
LA-UR-16-27206
Approved for public release; distribution is unlimited.

Title: DSD2D-FLS 2010: Bdzil's 2010 DSD Code Base; Computing tb and Dn with
Edits to Reduce the Noise in the Dn Field Near HE Boundaries

Author(s): Bdzil, John Bohdan

Intended for: Report

Issued: 2016-09-21

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for
the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

DSD2D-­‐FLS	
 2010:	
 Bdzil’s	
 2010	
 DSD	
 Code	
 Base	
 	

Computing	
 tb	
 and	
 Dn	
 with	
 Edits	
 to	
 	

Reduce	
 the	
 Noise	
 in	
 the	
 Dn	
 Field	
 Near	
 HE	
 Boundaries	
 	

J.	
 Bdzil	
 	

October	
 9,	
 2014	
 	

December	
 19,	
 2014	
 –	
 with	
 updated	
 figures	
 &	
 text	
 	

	

HISTORY	

	

The	
 full	
 level-­‐set	
 function	
 code,	
 DSD3D,	
 is	
 fully	
 described	
 in	
 LA-­‐14336	
 (2007)	
 [1].	

This	
 ASCI-­‐supported,	
 DSD	
 code	
 project	
 was	
 the	
 last	
 such	
 LANL	
 DSD	
 code	
 project	

that	
 I	
 was	
 involved	
 with	
 before	
 my	
 retirement	
 in	
 2007.	
 My	
 part	
 in	
 the	
 project	
 was	
 to	

design	
 and	
 build	
 the	
 core	
 DSD3D	
 solver,	
 which	
 was	
 to	
 include	
 a	
 robust	
 DSD	

boundary	
 condition	
 treatment.	
 A	
 robust	
 boundary	
 condition	
 treatment	
 was	

required,	
 since	
 for	
 an	
 important	
 local	
 “customer,”	
 the	
 only	
 description	
 of	
 the	

explosives’	
 boundary	
 was	
 through	
 volume	
 fraction	
 data.	
 Given	
 this	
 requirement,	
 the	

accuracy	
 issues	
 I	
 had	
 encountered	
 with	
 our	
 “fast-­‐tube,”	
 narrowband,	
 DSD2D	
 solver,	

and	
 the	
 difficulty	
 we	
 had	
 building	
 an	
 efficient	
 MPI-­‐parallel	
 version	
 of	
 the	

narrowband	
 DSD2D,	
 I	
 decided	
 DSD3D	
 should	
 be	
 built	
 as	
 a	
 full	
 level-­‐set	
 function	

code,	
 using	
 a	
 totally	
 local	
 DSD	
 boundary	
 condition	
 algorithm	
 for	
 the	
 level-­‐set	

function,	
 phi,	
 which	
 did	
 not	
 rely	
 on	
 the	
 gradient	
 of	
 the	
 level-­‐set	
 function	
 being	
 one,	

|grad(phi)|	
 =	
 1.	
 The	
 narrowband	
 DSD2D	
 solver	
 was	
 built	
 on	
 the	
 assumption	
 that	

|grad(phi)|	
 could	
 be	
 driven	
 to	
 one,	
 and	
 near	
 the	
 boundaries	
 of	
 the	
 explosive	
 this	

condition	
 was	
 not	
 being	
 satisfied.	
 Since	
 the	
 narrowband	
 is	
 typically	
 no	
 more	

than10*dx	
 wide,	
 narrowband	
 methods	
 are	
 discrete	
 methods	
 with	
 a	
 fixed,	
 non-­‐
resolvable	
 error,	
 where	
 the	
 error	
 is	
 related	
 to	
 the	
 thickness	
 of	
 the	
 band:	
 the	

narrower	
 the	
 band	
 the	
 larger	
 the	
 errors.	
 Such	
 a	
 solution	
 represents	
 a	
 discrete	

approximation	
 to	
 the	
 true	
 solution	
 and	
 does	
 not	
 limit	
 to	
 the	
 solution	
 of	
 the	

underlying	
 PDEs	
 under	
 grid	
 resolution.	
 	
 	

	

Given	
 a	
 material	
 interface	
 description	
 only	
 as	
 detailed	
 as	
 that	
 associated	
 with	
 the	

volume	
 fraction	
 of	
 the	
 materials	
 in	
 the	
 computational	
 cells,	
 there	
 can	
 be	
 no	
 unique	

sub-­‐cell	
 definition	
 of	
 the	
 location	
 of	
 the	
 material	
 interface.	
 Working	
 under	
 these	

constraints,	
 I	
 built	
 a	
 DSD3D	
 solver	
 whose	
 solution	
 errors	
 in	
 the	
 burn	
 time	
 field,	
 tb,	

diminished	
 as	
 O(d(dx)^2)	
 for	
 boundary-­‐free	
 problems	
 and	
 whose	
 solution	
 error	

diminished	
 as	
 O((dx))	
 for	
 problems	
 which	
 included	
 an	
 explosive’s	
 material	

boundaries.	
 These	
 convergence	
 rates	
 were	
 verified	
 by	
 comparing	
 the	
 DSD3D	

solver’s	
 numerical	
 solutions	
 with	
 exact	
 solutions.	
 Unlike	
 the	
 previous	
 three-­‐
dimensional	
 DSD	
 solvers,	
 DSD3D	
 was	
 built	
 using	
 a	
 totally	
 local	
 boundary	
 condition	

algorithm	
 that	
 required	
 no	
 region-­‐wide,	
 iterative	
 boundary	
 condition	
 updates	
 and	

that	
 should	
 have	
 been	
 no	
 more	
 difficult	
 to	
 “parallelize”	
 via	
 an	
 MPI,	
 domain-­‐
decomposition	
 strategy	
 than	
 would	
 be	
 a	
 heat-­‐equation	
 solver.	
 I	
 delivered	
 the	
 serial,	

full	
 level-­‐set	
 function	
 DSD3D	
 solver,	
 DSD3D-­‐FLS,	
 to	
 XCP-­‐4	
 (John	
 Walter)	
 in	
 mid-­‐
2007.	
 	

	

After	
 retiring	
 from	
 LANL,	
 in	
 2008	
 I	
 began	
 working	
 with	
 the	
 Department	
 of	

Mechanical	
 Sciences	
 and	
 Engineering	
 at	
 The	
 University	
 of	
 Illinois	
 (UIUC).	
 Work	

continued	
 at	
 LANL	
 on	
 developing	
 at	
 MPI	
 parallel	
 version	
 of	
 DSD3D-­‐FLS,	
 with	
 little	
 to	

no	
 serious	
 progress	
 being	
 reported	
 through	
 2009.	
 At	
 that	
 time,	
 I	
 happened	
 to	
 be	

working	
 with	
 a	
 UIUC	
 student	
 who	
 was	
 interested	
 in	
 scientific	
 computing,	
 and	

numerical	
 algorithms	
 for	
 the	
 solution	
 of	
 partial-­‐differential	
 equations	
 (PDEs).	

Together,	
 the	
 student	
 and	
 I	
 decided	
 that	
 developing	
 and	
 implementing	
 an	
 MPI,	

domain-­‐decomposition	
 solution	
 strategy	
 for	
 the	
 core	
 DSD3D-­‐FLS	
 solver	
 would	
 be	
 a	

good	
 Masters	
 degree	
 thesis	
 problem.	
 So	
 in	
 early	
 2010,	
 I	
 took	
 my	
 standalone,	
 one	

explosive,	
 DSD3D-­‐FLS	
 solver	
 and	
 built	
 the	
 basic	
 DSD2D-­‐FLS	
 solver,	
 whose	

properties	
 will	
 be	
 explored	
 later	
 in	
 these	
 notes.	
 Together,	
 the	
 student	
 and	
 I	

developed	
 a	
 strategy	
 and	
 built	
 an	
 MPI,	
 domain-­‐decomposition	
 model	
 with	
 which	
 to	

“parallelize”	
 DSD2D-­‐FLS.	
 It	
 is	
 worth	
 noting	
 that	
 the	
 student	
 successfully	
 completed	

this	
 project,	
 which	
 then	
 led	
 to	
 his	
 being	
 awarded	
 a	
 MS	
 in	
 Engineering	
 from	
 UIUC	
 by	

the	
 late	
 fall	
 of	
 2010.	
 That	
 work,	
 including	
 the	
 basic	
 DSD2D-­‐FLS	
 solution	
 algorithm,	
 is	

described	
 in	
 our	
 publication	
 on	
 this	
 work	
 [2].	
 	

	

The	
 single	
 explosive,	
 serial	
 version	
 of	
 the	
 2010	
 DSD2D-­‐FLS	
 solver	
 represents	
 the	

code	
 base	
 whose	
 properties	
 I	
 explore	
 here.	
 Later	
 in	
 2010,	
 I	
 passed	
 the	
 DSD2D-­‐FLS	

solver,	
 including	
 updates	
 to	
 include	
 F90	
 and	
 a	
 multiple	
 explosive	
 and	
 inert	
 material	

region	
 capabilities,	
 to	
 John	
 Walter	
 of	
 LANL	
 group	
 XCP-­‐4.	
 John	
 Walter	
 then	
 installed	

this	
 DSD2D-­‐FLS	
 solver	
 into	
 the	
 CASH-­‐based	
 LANL	
 DSD	
 solver	
 library.	
 At	
 some	
 point	

in	
 early	
 2014,	
 the	
 responsibility	
 for	
 the	
 DSD	
 solver	
 library	
 was	
 passed	
 to	
 James	

Quirk,	
 also	
 of	
 XCP-­‐4.	
 Since	
 that	
 time,	
 James	
 has	
 wrapped	
 the	
 DSD	
 solver	
 library	
 with	

hooks	
 to	
 his	
 Amrita	
 environment.	
 It	
 will	
 be	
 comparisons	
 of	
 results	
 from	
 this	
 XCP-­‐4	

twice	
 wrapped	
 DSD2D-­‐FLS	
 solver	
 library	
 and	
 my	
 2010,	
 DSD2D-­‐FLS	
 code	
 base	

results	
 that	
 I	
 will	
 explore	
 in	
 these	
 notes.	
 	

	

THE	
 PRESENT	

	

Late	
 during	
 the	
 summer	
 of	
 2014,	
 I	
 received	
 questions	
 from	
 Mark	
 Short,	
 LANL	
 WX-­‐9	

and	
 ASCI-­‐HE	
 program	
 lead,	
 and	
 James	
 Quirk	
 about	
 some	
 of	
 the	
 DSD	
 solutions	
 James	

was	
 seeing	
 with	
 the	
 CASH/Amrita	
 wrapped,	
 serial	
 DSD2D-­‐FLS	
 solver.	
 Before	
 we	

look	
 at	
 these	
 questions,	
 I	
 need	
 to	
 set	
 down	
 the	
 solutions	
 properties	
 that	
 we	
 expect	

to	
 see	
 coming	
 from	
 the	
 DSD2D-­‐FLS	
 solver.	
 	

	

First,	
 I	
 will	
 set	
 down	
 some	
 preliminaries.	
 For	
 problems	
 where	
 DSD	
 boundary	

conditions	
 are	
 applied,	
 the	
 convergence	
 properties	
 of	
 the	
 2010	
 code	
 base	
 DSD2D-­‐
FLS	
 generated	
 burn	
 time	
 field,	
 tb,	
 have	
 been	
 well-­‐established,	
 and	
 show	
 that	
 the	

errors	
 in	
 tb	
 diminish	
 in	
 an	
 O(dx)	
 fashion	
 as	
 the	
 mesh	
 size,	
 dx,	
 is	
 decreased.	

Importantly,	
 the	
 numerical	
 solutions	
 do	
 converge	
 to	
 the	
 solutions	
 of	
 the	
 PDEs	
 as	
 the	

mesh	
 size	
 is	
 reduced.	
 This	
 does	
 require	
 that	
 the	
 material	
 interface	
 description	
 itself	

be	
 resolvable	
 under	
 resolution.	
 A	
 detailed	
 convergence	
 study	
 was	
 presented	
 in	
 [2].	

For	
 a	
 number	
 of	
 simple	
 geometries,	
 here	
 I	
 show	
 detailed	
 comparisons	
 of	
 the	
 TOA	

(time	
 of	
 arrival	
 or	
 burn	
 table)	
 field	
 generated	
 with	
 DSD2D-­‐FLS	
 compared	
 to	
 the	

“exact”	
 TOA	
 field	
 generated	
 with	
 a	
 Maple	
 script.	
 	

	

Since	
 the	
 normal	
 detonation	
 speed,	
 dn,	
 is	
 directly	
 related	
 to	
 tb	
 through	
 the	
 relation,	

dn	
 =	
 1/abs(grad(phi)),	
 and	
 given	
 that	
 tb	
 comes	
 with	
 O(dx)	
 errors,	
 then	
 clearly	
 dn	

will	
 have	
 O(1)	
 errors.	
 To	
 have	
 a	
 situation	
 better	
 than	
 this	
 would	
 require	
 that	
 we	

have	
 an	
 algorithm	
 for	
 tb	
 with	
 errors	
 no	
 larger	
 than	
 O((dx)^2).	
 To	
 my	
 knowledge,	

there	
 are	
 no	
 such	
 DSD	
 boundary	
 algorithms	
 out	
 there	
 today.	
 In	
 addition,	
 this	
 would	

require	
 an	
 interface	
 description	
 with	
 errors	
 of	
 O((dx)^2).	
 So	
 given	
 that	
 we	
 will	
 have	

O(1)	
 errors	
 in	
 dn,	
 then	
 we	
 need	
 to	
 address	
 the	
 questions:	
 are	
 these	
 O(1)	
 errors	

0.1%,	
 1%,	
 10%,	
 100%,	
 1000%,	
 etc.,	
 where	
 are	
 these	
 errors	
 located	
 and	
 what	

properties	
 of	
 the	
 numerical	
 solution	
 algorithm	
 controls	
 these	
 errors?	
 	

	

In	
 late	
 August	
 to	
 early	
 September,	
 2014	
 I	
 received	
 some	
 results	
 and	
 questions	
 about	

the	
 solutions	
 James	
 was	
 seeing	
 for	
 detonation	
 propagation	
 in	
 an	
 explosive	
 rate	
 stick,	

when	
 he	
 solved	
 the	
 problems	
 with	
 his	
 CASH/Amrita	
 wrapped	
 version	
 of	
 DSD2D-­‐
FLS.	
 James	
 Quirk’s	
 results	
 are	
 displayed	
 in	
 Figures-­‐1),	
 and	
 the	
 problem	
 geometry	
 is	

displayed	
 in	
 Figure-­‐2).	
 I	
 believe	
 these	
 simulations	
 used	
 Dn	
 =	
 1	
 –	
 0.1*kappa	
 and	
 were	

performed	
 in	
 2D,	
 slab	
 geometry.	
 I	
 do	
 not	
 have	
 information	
 about	
 either	
 omega_s	
 or	

omega_c,	
 nor	
 for	
 any	
 of	
 the	
 numerical	
 parameters,	
 such	
 as	
 dx,	
 cfl,	
 etc.,	
 which	
 James	

used	
 in	
 his	
 simulations.	
 I’ve	
 not	
 seen	
 errors	
 in	
 dn	
 as	
 large	
 as	
 those	
 displayed	
 in	

Figure-­‐1),	
 particularly	
 on	
 the	
 upside,	
 in	
 any	
 simple	
 rate	
 stick	
 simulation	
 that	
 I’ve	

performed	
 and	
 in	
 none	
 of	
 the	
 simulations	
 I	
 report	
 on	
 here.	
 	
