	
  



	
  
	
  
Figure-­‐14a)	
  Contours	
  of	
  the	
  tb(i,j)-­‐field	
  and	
  dn(i,j)-­‐field	
  for	
  the	
  DSD2D-­‐FLS	
  
simulation	
  of	
  detonation	
  in	
  a	
  270-­‐degree,	
  slab	
  geometry	
  explosive	
  arc.	
  The	
  DSD	
  
boundary	
  angles	
  are	
  omega_s	
  =	
  50	
  degrees,	
  and	
  omega_c	
  =	
  55	
  degrees.	
  The	
  contours	
  
of	
  dn	
  are	
  dn_tb_ho.	
  The	
  numerical	
  resolution	
  used	
  is	
  nxpts	
  =	
  nypts	
  =	
  704.	
  	
  
	
  



	
  
Figure-­‐14b)	
  Expanded	
  view	
  of	
  contours	
  (near	
  the	
  90-­‐degree	
  point)	
  of	
  the	
  tb(i,j)	
  field	
  
and	
  dn(i,j)	
  field	
  for	
  the	
  DSD2D-­‐FLS	
  simulation	
  of	
  detonation	
  in	
  a	
  270-­‐degree,	
  slab	
  
geometry	
  explosive	
  arc.	
  The	
  DSD	
  boundary	
  angles	
  are	
  omega_s	
  =	
  50	
  degrees	
  and	
  
omega_c	
  =	
  55	
  degrees.	
  The	
  contours	
  of	
  dn	
  were	
  generated	
  from	
  dn_tb_ho.	
  The	
  
numerical	
  resolution	
  used	
  is	
  nxpts	
  =	
  nypts	
  =	
  704.	
  	
  
	
  



	
  
Figure-­‐14c)	
  Expanded	
  view	
  of	
  contours	
  (near	
  the	
  150-­‐degree	
  point)	
  of	
  the	
  tb(i,j)	
  
field	
  and	
  dn(i,j)	
  field	
  for	
  the	
  DSD2D-­‐FLS	
  simulation	
  of	
  detonation	
  in	
  a	
  270-­‐degree,	
  
slab	
  geometry	
  explosive	
  arc.	
  The	
  DSD	
  boundary	
  angles	
  are	
  omega_s	
  =	
  50	
  degrees	
  
and	
  omega_c	
  =	
  55	
  degrees.	
  The	
  contours	
  of	
  dn	
  were	
  generated	
  from	
  dn_tb_ho.	
  	
  
	
  



	
  
Figure-­‐14d)	
  Values	
  of	
  dn	
  vs.	
  the	
  polar	
  angle	
  in	
  radians,	
  theta,	
  are	
  displayed.	
  The	
  
computed	
  values	
  of	
  dn	
  at	
  the	
  mesh	
  points	
  within	
  the	
  narrow	
  band	
  of	
  HE	
  mesh	
  
points,	
  0.0	
  =>	
  psi(i,j)	
  =>	
  -­‐dx,	
  near	
  the	
  inner	
  boundary	
  of	
  the	
  explosive	
  are	
  displayed	
  
for	
  the	
  DSD2D-­‐FLS	
  simulation	
  of	
  detonation	
  in	
  a	
  270-­‐degree,	
  slab	
  geometry	
  
explosive	
  arc.	
  The	
  DSD	
  boundary	
  angles	
  are	
  omega_s	
  =	
  50	
  degrees	
  and	
  omega_c	
  =	
  55	
  
degrees.	
  The	
  values	
  of	
  dn	
  were	
  generated	
  using	
  the	
  curvature	
  of	
  the	
  level-­‐set	
  
function,	
  dn	
  =	
  1	
  –	
  0.1*kappa,	
  where	
  kappa	
  is	
  the	
  2D	
  slab	
  geometry	
  curvature.	
  	
  A	
  
small	
  number	
  of	
  points	
  above	
  the	
  1.4	
  dn	
  level	
  are	
  omitted	
  from	
  the	
  plot.	
  	
