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DSD2D-FLS 2010: Bdzil’'s 2010 DSD Code Base
Computing tb and Dn with Edits to
Reduce the Noise in the Dn Field Near HE Boundaries
J. Bdzil
October 9, 2014
December 19, 2014 - with updated figures & text

HISTORY

The full level-set function code, DSD3D, is fully described in LA-14336 (2007) [1].
This ASCI-supported, DSD code project was the last such LANL DSD code project
that I was involved with before my retirement in 2007. My part in the project was to
design and build the core DSD3D solver, which was to include a robust DSD
boundary condition treatment. A robust boundary condition treatment was
required, since for an important local “customer,” the only description of the
explosives’ boundary was through volume fraction data. Given this requirement, the
accuracy issues [ had encountered with our “fast-tube,” narrowband, DSD2D solver,
and the difficulty we had building an efficient MPI-parallel version of the
narrowband DSD2D, I decided DSD3D should be built as a full level-set function
code, using a totally local DSD boundary condition algorithm for the level-set
function, phi, which did not rely on the gradient of the level-set function being one,
|grad(phi)| = 1. The narrowband DSD2D solver was built on the assumption that
|grad(phi)| could be driven to one, and near the boundaries of the explosive this
condition was not being satisfied. Since the narrowband is typically no more
than10*dx wide, narrowband methods are discrete methods with a fixed, non-
resolvable error, where the error is related to the thickness of the band: the
narrower the band the larger the errors. Such a solution represents a discrete
approximation to the true solution and does not limit to the solution of the
underlying PDEs under grid resolution.

Given a material interface description only as detailed as that associated with the
volume fraction of the materials in the computational cells, there can be no unique
sub-cell definition of the location of the material interface. Working under these
constraints, [ built a DSD3D solver whose solution errors in the burn time field, tb,
diminished as O(d(dx)”2) for boundary-free problems and whose solution error
diminished as O((dx)) for problems which included an explosive’s material
boundaries. These convergence rates were verified by comparing the DSD3D
solver’s numerical solutions with exact solutions. Unlike the previous three-
dimensional DSD solvers, DSD3D was built using a totally local boundary condition
algorithm that required no region-wide, iterative boundary condition updates and
that should have been no more difficult to “parallelize” via an MPI, domain-
decomposition strategy than would be a heat-equation solver. I delivered the serial,
full level-set function DSD3D solver, DSD3D-FLS, to XCP-4 (John Walter) in mid-
2007.



After retiring from LANL, in 2008 [ began working with the Department of
Mechanical Sciences and Engineering at The University of Illinois (UIUC). Work
continued at LANL on developing at MPI parallel version of DSD3D-FLS, with little to
no serious progress being reported through 2009. At that time, [ happened to be
working with a UIUC student who was interested in scientific computing, and
numerical algorithms for the solution of partial-differential equations (PDEs).
Together, the student and I decided that developing and implementing an MP],
domain-decomposition solution strategy for the core DSD3D-FLS solver would be a
good Masters degree thesis problem. So in early 2010, [ took my standalone, one
explosive, DSD3D-FLS solver and built the basic DSD2D-FLS solver, whose
properties will be explored later in these notes. Together, the student and I
developed a strategy and built an MPI, domain-decomposition model with which to
“parallelize” DSD2D-FLS. It is worth noting that the student successfully completed
this project, which then led to his being awarded a MS in Engineering from UIUC by
the late fall of 2010. That work, including the basic DSD2D-FLS solution algorithm, is
described in our publication on this work [2].

The single explosive, serial version of the 2010 DSD2D-FLS solver represents the
code base whose properties I explore here. Later in 2010, I passed the DSD2D-FLS
solver, including updates to include F90 and a multiple explosive and inert material
region capabilities, to John Walter of LANL group XCP-4. John Walter then installed
this DSD2D-FLS solver into the CASH-based LANL DSD solver library. At some point
in early 2014, the responsibility for the DSD solver library was passed to James
Quirk, also of XCP-4. Since that time, James has wrapped the DSD solver library with
hooks to his Amrita environment. It will be comparisons of results from this XCP-4
twice wrapped DSD2D-FLS solver library and my 2010, DSD2D-FLS code base
results that [ will explore in these notes.

THE PRESENT

Late during the summer of 2014, I received questions from Mark Short, LANL WX-9
and ASCI-HE program lead, and James Quirk about some of the DSD solutions James
was seeing with the CASH/Amrita wrapped, serial DSD2D-FLS solver. Before we
look at these questions, I need to set down the solutions properties that we expect
to see coming from the DSD2D-FLS solver.

First, I will set down some preliminaries. For problems where DSD boundary
conditions are applied, the convergence properties of the 2010 code base DSD2D-
FLS generated burn time field, tb, have been well-established, and show that the
errors in tb diminish in an O(dx) fashion as the mesh size, dx, is decreased.
Importantly, the numerical solutions do converge to the solutions of the PDEs as the
mesh size is reduced. This does require that the material interface description itself
be resolvable under resolution. A detailed convergence study was presented in [2].
For a number of simple geometries, here I show detailed comparisons of the TOA
(time of arrival or burn table) field generated with DSD2D-FLS compared to the
“exact” TOA field generated with a Maple script.



Since the normal detonation speed, dn, is directly related to tb through the relation,
dn = 1/abs(grad(phi)), and given that tb comes with O(dx) errors, then clearly dn
will have O(1) errors. To have a situation better than this would require that we
have an algorithm for tb with errors no larger than O((dx)”2). To my knowledge,
there are no such DSD boundary algorithms out there today. In addition, this would
require an interface description with errors of O((dx)”2). So given that we will have
O(1) errors in dn, then we need to address the questions: are these O(1) errors
0.1%, 1%, 10%, 100%, 1000%, etc., where are these errors located and what
properties of the numerical solution algorithm controls these errors?

In late August to early September, 2014 I received some results and questions about
the solutions James was seeing for detonation propagation in an explosive rate stick,
when he solved the problems with his CASH/Amrita wrapped version of DSD2D-
FLS. James Quirk’s results are displayed in Figures-1), and the problem geometry is
displayed in Figure-2). I believe these simulations used Dn = 1 - 0.1*kappa and were
performed in 2D, slab geometry. I do not have information about either omega_s or
omega_c, nor for any of the numerical parameters, such as dx, cfl, etc., which James
used in his simulations. I've not seen errors in dn as large as those displayed in
Figure-1), particularly on the upside, in any simple rate stick simulation that I've
performed and in none of the simulations [ report on here.

How does DSD-FLS cope with a non-smooth bdy?
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Figure-1) A comparison of the normal detonation speed, dn, measured along the
upper horizontal boundary, for the rate stick geometry displayed in Figure-2. The
smooth green curve is for the case where the explosive boundary is displaced from a
mesh line by some fraction of the mesh spacing, dx. The red pluses are from a DSD
simulation where the nominal upper explosive boundary is aligned with a
horizontal mesh line, and an error is added to the geometry defining function,



psi(i,j)- The errors in dn for the mesh aligned simulation can be greater than 400%.
These errors are much greater than anything [ have seen in such a calculation. It is

my understanding that for these simulations, the CFL parameter was set to a very-

small value. The above results come from a simulation performed by Quirk.
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Figure-2) DSD simulation of detonation for a 2D, slab-geometry rate stick.
Detonation is initiated at t = 0 along a vertical line (located at x = -4) and then
proceeds to the right. The top-to-bottom curved lines are contours of the tb-field.
The color palette is coordinated with the values of dn. The values of dn displayed in
Figure-1) are measured along the horizontal, upper boundary of the explosive
region. For this simulation, the horizontal explosive boundaries are displaced from
mesh lines by a fraction of dx. The above results come from a simulation performed
by Quirk.