 	

	

	

Figure-­‐1)	
 A	
 comparison	
 of	
 the	
 normal	
 detonation	
 speed,	
 dn,	
 measured	
 along	
 the	

upper	
 horizontal	
 boundary,	
 for	
 the	
 rate	
 stick	
 geometry	
 displayed	
 in	
 Figure-­‐2.	
 The	

smooth	
 green	
 curve	
 is	
 for	
 the	
 case	
 where	
 the	
 explosive	
 boundary	
 is	
 displaced	
 from	
 a	

mesh	
 line	
 by	
 some	
 fraction	
 of	
 the	
 mesh	
 spacing,	
 dx.	
 The	
 red	
 pluses	
 are	
 from	
 a	
 DSD	

simulation	
 where	
 the	
 nominal	
 upper	
 explosive	
 boundary	
 is	
 aligned	
 with	
 a	

horizontal	
 mesh	
 line,	
 and	
 an	
 error	
 is	
 added	
 to	
 the	
 geometry	
 defining	
 function,	

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 2 4 6 8 10

D
n

(k
m

/s
)

x (cm)

How does DSD-FLS cope with a non-smooth bdy?

10^{-14} error in bdy
smooth bdy

psi(i,j).	
 The	
 errors	
 in	
 dn	
 for	
 the	
 mesh	
 aligned	
 simulation	
 can	
 be	
 greater	
 than	
 400%.	

These	
 errors	
 are	
 much	
 greater	
 than	
 anything	
 I	
 have	
 seen	
 in	
 such	
 a	
 calculation.	
 It	
 is	

my	
 understanding	
 that	
 for	
 these	
 simulations,	
 the	
 CFL	
 parameter	
 was	
 set	
 to	
 a	
 very-­‐
small	
 value.	
 The	
 above	
 results	
 come	
 from	
 a	
 simulation	
 performed	
 by	
 Quirk.	
 	

	

	

Figure-­‐2)	
 DSD	
 simulation	
 of	
 detonation	
 for	
 a	
 2D,	
 slab-­‐geometry	
 rate	
 stick.	

Detonation	
 is	
 initiated	
 at	
 t	
 =	
 0	
 along	
 a	
 vertical	
 line	
 (located	
 at	
 x	
 =	
 -­‐4)	
 and	
 then	

proceeds	
 to	
 the	
 right.	
 The	
 top-­‐to-­‐bottom	
 curved	
 lines	
 are	
 contours	
 of	
 the	
 tb-­‐field.	

The	
 color	
 palette	
 is	
 coordinated	
 with	
 the	
 values	
 of	
 dn.	
 The	
 values	
 of	
 dn	
 displayed	
 in	

Figure-­‐1)	
 are	
 measured	
 along	
 the	
 horizontal,	
 upper	
 boundary	
 of	
 the	
 explosive	

region.	
 For	
 this	
 simulation,	
 the	
 horizontal	
 explosive	
 boundaries	
 are	
 displaced	
 from	

mesh	
 lines	
 by	
 a	
 fraction	
 of	
 dx.	
 The	
 above	
 results	
 come	
 from	
 a	
 simulation	
 performed	

by	
 Quirk.	
 	

	

Given	
 the	
 lack	
 of	
 specific	
 information	
 about	
 the	
 physical/numerical	
 parameters	
 for	

this	
 rate	
 stick	
 problem,	
 I’ve	
 tried	
 to	
 guess	
 reasonable	
 parameters	
 for	
 the	
 problem	

displayed	
 in	
 Figure-­‐2)	
 and	
 then	
 reproduce	
 those	
 results.	
 My	
 2D,	
 slab	
 problem	

dimensions	
 will	
 be	
 the	
 same	
 as	
 those	
 shown	
 in	
 Figure-­‐2),	
 which	
 are	
 -­‐5	
 <=	
 x	
 <=	
 5	
 and	

-­‐2	
 <=	
 y	
 <=	
 2,	
 as	
 the	
 dimensions	
 of	
 the	
 rate	
 stick.	
 In	
 my	
 simulations,	
 I	
 nest	
 this	
 rate	

stick	
 in	
 the	
 computational	
 domain	
 -­‐6	
 <=	
 x	
 <=	
 6	
 and	
 -­‐6	
 <=	
 y	
 <=	
 6.	
 I	
 use	
 as	
 DSD	

parameters	
 dn	
 =	
 1	
 –	
 0.1*kappa,	
 dmin	
 =	
 0.1,	
 dmax	
 =	
 9.0,	
 omega_s	
 =	
 50	
 degrees	
 and	

omega_c	
 =	
 55	
 degrees	
 and	
 select	
 slab	
 geometry,	
 naxsym	
 =	
 0.	
 I	
 use	
 my	
 standard	
 set	
 of	

numerical	
 parameters,	
 cfl	
 =	
 0.9	
 and	
 run	
 with	
 re-­‐distancing	
 on,	
 where	
 the	
 re-­‐
distancing	
 parameters	
 are	
 taken	
 to	
 be	
 delta	
 =	
 0.1,	
 epsilon	
 =	
 0.1.	
 All	
 my	
 simulations	

are	
 serial	
 and	
 were	
 performed	
 on	
 a	
 Macbook	
 Pro	
 running	
 Mavericks-­‐10.9.5	
 and	

Xcode-­‐6.0.1	
 and	
 using	
 the	
 gfortran-­‐v4.8	
 compiler	
 running	
 mpif77	
 (under	
 openMPI-­‐
1.4.5)	
 with	
 vanilla	
 settings	
 and	
 no	
 optimization.	
 Two	
 mesh	
 sizes	
 were	
 used,	
 nxpts	
 =	

nypts	
 =	
 600	
 points	
 and	
 nxpts	
 =	
 nypts	
 =	
 601	
 points,	
 which	
 corresponds	
 to	
 the	
 actual	

top	
 boundary	
 along	
 the	
 mesh	
 line	
 y	
 =	
 2.00000	
 when	
 nxpts	
 =	
 nypts	
 =	
 600	
 and	
 the	

numerical	
 top	
 boundary	
 along	
 the	
 mesh	
 line	
 y	
 =	
 1.98669	
 when	
 nxpts	
 =	
 nypts	
 =	
 601.	

Displayed	
 in	
 Figure	
 3a)	
 is	
 a	
 plot	
 showing	
 dn	
 along	
 the	
 numerical	
 top	
 boundary	
 of	

the	
 rate	
 stick	
 (y	
 =	
 2.0	
 for	
 nxpts	
 =	
 nypts	
 =	
 600)	
 and	
 (y	
 =	
 1.98669	
 for	
 nxpts	
 =	
 nypts	
 =	

601).	
 Of	
 course,	
 the	
 physical	
 top	
 boundary	
 is	
 along	
 y	
 =	
 2.0.	
 NOTE:	
 Since	
 the	
 psi(i,j)=	

0.0	
 line	
 is	
 exactly	
 defined	
 in	
 my	
 standalone,	
 DSD2D-­‐FLS	
 code	
 (that	
 is,	
 to	
 within	

standard,	
 single	
 precision	
 accuracy,	
 psi(i,j)	
 =	
 0.0	
 is	
 along	
 y	
 =	
 2.0),	
 then	
 there	
 is	

effectively	
 no	
 noise	
 in	
 my	
 simple,	
 algebraically	
 defined	
 psi(i,j)=0.0	
 function	
 even	
 for	

the	
 case	
 where	
 the	
 physical	
 and	
 numerical	
 top	
 boundaries	
 are	
 coincident.	
 As	
 is	
 clear	

from	
 Figure-­‐3a),	
 the	
 two	
 curves	
 are	
 smooth,	
 noise	
 free	
 and	
 appear	
 nearly	
 identical	

in	
 the	
 “eyeball	
 norm.”	
 	

	

The	
 problem	
 geometry	
 displayed	
 in	
 Figure-­‐2)	
 is	
 sufficiently	
 simple	
 to	
 allow	
 the	
 DSD	

solution	
 to	
 be	
 found	
 by	
 solving	
 a	
 1D	
 initial-­‐value	
 problem	
 for	
 the	
 evolving	
 shock	

shape	
 as	
 a	
 function	
 of	
 the	
 y-­‐coordinate	
 and	
 time.	
 Such	
 a	
 high-­‐resolution	
 solution	
 of	
 a	

1D	
 problem,	
 developed	
 using	
 a	
 Maple	
 script,	
 can	
 essentially	
 be	
 considered	
 to	
 be	
 an	

“exact”	
 solution.	
 We	
 compare	
 this	
 “exact”	
 solution	
 (dashed	
 curves)	
 with	
 the	
 DSD2D-­‐
FLS	
 solution	
 (solid	
 curves)	
 in	
 Figures	
 3b)	
 &	
 3c),	
 where	
 the	
 TOA-­‐field	
 is	
 compared	

over	
 the	
 entire	
 HE	
 domain,	
 and	
 the	
 Dn-­‐field	
 is	
 compared	
 along	
 lines	
 of	
 constant-­‐y,	

respectively.	
 As	
 displayed	
 in	
 Figure	
 3b),	
 the	
 DSD2D-­‐FLS	
 simulated	
 TOA-­‐field	

(computed	
 at	
 0.02	
 resolution)	
 and	
 the	
 “exact”	
 Maple	
 script	
 solution	
 overlay	
 one	

another	
 very	
 well.	
 As	
 we	
 have	
 argued	
 above	
 and	
 demonstrated	
 in	
 [2],	
 the	
 DSD2D-­‐
FLS	
 algorithm	
 yields	
 a	
 solution	
 for	
 TOA	
 that	
 is	
 O(dx)	
 accurate	
 in	
 the	
 mesh	
 spacing,	

dx,	
 even	
 for	
 a	
 HE	
 interface	
 description	
 that	
 has	
 O(dx)	
 errors.	
 What	
 the	
 results	
 in	

Figure-­‐3c)	
 show	
 is	
 that	
 the	
 dn-­‐field,	
 which	
 can	
 be	
 obtained	
 from	
 dn	
 =	

1/abs(grad(phi))	
 and	
 thus	
 can	
 be	
 expected	
 to	
 have	
 O(1)	
 errors,	
 shows	
 rather	
 small	

differences	
 from	
 the	
 “exact”	
 solution.	
 As	
 shown	
 in	
 Figure	
 3a),	
 where	
 the	
 dn-­‐field	

along	
 the	
 top	
 boundary	
 of	
 the	
 rate	
 stick	
 is	
 displayed,	
 the	
 value	
 of	
 dn	
 along	
 the	

boundary	
 and	
 a	
 fraction	
 of	
 dx	
 below	
 the	
 boundary,	
 has	
 little	
 effect	
 on	
 the	
 computed	

result	
 and	
 where	
 both	
 results	
 are	
 essentially	
 noise-­‐free.	
 	

	

Figure-­‐3a)	
 dn	
 along	
 the	
 physical,	
 top	
 horizontal	
 boundary	
 of	
 the	
 rate	
 stick	
 geometry	

displayed	
 in	
 Figure-­‐2).	
 	
 The	
 red	
 curve	
 corresponds	
 to	
 dn	
 along	
 y	
 =	
 2.00000,	
 which	
 is	

the	
 top	
 boundary	
 for	
 the	
 nxpts=nypts=600	
 points	
 simulation,	
 and	
 the	
 blue	
 curve	

corresponds	
 to	
 dn	
 along	
 y	
 =	
 1.98669,	
 which	
 is	
 the	
 top	
 numerical	
 boundary	
 for	
 the	

DSD2D-­‐FLS	
 simulation	
 when	
 nxpts=nypts=601	
 points	
 are	
 used.	
 	
 The	
 initiating	
 wave	

enters	
 at	
 x	
 =	
 -­‐4,	
 and	
 the	
 detonation	
 exits	
 the	
 rate	
 stick	
 at	
 x	
 =	
 5.	
 The	
 value	
 of	
 dntable	

is	
 computed	
 using	
 the	
 curvature	
 of	
 the	
 level-­‐set	
 function.	
 The	
 background	
 value	
 of	

dn	
 stored	
 in	
 dntable	
 is	
 1.0,	
 and	
 so	
 that	
 value	
 is	
 to	
 be	
 ignored.	
 The	
 value	
 of	
 dn	
 =	
 0.1	
 at	

x	
 =	
 -­‐4	
 is	
 expected,	
 while	
 the	
 undershoot	
 and	
 overshoot	
 of	
 dn	
 at	
 x	
 =	
 5	
 is	
 an	
 artifact	
 of	

the	
 handover	
 of	
 control	
 of	
 the	
 boundary	
 condition	
 from	
 a	
 horizontal,	
 to	
 a	
 diagonal	

and	
 then	
 to	
 a	
 vertical	
 ghost	
 node	
 in	
 the	
 corner	
 of	
 the	
 explosive	
 domain.	
 This	
 artifact	

is	
 commonly	
 observed	
 in	
 corner	
 regions.	
 Importantly,	
 these	
 solutions	
 are	
 noise	
 free	

and	
 smooth.	
 	

	

Figure-­‐3b)	
 My	
 DSD2D-­‐FLS	
 calculation	
 of	
 the	
 rate	
 stick	
 TOA-­‐field	
 for	
 the	
 problem	

displayed	
 in	
 Figure-­‐2),	
 and	
 where	
 nx	
 =	
 ny	
 =	
 600.	
 The	
 DSD2D-­‐FLS	
 integrated	
 solution	

curves	
 are	
 shown	
 as	
 solid,	
 while	
 the	
 “exact”	
 Maple	
 script	
 generated	
 solution	
 curves	

are	
 shown	
 as	
 dashed.	
 The	
 solutions	
 obtained	
 with	
 the	
 two	
 methods	
 essentially	

overlay.	
 In	
 this	
 simulation,	
 the	
 upper	
 and	
 lower	
 boundaries	
 of	
 the	
 rate	
 stick	
 lie	
 along	

mesh	
 lines.	
 	

	

Figure-­‐3c)	
 My	
 DSD2D-­‐FLS	
 solution	
 for	
 the	
 dn-­‐field	
 (dntable),	
 using	
 the	
 curvature	
 of	

the	
 level-­‐set	
 function,	
 phi(i,j),	
 to	
 compute	
 dn,	
 	
 are	
 shown	
 as	
 the	
 solid	
 curves.	
 These	

are	
 compared	
 with	
 the	
 “exact”	
 Maple	
 script	
 generated	
 solution,	
 shown	
 as	
 dashed	

curves.	
 The	
 value	
 of	
 dn	
 are	
 displayed	
 along	
 five	
 lines,	
 which	
 are	
 displaced	
 by	
 a	

constant	
 distant,	
 y=	
 1.95	
 (lowest	
 curve),	
 1.90,	
 1.80,	
 1.60	
 and	
 1.40,	
 from	
 the	

centerline	
 of	
 the	
 rate	
 stick	
 (y	
 =	
 0),	
 for	
 the	
 problem	
 shown	
 in	
 Figure-­‐2).	
 The	

agreement	
 is	
 good,	
 with	
 the	
 differences	
 between	
 the	
 DSD2D-­‐FLS	
 solution	
 and	
 the	

“exact”	
 solution	
 being	
 attributable	
 to	
 finite	
 resolution	
 effects	
 in	
 the	
 DSD2D-­‐FLS	

solutions.	
 The	
 dynamics	
 of	
 the	
 detonation	
 are	
 substantially	
 different	
 near	
 the	
 upper	

and	
 lower	
 boundaries	
 than	
 near	
 the	
 centerline	
 of	
 the	
 rate	
 stick.	
 	