  



	
  
Figure-­‐14e)	
  Values	
  of	
  dn	
  vs.	
  the	
  polar	
  angle	
  in	
  radians,	
  theta,	
  are	
  displayed.	
  The	
  
computed	
  values	
  of	
  dn	
  at	
  the	
  mesh	
  points	
  within	
  the	
  narrow	
  band	
  of	
  HE	
  mesh	
  
points,	
  0.0	
  =>	
  psi(i,j)	
  =>	
  -­‐dx,	
  near	
  the	
  inner	
  boundary	
  of	
  the	
  explosive	
  are	
  displayed	
  
for	
  the	
  DSD2D-­‐FLS	
  simulation	
  of	
  detonation	
  in	
  a	
  270-­‐degree,	
  slab	
  geometry	
  
explosive	
  arc.	
  The	
  DSD	
  boundary	
  angles	
  are	
  omega_s	
  =	
  50	
  degrees	
  and	
  omega_c	
  =	
  55	
  
degrees.	
  The	
  contours	
  of	
  dn	
  were	
  generated	
  from	
  dn_tb_ho.	
  All	
  the	
  data	
  points	
  are	
  
displayed.	
  	
  



	
  
Figure-­‐15)	
  Contours	
  of	
  the	
  tb(i,j)-­‐field	
  and	
  dn(i,j)-­‐field	
  for	
  the	
  DSD2D-­‐FLS	
  
simulation	
  of	
  detonation	
  in	
  a	
  270-­‐degree,	
  slab	
  geometry	
  explosive	
  arc.	
  The	
  DSD	
  
boundary	
  angles	
  are	
  omega_s	
  =	
  55	
  degrees	
  and	
  omega_c	
  =	
  60	
  degrees.	
  The	
  contours	
  
of	
  dn	
  were	
  generated	
  from	
  dn_tb_ho.	
  The	
  numerical	
  resolution	
  used	
  is	
  nxpts	
  =	
  nypts	
  
=	
  704.	
  	
  



	
  
Figure-­‐16)	
  Contours	
  of	
  the	
  tb(i,j)-­‐field	
  and	
  dn(i,j)-­‐field	
  for	
  the	
  DSD2D-­‐FLS	
  
simulation	
  of	
  detonation	
  in	
  a	
  270-­‐degree,	
  slab	
  geometry	
  explosive	
  arc.	
  The	
  DSD	
  
boundary	
  angles	
  are	
  omega_s	
  =	
  55	
  degrees	
  and	
  omega_c	
  =	
  70	
  degrees.	
  The	
  contours	
  
of	
  dn	
  were	
  generated	
  from	
  dn_tb_ho.	
  The	
  numerical	
  resolution	
  used	
  is	
  nxpts	
  =	
  nypts	
  
=	
  704.	
  	
  



	
  
Figure-­‐17)	
  Contours	
  of	
  the	
  tb(i,j)-­‐field	
  and	
  dn(i,j)-­‐field	
  for	
  the	
  DSD2D-­‐FLS	
  
simulation	
  of	
  detonation	
  in	
  a	
  270-­‐degree,	
  slab	
  geometry	
  explosive	
  arc.	
  The	
  DSD	
  
boundary	
  angles	
  are	
  omega_s	
  =	
  55	
  degrees	
  and	
  omega_c	
  =	
  80	
  degrees.	
  The	
  contours	
  
of	
  dn	
  were	
  generated	
  from	
  dn_tb_ho.	
  The	
  numerical	
  resolution	
  used	
  is	
  nxpts	
  =	
  nypts	
  
=	
  704.	
  	
  



	
  
Figure-­‐18)	
  Contours	
  of	
  the	
  tb(i,j)-­‐field	
  and	
  dn(i,j)-­‐field	
  for	
  the	
  DSD2D-­‐FLS	
  
simulation	
  of	
  detonation	
  in	
  a	
  270-­‐degree,	
  slab	
  geometry	
  explosive	
  arc.	
  The	
  DSD	
  
boundary	
  angles	
  are	
  omega_s	
  =	
  55	
  degrees	
  and	
  omega_c	
  =	
  90	
  degrees.	
  The	
  contours	
  
of	
  dn	
  were	
  generated	
  from	
  dn_tb_ho.	
  The	
  numerical	
  resolution	
  used	
  is	
  nxpts	
  =	
  nypts	
  
=	
  704.	
  	
  
	
  