Given the lack of specific information about the physical/numerical parameters for
this rate stick problem, I've tried to guess reasonable parameters for the problem
displayed in Figure-2) and then reproduce those results. My 2D, slab problem
dimensions will be the same as those shown in Figure-2), which are -5 <=x <=5 and
-2 <=y <=2, as the dimensions of the rate stick. In my simulations, I nest this rate
stick in the computational domain -6 <=x <=6 and -6 <=y <= 6. use as DSD
parameters dn = 1 - 0.1*kappa, dmin = 0.1, dmax = 9.0, omega_s = 50 degrees and
omega_c = 55 degrees and select slab geometry, naxsym = 0. [ use my standard set of
numerical parameters, cfl = 0.9 and run with re-distancing on, where the re-
distancing parameters are taken to be delta = 0.1, epsilon = 0.1. All my simulations
are serial and were performed on a Macbook Pro running Mavericks-10.9.5 and
Xcode-6.0.1 and using the gfortran-v4.8 compiler running mpif77 (under openMPI-
1.4.5) with vanilla settings and no optimization. Two mesh sizes were used, nxpts =
nypts = 600 points and nxpts = nypts = 601 points, which corresponds to the actual
top boundary along the mesh line y = 2.00000 when nxpts = nypts = 600 and the
numerical top boundary along the mesh line y = 1.98669 when nxpts = nypts = 601.
Displayed in Figure 3a) is a plot showing dn along the numerical top boundary of
the rate stick (y = 2.0 for nxpts = nypts = 600) and (y = 1.98669 for nxpts = nypts =
601). Of course, the physical top boundary is along y = 2.0. NOTE: Since the psi(i,j)=
0.0 line is exactly defined in my standalone, DSD2D-FLS code (that is, to within
standard, single precision accuracy, psi(i,j) = 0.0 is along y = 2.0), then there is
effectively no noise in my simple, algebraically defined psi(i,j)=0.0 function even for
the case where the physical and numerical top boundaries are coincident. As is clear
from Figure-3a), the two curves are smooth, noise free and appear nearly identical
in the “eyeball norm.”

The problem geometry displayed in Figure-2) is sufficiently simple to allow the DSD
solution to be found by solving a 1D initial-value problem for the evolving shock
shape as a function of the y-coordinate and time. Such a high-resolution solution of a
1D problem, developed using a Maple script, can essentially be considered to be an
“exact” solution. We compare this “exact” solution (dashed curves) with the DSD2D-
FLS solution (solid curves) in Figures 3b) & 3c), where the TOA-field is compared
over the entire HE domain, and the Dn-field is compared along lines of constant-y,
respectively. As displayed in Figure 3b), the DSD2D-FLS simulated TOA-field
(computed at 0.02 resolution) and the “exact” Maple script solution overlay one
another very well. As we have argued above and demonstrated in [2], the DSD2D-
FLS algorithm yields a solution for TOA that is O(dx) accurate in the mesh spacing,
dx, even for a HE interface description that has O(dx) errors. What the results in
Figure-3c) show is that the dn-field, which can be obtained from dn =
1/abs(grad(phi)) and thus can be expected to have O(1) errors, shows rather small
differences from the “exact” solution. As shown in Figure 3a), where the dn-field
along the top boundary of the rate stick is displayed, the value of dn along the
boundary and a fraction of dx below the boundary, has little effect on the computed
result and where both results are essentially noise-free.
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Figure-3a) dn along the physical, top horizontal boundary of the rate stick geometry
displayed in Figure-2). The red curve corresponds to dn along y = 2.00000, which is
the top boundary for the nxpts=nypts=600 points simulation, and the blue curve
corresponds to dn along y = 1.98669, which is the top numerical boundary for the
DSD2D-FLS simulation when nxpts=nypts=601 points are used. The initiating wave
enters at x = -4, and the detonation exits the rate stick at x = 5. The value of dntable
is computed using the curvature of the level-set function. The background value of
dn stored in dntable is 1.0, and so that value is to be ignored. The value of dn = 0.1 at
X = -4 is expected, while the undershoot and overshoot of dn at x = 5 is an artifact of
the handover of control of the boundary condition from a horizontal, to a diagonal
and then to a vertical ghost node in the corner of the explosive domain. This artifact
is commonly observed in corner regions. Importantly, these solutions are noise free
and smooth.
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Figure-3b) My DSD2D-FLS calculation of the rate stick TOA-field for the problem
displayed in Figure-2), and where nx = ny = 600. The DSD2D-FLS integrated solution
curves are shown as solid, while the “exact” Maple script generated solution curves
are shown as dashed. The solutions obtained with the two methods essentially

overlay. In this simulation, the upper and lower boundaries of the rate stick lie along
mesh lines.



Dn-vs-distance (2010 DSD2D FLS)
along lines x1=0.7r,
x2=0.8r, x3=0.9r, x4=0.95r,
x5=0.975r along lines parallel
1 to axis (Dn from dntable)
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Figure-3c) My DSD2D-FLS solution for the dn-field (dntable), using the curvature of
the level-set function, phi(i,j), to compute dn, are shown as the solid curves. These
are compared with the “exact” Maple script generated solution, shown as dashed
curves. The value of dn are displayed along five lines, which are displaced by a
constant distant, y= 1.95 (lowest curve), 1.90, 1.80, 1.60 and 1.40, from the
centerline of the rate stick (y = 0), for the problem shown in Figure-2). The
agreement is good, with the differences between the DSD2D-FLS solution and the
“exact” solution being attributable to finite resolution effects in the DSD2D-FLS
solutions. The dynamics of the detonation are substantially different near the upper
and lower boundaries than near the centerline of the rate stick.



Next, I study multiple cases including those where the psi(i,j) function defining the
explosive interface and distance to the interface is exact and those where noise is
added to the psi(i,j) distance function which defines the HE boundary geometry.

HOW NOISE ADDED TO PSI(i,j) AFFECTS THE COMPUTED DN(i,j)-FIELD

To both replicate and better understand the behavior displayed in Figure-1) and
Figure-2), I performed a number of simulations where controlled noise was added
to the exact psi(i,j) function that defines the rate stick geometry displayed in Figure-
2). The noise I added had a sinusoidal distribution and was of the form

(1)  A*sin(f*(i+j)),
and was added to the exact psi(i,j) function, to get
(2)  psi(i,j) = psi(i,j) + A*sin(f*(i+j)) -

[ ran cases where the frequency factor, f, had the values of f = 0.1 and 0.2, and the
amplitudes were A = 1.0e-3, 1.0e-4, 1.0e-6 and 1.0e-7. Since the goal was not only to
understand how the noise in the psi(i,j) function affects the location of psi(i,j) = 0.0
and how that passes into the simulated results but also to find a way of filtering the
noise, I setup the noise filter (displayed below for the cutoff of 1.0e-7) for smearing
the location of psi(i,j) = 0.0 to a band where psi(i,j) is zero, thus reducing the
sensitivity of the simulation to noise in psi(i,j).