Next,	
 I	
 study	
 multiple	
 cases	
 including	
 those	
 where	
 the	
 psi(i,j)	
 function	
 defining	
 the	

explosive	
 interface	
 and	
 distance	
 to	
 the	
 interface	
 is	
 exact	
 and	
 those	
 where	
 noise	
 is	

added	
 to	
 the	
 psi(i,j)	
 distance	
 function	
 which	
 defines	
 the	
 HE	
 boundary	
 geometry.	
 	

	

HOW	
 NOISE	
 ADDED	
 TO	
 PSI(i,j)	
 AFFECTS	
 THE	
 COMPUTED	
 DN(i,j)-­‐FIELD	
 	
 	

	

To	
 both	
 replicate	
 and	
 better	
 understand	
 the	
 behavior	
 displayed	
 in	
 Figure-­‐1)	
 and	

Figure-­‐2),	
 I	
 performed	
 a	
 number	
 of	
 simulations	
 where	
 controlled	
 noise	
 was	
 added	

to	
 the	
 exact	
 psi(i,j)	
 function	
 that	
 defines	
 the	
 rate	
 stick	
 geometry	
 displayed	
 in	
 Figure-­‐
2).	
 The	
 noise	
 I	
 added	
 had	
 a	
 sinusoidal	
 distribution	
 and	
 was	
 of	
 the	
 form	
 	

	

(1)	
 A*sin(f*(i+j))	
 ,	
 	

	

and	
 was	
 added	
 to	
 the	
 exact	
 psi(i,j)	
 function,	
 to	
 get	
 	

	

(2)	
 psi(i,j)	
 =	
 psi(i,j)	
 +	
 A*sin(f*(i+j))	
 .	
 	

	

I	
 ran	
 cases	
 where	
 the	
 frequency	
 factor,	
 f,	
 had	
 the	
 values	
 of	
 f	
 =	
 0.1	
 and	
 0.2,	
 and	
 the	

amplitudes	
 were	
 A	
 =	
 1.0e-­‐3,	
 1.0e-­‐4,	
 1.0e-­‐6	
 and	
 1.0e-­‐7.	
 Since	
 the	
 goal	
 was	
 not	
 only	
 to	

understand	
 how	
 the	
 noise	
 in	
 the	
 psi(i,j)	
 function	
 affects	
 the	
 location	
 of	
 psi(i,j)	
 =	
 0.0	

and	
 how	
 that	
 passes	
 into	
 the	
 simulated	
 results	
 but	
 also	
 to	
 find	
 a	
 way	
 of	
 filtering	
 the	

noise,	
 I	
 setup	
 the	
 noise	
 filter	
 (displayed	
 below	
 for	
 the	
 cutoff	
 of	
 1.0e-­‐7)	
 for	
 smearing	

the	
 location	
 of	
 psi(i,j)	
 =	
 0.0	
 to	
 a	
 band	
 where	
 psi(i,j)	
 is	
 zero,	
 thus	
 reducing	
 the	

sensitivity	
 of	
 the	
 simulation	
 to	
 noise	
 in	
 psi(i,j).	
 	

	

FILTER	
 ADDED	
 TO	
 2010	
 DSD2D-­‐FLS	
 driver.f,	
 AFTER	
 THE	
 CALL	
 TO	
 setpsi.f	
 	

###	

	

c	
 Set	
 psi(i,j)	
 =	
 0	
 if(
 abs(psi(i,j)).le.1.0e-­‐7	
)	
 psi(i,j)	
 =	
 0.0	

	

	
 	
 	
 	
 	
 	
 do	
 i	
 =	
 -­‐2,nxpts+2	

	
 	
 	
 	
 	
 	
 	
 x	
 =	
 xmin	
 +	
 (xmax-­‐xmin)*real(i)/real(nxpts)	

	
 	
 	
 	
 	
 	
 	
 do	
 j	
 =	
 -­‐2,nypts+2	

	
 	
 	
 	
 	
 	
 	
 	
 y	
 =	
 ymin	
 +	
 (ymax-­‐ymin)*real(j)/real(nypts)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 if(
 (abs(psi(i,j)).le.1.0e-­‐7)	
)	
 psi(i,j)	
 =	
 0.0	

	
 	
 	
 	
 	
 	
 	
 enddo	

	
 	
 	
 	
 	
 	
 enddo	

	

##	

	

To	
 put	
 the	
 results	
 on	
 sensitivity	
 to	
 noise	
 in	
 the	
 psi(i,j)	
 function	
 into	
 some	

perspective,	
 I	
 first	
 describe	
 how	
 explosive	
 boundaries	
 are	
 defined	
 in	
 DSD2D-­‐FLS.	

Explosive	
 boundaries	
 are	
 defined	
 similarly	
 to	
 how	
 material	
 boundaries	
 are	
 defined	

in	
 fixed,	
 Eulerian-­‐grid,	
 high-­‐speed	
 flow	
 solvers	
 that	
 use	
 the	
 Cartesian/immersed	

boundary	
 method	
 to	
 deal	
 with	
 material	
 interfaces.	
 Displayed	
 in	
 Figure-­‐4)	
 is	
 a	

Cartesian	
 grid	
 on	
 which	
 one	
 (interior)	
 explosive	
 region	
 is	
 shown,	
 psi(i,j)	
 <=	
 0.0,	
 and	

two	
 (exterior)	
 ghost	
 node	
 regions,	
 psi(i,j)	
 >	
 0.0	
 are	
 shown.	
 The	
 near-­‐boundary	

points	
 in	
 the	
 ghost	
 node	
 regions	
 are	
 used	
 to	
 set	
 the	
 DSD	
 boundary	
 conditions.	
 	

	

	

	

Figure-­‐4)	
 The	
 Eulerian	
 grid	
 used	
 in	
 DSD2D-­‐FLS	
 simulations	
 is	
 displayed,	
 showing	

the	
 explosive	
 (HE)	
 region,	
 psi(i,j)	
 <=	
 0.0,	
 and	
 the	
 ghost	
 node	
 regions,	
 psi(i,j)	
 >	
 0.0,	

which	
 are	
 used	
 to	
 set	
 the	
 DSD	
 boundary	
 conditions.	
 A	
 four-­‐point	
 central-­‐difference	

stencil	
 is	
 used	
 to	
 compute	
 gradients	
 of	
 both	
 psi(i,j),	
 the	
 distance	
 function	
 to	
 the	

explosive	
 boundary,	
 and	
 phi(i,j),	
 the	
 level-­‐set	
 function	
 in	
 which	
 the	
 propagating	

detonation	
 front	
 is	
 embedded.	
 The	
 DSD	
 front	
 curvature	
 is	
 computed	
 with	
 a	
 nine-­‐
point	
 stencil	
 involving	
 phi(i,j)	
 and	
 centered	
 at	
 (i,j).	
 The	
 heavy	
 circular	
 line	
 in	
 the	

upper	
 right	
 hand	
 side	
 of	
 the	
 figure	
 and	
 the	
 heavy	
 vertical	
 line	
 breaking	
 into	
 a	
 zigzag	

line	
 represent	
 the	
 HE	
 interfaces,	
 psi(i,j)	
 =	
 0.0,	
 where	
 the	
 zigzag	
 section	
 is	
 meant	
 to	

represent	
 the	
 effect	
 of	
 numerical	
 noise	
 on	
 the	
 definition	
 of	
 an	
 HE	
 interface	
 that	
 is	

coincident	
 with	
 a	
 mesh	
 line.	
 The	
 two	
 dashed	
 vertical	
 lines	
 denote	
 the	
 expanded	

region	
 where	
 psi(i,j)	
 =	
 0.0,	
 which	
 is	
 how	
 I	
 propose	
 to	
 eliminate	
 the	
 effect	
 of	

numerical	
 noise	
 on	
 mesh-­‐line	
 coincident	
 HE	
 interfaces.	
 	

	

In	
 our	
 first-­‐order	
 (in	
 the	
 mesh	
 spacing,	
 dx)	
 boundary	
 treatment,	
 there	
 is	
 no	
 sub-­‐cell	

resolution	
 of	
 the	
 HE	
 material	
 interface.	
 Thus,	
 points	
 with	
 psi(i,j)	
 <=	
 0.0	
 are	

considered	
 to	
 be	
 in	
 the	
 HE,	
 and	
 points	
 with	
 psi(i,j)	
 >	
 0.0	
 are	
 considered	
 as	
 outside	

the	
 HE	
 and	
 are	
 ghost	
 node	
 points.	
 For	
 the	
 HE	
 boundary	
 represented	
 by	
 the	
 section	

of	
 a	
 circular	
 arc	
 in	
 the	
 upper	
 right	
 hand	
 side	
 of	
 Figure-­‐4),	
 noise	
 added	
 to	
 the	
 circular	

boundary	
 would	
 not	
 represent	
 any	
 particular	
 problem,	
 since	
 the	
 definition	
 of	
 the	

circle	
 in	
 DSD2D-­‐FLS	
 lacks	
 sub-­‐cell	
 resolution	
 and	
 thus	
 comes	
 with	
 an	
 O(dx)	

uncertainty	
 in	
 the	
 definition	
 of	
 the	
 boundary.	
 With	
 a	
 noise-­‐free	
 psi(i,j)	

representation	
 of	
 the	
 boundary,	
 the	
 circular	
 arc	
 would	
 occasionally	
 pass	
 very	
 near,	

but	
 to	
 either	
 side	
 of	
 the	
 boundary.	
 So	
 occasionally,	
 an	
 (i,j)-­‐point	
 would	
 be	
 just	
 inside	

or	
 outside	
 the	
 real	
 HE	
 material	
 boundary,	
 which	
 would	
 lead	
 to	
 O(dx)	
 noise	
 in	
 the	
 HE	

material	
 interface.	
 Such	
 exceptional	
 points	
 represent	
 no	
 particular	
 problem,	
 and	

adding	
 a	
 low-­‐level	
 noise	
 to	
 the	
 psi(i,j)	
 function	
 will	
 have	
 very	
 little	
 overall	
 effect	
 on	

how	
 DSD2D-­‐FLS	
 interprets	
 the	
 circular	
 boundary.	
 	
 However,	
 for	
 the	
 case	
 shown	
 in	

Figure-­‐4)	
 where	
 a	
 vertical	
 HE	
 interface	
 is	
 aligned	
 with	
 a	
 mesh	
 line,	
 adding	
 noise	

(which	
 is	
 schematically	
 represented	
 by	
 the	
 zigzag	
 section	
 trailing	
 off	
 downwards)	

would	
 have	
 a	
 significant	
 effect.	
 This	
 would	
 produce	
 an	
 HE	
 interface	
 with	
 a	
 zigzag	

shape	
 on	
 the	
 O(dx)	
 mesh	
 scale	
 and	
 not	
 the	
 actual	
 smooth	
 vertical	
 HE	
 boundary.	
 This	

roughened	
 interface	
 could	
 then	
 affect	
 the	
 DSD	
 simulation	
 results.	
 This	
 issue	
 would	

only	
 arise	
 in	
 the	
 circumstance	
 when	
 either	
 a	
 truly	
 vertical	
 or	
 horizontal	
 HE	

boundary	
 was	
 coincident	
 with	
 a	
 mesh	
 line.	
 	

	

In	
 the	
 next	
 few	
 figures,	
 I	
 display	
 some	
 of	
 my	
 results	
 for	
 James	
 Quirk’s	
 rate	
 stick	

problem	
 displayed	
 in	
 Figure-­‐2),	
 where	
 I	
 purposely	
 add	
 noise	
 to	
 the	
 psi(i,j)	
 function	

defining	
 this	
 rate	
 stick.	
 For	
 these	
 examples,	
 I	
 use	
 the	
 nxpts=nypts=600	
 mesh	
 with	
 a	

noisy	
 psi(i,j)	
 function	
 given	
 by	
 	

	

(3)	
 psi(i,j)	
 =	
 psi(i,j)	
 +	
 1.0e-­‐7*sin(0.2*(i+j))	
 .	
 	

	

Here	
 I’m	
 adding	
 a	
 very	
 small	
 amplitude	
 noise	
 to	
 psi(i,j).	
 The	
 advantage	
 of	
 this	
 noise	

function	
 is	
 that	
 the	
 noise	
 only	
 occasionally	
 moves	
 the	
 interface	
 so	
 that	
 a	
 mesh	
 point	

moves	
 from	
 the	
 HE	
 to	
 the	
 ghost	
 node	
 regions.	
 Displayed	
 in	
 Figure-­‐5a)	
 is	
 a	

comparison	
 of	
 the	
 DSD2D-­‐FLS	
 simulated	
 TOA-­‐field	
 with	
 the	
 “exact”	
 Maple	
 script	

generated	
 solution.	
 Comparing	
 the	
 HE	
 boundary	
 displayed	
 in	
 Figure-­‐5a)	
 with	
 the	
 HE	

boundary	
 in	
 Figure-­‐3b),	
 reveals	
 the	
 O(dx)	
 noise	
 we	
 are	
 seeing	
 in	
 the	
 DSD2D-­‐FLS	

boundary	
 location.	
 The	
 slight	
 oscillation	
 on	
 the	
 boundary	
 location	
 has	
 essentially	
 no	

effect	
 on	
 the	
 comparison	
 of	
 the	
 DSD2D-­‐FLS	
 TOA-­‐field	
 with	
 the	
 “exact”	
 TOA-­‐field.	
 	

	

Displayed	
 in	
 Figure-­‐5b)	
 are	
 the	
 DSD2D-­‐FLS	
 computed	
 values	
 of	
 dn	
 along	
 y	
 =	
 2.0	

(red)	
 and	
 y	
 =	
 1.98	
 (blue).	
 The	
 plotted	
 points	
 correspond	
 to	
 the	
 simulation	
 where	
 the	

psi(i,j)-­‐function	
 has	
 added	
 noise,	
 according	
 to	
 Eq.	
 (3).	
 The	
 solid	
 curves	
 correspond	

to	
 the	
 results	
 from	
 the	
 noise-­‐free	
 simulation.	
 The	
 noise	
 in	
 dn	
 is	
 substantial,	
 although	

considerably	
 less	
 than	
 what	
 Quirk’s	
 results,	
 displayed	
 in	
 Figure-­‐1),	
 show.	
 The	
 dn	

values	
 from	
 the	
 simulation	
 containing	
 noise	
 in	
 psi(i,j),	
 mostly	
 cluster	
 around	
 the	

curves	
 for	
 the	
 noise-­‐free	
 simulations.	
 The	
 plateaus	
 consisting	
 of	
 points	
 (and	

displayed	
 in	
 red)	
 correspond	
 to	
 the	
 default	
 value	
 of	
 dn	
 that	
 is	
 initialized	
 into	
 the	

ghost-­‐node	
 region.	
 	
 Shown	
 in	
 Figure-­‐5c)	
 is	
 dn,	
 computed	
 with	
 DSD2D-­‐FLS	
 for	
 the	

noise	
 containing	
 psi(i,j)-­‐field	
 simulations,	
 compared	
 with	
 the	
 “exact”	
 solutions	
 for	

the	
 noise-­‐free	
 problem,	
 in	
 both	
 cases	
 displayed	
 along	
 lines	
 of	
 constant-­‐y	
 as	
 in	

Figure-­‐3c).	
 What	
 these	
 results	
 show	
 is	
 that	
 the	
 noise	
 in	
 dn	
 at	
 the	
 HE	
 boundary	
 can	

be	
 substantial	
 (although	
 much	
 less	
 than	
 that	
 displayed	
 if	
 Figure-­‐1)),	
 but	
 that	
 the	

noise	
 in	
 dn	
 decreases	
 in	
 amplitude	
 the	
 further	
 one	
 moves	
 into	
 the	
 HE	
 region.	
 	