FILTER ADDED TO 2010 DSD2D-FLS driver.f, AFTER THE CALL TO setpsi.f
HHHHHHHHHHHHHHHHHHHHHHHHH R R R R R R

c Set psi(i,j) = 0 if( abs(psi(i,j)).le.1.0e-7 ) psi(i,j) = 0.0

do i = -2,nxpts+2
X = xmin + (xmax-xmin)*real(i) /real(nxpts)
do j = -2,nypts+2
y = ymin + (ymax-ymin)*real(j) /real(nypts)
if( (abs(psi(i,j)).le.1.0e-7) ) psi(i,j) = 0.0
enddo
enddo

HHHHHHHHHHHHHHHHHHHHHHHHH A R R R R R

To put the results on sensitivity to noise in the psi(i,j) function into some
perspective, I first describe how explosive boundaries are defined in DSD2D-FLS.
Explosive boundaries are defined similarly to how material boundaries are defined
in fixed, Eulerian-grid, high-speed flow solvers that use the Cartesian/immersed
boundary method to deal with material interfaces. Displayed in Figure-4) is a
Cartesian grid on which one (interior) explosive region is shown, psi(i,j) <= 0.0, and



two (exterior) ghost node regions, psi(i,j) > 0.0 are shown. The near-boundary
points in the ghost node regions are used to set the DSD boundary conditions.
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Figure-4) The Eulerian grid used in DSD2D-FLS simulations is displayed, showing
the explosive (HE) region, psi(i,j) <= 0.0, and the ghost node regions, psi(i,j) > 0.0,
which are used to set the DSD boundary conditions. A four-point central-difference
stencil is used to compute gradients of both psi(i,j), the distance function to the
explosive boundary, and phi(i,j), the level-set function in which the propagating
detonation front is embedded. The DSD front curvature is computed with a nine-
point stencil involving phi(i,j) and centered at (i,j). The heavy circular line in the
upper right hand side of the figure and the heavy vertical line breaking into a zigzag
line represent the HE interfaces, psi(i,j) = 0.0, where the zigzag section is meant to
represent the effect of numerical noise on the definition of an HE interface that is
coincident with a mesh line. The two dashed vertical lines denote the expanded
region where psi(i,j) = 0.0, which is how I propose to eliminate the effect of
numerical noise on mesh-line coincident HE interfaces.

In our first-order (in the mesh spacing, dx) boundary treatment, there is no sub-cell
resolution of the HE material interface. Thus, points with psi(i,j) <= 0.0 are
considered to be in the HE, and points with psi(i,j) > 0.0 are considered as outside
the HE and are ghost node points. For the HE boundary represented by the section
of a circular arc in the upper right hand side of Figure-4), noise added to the circular
boundary would not represent any particular problem, since the definition of the



circle in DSD2D-FLS lacks sub-cell resolution and thus comes with an O(dx)
uncertainty in the definition of the boundary. With a noise-free psi(i,j)
representation of the boundary, the circular arc would occasionally pass very near,
but to either side of the boundary. So occasionally, an (i,j)-point would be just inside
or outside the real HE material boundary, which would lead to O(dx) noise in the HE
material interface. Such exceptional points represent no particular problem, and
adding a low-level noise to the psi(i,j) function will have very little overall effect on
how DSD2D-FLS interprets the circular boundary. However, for the case shown in
Figure-4) where a vertical HE interface is aligned with a mesh line, adding noise
(which is schematically represented by the zigzag section trailing off downwards)
would have a significant effect. This would produce an HE interface with a zigzag
shape on the O(dx) mesh scale and not the actual smooth vertical HE boundary. This
roughened interface could then affect the DSD simulation results. This issue would
only arise in the circumstance when either a truly vertical or horizontal HE
boundary was coincident with a mesh line.

In the next few figures, | display some of my results for James Quirk’s rate stick
problem displayed in Figure-2), where [ purposely add noise to the psi(i,j) function
defining this rate stick. For these examples, I use the nxpts=nypts=600 mesh with a
noisy psi(i,j) function given by

(3)  psi(i,j) = psi(i,j) + 1.0e-7*sin(0.2*(i+j)) .

Here I'm adding a very small amplitude noise to psi(i,j). The advantage of this noise
function is that the noise only occasionally moves the interface so that a mesh point
moves from the HE to the ghost node regions. Displayed in Figure-5a) is a
comparison of the DSD2D-FLS simulated TOA-field with the “exact” Maple script
generated solution. Comparing the HE boundary displayed in Figure-5a) with the HE
boundary in Figure-3b), reveals the O(dx) noise we are seeing in the DSD2D-FLS
boundary location. The slight oscillation on the boundary location has essentially no
effect on the comparison of the DSD2D-FLS TOA-field with the “exact” TOA-field.

Displayed in Figure-5b) are the DSD2D-FLS computed values of dn along y = 2.0
(red) and y = 1.98 (blue). The plotted points correspond to the simulation where the
psi(i,j)-function has added noise, according to Eq. (3). The solid curves correspond
to the results from the noise-free simulation. The noise in dn is substantial, although
considerably less than what Quirk’s results, displayed in Figure-1), show. The dn
values from the simulation containing noise in psi(i,j), mostly cluster around the
curves for the noise-free simulations. The plateaus consisting of points (and
displayed in red) correspond to the default value of dn that is initialized into the
ghost-node region. Shown in Figure-5c) is dn, computed with DSD2D-FLS for the
noise containing psi(i,j)-field simulations, compared with the “exact” solutions for
the noise-free problem, in both cases displayed along lines of constant-y as in
Figure-3c). What these results show is that the noise in dn at the HE boundary can
be substantial (although much less than that displayed if Figure-1)), but that the
noise in dn decreases in amplitude the further one moves into the HE region.
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Figure-5a) My DSD2D-FLS calculation of the rate stick TOA-field for the problem
displayed in Figure-2), where nx = ny = 600, and with noise added to psi(i,j) as
described by Eq. (3). This noise leads to the slight oscillation that is visible in the HE
boundary. The DSD2D-FLS integrated solution curves are shown as solid curves,
while the “exact” Maple script generated solution curves are shown as dashed
curves. The solutions obtained with the two methods essentially overlay. No noise is
apparent in the DSD2D-FLS computed TOA-field, which is the expected result.
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Figure-5b) My DSD2D-FLS calculation of the rate stick dn-field (dntable), using the
curvature of the level-set function, phi(i,j), to compute dn. The data displayed in red
corresponds to dn along y = 2.00000, which is the top boundary for the nx=ny=600
points simulation. The points are from the DSD2D-FLS simulation with noise, while
the solid line comes from the simulation without noise added to psi(i,j). The data
displayed in blue corresponds to dn along y = 1.98, which is at a distance of dx into
the HE, again with and without noise. The problem geometry is that displayed in
Figure-2), where nx = ny = 600, and with noise added to psi(i,j) as described by Eq.
(3). Substantial noise is evident. The dn = 1.0 plateaus correspond to the
background value in the ghost-node region.
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Figure-5c) My DSD2D-FLS solution for the dn-field (dntable) for the case when the
noise described in Eq. (3) is added to psi(i,j). Substantial noise is now visible in the
dn-field, displayed as the solid curves. These are compared with the “exact” Maple
script generated solution, shown as dashed curves. The values of dn are displayed
along five lines, which are displaced by a constant distant, y= 1.95 (red, lowest
curve), 1.90 (blue), 1.80 (green), 1.60 (light blue) and 1.40 (light red), from the
centerline of the rate stick (y = 0), for the problem shown in Figure-2). This noise in
the dn-field is seen to diminish as one moves into the explosive, and away from the
boundaries.



Summarizing, we find that noise in the description of the HE boundary coming from
the psi(i,j)-function has little affect on the computed TOA-field (tb-field) near the
boundary but has a substantial affect on the dn-field near the boundary. This result
was anticipated, given that dn = 1/abs(grad(TOA(i,j))) and knowing that TOA(i,j) is
first-order accurate in the mesh spacing, dx. That is what my testing, some of which
is described above, shows. Testing also shows that the noise observed in the results
does not depend strongly on the level of noise in the geometry describing, psi(i,j)-
function. Since DSD2D-FLS sees the HE boundary as the collection of interior HE
nodes that are closest to psi(i,j) = 0, then the HE boundary will appear as a zigzag
boundary, on the O(dx) scale, due to small variations in the location of psi(i,j) = 0.
Thus, a low-level of noise in psi(i,j) = 0 can lead to O(dx) scale variations in the
boundary, which in turn will lead to the detonation front being sequentially
accelerated and decelerated as the front interacts with what it sees as a zigzag
boundary. This is displayed in Figure-5d) below. Such artificial variations in the HE
boundary shape are what DSD2D-FLS sees as the HE boundary. Thus, one might
consider how such O(dx), artificial variations in the boundary might be smoothed.

Figure-5d) Noise in psi(i,j) = 0, and also a slowly changing HE boundary, can
generate a rough HE boundary within the DSD2D-FLS solver, as the boundary
weaves between HE nodes (displayed as purple squares) and ghost nodes
(displayed as open circles). In the vicinity of #1, this can lead to 4-points in the 9-
point curvature stencil being ghost nodes, which can lead to dn being poorly
calculated near such a point on the HE boundary.

Given that near such a zigzag boundary the 9-point curvature stencil can require 4-
points from the ghost node region, and given that the ghost nodes are populated
mostly such that the DSD angle boundary condition is satisfied, then we might
consider how to make the curvature calculation near the boundary less dependent
on ghost node values. In the next section we consider how to reduce the sensitivity
of the curvature calculation near the boundary to ghost node values. To do this, we
utilize the fact that in our boundary treatment, we have considered that the phi(i,j)
function can be assumed to be locally planar near the boundary.

NEW WORK: THE REDUCTION OF NOISE IN THE DN FIELD NEAR BOUNDARIES

Over the years, the “customer” base has reported that the computed dn fields were
noisy near the boundaries of the explosive. This was never directly reported to me
until recently, when Mark Short brought this to my attention. Now, as I explained at
the beginning of these notes, the method I have is first-order in the mesh spacing,
dx, for the burn time field, tb(i,j) (the TOA(i,j) field). Given that information and



given that dn = 1/abs(grad(tb)), then it follows that order one errors can be
expected in the computed dn(i,j) field. Now, in applying the DSD boundary
conditions, we use a layer of first-nearest neighbor ghost nodes to apply the DSD
angle boundary conditions. The DSD front curvature involves second derivatives of
the level-set function, which in turn requires data from a nine-point stencil. Near the
boundary, this nine-point stencil can require not only data from first-nearest
neighbor ghost nodes but also from second-nearest neighbor ghost nodes. To help
alleviate the noise in dn(i,j) near the explosive boundaries, I recently changed my
method for populating these second-nearest neighbor ghost nodes. To maintain
consistency with the assumption that as far as applying DSD boundary conditions is
concerned, the level-set function is assumed to be planar near the boundary, I've
replaced my extrapolation method for populating second-nearest neighbor ghost
nodes with simple linear extrapolation. Expressed in DSD2D-FLS notation,

(4) phi(i,j) =-p2 + 2.*p1.

This set of consistent assumptions then brings with it a reduced dependency of the
curvature of the level-set function, phi(i,j), on second-nearest neighbor ghost nodes,
leading to the cross second derivative being identically zero

(5) phixy(i,j) = [phi(i+1,j+1) + phi(i-1,j-1) - phi(i-1,j+1) - phi(i+1,j+1)]/4*dx*dy,
phixy(i,j) = 0.0.

Thus, the values of the second-nearest ghost nodes neither enter the curvature
calculation nor the dn(i,j) calculation near the boundary. Changes are required in
the DSD2D-FLS subroutines ibextra.f and ibupdate.f at the point where the second-
nearest neighbor ghost nodes are populated. Those one-line changes are detailed
immediately below.

HAHHHHAHHAHFHHHHHAHHHH A HHAHHA RSB HHAHH AR HH AR HHH
c phi(ij) = p2 - 2.%dxI*(di*phix +dj*phiy)

c Let the second derivative along the given 45-degree

c line be zero, thus staying with the planarity of phi

c locally. It is important to note that doing this keeps

c the IB2 nodes from entering into the curvature calculation.
c This is consistent with what re-distancing does in

c the interior regions. So here we are assuming that

c re-distancing is on, with linear extrapolation then

c being the consistent thing to do. Even with re-distancing
c off, performing linear extrapolation keeps the IB2 nodes
c from entering into the curvature calculation near the

c HE boundaries.

phi(i,j) = -p2 + 2.*p1
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From this point forward in these notes, I will use these modified ibextra.f and
ibupdate.f subroutines in the DSD2D-FLS simulations that I report on. [NOTE: I also
will be using the change to driver.f that implements the noise-reduction strategy
reported earlier in these notes.]

Here I return to the Quirk rate stick, displayed in Figure-2) and for which my
DSD2D-FLS results are shown in Figures-3) and Figures-5a)-5c), and repeat the
DSD2D-FLS simulations so as to include the changes detailed directly above for
populating ghost nodes. For these simulations (and these simulations only), I will
not be applying the noise filtering that is now a part of driver.f, and the psi(i,j)
function will contain noise as given by Eq. (3).

As expected, the TOA-field, displayed in Figure-6a), appears unchanged when
compared with Figure-5a) and shows good agreement with the “exact” Maple script
solution. Displayed in Figure-6b) are the DSD2D-FLS computed values of dn along y
= 2.0 (red) and y = 1.98 (blue). Again, the plotted points correspond to the
simulation where the psi(i,j)-function has added noise, according to Eq. (3). The
solid curves correspond to the results from the noise-free simulation. The noise in
dn is roughly half of that observed in Figure-5b). The dn values from the simulation
containing noise in psi(i,j), mostly cluster around the curves for the noise-free
simulations. Again, the plateaus consisting of points (and displayed in red)
correspond to the default value of dn that is initialized into the ghost-node region.
Shown in Figure-6c¢) is dn, computed with DSD2D-FLS for the noise containing
psi(i,j)-field simulations, compare with the “exact” solutions for the noise-free
problem, in both cases displayed along lines of constant-y as in Figure-3c). What
these results show is that the noise in dn is roughly half of what is observed in
Figure-5c), and where again the noise is seen to decrease as one moves further into
the HE region.
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Figure-6a) My DSD2D-FLS calculation of the rate stick TOA-field for the problem
displayed in Figure-2), where nx = ny = 600, and with noise added to psi(i,j) as
described by Eq. (3). This noise leads to the slight oscillation that is visible in the HE
boundary. The DSD2D-FLS integrated solution curves are shown as solid, while the
“exact” Maple script generated solution curves are shown as dashed. The solutions
obtained with the two methods essentially overlay. As before, no noise is apparent
in the DSD2D-FLS computed TOA-field, which is the expected result and which is
similar to what is displayed in Figure-5a).
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Figure-6b) My DSD2D-FLS calculation of the rate stick dn-field (dntable), using the
curvature of the level-set function, phi(i,j), to compute dn. The data displayed in red
corresponds to dn along y = 2.00000, which is the top boundary for the nx=ny=600
points simulation. The points are from the DSD2D-FLS simulation with noise, while
the solid line comes from the simulation without noise added to psi(i,j). The data
displayed in blue corresponds to dn along y = 1.98, which is at a distance of dx into
the HE, again with and without noise. The problem geometry is that displayed in
Figure-2), where nx = ny = 600, and with noise added to psi(i,j) as described by Eq.
(3). The noise in Dn is reduced substantially from what is displayed in Figure 5b).
Again, the dn = 1.0 plateaus correspond to the background value in the ghost-node