	

Figure-­‐5a)	
 My	
 DSD2D-­‐FLS	
 calculation	
 of	
 the	
 rate	
 stick	
 TOA-­‐field	
 for	
 the	
 problem	

displayed	
 in	
 Figure-­‐2),	
 where	
 nx	
 =	
 ny	
 =	
 600,	
 and	
 with	
 noise	
 added	
 to	
 psi(i,j)	
 as	

described	
 by	
 Eq.	
 (3).	
 This	
 noise	
 leads	
 to	
 the	
 slight	
 oscillation	
 that	
 is	
 visible	
 in	
 the	
 HE	

boundary.	
 The	
 DSD2D-­‐FLS	
 integrated	
 solution	
 curves	
 are	
 shown	
 as	
 solid	
 curves,	

while	
 the	
 “exact”	
 Maple	
 script	
 generated	
 solution	
 curves	
 are	
 shown	
 as	
 dashed	

curves.	
 The	
 solutions	
 obtained	
 with	
 the	
 two	
 methods	
 essentially	
 overlay.	
 No	
 noise	
 is	

apparent	
 in	
 the	
 DSD2D-­‐FLS	
 computed	
 TOA-­‐field,	
 which	
 is	
 the	
 expected	
 result.	
 	

	

Figure-­‐5b)	
 My	
 DSD2D-­‐FLS	
 calculation	
 of	
 the	
 rate	
 stick	
 dn-­‐field	
 (dntable),	
 using	
 the	

curvature	
 of	
 the	
 level-­‐set	
 function,	
 phi(i,j),	
 to	
 compute	
 dn.	
 The	
 data	
 displayed	
 in	
 red	

corresponds	
 to	
 dn	
 along	
 y	
 =	
 2.00000,	
 which	
 is	
 the	
 top	
 boundary	
 for	
 the	
 nx=ny=600	

points	
 simulation.	
 The	
 points	
 are	
 from	
 the	
 DSD2D-­‐FLS	
 simulation	
 with	
 noise,	
 while	

the	
 solid	
 line	
 comes	
 from	
 the	
 simulation	
 without	
 noise	
 added	
 to	
 psi(i,j).	
 The	
 data	

displayed	
 in	
 blue	
 corresponds	
 to	
 dn	
 along	
 y	
 =	
 1.98,	
 which	
 is	
 at	
 a	
 distance	
 of	
 dx	
 into	

the	
 HE,	
 again	
 with	
 and	
 without	
 noise.	
 	
 The	
 problem	
 geometry	
 is	
 that	
 displayed	
 in	

Figure-­‐2),	
 where	
 nx	
 =	
 ny	
 =	
 600,	
 and	
 with	
 noise	
 added	
 to	
 psi(i,j)	
 as	
 described	
 by	
 Eq.	

(3).	
 Substantial	
 noise	
 is	
 evident.	
 The	
 dn	
 =	
 1.0	
 plateaus	
 correspond	
 to	
 the	

background	
 value	
 in	
 the	
 ghost-­‐node	
 region.	
 	

	

	

Figure-­‐5c)	
 My	
 DSD2D-­‐FLS	
 solution	
 for	
 the	
 dn-­‐field	
 (dntable)	
 for	
 the	
 case	
 when	
 the	

noise	
 described	
 in	
 Eq.	
 (3)	
 is	
 added	
 to	
 psi(i,j).	
 	
 Substantial	
 noise	
 is	
 now	
 visible	
 in	
 the	

dn-­‐field,	
 displayed	
 as	
 the	
 solid	
 curves.	
 These	
 are	
 compared	
 with	
 the	
 “exact”	
 Maple	

script	
 generated	
 solution,	
 shown	
 as	
 dashed	
 curves.	
 The	
 values	
 of	
 dn	
 are	
 displayed	

along	
 five	
 lines,	
 which	
 are	
 displaced	
 by	
 a	
 constant	
 distant,	
 y=	
 1.95	
 (red,	
 lowest	

curve),	
 1.90	
 (blue),	
 1.80	
 (green),	
 1.60	
 (light	
 blue)	
 and	
 1.40	
 (light	
 red),	
 from	
 the	

centerline	
 of	
 the	
 rate	
 stick	
 (y	
 =	
 0),	
 for	
 the	
 problem	
 shown	
 in	
 Figure-­‐2).	
 This	
 noise	
 in	

the	
 dn-­‐field	
 is	
 seen	
 to	
 diminish	
 as	
 one	
 moves	
 into	
 the	
 explosive,	
 and	
 away	
 from	
 the	

boundaries.	
 	

	

Summarizing,	
 we	
 find	
 that	
 noise	
 in	
 the	
 description	
 of	
 the	
 HE	
 boundary	
 coming	
 from	

the	
 psi(i,j)-­‐function	
 has	
 little	
 affect	
 on	
 the	
 computed	
 TOA-­‐field	
 (tb-­‐field)	
 near	
 the	

boundary	
 but	
 has	
 a	
 substantial	
 affect	
 on	
 the	
 dn-­‐field	
 near	
 the	
 boundary.	
 This	
 result	

was	
 anticipated,	
 given	
 that	
 dn	
 =	
 1/abs(grad(TOA(i,j)))	
 and	
 knowing	
 that	
 TOA(i,j)	
 is	

first-­‐order	
 accurate	
 in	
 the	
 mesh	
 spacing,	
 dx.	
 That	
 is	
 what	
 my	
 testing,	
 some	
 of	
 which	

is	
 described	
 above,	
 shows.	
 Testing	
 also	
 shows	
 that	
 the	
 noise	
 observed	
 in	
 the	
 results	

does	
 not	
 depend	
 strongly	
 on	
 the	
 level	
 of	
 noise	
 in	
 the	
 geometry	
 describing,	
 psi(i,j)-­‐
function.	
 Since	
 DSD2D-­‐FLS	
 sees	
 the	
 HE	
 boundary	
 as	
 the	
 collection	
 of	
 interior	
 HE	

nodes	
 that	
 are	
 closest	
 to	
 psi(i,j)	
 =	
 0,	
 then	
 the	
 HE	
 boundary	
 will	
 appear	
 as	
 a	
 zigzag	

boundary,	
 on	
 the	
 O(dx)	
 scale,	
 due	
 to	
 small	
 variations	
 in	
 the	
 location	
 of	
 psi(i,j)	
 =	
 0.	

Thus,	
 a	
 low-­‐level	
 of	
 noise	
 in	
 psi(i,j)	
 =	
 0	
 can	
 lead	
 to	
 O(dx)	
 scale	
 variations	
 in	
 the	

boundary,	
 which	
 in	
 turn	
 will	
 lead	
 to	
 the	
 detonation	
 front	
 being	
 sequentially	

accelerated	
 and	
 decelerated	
 as	
 the	
 front	
 interacts	
 with	
 what	
 it	
 sees	
 as	
 a	
 zigzag	

boundary.	
 This	
 is	
 displayed	
 in	
 Figure-­‐5d)	
 below.	
 Such	
 artificial	
 variations	
 in	
 the	
 HE	

boundary	
 shape	
 are	
 what	
 DSD2D-­‐FLS	
 sees	
 as	
 the	
 HE	
 boundary.	
 Thus,	
 one	
 might	

consider	
 how	
 such	
 O(dx),	
 artificial	
 variations	
 in	
 the	
 boundary	
 might	
 be	
 smoothed.	
 	

	

	

Figure-­‐5d)	
 Noise	
 in	
 psi(i,j)	
 =	
 0,	
 and	
 also	
 a	
 slowly	
 changing	
 HE	
 boundary,	
 can	

generate	
 a	
 rough	
 HE	
 boundary	
 within	
 the	
 DSD2D-­‐FLS	
 solver,	
 as	
 the	
 boundary	

weaves	
 between	
 HE	
 nodes	
 (displayed	
 as	
 purple	
 squares)	
 and	
 ghost	
 nodes	

(displayed	
 as	
 open	
 circles).	
 	
 In	
 the	
 vicinity	
 of	
 #1,	
 this	
 can	
 lead	
 to	
 4-­‐points	
 in	
 the	
 9-­‐
point	
 curvature	
 stencil	
 being	
 ghost	
 nodes,	
 which	
 can	
 lead	
 to	
 dn	
 being	
 poorly	

calculated	
 near	
 such	
 a	
 point	
 on	
 the	
 HE	
 boundary.	
 	

	

Given	
 that	
 near	
 such	
 a	
 zigzag	
 boundary	
 the	
 9-­‐point	
 curvature	
 stencil	
 can	
 require	
 4-­‐
points	
 from	
 the	
 ghost	
 node	
 region,	
 and	
 given	
 that	
 the	
 ghost	
 nodes	
 are	
 populated	

mostly	
 such	
 that	
 the	
 DSD	
 angle	
 boundary	
 condition	
 is	
 satisfied,	
 then	
 we	
 might	

consider	
 how	
 to	
 make	
 the	
 curvature	
 calculation	
 near	
 the	
 boundary	
 less	
 dependent	

on	
 ghost	
 node	
 values.	
 In	
 the	
 next	
 section	
 we	
 consider	
 how	
 to	
 reduce	
 the	
 sensitivity	

of	
 the	
 curvature	
 calculation	
 near	
 the	
 boundary	
 to	
 ghost	
 node	
 values.	
 To	
 do	
 this,	
 we	

utilize	
 the	
 fact	
 that	
 in	
 our	
 boundary	
 treatment,	
 we	
 have	
 considered	
 that	
 the	
 phi(i,j)	

function	
 can	
 be	
 assumed	
 to	
 be	
 locally	
 planar	
 near	
 the	
 boundary.	
 	

	

NEW	
 WORK:	
 THE	
 REDUCTION	
 OF	
 NOISE	
 IN	
 THE	
 DN	
 FIELD	
 NEAR	
 BOUNDARIES	
 	

	

Over	
 the	
 years,	
 the	
 “customer”	
 base	
 has	
 reported	
 that	
 the	
 computed	
 dn	
 fields	
 were	

noisy	
 near	
 the	
 boundaries	
 of	
 the	
 explosive.	
 This	
 was	
 never	
 directly	
 reported	
 to	
 me	

until	
 recently,	
 when	
 Mark	
 Short	
 brought	
 this	
 to	
 my	
 attention.	
 Now,	
 as	
 I	
 explained	
 at	

the	
 beginning	
 of	
 these	
 notes,	
 the	
 method	
 I	
 have	
 is	
 first-­‐order	
 in	
 the	
 mesh	
 spacing,	

dx,	
 for	
 the	
 burn	
 time	
 field,	
 tb(i,j)	
 (the	
 TOA(i,j)	
 field).	
 	
 Given	
 that	
 information	
 and	

given	
 that	
 dn	
 =	
 1/abs(grad(tb)),	
 then	
 it	
 follows	
 that	
 order	
 one	
 errors	
 can	
 be	

expected	
 in	
 the	
 computed	
 dn(i,j)	
 field.	
 Now,	
 in	
 applying	
 the	
 DSD	
 boundary	

conditions,	
 we	
 use	
 a	
 layer	
 of	
 first-­‐nearest	
 neighbor	
 ghost	
 nodes	
 to	
 apply	
 the	
 DSD	

angle	
 boundary	
 conditions.	
 The	
 DSD	
 front	
 curvature	
 involves	
 second	
 derivatives	
 of	

the	
 level-­‐set	
 function,	
 which	
 in	
 turn	
 requires	
 data	
 from	
 a	
 nine-­‐point	
 stencil.	
 Near	
 the	

boundary,	
 this	
 nine-­‐point	
 stencil	
 can	
 require	
 not	
 only	
 data	
 from	
 first-­‐nearest	

neighbor	
 ghost	
 nodes	
 but	
 also	
 from	
 second-­‐nearest	
 neighbor	
 ghost	
 nodes.	
 To	
 help	

alleviate	
 the	
 noise	
 in	
 dn(i,j)	
 near	
 the	
 explosive	
 boundaries,	
 I	
 recently	
 changed	
 my	

method	
 for	
 populating	
 these	
 second-­‐nearest	
 neighbor	
 ghost	
 nodes.	
 To	
 maintain	

consistency	
 with	
 the	
 assumption	
 that	
 as	
 far	
 as	
 applying	
 DSD	
 boundary	
 conditions	
 is	

concerned,	
 the	
 level-­‐set	
 function	
 is	
 assumed	
 to	
 be	
 planar	
 near	
 the	
 boundary,	
 I’ve	

replaced	
 my	
 extrapolation	
 method	
 for	
 populating	
 second-­‐nearest	
 neighbor	
 ghost	

nodes	
 with	
 simple	
 linear	
 extrapolation.	
 Expressed	
 in	
 DSD2D-­‐FLS	
 notation,	
 	
 	

	

(4)	
 phi(i,j)	
 =	
 -­‐p2	
 +	
 2.*p1	
 .	
 	

	

This	
 set	
 of	
 consistent	
 assumptions	
 then	
 brings	
 with	
 it	
 a	
 reduced	
 dependency	
 of	
 the	

curvature	
 of	
 the	
 level-­‐set	
 function,	
 phi(i,j),	
 on	
 second-­‐nearest	
 neighbor	
 ghost	
 nodes,	

leading	
 to	
 the	
 cross	
 second	
 derivative	
 being	
 identically	
 zero	
 	
 	

	

(5)	
 phixy(i,j)	
 =	
 [phi(i+1,j+1)	
 +	
 phi(i-­‐1,j-­‐1)	
 –	
 phi(i-­‐1,j+1)	
 –	
 phi(i+1,j+1)]/4*dx*dy	
 ,	
 	

	
 	
 	
 	
 	
 	
 	
 phixy(i,j)	
 =	
 0.0	
 .	
 	

	

Thus,	
 the	
 values	
 of	
 the	
 second-­‐nearest	
 ghost	
 nodes	
 neither	
 enter	
 the	
 curvature	

calculation	
 nor	
 the	
 dn(i,j)	
 calculation	
 near	
 the	
 boundary.	
 Changes	
 are	
 required	
 in	

the	
 DSD2D-­‐FLS	
 subroutines	
 ibextra.f	
 and	
 ibupdate.f	
 at	
 the	
 point	
 where	
 the	
 second-­‐
nearest	
 neighbor	
 ghost	
 nodes	
 are	
 populated.	
 	
 Those	
 one-­‐line	
 changes	
 are	
 detailed	

immediately	
 below.	
 	
 	

	

##	
 	

	

c	
 	
 	
 	
 	
 	
 	
 phi(i,j)	
 =	
 p2	
 -­‐	
 2.*dxl*(di*phix	
 +dj*phiy)	

	

c	
 Let	
 the	
 second	
 derivative	
 along	
 the	
 given	
 45-­‐degree	
 	

c	
 line	
 be	
 zero,	
 thus	
 staying	
 with	
 the	
 planarity	
 of	
 phi	
 	

c	
 locally.	
 It	
 is	
 important	
 to	
 note	
 that	
 doing	
 this	
 keeps	
 	

c	
 the	
 IB2	
 nodes	
 from	
 entering	
 into	
 the	
 curvature	
 calculation.	
 	

c	
 This	
 is	
 consistent	
 with	
 what	
 re-­‐distancing	
 does	
 in	
 	

c	
 the	
 interior	
 regions.	
 So	
 here	
 we	
 are	
 assuming	
 that	
 	

c	
 re-­‐distancing	
 is	
 on,	
 with	
 linear	
 extrapolation	
 then	
 	

c	
 being	
 the	
 consistent	
 thing	
 to	
 do.	
 Even	
 with	
 re-­‐distancing	
 	

c	
 off,	
 performing	
 linear	
 extrapolation	
 keeps	
 the	
 IB2	
 nodes	
 	

c	
 from	
 entering	
 into	
 the	
 curvature	
 calculation	
 near	
 the	
 	

c	
 HE	
 boundaries.	
 	