region.
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Figure-6c) My DSD2D-FLS solution for the dn-field (dntable) for the case when the
noise described in Eq. (3) is added to psi(i,j). Although substantial noise is still
evident in the dn-field, displayed as the solid curves, it is roughly cut in half from
what is displayed in Figure-5c). As before, these are compared with the “exact”
Maple script generated solution, shown as dashed curves. The values of dn are
displayed along five lines, which are displaced by a constant distant, y= 1.95 (red,
lowest curve), 1.90 (blue), 1.80 (green), 1.60 (light blue) and 1.40 (light red), from
the centerline of the rate stick (y = 0), for the problem shown in Figure-2). Again,



this noise in the dn-field is seen to diminish as one moves into the explosive, and
away from the boundaries.

COMPUTING DN FROM 1 /abs(grad(toa)) USING SMOOTHING STENCILS

The values I've displayed for the dn-field (dntable) were obtained directly from the
curvature of the level-set function, phi(i,j), that is, dn = 1 - alpha*kappa, where
kappa = div(grad(phi)/abs(grad(phi))). Once the TOA-field (tb-field) is obtained
over the entire solution space, dn can also be obtained in a post-processing step
through the gradient of the tb-field, dn = 1/abs(grad(tb)). Here I consider how
higher-order, smoothing stencils for derivatives can be applied to the tb-field to
obtain another rendition of the dn-field, referred to as dn_tb_ho, that is less noisy
near the HE boundaries. My results show that dntable and dn_tb_ho are essentially
coincident in regions away from the HE boundaries. As part of my study, I
considered a variety of different post-processing strategies, most of which can be
found coded in driver.f. Here I focus on using higher-order stencils for computing
derivatives, using one-sided versions of those stencils near boundaries. Displayed
below is the driver.f code section that I use to compute dn_tb_ho.

HAHHHHAHHAHHHHHHHAHH A HHHHAHHAH AR B HH ARG H B HH AR
c direct evaluation of dn from gradient of tb field, using higher-order
c smoothing difference formulas from Pavel Holoborodko

tbx = (2.%(tb(i+1,j)-tb(i-1,j))+tb(i+2,j)-tb(i-2,j)) /(8.*dx)
if( (tb(i+1,j).eq.-100.0).or.(tb(i+2,j).eq.-100.0) ) then
C tbx = (3.*tb(i,j)- 4.*tb(i-1,j)+tb(i-2,j))/(2.*dx)
tbx = (tb(i,j)+tb(i-1,j)-tb(i-2,j)-tb(i-3,j)) /(4.*dx)
endif
if( (tb(i-1,j).eq.-100.0).or.(tb(i-2,j).eq.-100.0) ) then
C tbx = (3.*tb(i,j)- 4.*tb(i+1,j)+tb(i+2,j))/(2.*dx)
tbx = (tb(i,j)+tb(i+1,j)-tb(i+2,j)-tb(i+3,j))/(4.*dx)
endif
tby = (2.%(tb(i,j+1)-tb(i,j-1))+tb(i,j+2)-tb(i,j-2))/(8.*dx)
if( (tb(i,j+1).eq.-100.0).or.(tb(i,j+2).eq.-100.0) ) then
C tby = (3.*tb(i,j)- 4.*tb(i,j-1)+tb(i,j-2))/(2.*dx)
tby = (tb(i,j)+tb(i,j-1)-tb(i,j-2)-tb(ij-3))/(4.*dx)
endif
if( (tb(i,j-1).eq.-100.0).or.(tb(i,j-2).eq.-100.0) ) then
C tby = (3.*tb(i,j)- 4.*tb(i,j+1)+tb(i,j+2))/(2.*dx)
tby = (tb(i,j)+tb(i,j+1)-tb(i,j+2)-tb(i,j+3))/(4.*dx)
endif
dn_tb_ho(i,j) = &
& max(dmin,min(dmax,1./sqrt(tbx**2+tby**2+zeps2)))

HHHHHHHHHHHHHHHHHHHHHHHHH R R R R R



Displayed below in Figures 6d) & 6e) are the dn_tb_ho results for dn corresponding
to what is displayed for dntable in Figures 6b) & 6¢). What the comparison shows is
that the noise near the HE boundaries is further reduced by applying the smoothing
stencils to compute dn (i.e., dn_tb_ho) from the tb-field, which itself uses the
modifications to the procedure for populating ghost nodes that I've described.

In the next section of this report, I go on to consider other problem geometries,
using all the improvements I've detailed above to compute the dn-field. In all the
examples that are to follow, I do not add noise to the HE boundary definition, psi(i,j).
Roughness now enters what DSD2D-FLS sees as the HE boundary due to the fact
that the HE boundary crosses the mesh either obliquely to the mesh or as a circular
boundary, as displayed in the upper right hand side of Figure-4).
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Figure-6d) My DSD2D-FLS calculation of the rate stick dn-field (dn_tb_ho), using the
smoothing stencils on tb(i,j)=TOAC(i,j) to compute dn. The data displayed in red
corresponds to dn along y = 2.00000, which is the top boundary for the nx=ny=600
points simulation. The points are from the DSD2D-FLS simulation with noise, while
the solid line comes from the simulation without noise added to psi(i,j). The data
displayed in blue corresponds to dn along y = 1.98, which is at a distance of dx into
the HE, again with and without noise. The problem geometry is that displayed in
Figure-2), where nx = ny = 600, and with noise added to psi(i,j) as described by Eq.
(3). The noise in Dn is reduced once again, now from what is already the reduced
noise displayed in Figure 6b). Again, the dn = 1.0 plateaus correspond to the
background value in the ghost-node region.
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Figure-6e) My DSD2D-FLS solution for the dn-field (dn_tb_ho) for the case when the
noise described in Eq. (3) is added to psi(i,j). Although noise is still evident in the
dn-field, displayed as the solid curves, it is reduced again from what is displayed in
Figure-6c). As before, these are compared with the “exact” Maple script generated
solution, shown as dashed curves. The value of dn are displayed along five lines,
which are displaced by a constant distant, y= 1.95 (red, lowest curve), 1.90 (blue),
1.80 (green), 1.60 (light blue) and 1.40 (light red), from the centerline of the rate



stick (y = 0), for the problem shown in Figure-2). Again, this noise in the dn-field is
seen to diminish as one moves into the explosive, away from the boundaries.

PROBLEMS WITH HE BOUNDARIES OBLIQUE TO MESH: DSD2D-FLS SOLUTIONS

All the solutions we display in this and the following sections use the modifications
['ve described that have been made to driver.f, ibextra.f and ibupdate.f. No noise is
explicitly added to the geometry definition function, psi(i,j). The roughness that
DSD2D-FLS sees in the boundary results from the physical HE boundary
crosscutting over the mesh lines/points used in the DSD2D-FLS solution.

To serve as a further validation of the above, simple procedure for reducing the
near-boundary noise in the dn-field, [ next show the results for a rate stick that
makes an angle of 30-degrees with the direction of the vertical mesh lines. Figure-
7a) shows a sub-region of the computational mesh (for a problem with coarse to
moderate resolution) superimposed on which is the psi = 0.0 line describing the HE
boundary. The purple-shaded squares are the interior HE region points that are
closest to the boundary. DSD2D-FLS sees the boundary through these points. Little
to no symmetry exists between the mesh and the HE boundary, although there is a
long wavelength repeat pattern. This example, where the boundary crosscuts the
mesh, is the typical way in which noise is introduced into the dn(i,j)-field near HE
boundaries in a DSD2D-FLS simulation.

[ solve this problem using the same DSD parameters that I set down earlier
(omega_s = 50 degrees, omega_c = 55 degrees, dmin = 0.1, dmax = 9.0, cfl = 0.9 and
re-distancing on). The resolution used for this example is nxpts = nypts = 1408. The
results displayed in Figures 7b)-7d) show the tb(i,j) and dn(i,j) fields from both
dntable and dn_tb_ho. Although the dn(j,j)-field formally can have O(1) errors, one
finds the field is smooth and relatively noise free, even near the boundaries. As
before, the tb(i,j)-field has O(dx) errors, which vanish under mesh resolution. As
displayed in Figure-7b), the DSD2D-FLS tb(i,j)-field and the “exact” Maple script
solution are coincident. Figures 7c) & 7d) show that the noise, at comparable
fractional radii to those consider for the noise-peppered Quirk rate stick, is smaller
than what we saw for the Quirk rate stick. Some part of this reduction is due to the
higher mesh resolution used in this run. It should be noted, and I do so here, that the
near-boundary noise we observe is confined to a narrower and narrower region in
physical space as the resolution is increased.

Generally, the noise imparted to the near-boundary dn(i,j)-fields by the the psi=0
line crosscutting the mesh is more random and appears to be smaller in magnitude
(at least for the dn_tb_ho field) than what we saw for the Quirk rate stick, where
noise was purposely added to the psi(i,j)-field. My next example problem considers
detonation propagation in an arc of explosive.
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Figure-7a) A highly expanded view of the mesh and psi = 0.0 line for the 30-degree
rate stick problem example. The HE region is above and to the left of the psi = 0.0
line. The solid-purple squares, which make a zigzag pattern, denote the interior HE
points closest to the boundary. These points are how DSD2D-FLS sees the HE
boundary.
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Figure-7b) My DSD2D-FLS calculation of the TOA-field for the 30-degree rate stick
problem. This figure also serves to define the problem geometry. Here, nxpts = nypts
= 1408. The DSD2D-FLS integrated solution curves are shown as solid, while the
“exact” Maple script generated solution curves are shown as dashed. The solutions
obtained with the two methods essentially overlay. As before, no noise is apparent
in the DSD2D-FLS computed TOA-field, which is the expected result. I note that
whatever noise is generated in the DSD2D-FLS solution is due to the crosscutting of
the HE boundary across the mesh, as displayed in Figure-7a).
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Figure-7c) My DSD2D-FLS solution for the dn-field (dntable) for the 30-degree rate
stick problem. The noise in dntable for the outer-most radius is comparable to that
displayed in Figure-6c). As before, these are compared with the “exact” Maple script
generated solution, shown as dashed curves. The values of dn are displayed along
five lines, which are displaced by a constant radial distant, r= 1.975r (red, lowest
curve), 1.95r (blue), 1.90r (green), 1.80r (light blue) and 1.70r (light red), from the
centerline of the rate stick (r = 0). Again, this noise in the dn-field is seen to diminish
as one moves into the explosive, and away from the boundaries.
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Figure-7d) My DSD2D-FLS solution for the dn-field (dn_tb_ho) for the 30-degree
rate stick problem. The noise in dn_tb_ho for the outer-most radius is reduced to
that displayed in both Figure-6d) and Figure-7c). As before, these are compared
with the “exact” Maple script generated solution, shown as dashed curves. The
values of dn are displayed along five lines, which are displaced by a constant radial
distant, r= 1.975r (red, lowest curve), 1.95r (blue), 1.90r (green), 1.80r (light blue)
and 1.70r (light red), from the centerline of the rate stick (r = 0). Again, this noise in
the dn-field is seen to diminish as one moves into the explosive, and away from the
boundaries.



DSD2D-FLS SIMULATIONS OF DETONATION IN AN ARC OF EXPLOSIVE

As part of the ASC-PEM-HE Program FY14 project management review of progress
on their L2 Milestone, James Quirk presented a DSD simulation, performed with the
August 2014 version of his CASH/Amrita wrapped 2010-code base DSD2D-FLS
solver, for the problem of detonation in a 180-degree arc of explosive. The results
from his simulation are displayed in Figure-8a). These results do not show any
obvious problems or inconsistencies.

Lacking information on any V&V that was performed on the CASH/Amrita wrapped
2010-code base DSD2D-FLS solver, here I'll present results for a 270 degree
explosive arc that has the same inner and outer radii, r_inner = 2.0 and r_outer = 4.0,
as those shown in Figure-8a). All my results were generated with the DSD
parameters I listed earlier for the Dn law and for dmin and dmax. Although, I've
done a resolution study of my results, here I'll present a cross section of my results
for nxpts=nypts=704.

s

y tem)

% (em)

Figure-8a) A DSD simulation, performed using the CASH/Amrita wrapped 2010-
code base DSD2D-FLS solver, of detonation in a 180-degree arc of explosive as
discussed in LA-14277. The fixed boundary condition (omega_c = 90 degrees) is
applied on the outside of the arc, and the free boundary condition (omega_c =
omega_s) is applied on the inside of the arc. Contours of the tb(i,j)-field are
displayed over a color palette plot of the dn(i,j)-field. Localized large departures of
dn(i,j) values off of the mean would not be noticeable in such a plot. Although most
details of the DSD parameters used in this simulation are not know to me, Mark
Short did reveal that the CFL parameter was set at a very low value, perhaps with
CFL = 0.09. This indicates that there is some degree of stiffness to the problem,



which is due to either the problem not being temporally or spatially resolved, and
raises questions about the quality of these results and/or the implementation.