 	

	

	
 	
 	
 	
 	
 	
 	
 phi(i,j)	
 =	
 -­‐p2	
 +	
 2.*p1	

	

##	
 	

	

From	
 this	
 point	
 forward	
 in	
 these	
 notes,	
 I	
 will	
 use	
 these	
 modified	
 ibextra.f	
 and	

ibupdate.f	
 subroutines	
 in	
 the	
 DSD2D-­‐FLS	
 simulations	
 that	
 I	
 report	
 on.	
 [NOTE:	
 I	
 also	

will	
 be	
 using	
 the	
 change	
 to	
 driver.f	
 that	
 implements	
 the	
 noise-­‐reduction	
 strategy	

reported	
 earlier	
 in	
 these	
 notes.]	
 	

	

Here	
 I	
 return	
 to	
 the	
 Quirk	
 rate	
 stick,	
 displayed	
 in	
 Figure-­‐2)	
 and	
 for	
 which	
 my	

DSD2D-­‐FLS	
 results	
 are	
 shown	
 in	
 Figures-­‐3)	
 and	
 Figures-­‐5a)-­‐5c),	
 and	
 repeat	
 the	

DSD2D-­‐FLS	
 simulations	
 so	
 as	
 to	
 include	
 the	
 changes	
 detailed	
 directly	
 above	
 for	

populating	
 ghost	
 nodes.	
 For	
 these	
 simulations	
 (and	
 these	
 simulations	
 only),	
 I	
 will	

not	
 be	
 applying	
 the	
 noise	
 filtering	
 that	
 is	
 now	
 a	
 part	
 of	
 driver.f,	
 and	
 the	
 psi(i,j)	

function	
 will	
 contain	
 noise	
 as	
 given	
 by	
 Eq.	
 (3).	
 	

	

As	
 expected,	
 the	
 TOA-­‐field,	
 displayed	
 in	
 Figure-­‐6a),	
 appears	
 unchanged	
 when	

compared	
 with	
 Figure-­‐5a)	
 and	
 shows	
 good	
 agreement	
 with	
 the	
 “exact”	
 Maple	
 script	

solution.	
 Displayed	
 in	
 Figure-­‐6b)	
 are	
 the	
 DSD2D-­‐FLS	
 computed	
 values	
 of	
 dn	
 along	
 y	

=	
 2.0	
 (red)	
 and	
 y	
 =	
 1.98	
 (blue).	
 Again,	
 the	
 plotted	
 points	
 correspond	
 to	
 the	

simulation	
 where	
 the	
 psi(i,j)-­‐function	
 has	
 added	
 noise,	
 according	
 to	
 Eq.	
 (3).	
 The	

solid	
 curves	
 correspond	
 to	
 the	
 results	
 from	
 the	
 noise-­‐free	
 simulation.	
 The	
 noise	
 in	

dn	
 is	
 roughly	
 half	
 of	
 that	
 observed	
 in	
 Figure-­‐5b).	
 The	
 dn	
 values	
 from	
 the	
 simulation	

containing	
 noise	
 in	
 psi(i,j),	
 mostly	
 cluster	
 around	
 the	
 curves	
 for	
 the	
 noise-­‐free	

simulations.	
 Again,	
 the	
 plateaus	
 consisting	
 of	
 points	
 (and	
 displayed	
 in	
 red)	

correspond	
 to	
 the	
 default	
 value	
 of	
 dn	
 that	
 is	
 initialized	
 into	
 the	
 ghost-­‐node	
 region.	
 	

Shown	
 in	
 Figure-­‐6c)	
 is	
 dn,	
 computed	
 with	
 DSD2D-­‐FLS	
 for	
 the	
 noise	
 containing	

psi(i,j)-­‐field	
 simulations,	
 compare	
 with	
 the	
 “exact”	
 solutions	
 for	
 the	
 noise-­‐free	

problem,	
 in	
 both	
 cases	
 displayed	
 along	
 lines	
 of	
 constant-­‐y	
 as	
 in	
 Figure-­‐3c).	
 What	

these	
 results	
 show	
 is	
 that	
 the	
 noise	
 in	
 dn	
 is	
 roughly	
 half	
 of	
 what	
 is	
 observed	
 in	

Figure-­‐5c),	
 and	
 where	
 again	
 the	
 noise	
 is	
 seen	
 to	
 decrease	
 as	
 one	
 moves	
 further	
 into	

the	
 HE	
 region.	
 	

	

	

Figure-­‐6a)	
 My	
 DSD2D-­‐FLS	
 calculation	
 of	
 the	
 rate	
 stick	
 TOA-­‐field	
 for	
 the	
 problem	

displayed	
 in	
 Figure-­‐2),	
 where	
 nx	
 =	
 ny	
 =	
 600,	
 and	
 with	
 noise	
 added	
 to	
 psi(i,j)	
 as	

described	
 by	
 Eq.	
 (3).	
 This	
 noise	
 leads	
 to	
 the	
 slight	
 oscillation	
 that	
 is	
 visible	
 in	
 the	
 HE	

boundary.	
 The	
 DSD2D-­‐FLS	
 integrated	
 solution	
 curves	
 are	
 shown	
 as	
 solid,	
 while	
 the	

“exact”	
 Maple	
 script	
 generated	
 solution	
 curves	
 are	
 shown	
 as	
 dashed.	
 The	
 solutions	

obtained	
 with	
 the	
 two	
 methods	
 essentially	
 overlay.	
 As	
 before,	
 no	
 noise	
 is	
 apparent	

in	
 the	
 DSD2D-­‐FLS	
 computed	
 TOA-­‐field,	
 which	
 is	
 the	
 expected	
 result	
 and	
 which	
 is	

similar	
 to	
 what	
 is	
 displayed	
 in	
 Figure-­‐5a).	
 	

	

	

Figure-­‐6b)	
 My	
 DSD2D-­‐FLS	
 calculation	
 of	
 the	
 rate	
 stick	
 dn-­‐field	
 (dntable),	
 using	
 the	

curvature	
 of	
 the	
 level-­‐set	
 function,	
 phi(i,j),	
 to	
 compute	
 dn.	
 The	
 data	
 displayed	
 in	
 red	

corresponds	
 to	
 dn	
 along	
 y	
 =	
 2.00000,	
 which	
 is	
 the	
 top	
 boundary	
 for	
 the	
 nx=ny=600	

points	
 simulation.	
 The	
 points	
 are	
 from	
 the	
 DSD2D-­‐FLS	
 simulation	
 with	
 noise,	
 while	

the	
 solid	
 line	
 comes	
 from	
 the	
 simulation	
 without	
 noise	
 added	
 to	
 psi(i,j).	
 The	
 data	

displayed	
 in	
 blue	
 corresponds	
 to	
 dn	
 along	
 y	
 =	
 1.98,	
 which	
 is	
 at	
 a	
 distance	
 of	
 dx	
 into	

the	
 HE,	
 again	
 with	
 and	
 without	
 noise.	
 	
 The	
 problem	
 geometry	
 is	
 that	
 displayed	
 in	

Figure-­‐2),	
 where	
 nx	
 =	
 ny	
 =	
 600,	
 and	
 with	
 noise	
 added	
 to	
 psi(i,j)	
 as	
 described	
 by	
 Eq.	

(3).	
 The	
 noise	
 in	
 Dn	
 is	
 reduced	
 substantially	
 from	
 what	
 is	
 displayed	
 in	
 Figure	
 5b).	

Again,	
 the	
 dn	
 =	
 1.0	
 plateaus	
 correspond	
 to	
 the	
 background	
 value	
 in	
 the	
 ghost-­‐node	

region.	
 	

	

	

	

Figure-­‐6c)	
 My	
 DSD2D-­‐FLS	
 solution	
 for	
 the	
 dn-­‐field	
 (dntable)	
 for	
 the	
 case	
 when	
 the	

noise	
 described	
 in	
 Eq.	
 (3)	
 is	
 added	
 to	
 psi(i,j).	
 	
 Although	
 substantial	
 noise	
 is	
 still	

evident	
 in	
 the	
 dn-­‐field,	
 displayed	
 as	
 the	
 solid	
 curves,	
 it	
 is	
 roughly	
 cut	
 in	
 half	
 from	

what	
 is	
 displayed	
 in	
 Figure-­‐5c).	
 As	
 before,	
 these	
 are	
 compared	
 with	
 the	
 “exact”	

Maple	
 script	
 generated	
 solution,	
 shown	
 as	
 dashed	
 curves.	
 The	
 values	
 of	
 dn	
 are	

displayed	
 along	
 five	
 lines,	
 which	
 are	
 displaced	
 by	
 a	
 constant	
 distant,	
 y=	
 1.95	
 (red,	

lowest	
 curve),	
 1.90	
 (blue),	
 1.80	
 (green),	
 1.60	
 (light	
 blue)	
 and	
 1.40	
 (light	
 red),	
 from	

the	
 centerline	
 of	
 the	
 rate	
 stick	
 (y	
 =	
 0),	
 for	
 the	
 problem	
 shown	
 in	
 Figure-­‐2).	
 Again,	

this	
 noise	
 in	
 the	
 dn-­‐field	
 is	
 seen	
 to	
 diminish	
 as	
 one	
 moves	
 into	
 the	
 explosive,	
 and	

away	
 from	
 the	
 boundaries.	
 	

	

COMPUTING	
 DN	
 FROM	
 1/abs(grad(toa))	
 USING	
 SMOOTHING	
 STENCILS	
 	

	

The	
 values	
 I’ve	
 displayed	
 for	
 the	
 dn-­‐field	
 (dntable)	
 were	
 obtained	
 directly	
 from	
 the	

curvature	
 of	
 the	
 level-­‐set	
 function,	
 phi(i,j),	
 that	
 is,	
 dn	
 =	
 1	
 –	
 alpha*kappa,	
 where	

kappa	
 =	
 div(grad(phi)/abs(grad(phi))).	
 Once	
 the	
 TOA-­‐field	
 (tb-­‐field)	
 is	
 obtained	

over	
 the	
 entire	
 solution	
 space,	
 dn	
 can	
 also	
 be	
 obtained	
 in	
 a	
 post-­‐processing	
 step	

through	
 the	
 gradient	
 of	
 the	
 tb-­‐field,	
 dn	
 =	
 1/abs(grad(tb)).	
 Here	
 I	
 consider	
 how	

higher-­‐order,	
 smoothing	
 stencils	
 for	
 derivatives	
 can	
 be	
 applied	
 to	
 the	
 tb-­‐field	
 to	

obtain	
 another	
 rendition	
 of	
 the	
 dn-­‐field,	
 referred	
 to	
 as	
 dn_tb_ho,	
 that	
 is	
 less	
 noisy	

near	
 the	
 HE	
 boundaries.	
 My	
 results	
 show	
 that	
 dntable	
 and	
 dn_tb_ho	
 are	
 essentially	

coincident	
 in	
 regions	
 away	
 from	
 the	
 HE	
 boundaries.	
 	
 As	
 part	
 of	
 my	
 study,	
 I	

considered	
 a	
 variety	
 of	
 different	
 post-­‐processing	
 strategies,	
 most	
 of	
 which	
 can	
 be	

found	
 coded	
 in	
 driver.f.	
 Here	
 I	
 focus	
 on	
 using	
 higher-­‐order	
 stencils	
 for	
 computing	

derivatives,	
 using	
 one-­‐sided	
 versions	
 of	
 those	
 stencils	
 near	
 boundaries.	
 Displayed	

below	
 is	
 the	
 driver.f	
 code	
 section	
 that	
 I	
 use	
 to	
 compute	
 dn_tb_ho.	
 	

	

###	

c	
 direct	
 evaluation	
 of	
 dn	
 from	
 gradient	
 of	
 tb	
 field,	
 using	
 higher-­‐order	
 	

c	
 smoothing	
 difference	
 formulas	
 from	
 Pavel	
 Holoborodko	

	

	
 	
 	
 	
 	
 	
 	
 	
 tbx	
 =	
 (2.*(tb(i+1,j)-­‐tb(i-­‐1,j))+tb(i+2,j)-­‐tb(i-­‐2,j))/(8.*dx)	

	
 	
 	
 	
 	
 	
 	
 	
 if(
 (tb(i+1,j).eq.-­‐100.0).or.(tb(i+2,j).eq.-­‐100.0)	
)	
 then	

c	
 	
 	
 	
 	
 	
 	
 	
 	
 tbx	
 =	
 (3.*tb(i,j)-­‐	
 4.*tb(i-­‐1,j)+tb(i-­‐2,j))/(2.*dx)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 tbx	
 =	
 (tb(i,j)+tb(i-­‐1,j)-­‐tb(i-­‐2,j)-­‐tb(i-­‐3,j))/(4.*dx)	

	
 	
 	
 	
 	
 	
 	
 	
 endif	

	
 	
 	
 	
 	
 	
 	
 	
 if(
 (tb(i-­‐1,j).eq.-­‐100.0).or.(tb(i-­‐2,j).eq.-­‐100.0)	
)	
 then	

c	
 	
 	
 	
 	
 	
 	
 	
 	
 tbx	
 =	
 (3.*tb(i,j)-­‐	
 4.*tb(i+1,j)+tb(i+2,j))/(2.*dx)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 tbx	
 =	
 (tb(i,j)+tb(i+1,j)-­‐tb(i+2,j)-­‐tb(i+3,j))/(4.*dx)	

	
 	
 	
 	
 	
 	
 	
 	
 endif	

	
 	
 	
 	
 	
 	
 	
 	
 tby	
 =	
 (2.*(tb(i,j+1)-­‐tb(i,j-­‐1))+tb(i,j+2)-­‐tb(i,j-­‐2))/(8.*dx)	

	
 	
 	
 	
 	
 	
 	
 	
 if(
 (tb(i,j+1).eq.-­‐100.0).or.(tb(i,j+2).eq.-­‐100.0)	
)	
 then	

c	
 	
 	
 	
 	
 	
 	
 	
 	
 tby	
 =	
 (3.*tb(i,j)-­‐	
 4.*tb(i,j-­‐1)+tb(i,j-­‐2))/(2.*dx)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 tby	
 =	
 (tb(i,j)+tb(i,j-­‐1)-­‐tb(i,j-­‐2)-­‐tb(i,j-­‐3))/(4.*dx)	

	
 	
 	
 	
 	
 	
 	
 	
 endif	

	
 	
 	
 	
 	
 	
 	
 	
 if(
 (tb(i,j-­‐1).eq.-­‐100.0).or.(tb(i,j-­‐2).eq.-­‐100.0)	
)	
 then	

c	
 	
 	
 	
 	
 	
 	
 	
 	
 tby	
 =	
 (3.*tb(i,j)-­‐	
 4.*tb(i,j+1)+tb(i,j+2))/(2.*dx)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 tby	
 =	
 (tb(i,j)+tb(i,j+1)-­‐tb(i,j+2)-­‐tb(i,j+3))/(4.*dx)	

	
 	
 	
 	
 	
 	
 	
 	
 endif	

	
 	
 	
 	
 	
 	
 	
 	
 dn_tb_ho(i,j)	
 =	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 &	

	
 	
 	
 	
 	
 &	
 	
 	
 max(dmin,min(dmax,1./sqrt(tbx**2+tby**2+zeps2)))	

	

###	
 	

	

Displayed	
 below	
 in	
 Figures	
 6d)	
 &	
 6e)	
 are	
 the	
 dn_tb_ho	
 results	
 for	
 dn	
 corresponding	

to	
 what	
 is	
 displayed	
 for	
 dntable	
 in	
 Figures	
 6b)	
 &	
 6c).	
 What	
 the	
 comparison	
 shows	
 is	

that	
 the	
 noise	
 near	
 the	
 HE	
 boundaries	
 is	
 further	
 reduced	
 by	
 applying	
 the	
 smoothing	

stencils	
 to	
 compute	
 dn	
 (i.e.,	
 dn_tb_ho)	
 from	
 the	
 tb-­‐field,	
 which	
 itself	
 uses	
 the	

modifications	
 to	
 the	
 procedure	
 for	
 populating	
 ghost	
 nodes	
 that	
 I’ve	
 described.	
 	