In my simulations of the arc problem, I extend the arc by 90 degrees to a 270-degree
arc and consider a wide range of values for omega_s and omega_c (for the results for
wide-ranging values of omega_s and omega_c, the reader should consult an
Appendix). To display these results in a more quantitative manner, I plot contours of
the tb(i,j)-field as before and plot the dn(i,j)-field along curves of constant radius, r.
As will become apparent, the dn(i,j) fields show noise near the inner boundary of
the arc with the noise diminishing as one moves further into the arc. My results
appear in the few figures that follow, and where the values of omega_s = 50-degrees
and omega_c = 55-degrees are used. NOTE: In my standalone DSD2D-FLS research
code, omega_s and omega_c have the same values on all boundaries of the explosive
region. [ use my standalone DSD2D-FLS code which I used for the 30-degree rate
stick problem discussed in the previous section. I display only the dn_tb_ho field for
the dn(i,j)-field from this point forward.

As before, [ compare the DSD2D-FLS solution of the 270-degree arc problem with
the “exact” solution generated with a Maple script. The solution developed with the
Maple script solves the front propagation problem. That is, first the PDE for the
detonation-front normal angle, phi(r,t), is solved as a function of the radial
coordinate, r, and time, t, with a high-resolution, error controlled PDE solver
available in Maple. Then in a second step, the motion of the front over a Cartesian
grid is solved for with an ODE solver. Displayed in Figure-9a) is a comparison of the
DSD2D-FLS simulation of the TOA(i,j)-field for the case omega_s = 50-degree, omega
= 55-degrees and run at nxpts = nypts = 1408 points, with the “exact” solution of the
problem. The agreement of the DSD2D-FLS TOA-field solution with the “exact”
Maple script solution is generally good. One can however see some finite-resolution
effects, showing the DSD2D-FLS wave front at t = 12 microseconds being slightly
behind the “exact” solution.
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Figure-9a) My DSD2D-FLS calculation of the TOA-field for the 270 degree, explosive-
arc problem. This figure also serves to define the problem geometry. The detonation
begins at the 6 o’clock position and runs counterclockwise, exiting the arcatt =
13.18 microseconds. Here, nxpts = nypts = 1408. The DSD2D-FLS integrated
solution curves are shown as solid, while the “exact” Maple script generated solution
curves are shown as the labeled “curves.” The solutions obtained with the two
methods essentially overlay. As before, no noise is apparent in the DSD2D-FLS
computed TOA-field, which is the expected result. I note that whatever noise is
generated in the DSD2D-FLS solution is due to the crosscutting of the HE boundary
across the mesh, similar to what is displayed in Figures 4) & 7a).
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Figure-9b) My DSD2D-FLS solution for the dn-field (dn_tb_ho) for the 270 degree
explosive-arc problem. The noise in dn_tb_ho is greatest for the inner-most radius,
being of 0(10%). The noise is seen to diminish as one moves into the explosive arc.
As before, the DSD2D-FLS solutions (displayed as 20% of the data points) are
compared with the “exact” Maple script generated solution, shown here as dashed
curves. The value of dn are displayed along five circular arcs, which are located at
the fixed radial distances of, r = 2.025 (red, lowest curve), 2.05 (blue), 2.1 (green),
2.2 (black), 2.5 (pink), 3.0 (light blue) and 3.5 (light brown). Again, this noise in the
dn-field is seen to diminish as one moves into the explosive, and away from the
boundary. The noise is at its greatest at the 3, 12 and 9 o’clock locations on the arc.



SUMMARY

The DSD2D-FLS V9, which was used to perform the simulations appearing in the last
few sections, adds only a few minor changes to my serial, 2010 DSD2D-FLS code
base. The two changes, which are detailed in these notes, improve the computation
of the normal detonation speed near the explosive’s boundaries. The most
significant of these changes concerns how second-nearest neighbor ghost nodes are
populated in the subroutines, ibextra.f and ibupdate.f. I now use linear extrapolation
along 45-degree lines to set the second-nearest neighbor nodes. This change then
leads to the cross derivative, phi_xy, being zero, and thus the second-nearest
neighbors are not contributing to the curvature calculation near the boundary. In
that way, my longstanding questions about how second-nearest neighbor ghost
nodes values should be populated becomes a moot point, since now the values at
these nodes do not influence the curvature calculation near the boundary. The other
minor changes are in driver. A few statements are added to reduce the sensitivity of
the geometry defining function, psi(i,j), to random numerical noise, and higher-
order, smoothing derivative stencils are used to compute dn_tb_ho, via the
expression, dn = 1/abs(grad(tb)).

I suggest that the few changes to DSD2D-FLS V9 described here be implemented in
Quirk’s CASH/Amrita wrapped DSD2D-FLS solver. In addition, the problems and
results described in this report would provide data V&V for Quirk’s CASH/Amrita
wrapped DSD2D-FLS solver.
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APPENDIX-A: ASSORTED OTHER SOLUTIONS OF THE 30-DEGREE RATE STICK

In this appendix, I display a collection of other solutions constructed in this study.
All these DSD2D-FLS solutions used the modified driver.f, ibextra.f and ibupdate.f
that I described above. The DSD model is the same as used above, with the exception
that some of the omega_s and omega_c values are different.
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Figure-10a) Contours of the burn time field, tb(i,j), and the dntable field, dn(i,j), for
the problem of detonation in a rate stick. To explore how the orientation of the rate
stick relative to the mesh affects the results, the rate stick’s axis of symmetry is
tilted by 30 degrees off of the vertical direction. Only minor noise in the dn(i,j) field
is observed near the side boundaries of the rate stick. Omega_s = 50-degrees and
omega_c = 55-degrees. The numerical resolution is nxpts = nypts = 704.
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Figure-10b) Expanded view in the lower left hand corner showing contours of the
burn time field, tb(i,j), and the dntable field, dn(i,j), for the problem of detonation in
a rate stick. To explore how the orientation of the rate stick relative to the mesh
affects the results, the rate stick’s axis of symmetry is tilted by 30 degrees off of the
vertical direction. Only minor noise in the dn(i,j) field is observed near the side
boundaries of the rate stick. Omega_s = 50-degrees, and omega_c = 55-degrees. The
numerical resolution is nxpts = nypts = 704.



Contour

DB: TOAsilo

Vo TOA 3
ar .

Units: dimless 4.50

-3 4.40-

2 ]
1 ]
4.30

Max: 7.19%
Min: -100.(:;:

Contour
DE: dnfable sio
Cycle: 0

Var: dntable

Unifs: dimless 420 7]

1.010
0.9850
0.9600

0.9350
09100
0.8850 ]
0.8600 '
0.8350% - 10 ]
0.8100 ]
— 07850
—0.7600

0.7350

user: johnbdzil
Max: 8.822 Mon Oct 13 14:38:59 2014
Min: 0.4110

Figure-10c) Expanded view along the lateral boundary showing contours of the
burn time field, tb(i,j), and the dntable field, dn(i,j), for the problem of detonation in
a rate stick. To explore how the orientation of the rate stick relative to the mesh
affects the results, the rate stick’s axis of symmetry is tilted by 30 degrees off of the
vertical direction. Only minor noise in the dn(i,j) field is observed near the side
boundaries of the rate stick. Omega_s = 50-degrees, and omega_c = 55-degrees. The
numerical resolution is nxpts = nypts = 704.
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Figure-10d) Contours of the burn time field, tb(i,j), and the dn_tb_ho field, dn(i,j), for
the problem of detonation in a rate stick. To explore how the orientation of the rate
stick relative to the mesh affects the results, the rate stick’s axis of symmetry is
tilted by 30 degrees off of the vertical direction. Only minor noise in the dn(i,j) field
is observed near the side boundaries of the rate stick. Omega_s = 50-degrees, and
omega_c = 55-degrees. The numerical resolution is nxpts = nypts = 704.
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Figure-10e) Expanded view along the lateral boundary showing contours of the
burn time field, tb(i,j), and the dn_tb_ho field, dn(i,j), for the problem of detonation
in a rate stick. To explore how the orientation of the rate stick relative to the mesh
affects the results, the rate stick’s axis of symmetry is tilted by 30 degrees off of the
vertical direction. Only minor noise in the dn(i,j) field is observed near the side
boundaries of the rate stick. Omega_s = 50-degrees, and omega_c = 55-degrees. The
numerical resolution is nxpts = nypts = 704.

APPENDIX-B: ASSORTED SIMULATIONS OF DETONATION IN AN ARC OF
EXPLOSIVE

[ begin by comparing the DSD2D-FLS solution of the 270-degree arc problem with
the “exact” solution obtained from a Maple script. The solution developed with the
Maple script solves the front propagation problem. That is, first the PDE for the
detonation-front normal angle, phi(r,t), is solved as a function of the radial



coordinate, r, and time, t, with a high-resolution, error controlled PDE solver
available in Maple. Then in a second step, the motion of the front over a Cartesian
grid is solved for with an ODE solver. Displayed in Figure-11) is a comparison of the
DSD2D-FLS simulation for the case omega_s = 0.0, omega = 60-degrees and run at
nxpts = nypts = 1408 points, with the “exact” solution of the problem.
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Figure-11) Contours of the tb(i,j)-field and dn(i,j)-field for the DSD2D-FLS
simulation of detonation in a 270-degree, slab geometry explosive arc run at a
resolution of nxpts = nypts = 1408 points. The DSD boundary angles are omega_s = 0
degrees, and omega_c = 60 degrees. Also displayed are the very-high resolution
Maple script generated solutions of the front evolution equations, which can be
considered to be the exact solution (labeled as “curve”). The agreement between
these DSD2D-FLS simulation results and the exact solution for this initial value
problem are good. The dn(i,j) field is computed with a smoothing stencil for the
gradient applied to tb(i,j), designated as dn_tb_ho.
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Figure-12a) Contours of the tb(i,j) field and dn(i,j) field for the DSD2D-FLS
simulation of detonation in a 270-degree, slab geometry explosive arc. The DSD
boundary angles are omega_s = 44 degrees and omega_c = 45 degrees. Also
displayed are the very-high resolution Maple script generated solutions of the front
evolution equations, which can be considered to be the exact solution (labeled as
“curve”). The agreement between these DSD2D-FLS simulation results and the exact
solution for this initial value problem are good. There is a slight amount of noise
visible in the dntable generated dn(i,j) contours near the 90 degree and 180 degree
locations, and is likely related to the closeness of omega_s and omega_c. The dn(i,j)
field is computed with a smoothing stencil for the gradient applied to tb(i,j),
designated as dn_tb_ho. The numerical resolution used is nxpts = nypts = 704.
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Figure-12b) Here we increase the resolution to nxpts=nypts=1408 points from the
nxpts=nypts=704 points used to produce Figure-12a). The level of the noise at the
90 degree and 180 degree locations is reduced. Otherwise, things look much the
same as they do in Figure-12a). The numerical resolution used is nxpts = nypts =

1408.
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Figure-13) Contours of the tb(i,j)-field and dn(i,j)-field for the DSD2D-FLS
simulation of detonation in a 270-degree, slab geometry explosive arc. The DSD
boundary angles are omega_s = 44 degrees and omega_c = 50 degrees. The dn_tb_ho
contours are displayed for dn(i,j). The numerical resolution used is nxpts = nypts =
704.
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Figure-14a) Contours of the tb(i,j)-field and dn(i,j)-field for the DSD2D-FLS
simulation of detonation in a 270-degree, slab geometry explosive arc. The DSD
boundary angles are omega_s = 50 degrees, and omega_c = 55 degrees. The contours
of dn are dn_tb_ho. The numerical resolution used is nxpts = nypts = 704.
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Figure-14b) Expanded view of contours (near the 90-degree point) of the tb(i,j) field
and dn(i,j) field for the DSD2D-FLS simulation of detonation in a 270-degree, slab
geometry explosive arc. The DSD boundary angles are omega_s = 50 degrees and
omega_c = 55 degrees. The contours of dn were generated from dn_tb_ho. The
numerical resolution used is nxpts = nypts = 704.
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Figure-14c) Expanded view of contours (near the 150-degree point) of the tb(i,j)
field and dn(i,j) field for the DSD2D-FLS simulation of detonation in a 270-degree,
slab geometry explosive arc. The DSD boundary angles are omega_s = 50 degrees
and omega_c = 55 degrees. The contours of dn were generated from dn_tb_ho.
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Figure-14d) Values of dn vs. the polar angle in radians, theta, are displayed. The
computed values of dn at the mesh points within the narrow band of HE mesh
points, 0.0 => psi(i,j) => -dx, near the inner boundary of the explosive are displayed
for the DSD2D-FLS simulation of detonation in a 270-degree, slab geometry
explosive arc. The DSD boundary angles are omega_s = 50 degrees and omega_c = 55
degrees. The values of dn were generated using the curvature of the level-set
function, dn = 1 - 0.1*kappa, where kappa is the 2D slab geometry curvature. A
small number of points above the 1.4 dn level are omitted from the plot.
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Figure-14e) Values of dn vs. the polar angle in radians, theta, are displayed. The
computed values of dn at the mesh points within the narrow band of HE mesh
points, 0.0 => psi(i,j) => -dx, near the inner boundary of the explosive are displayed
for the DSD2D-FLS simulation of detonation in a 270-degree, slab geometry
explosive arc. The DSD boundary angles are omega_s = 50 degrees and omega_c = 55
degrees. The contours of dn were generated from dn_tb_ho. All the data points are
displayed.
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Figure-15) Contours of the tb(i,j)-field and dn(i,j)-field for the DSD2D-FLS
simulation of detonation in a 270-degree, slab geometry explosive arc. The DSD
boundary angles are omega_s = 55 degrees and omega_c = 60 degrees. The contours
of dn were generated from dn_tb_ho. The numerical resolution used is nxpts = nypts
=704.
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Figure-16) Contours of the tb(i,j)-field and dn(i,j)-field for the DSD2D-FLS
simulation of detonation in a 270-degree, slab geometry explosive arc. The DSD
boundary angles are omega_s = 55 degrees and omega_c = 70 degrees. The contours
of dn were generated from dn_tb_ho. The numerical resolution used is nxpts = nypts
=704.
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Figure-17) Contours of the tb(i,j)-field and dn(i,j)-field for the DSD2D-FLS
simulation of detonation in a 270-degree, slab geometry explosive arc. The DSD
boundary angles are omega_s = 55 degrees and omega_c = 80 degrees. The contours
of dn were generated from dn_tb_ho. The numerical resolution used is nxpts = nypts
=704.
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Figure-18) Contours of the tb(i,j)-field and dn(i,j)-field for the DSD2D-FLS
simulation of detonation in a 270-degree, slab geometry explosive arc. The DSD
boundary angles are omega_s = 55 degrees and omega_c = 90 degrees. The contours
of dn were generated from dn_tb_ho. The numerical resolution used is nxpts = nypts
=704.