	

In	
 the	
 next	
 section	
 of	
 this	
 report,	
 I	
 go	
 on	
 to	
 consider	
 other	
 problem	
 geometries,	

using	
 all	
 the	
 improvements	
 I’ve	
 detailed	
 above	
 to	
 compute	
 the	
 dn-­‐field.	
 In	
 all	
 the	

examples	
 that	
 are	
 to	
 follow,	
 I	
 do	
 not	
 add	
 noise	
 to	
 the	
 HE	
 boundary	
 definition,	
 psi(i,j).	

Roughness	
 now	
 enters	
 what	
 DSD2D-­‐FLS	
 sees	
 as	
 the	
 HE	
 boundary	
 due	
 to	
 the	
 fact	

that	
 the	
 HE	
 boundary	
 crosses	
 the	
 mesh	
 either	
 obliquely	
 to	
 the	
 mesh	
 or	
 as	
 a	
 circular	

boundary,	
 as	
 displayed	
 in	
 the	
 upper	
 right	
 hand	
 side	
 of	
 Figure-­‐4).	
 	

	

	

Figure-­‐6d)	
 My	
 DSD2D-­‐FLS	
 calculation	
 of	
 the	
 rate	
 stick	
 dn-­‐field	
 (dn_tb_ho),	
 using	
 the	

smoothing	
 stencils	
 on	
 tb(i,j)=TOA(i,j)	
 to	
 compute	
 dn.	
 The	
 data	
 displayed	
 in	
 red	

corresponds	
 to	
 dn	
 along	
 y	
 =	
 2.00000,	
 which	
 is	
 the	
 top	
 boundary	
 for	
 the	
 nx=ny=600	

points	
 simulation.	
 The	
 points	
 are	
 from	
 the	
 DSD2D-­‐FLS	
 simulation	
 with	
 noise,	
 while	

the	
 solid	
 line	
 comes	
 from	
 the	
 simulation	
 without	
 noise	
 added	
 to	
 psi(i,j).	
 The	
 data	

displayed	
 in	
 blue	
 corresponds	
 to	
 dn	
 along	
 y	
 =	
 1.98,	
 which	
 is	
 at	
 a	
 distance	
 of	
 dx	
 into	

the	
 HE,	
 again	
 with	
 and	
 without	
 noise.	
 	
 The	
 problem	
 geometry	
 is	
 that	
 displayed	
 in	

Figure-­‐2),	
 where	
 nx	
 =	
 ny	
 =	
 600,	
 and	
 with	
 noise	
 added	
 to	
 psi(i,j)	
 as	
 described	
 by	
 Eq.	

(3).	
 The	
 noise	
 in	
 Dn	
 is	
 reduced	
 once	
 again,	
 now	
 from	
 what	
 is	
 already	
 the	
 reduced	

noise	
 displayed	
 in	
 Figure	
 6b).	
 Again,	
 the	
 dn	
 =	
 1.0	
 plateaus	
 correspond	
 to	
 the	

background	
 value	
 in	
 the	
 ghost-­‐node	
 region.	
 	

	

	

	

Figure-­‐6e)	
 My	
 DSD2D-­‐FLS	
 solution	
 for	
 the	
 dn-­‐field	
 (dn_tb_ho)	
 for	
 the	
 case	
 when	
 the	

noise	
 described	
 in	
 Eq.	
 (3)	
 is	
 added	
 to	
 psi(i,j).	
 	
 Although	
 noise	
 is	
 still	
 evident	
 in	
 the	

dn-­‐field,	
 displayed	
 as	
 the	
 solid	
 curves,	
 it	
 is	
 reduced	
 again	
 from	
 what	
 is	
 displayed	
 in	

Figure-­‐6c).	
 As	
 before,	
 these	
 are	
 compared	
 with	
 the	
 “exact”	
 Maple	
 script	
 generated	

solution,	
 shown	
 as	
 dashed	
 curves.	
 The	
 value	
 of	
 dn	
 are	
 displayed	
 along	
 five	
 lines,	

which	
 are	
 displaced	
 by	
 a	
 constant	
 distant,	
 y=	
 1.95	
 (red,	
 lowest	
 curve),	
 1.90	
 (blue),	

1.80	
 (green),	
 1.60	
 (light	
 blue)	
 and	
 1.40	
 (light	
 red),	
 from	
 the	
 centerline	
 of	
 the	
 rate	

stick	
 (y	
 =	
 0),	
 for	
 the	
 problem	
 shown	
 in	
 Figure-­‐2).	
 Again,	
 this	
 noise	
 in	
 the	
 dn-­‐field	
 is	

seen	
 to	
 diminish	
 as	
 one	
 moves	
 into	
 the	
 explosive,	
 away	
 from	
 the	
 boundaries.	
 	

	

PROBLEMS	
 WITH	
 HE	
 BOUNDARIES	
 OBLIQUE	
 TO	
 MESH:	
 DSD2D-­‐FLS	
 SOLUTIONS	
 	
 	

	

All	
 the	
 solutions	
 we	
 display	
 in	
 this	
 and	
 the	
 following	
 sections	
 use	
 the	
 modifications	

I’ve	
 described	
 that	
 have	
 been	
 made	
 to	
 driver.f,	
 ibextra.f	
 and	
 ibupdate.f.	
 No	
 noise	
 is	

explicitly	
 added	
 to	
 the	
 geometry	
 definition	
 function,	
 psi(i,j).	
 The	
 roughness	
 that	

DSD2D-­‐FLS	
 sees	
 in	
 the	
 boundary	
 results	
 from	
 the	
 physical	
 HE	
 boundary	

crosscutting	
 over	
 the	
 mesh	
 lines/points	
 used	
 in	
 the	
 DSD2D-­‐FLS	
 solution.	
 	

	

To	
 serve	
 as	
 a	
 further	
 validation	
 of	
 the	
 above,	
 simple	
 procedure	
 for	
 reducing	
 the	

near-­‐boundary	
 noise	
 in	
 the	
 dn-­‐field,	
 I	
 next	
 show	
 the	
 results	
 for	
 a	
 rate	
 stick	
 that	

makes	
 an	
 angle	
 of	
 30-­‐degrees	
 with	
 the	
 direction	
 of	
 the	
 vertical	
 mesh	
 lines.	
 Figure-­‐
7a)	
 shows	
 a	
 sub-­‐region	
 of	
 the	
 computational	
 mesh	
 (for	
 a	
 problem	
 with	
 coarse	
 to	

moderate	
 resolution)	
 superimposed	
 on	
 which	
 is	
 the	
 psi	
 =	
 0.0	
 line	
 describing	
 the	
 HE	

boundary.	
 The	
 purple-­‐shaded	
 squares	
 are	
 the	
 interior	
 HE	
 region	
 points	
 that	
 are	

closest	
 to	
 the	
 boundary.	
 DSD2D-­‐FLS	
 sees	
 the	
 boundary	
 through	
 these	
 points.	
 Little	

to	
 no	
 symmetry	
 exists	
 between	
 the	
 mesh	
 and	
 the	
 HE	
 boundary,	
 although	
 there	
 is	
 a	

long	
 wavelength	
 repeat	
 pattern.	
 This	
 example,	
 where	
 the	
 boundary	
 crosscuts	
 the	

mesh,	
 is	
 the	
 typical	
 way	
 in	
 which	
 noise	
 is	
 introduced	
 into	
 the	
 dn(i,j)-­‐field	
 near	
 HE	

boundaries	
 in	
 a	
 DSD2D-­‐FLS	
 simulation.	
 	

	

I	
 solve	
 this	
 problem	
 using	
 the	
 same	
 DSD	
 parameters	
 that	
 I	
 set	
 down	
 earlier	

(omega_s	
 =	
 50	
 degrees,	
 omega_c	
 =	
 55	
 degrees,	
 dmin	
 =	
 0.1,	
 dmax	
 =	
 9.0,	
 cfl	
 =	
 0.9	
 and	

re-­‐distancing	
 on).	
 The	
 resolution	
 used	
 for	
 this	
 example	
 is	
 nxpts	
 =	
 nypts	
 =	
 1408.	
 The	

results	
 displayed	
 in	
 Figures	
 7b)-­‐7d)	
 show	
 the	
 tb(i,j)	
 and	
 dn(i,j)	
 fields	
 from	
 both	

dntable	
 and	
 dn_tb_ho.	
 Although	
 the	
 dn(i,j)-­‐field	
 formally	
 can	
 have	
 O(1)	
 errors,	
 one	

finds	
 the	
 field	
 is	
 smooth	
 and	
 relatively	
 noise	
 free,	
 even	
 near	
 the	
 boundaries.	
 As	

before,	
 the	
 tb(i,j)-­‐field	
 has	
 O(dx)	
 errors,	
 which	
 vanish	
 under	
 mesh	
 resolution.	
 As	

displayed	
 in	
 Figure-­‐7b),	
 the	
 DSD2D-­‐FLS	
 tb(i,j)-­‐field	
 and	
 the	
 “exact”	
 Maple	
 script	

solution	
 are	
 coincident.	
 Figures	
 7c)	
 &	
 7d)	
 show	
 that	
 the	
 noise,	
 at	
 comparable	

fractional	
 radii	
 to	
 those	
 consider	
 for	
 the	
 noise-­‐peppered	
 Quirk	
 rate	
 stick,	
 is	
 smaller	

than	
 what	
 we	
 saw	
 for	
 the	
 Quirk	
 rate	
 stick.	
 Some	
 part	
 of	
 this	
 reduction	
 is	
 due	
 to	
 the	

higher	
 mesh	
 resolution	
 used	
 in	
 this	
 run.	
 It	
 should	
 be	
 noted,	
 and	
 I	
 do	
 so	
 here,	
 that	
 the	

near-­‐boundary	
 noise	
 we	
 observe	
 is	
 confined	
 to	
 a	
 narrower	
 and	
 narrower	
 region	
 in	

physical	
 space	
 as	
 the	
 resolution	
 is	
 increased.	
 	

	

Generally,	
 the	
 noise	
 imparted	
 to	
 the	
 near-­‐boundary	
 dn(i,j)-­‐fields	
 by	
 the	
 the	
 psi	
 =	
 0	

line	
 crosscutting	
 the	
 mesh	
 is	
 more	
 random	
 and	
 appears	
 to	
 be	
 smaller	
 in	
 magnitude	

(at	
 least	
 for	
 the	
 dn_tb_ho	
 field)	
 than	
 what	
 we	
 saw	
 for	
 the	
 Quirk	
 rate	
 stick,	
 where	

noise	
 was	
 purposely	
 added	
 to	
 the	
 psi(i,j)-­‐field.	
 My	
 next	
 example	
 problem	
 considers	

detonation	
 propagation	
 in	
 an	
 arc	
 of	
 explosive.	
 	

	

	

Figure-­‐7a)	
 A	
 highly	
 expanded	
 view	
 of	
 the	
 mesh	
 and	
 psi	
 =	
 0.0	
 line	
 for	
 the	
 30-­‐degree	

rate	
 stick	
 problem	
 example.	
 The	
 HE	
 region	
 is	
 above	
 and	
 to	
 the	
 left	
 of	
 the	
 psi	
 =	
 0.0	

line.	
 The	
 solid-­‐purple	
 squares,	
 which	
 make	
 a	
 zigzag	
 pattern,	
 denote	
 the	
 interior	
 HE	

points	
 closest	
 to	
 the	
 boundary.	
 These	
 points	
 are	
 how	
 DSD2D-­‐FLS	
 sees	
 the	
 HE	

boundary.	
 	

	

	

Figure-­‐7b)	
 My	
 DSD2D-­‐FLS	
 calculation	
 of	
 the	
 TOA-­‐field	
 for	
 the	
 30-­‐degree	
 rate	
 stick	

problem.	
 This	
 figure	
 also	
 serves	
 to	
 define	
 the	
 problem	
 geometry.	
 Here,	
 nxpts	
 =	
 nypts	

=	
 1408.	
 The	
 DSD2D-­‐FLS	
 integrated	
 solution	
 curves	
 are	
 shown	
 as	
 solid,	
 while	
 the	

“exact”	
 Maple	
 script	
 generated	
 solution	
 curves	
 are	
 shown	
 as	
 dashed.	
 The	
 solutions	

obtained	
 with	
 the	
 two	
 methods	
 essentially	
 overlay.	
 As	
 before,	
 no	
 noise	
 is	
 apparent	

in	
 the	
 DSD2D-­‐FLS	
 computed	
 TOA-­‐field,	
 which	
 is	
 the	
 expected	
 result.	
 I	
 note	
 that	

whatever	
 noise	
 is	
 generated	
 in	
 the	
 DSD2D-­‐FLS	
 solution	
 is	
 due	
 to	
 the	
 crosscutting	
 of	

the	
 HE	
 boundary	
 across	
 the	
 mesh,	
 as	
 displayed	
 in	
 Figure-­‐7a).	
 	

	

	

Figure-­‐7c)	
 My	
 DSD2D-­‐FLS	
 solution	
 for	
 the	
 dn-­‐field	
 (dntable)	
 for	
 the	
 30-­‐degree	
 rate	

stick	
 problem.	
 	
 The	
 noise	
 in	
 dntable	
 for	
 the	
 outer-­‐most	
 radius	
 is	
 comparable	
 to	
 that	

displayed	
 in	
 Figure-­‐6c).	
 As	
 before,	
 these	
 are	
 compared	
 with	
 the	
 “exact”	
 Maple	
 script	

generated	
 solution,	
 shown	
 as	
 dashed	
 curves.	
 The	
 values	
 of	
 dn	
 are	
 displayed	
 along	

five	
 lines,	
 which	
 are	
 displaced	
 by	
 a	
 constant	
 radial	
 distant,	
 r=	
 1.975r	
 (red,	
 lowest	

curve),	
 1.95r	
 (blue),	
 1.90r	
 (green),	
 1.80r	
 (light	
 blue)	
 and	
 1.70r	
 (light	
 red),	
 from	
 the	

centerline	
 of	
 the	
 rate	
 stick	
 (r	
 =	
 0).	
 Again,	
 this	
 noise	
 in	
 the	
 dn-­‐field	
 is	
 seen	
 to	
 diminish	

as	
 one	
 moves	
 into	
 the	
 explosive,	
 and	
 away	
 from	
 the	
 boundaries.	
 	

	

	

Figure-­‐7d)	
 My	
 DSD2D-­‐FLS	
 solution	
 for	
 the	
 dn-­‐field	
 (dn_tb_ho)	
 for	
 the	
 30-­‐degree	

rate	
 stick	
 problem.	
 	
 The	
 noise	
 in	
 dn_tb_ho	
 for	
 the	
 outer-­‐most	
 radius	
 is	
 reduced	
 to	

that	
 displayed	
 in	
 both	
 Figure-­‐6d)	
 and	
 Figure-­‐7c).	
 As	
 before,	
 these	
 are	
 compared	

with	
 the	
 “exact”	
 Maple	
 script	
 generated	
 solution,	
 shown	
 as	
 dashed	
 curves.	
 The	

values	
 of	
 dn	
 are	
 displayed	
 along	
 five	
 lines,	
 which	
 are	
 displaced	
 by	
 a	
 constant	
 radial	

distant,	
 r=	
 1.975r	
 (red,	
 lowest	
 curve),	
 1.95r	
 (blue),	
 1.90r	
 (green),	
 1.80r	
 (light	
 blue)	

and	
 1.70r	
 (light	
 red),	
 from	
 the	
 centerline	
 of	
 the	
 rate	
 stick	
 (r	
 =	
 0).	
 Again,	
 this	
 noise	
 in	

the	
 dn-­‐field	
 is	
 seen	
 to	
 diminish	
 as	
 one	
 moves	
 into	
 the	
 explosive,	
 and	
 away	
 from	
 the	

boundaries.	
 	

	

DSD2D-­‐FLS	
 SIMULATIONS	
 OF	
 DETONATION	
 IN	
 AN	
 ARC	
 OF	
 EXPLOSIVE	
 	

	

As	
 part	
 of	
 the	
 ASC-­‐PEM-­‐HE	
 Program	
 FY14	
 project	
 management	
 review	
 of	
 progress	

on	
 their	
 L2	
 Milestone,	
 James	
 Quirk	
 presented	
 a	
 DSD	
 simulation,	
 performed	
 with	
 the	

August	
 2014	
 version	
 of	
 his	
 CASH/Amrita	
 wrapped	
 2010-­‐code	
 base	
 DSD2D-­‐FLS	

solver,	
 for	
 the	
 problem	
 of	
 detonation	
 in	
 a	
 180-­‐degree	
 arc	
 of	
 explosive.	
 The	
 results	

from	
 his	
 simulation	
 are	
 displayed	
 in	
 Figure-­‐8a).	
 These	
 results	
 do	
 not	
 show	
 any	

obvious	
 problems	
 or	
 inconsistencies.	
 	

	

Lacking	
 information	
 on	
 any	
 V&V	
 that	
 was	
 performed	
 on	
 the	
 CASH/Amrita	
 wrapped	

2010-­‐code	
 base	
 DSD2D-­‐FLS	
 solver,	
 here	
 I’ll	
 present	
 results	
 for	
 a	
 270	
 degree	

explosive	
 arc	
 that	
 has	
 the	
 same	
 inner	
 and	
 outer	
 radii,	
 r_inner	
 =	
 2.0	
 and	
 r_outer	
 =	
 4.0,	

as	
 those	
 shown	
 in	
 Figure-­‐8a).	
 All	
 my	
 results	
 were	
 generated	
 with	
 the	
 DSD	

parameters	
 I	
 listed	
 earlier	
 for	
 the	
 Dn	
 law	
 and	
 for	
 dmin	
 and	
 dmax.	
 Although,	
 I’ve	

done	
 a	
 resolution	
 study	
 of	
 my	
 results,	
 here	
 I’ll	
 present	
 a	
 cross	
 section	
 of	
 my	
 results	

for	
 nxpts=nypts=704.	
 	

	

Figure-­‐8a)	
 A	
 DSD	
 simulation,	
 performed	
 using	
 the	
 CASH/Amrita	
 wrapped	
 2010-­‐
code	
 base	
 DSD2D-­‐FLS	
 solver,	
 of	
 detonation	
 in	
 a	
 180-­‐degree	
 arc	
 of	
 explosive	
 as	

discussed	
 in	
 LA-­‐14277.	
 The	
 fixed	
 boundary	
 condition	
 (omega_c	
 =	
 90	
 degrees)	
 is	

applied	
 on	
 the	
 outside	
 of	
 the	
 arc,	
 and	
 the	
 free	
 boundary	
 condition	
 (omega_c	
 =	

omega_s)	
 is	
 applied	
 on	
 the	
 inside	
 of	
 the	
 arc.	
 Contours	
 of	
 the	
 tb(i,j)-­‐field	
 are	

displayed	
 over	
 a	
 color	
 palette	
 plot	
 of	
 the	
 dn(i,j)-­‐field.	
 Localized	
 large	
 departures	
 of	

dn(i,j)	
 values	
 off	
 of	
 the	
 mean	
 would	
 not	
 be	
 noticeable	
 in	
 such	
 a	
 plot.	
 Although	
 most	

details	
 of	
 the	
 DSD	
 parameters	
 used	
 in	
 this	
 simulation	
 are	
 not	
 know	
 to	
 me,	
 Mark	

Short	
 did	
 reveal	
 that	
 the	
 CFL	
 parameter	
 was	
 set	
 at	
 a	
 very	
 low	
 value,	
 perhaps	
 with	

CFL	
 =	
 0.09.	
 This	
 indicates	
 that	
 there	
 is	
 some	
 degree	
 of	
 stiffness	
 to	
 the	
 problem,	

which	
 is	
 due	
 to	
 either	
 the	
 problem	
 not	
 being	
 temporally	
 or	
 spatially	
 resolved,	
 and	

raises	
 questions	
 about	
 the	
 quality	
 of	
 these	
 results	
 and/or	
 the	
 implementation.	
 	

	

In	
 my	
 simulations	
 of	
 the	
 arc	
 problem,	
 I	
 extend	
 the	
 arc	
 by	
 90	
 degrees	
 to	
 a	
 270-­‐degree	

arc	
 and	
 consider	
 a	
 wide	
 range	
 of	
 values	
 for	
 omega_s	
 and	
 omega_c	
 (for	
 the	
 results	
 for	

wide-­‐ranging	
 values	
 of	
 omega_s	
 and	
 omega_c,	
 the	
 reader	
 should	
 consult	
 an	

Appendix).	
 To	
 display	
 these	
 results	
 in	
 a	
 more	
 quantitative	
 manner,	
 I	
 plot	
 contours	
 of	

the	
 tb(i,j)-­‐field	
 as	
 before	
 and	
 plot	
 the	
 dn(i,j)-­‐field	
 along	
 curves	
 of	
 constant	
 radius,	
 r.	

As	
 will	
 become	
 apparent,	
 the	
 dn(i,j)	
 fields	
 show	
 noise	
 near	
 the	
 inner	
 boundary	
 of	

the	
 arc	
 with	
 the	
 noise	
 diminishing	
 as	
 one	
 moves	
 further	
 into	
 the	
 arc.	
 My	
 results	

appear	
 in	
 the	
 few	
 figures	
 that	
 follow,	
 and	
 where	
 the	
 values	
 of	
 omega_s	
 =	
 50-­‐degrees	

and	
 omega_c	
 	
 =	
 55-­‐degrees	
 are	
 used.	
 NOTE:	
 In	
 my	
 standalone	
 DSD2D-­‐FLS	
 research	

code,	
 omega_s	
 and	
 omega_c	
 have	
 the	
 same	
 values	
 on	
 all	
 boundaries	
 of	
 the	
 explosive	

region.	
 I	
 use	
 my	
 standalone	
 DSD2D-­‐FLS	
 code	
 which	
 I	
 used	
 for	
 the	
 30-­‐degree	
 rate	

stick	
 problem	
 discussed	
 in	
 the	
 previous	
 section.	
 I	
 display	
 only	
 the	
 dn_tb_ho	
 field	
 for	

the	
 dn(i,j)-­‐field	
 from	
 this	
 point	
 forward.	
 	

	

As	
 before,	
 I	
 compare	
 the	
 DSD2D-­‐FLS	
 solution	
 of	
 the	
 270-­‐degree	
 arc	
 problem	
 with	

the	
 “exact”	
 solution	
 generated	
 with	
 a	
 Maple	
 script.	
 The	
 solution	
 developed	
 with	
 the	

Maple	
 script	
 solves	
 the	
 front	
 propagation	
 problem.	
 That	
 is,	
 first	
 the	
 PDE	
 for	
 the	

detonation-­‐front	
 normal	
 angle,	
 phi(r,t),	
 is	
 solved	
 as	
 a	
 function	
 of	
 the	
 radial	

coordinate,	
 r,	
 and	
 time,	
 t,	
 with	
 a	
 high-­‐resolution,	
 error	
 controlled	
 PDE	
 solver	

available	
 in	
 Maple.	
 Then	
 in	
 a	
 second	
 step,	
 the	
 motion	
 of	
 the	
 front	
 over	
 a	
 Cartesian	

grid	
 is	
 solved	
 for	
 with	
 an	
 ODE	
 solver.	
 Displayed	
 in	
 Figure-­‐9a)	
 is	
 a	
 comparison	
 of	
 the	

DSD2D-­‐FLS	
 simulation	
 of	
 the	
 TOA(i,j)-­‐field	
 for	
 the	
 case	
 omega_s	
 =	
 50-­‐degree,	
 omega	

=	
 55-­‐degrees	
 and	
 run	
 at	
 nxpts	
 =	
 nypts	
 =	
 1408	
 points,	
 with	
 the	
 “exact”	
 solution	
 of	
 the	

problem.	
 The	
 agreement	
 of	
 the	
 DSD2D-­‐FLS	
 TOA-­‐field	
 solution	
 with	
 the	
 “exact”	

Maple	
 script	
 solution	
 is	
 generally	
 good.	
 One	
 can	
 however	
 see	
 some	
 finite-­‐resolution	

effects,	
 showing	
 the	
 DSD2D-­‐FLS	
 wave	
 front	
 at	
 t	
 =	
 12	
 microseconds	
 being	
 slightly	

behind	
 the	
 “exact”	
 solution.	
 	

	

	

Figure-­‐9a)	
 My	
 DSD2D-­‐FLS	
 calculation	
 of	
 the	
 TOA-­‐field	
 for	
 the	
 270	
 degree,	
 explosive-­‐
arc	
 problem.	
 This	
 figure	
 also	
 serves	
 to	
 define	
 the	
 problem	
 geometry.	
 The	
 detonation	

begins	
 at	
 the	
 6	
 o’clock	
 position	
 and	
 runs	
 counterclockwise,	
 exiting	
 the	
 arc	
 at	
 t	
 =	

13.18	
 microseconds.	
 Here,	
 nxpts	
 =	
 nypts	
 =	
 1408.	
 The	
 DSD2D-­‐FLS	
 integrated	

solution	
 curves	
 are	
 shown	
 as	
 solid,	
 while	
 the	
 “exact”	
 Maple	
 script	
 generated	
 solution	

curves	
 are	
 shown	
 as	
 the	
 labeled	
 “curves.”	
 The	
 solutions	
 obtained	
 with	
 the	
 two	

methods	
 essentially	
 overlay.	
 As	
 before,	
 no	
 noise	
 is	
 apparent	
 in	
 the	
 DSD2D-­‐FLS	

computed	
 TOA-­‐field,	
 which	
 is	
 the	
 expected	
 result.	
 I	
 note	
 that	
 whatever	
 noise	
 is	

generated	
 in	
 the	
 DSD2D-­‐FLS	
 solution	
 is	
 due	
 to	
 the	
 crosscutting	
 of	
 the	
 HE	
 boundary	

across	
 the	
 mesh,	
 similar	
 to	
 what	
 is	
 displayed	
 in	
 Figures	
 4)	
 &	
 7a).	
 	

	

	

Figure-­‐9b)	
 My	
 DSD2D-­‐FLS	
 solution	
 for	
 the	
 dn-­‐field	
 (dn_tb_ho)	
 for	
 the	
 270	
 degree	

explosive-­‐arc	
 problem.	
 	
 The	
 noise	
 in	
 dn_tb_ho	
 is	
 greatest	
 for	
 the	
 inner-­‐most	
 radius,	

being	
 of	
 O(10%).	
 The	
 noise	
 is	
 seen	
 to	
 diminish	
 as	
 one	
 moves	
 into	
 the	
 explosive	
 arc.	

As	
 before,	
 the	
 DSD2D-­‐FLS	
 solutions	
 (displayed	
 as	
 20%	
 of	
 the	
 data	
 points)	
 are	

compared	
 with	
 the	
 “exact”	
 Maple	
 script	
 generated	
 solution,	
 shown	
 here	
 as	
 dashed	

curves.	
 The	
 value	
 of	
 dn	
 are	
 displayed	
 along	
 five	
 circular	
 arcs,	
 which	
 are	
 located	
 at	

the	
 fixed	
 radial	
 distances	
 of,	
 r	
 =	
 2.025	
 (red,	
 lowest	
 curve),	
 2.05	
 (blue),	
 2.1	
 (green),	

2.2	
 (black),	
 2.5	
 (pink),	
 3.0	
 (light	
 blue)	
 and	
 3.5	
 (light	
 brown).	
 Again,	
 this	
 noise	
 in	
 the	

dn-­‐field	
 is	
 seen	
 to	
 diminish	
 as	
 one	
 moves	
 into	
 the	
 explosive,	
 and	
 away	
 from	
 the	

boundary.	
 The	
 noise	
 is	
 at	
 its	
 greatest	
 at	
 the	
 3,	
 12	
 and	
 9	
 o’clock	
 locations	
 on	
 the	
 arc.	
 	

	

SUMMARY	
 	

	

The	
 DSD2D-­‐FLS	
 V9,	
 which	
 was	
 used	
 to	
 perform	
 the	
 simulations	
 appearing	
 in	
 the	
 last	

few	
 sections,	
 adds	
 only	
 a	
 few	
 minor	
 changes	
 to	
 my	
 serial,	
 2010	
 DSD2D-­‐FLS	
 code	

base.	
 The	
 two	
 changes,	
 which	
 are	
 detailed	
 in	
 these	
 notes,	
 improve	
 the	
 computation	

of	
 the	
 normal	
 detonation	
 speed	
 near	
 the	
 explosive’s	
 boundaries.	
 The	
 most	

significant	
 of	
 these	
 changes	
 concerns	
 how	
 second-­‐nearest	
 neighbor	
 ghost	
 nodes	
 are	

populated	
 in	
 the	
 subroutines,	
 ibextra.f	
 and	
 ibupdate.f.	
 I	
 now	
 use	
 linear	
 extrapolation	

along	
 45-­‐degree	
 lines	
 to	
 set	
 the	
 second-­‐nearest	
 neighbor	
 nodes.	
 This	
 change	
 then	

leads	
 to	
 the	
 cross	
 derivative,	
 phi_xy,	
 being	
 zero,	
 and	
 thus	
 the	
 second-­‐nearest	

neighbors	
 are	
 not	
 contributing	
 to	
 the	
 curvature	
 calculation	
 near	
 the	
 boundary.	
 In	

that	
 way,	
 my	
 longstanding	
 questions	
 about	
 how	
 second-­‐nearest	
 neighbor	
 ghost	

nodes	
 values	
 should	
 be	
 populated	
 becomes	
 a	
 moot	
 point,	
 since	
 now	
 the	
 values	
 at	

these	
 nodes	
 do	
 not	
 influence	
 the	
 curvature	
 calculation	
 near	
 the	
 boundary.	
 The	
 other	

minor	
 changes	
 are	
 in	
 driver.	
 A	
 few	
 statements	
 are	
 added	
 to	
 reduce	
 the	
 sensitivity	
 of	

the	
 geometry	
 defining	
 function,	
 psi(i,j),	
 to	
 random	
 numerical	
 noise,	
 and	
 higher-­‐
order,	
 smoothing	
 derivative	
 stencils	
 are	
 used	
 to	
 compute	
 dn_tb_ho,	
 via	
 the	

expression,	
 dn	
 =	
 1/abs(grad(tb)).	
 	

	

I	
 suggest	
 that	
 the	
 few	
 changes	
 to	
 DSD2D-­‐FLS	
 V9	
 described	
 here	
 be	
 implemented	
 in	

Quirk’s	
 CASH/Amrita	
 wrapped	
 DSD2D-­‐FLS	
 solver.	
 In	
 addition,	
 the	
 problems	
 and	

results	
 described	
 in	
 this	
 report	
 would	
 provide	
 data	
 V&V	
 for	
 Quirk’s	
 CASH/Amrita	

wrapped	
 DSD2D-­‐FLS	
 solver.	
 	

	

REFERENCES	
 	

	
 	

[1]	
 Bdzil,	
 J.B.,	
 Aida,	
 T,	
 Henninger,	
 R.J.,	
 Walter,	
 J.W.,	
 “Test	
 Problems	
 for	
 DSD3D,”	
 LA-­‐
14336	
 (2007).	
 	

	

[2]	
 Hernandez,	
 A.,	
 Bdzil,	
 J.B.,	
 Stewart,	
 D.S.,	
 “An	
 MPI	
 parallel	
 level-­‐set	
 algorithm	
 for	

propagating	
 front	
 curvature	
 dependent	
 detonation	
 shock	
 fronts	
 in	
 complex	

geometries,”	
 Combust.	
 Theory	
 and	
 Modelling,	
 Vol	
 17,	
 No.	
 1,	
 109-­‐141	
 (2013).	
 	

	

	

APPENDIX-­‐A:	
 ASSORTED	
 OTHER	
 SOLUTIONS	
 OF	
 THE	
 30-­‐DEGREE	
 RATE	
 STICK	
 	
 	

	

In	
 this	
 appendix,	
 I	
 display	
 a	
 collection	
 of	
 other	
 solutions	
 constructed	
 in	
 this	
 study.	

All	
 these	
 DSD2D-­‐FLS	
 solutions	
 used	
 the	
 modified	
 driver.f,	
 ibextra.f	
 and	
 ibupdate.f	

that	
 I	
 described	
 above.	
 The	
 DSD	
 model	
 is	
 the	
 same	
 as	
 used	
 above,	
 with	
 the	
 exception	

that	
 some	
 of	
 the	
 omega_s	
 and	
 omega_c	
 values	
 are	
 different.	
 	

	

	

Figure-­‐10a)	
 Contours	
 of	
 the	
 burn	
 time	
 field,	
 tb(i,j),	
 and	
 the	
 dntable	
 field,	
 dn(i,j),	
 for	

the	
 problem	
 of	
 detonation	
 in	
 a	
 rate	
 stick.	
 To	
 explore	
 how	
 the	
 orientation	
 of	
 the	
 rate	

stick	
 relative	
 to	
 the	
 mesh	
 affects	
 the	
 results,	
 the	
 rate	
 stick’s	
 axis	
 of	
 symmetry	
 is	

tilted	
 by	
 30	
 degrees	
 off	
 of	
 the	
 vertical	
 direction.	
 Only	
 minor	
 noise	
 in	
 the	
 dn(i,j)	
 field	

is	
 observed	
 near	
 the	
 side	
 boundaries	
 of	
 the	
 rate	
 stick.	
 Omega_s	
 =	
 50-­‐degrees	
 and	

omega_c	
 =	
 55-­‐degrees.	
 The	
 numerical	
 resolution	
 is	
 nxpts	
 =	
 nypts	
 =	
 704.	
 	

	

	

Figure-­‐10b)	
 Expanded	
 view	
 in	
 the	
 lower	
 left	
 hand	
 corner	
 showing	
 contours	
 of	
 the	

burn	
 time	
 field,	
 tb(i,j),	
 and	
 the	
 dntable	
 field,	
 dn(i,j),	
 for	
 the	
 problem	
 of	
 detonation	
 in	

a	
 rate	
 stick.	
 To	
 explore	
 how	
 the	
 orientation	
 of	
 the	
 rate	
 stick	
 relative	
 to	
 the	
 mesh	

affects	
 the	
 results,	
 the	
 rate	
 stick’s	
 axis	
 of	
 symmetry	
 is	
 tilted	
 by	
 30	
 degrees	
 off	
 of	
 the	

vertical	
 direction.	
 Only	
 minor	
 noise	
 in	
 the	
 dn(i,j)	
 field	
 is	
 observed	
 near	
 the	
 side	

boundaries	
 of	
 the	
 rate	
 stick.	
 Omega_s	
 =	
 50-­‐degrees,	
 and	
 omega_c	
 =	
 55-­‐degrees.	
 The	

numerical	
 resolution	
 is	
 nxpts	
 =	
 nypts	
 =	
 704.	
 	

	

	

Figure-­‐10c)	
 Expanded	
 view	
 along	
 the	
 lateral	
 boundary	
 showing	
 contours	
 of	
 the	

burn	
 time	
 field,	
 tb(i,j),	
 and	
 the	
 dntable	
 field,	
 dn(i,j),	
 for	
 the	
 problem	
 of	
 detonation	
 in	

a	
 rate	
 stick.	
 To	
 explore	
 how	
 the	
 orientation	
 of	
 the	
 rate	
 stick	
 relative	
 to	
 the	
 mesh	

affects	
 the	
 results,	
 the	
 rate	
 stick’s	
 axis	
 of	
 symmetry	
 is	
 tilted	
 by	
 30	
 degrees	
 off	
 of	
 the	

vertical	
 direction.	
 Only	
 minor	
 noise	
 in	
 the	
 dn(i,j)	
 field	
 is	
 observed	
 near	
 the	
 side	

boundaries	
 of	
 the	
 rate	
 stick.	
 Omega_s	
 =	
 50-­‐degrees,	
 and	
 omega_c	
 =	
 55-­‐degrees.	
 The	

numerical	
 resolution	
 is	
 nxpts	
 =	
 nypts	
 =	
 704.	
 	

	

	

Figure-­‐10d)	
 Contours	
 of	
 the	
 burn	
 time	
 field,	
 tb(i,j),	
 and	
 the	
 dn_tb_ho	
 field,	
 dn(i,j),	
 for	

the	
 problem	
 of	
 detonation	
 in	
 a	
 rate	
 stick.	
 To	
 explore	
 how	
 the	
 orientation	
 of	
 the	
 rate	

stick	
 relative	
 to	
 the	
 mesh	
 affects	
 the	
 results,	
 the	
 rate	
 stick’s	
 axis	
 of	
 symmetry	
 is	

tilted	
 by	
 30	
 degrees	
 off	
 of	
 the	
 vertical	
 direction.	
 Only	
 minor	
 noise	
 in	
 the	
 dn(i,j)	
 field	

is	
 observed	
 near	
 the	
 side	
 boundaries	
 of	
 the	
 rate	
 stick.	
 Omega_s	
 =	
 50-­‐degrees,	
 and	

omega_c	
 =	
 55-­‐degrees.	
 The	
 numerical	
 resolution	
 is	
 nxpts	
 =	
 nypts	
 =	
 704.	
 	

	

	

Figure-­‐10e)	
 Expanded	
 view	
 along	
 the	
 lateral	
 boundary	
 showing	
 contours	
 of	
 the	

burn	
 time	
 field,	
 tb(i,j),	
 and	
 the	
 dn_tb_ho	
 field,	
 dn(i,j),	
 for	
 the	
 problem	
 of	
 detonation	

in	
 a	
 rate	
 stick.	
 To	
 explore	
 how	
 the	
 orientation	
 of	
 the	
 rate	
 stick	
 relative	
 to	
 the	
 mesh	

affects	
 the	
 results,	
 the	
 rate	
 stick’s	
 axis	
 of	
 symmetry	
 is	
 tilted	
 by	
 30	
 degrees	
 off	
 of	
 the	

vertical	
 direction.	
 Only	
 minor	
 noise	
 in	
 the	
 dn(i,j)	
 field	
 is	
 observed	
 near	
 the	
 side	

boundaries	
 of	
 the	
 rate	
 stick.	
 Omega_s	
 =	
 50-­‐degrees,	
 and	
 omega_c	
 =	
 55-­‐degrees.	
 The	

numerical	
 resolution	
 is	
 nxpts	
 =	
 nypts	
 =	
 704.	
 	

	

	

APPENDIX-­‐B:	
 ASSORTED	
 SIMULATIONS	
 OF	
 DETONATION	
 IN	
 AN	
 ARC	
 OF	

EXPLOSIVE	
 	
 	

	

I	
 begin	
 by	
 comparing	
 the	
 DSD2D-­‐FLS	
 solution	
 of	
 the	
 270-­‐degree	
 arc	
 problem	
 with	

the	
 “exact”	
 solution	
 obtained	
 from	
 a	
 Maple	
 script.	
 The	
 solution	
 developed	
 with	
 the	

Maple	
 script	
 solves	
 the	
 front	
 propagation	
 problem.	
 That	
 is,	
 first	
 the	
 PDE	
 for	
 the	

detonation-­‐front	
 normal	
 angle,	
 phi(r,t),	
 is	
 solved	
 as	
 a	
 function	
 of	
 the	
 radial	

coordinate,	
 r,	
 and	
 time,	
 t,	
 with	
 a	
 high-­‐resolution,	
 error	
 controlled	
 PDE	
 solver	

available	
 in	
 Maple.	
 Then	
 in	
 a	
 second	
 step,	
 the	
 motion	
 of	
 the	
 front	
 over	
 a	
 Cartesian	

grid	
 is	
 solved	
 for	
 with	
 an	
 ODE	
 solver.	
 Displayed	
 in	
 Figure-­‐11)	
 is	
 a	
 comparison	
 of	
 the	

DSD2D-­‐FLS	
 simulation	
 for	
 the	
 case	
 omega_s	
 =	
 0.0,	
 omega	
 =	
 60-­‐degrees	
 and	
 run	
 at	

nxpts	
 =	
 nypts	
 =	
 1408	
 points,	
 with	
 the	
 “exact”	
 solution	
 of	
 the	
 problem.	
 	

	

Figure-­‐11)	
 Contours	
 of	
 the	
 tb(i,j)-­‐field	
 and	
 dn(i,j)-­‐field	
 for	
 the	
 DSD2D-­‐FLS	

simulation	
 of	
 detonation	
 in	
 a	
 270-­‐degree,	
 slab	
 geometry	
 explosive	
 arc	
 run	
 at	
 a	

resolution	
 of	
 nxpts	
 =	
 nypts	
 =	
 1408	
 points.	
 The	
 DSD	
 boundary	
 angles	
 are	
 omega_s	
 =	
 0	

degrees,	
 and	
 omega_c	
 =	
 60	
 degrees.	
 Also	
 displayed	
 are	
 the	
 very-­‐high	
 resolution	

Maple	
 script	
 generated	
 solutions	
 of	
 the	
 front	
 evolution	
 equations,	
 which	
 can	
 be	

considered	
 to	
 be	
 the	
 exact	
 solution	
 (labeled	
 as	
 “curve”).	
 The	
 agreement	
 between	

these	
 DSD2D-­‐FLS	
 simulation	
 results	
 and	
 the	
 exact	
 solution	
 for	
 this	
 initial	
 value	

problem	
 are	
 good.	
 The	
 dn(i,j)	
 field	
 is	
 computed	
 with	
 a	
 smoothing	
 stencil	
 for	
 the	

gradient	
 applied	
 to	
 tb(i,j),	
 designated	
 as	
 dn_tb_ho.	
 	

	

	

	

Figure-­‐12a)	
 Contours	
 of	
 the	
 tb(i,j)	
 field	
 and	
 dn(i,j)	
 field	
 for	
 the	
 DSD2D-­‐FLS	

simulation	
 of	
 detonation	
 in	
 a	
 270-­‐degree,	
 slab	
 geometry	
 explosive	
 arc.	
 The	
 DSD	

boundary	
 angles	
 are	
 omega_s	
 =	
 44	
 degrees	
 and	
 omega_c	
 =	
 45	
 degrees.	
 Also	

displayed	
 are	
 the	
 very-­‐high	
 resolution	
 Maple	
 script	
 generated	
 solutions	
 of	
 the	
 front	

evolution	
 equations,	
 which	
 can	
 be	
 considered	
 to	
 be	
 the	
 exact	
 solution	
 (labeled	
 as	

“curve”).	
 The	
 agreement	
 between	
 these	
 DSD2D-­‐FLS	
 simulation	
 results	
 and	
 the	
 exact	

solution	
 for	
 this	
 initial	
 value	
 problem	
 are	
 good.	
 There	
 is	
 a	
 slight	
 amount	
 of	
 noise	

visible	
 in	
 the	
 dntable	
 generated	
 dn(i,j)	
 contours	
 near	
 the	
 90	
 degree	
 and	
 180	
 degree	

locations,	
 and	
 is	
 likely	
 related	
 to	
 the	
 closeness	
 of	
 omega_s	
 and	
 omega_c.	
 The	
 dn(i,j)	

field	
 is	
 computed	
 with	
 a	
 smoothing	
 stencil	
 for	
 the	
 gradient	
 applied	
 to	
 tb(i,j),	

designated	
 as	
 dn_tb_ho.	
 The	
 numerical	
 resolution	
 used	
 is	
 nxpts	
 =	
 nypts	
 =	
 704.	
 	

	

Figure-­‐12b)	
 Here	
 we	
 increase	
 the	
 resolution	
 to	
 nxpts=nypts=1408	
 points	
 from	
 the	

nxpts=nypts=704	
 points	
 used	
 to	
 produce	
 Figure-­‐12a).	
 The	
 level	
 of	
 the	
 noise	
 at	
 the	

90	
 degree	
 and	
 180	
 degree	
 locations	
 is	
 reduced.	
 Otherwise,	
 things	
 look	
 much	
 the	

same	
 as	
 they	
 do	
 in	
 Figure-­‐12a).	
 The	
 numerical	
 resolution	
 used	
 is	
 nxpts	
 =	
 nypts	
 =	

1408.	
 	

	

Figure-­‐13)	
 Contours	
 of	
 the	
 tb(i,j)-­‐field	
 and	
 dn(i,j)-­‐field	
 for	
 the	
 DSD2D-­‐FLS	

simulation	
 of	
 detonation	
 in	
 a	
 270-­‐degree,	
 slab	
 geometry	
 explosive	
 arc.	
 The	
 DSD	

boundary	
 angles	
 are	
 omega_s	
 =	
 44	
 degrees	
 and	
 omega_c	
 =	
 50	
 degrees.	
 The	
 dn_tb_ho	

contours	
 are	
 displayed	
 for	
 dn(i,j).	
 The	
 numerical	
 resolution	
 used	
 is	
 nxpts	
 =	
 nypts	
 =	

704.	
 	

	

	

	

	

	

	

	

Figure-­‐14a)	
 Contours	
 of	
 the	
 tb(i,j)-­‐field	
 and	
 dn(i,j)-­‐field	
 for	
 the	
 DSD2D-­‐FLS	

simulation	
 of	
 detonation	
 in	
 a	
 270-­‐degree,	
 slab	
 geometry	
 explosive	
 arc.	
 The	
 DSD	

boundary	
 angles	
 are	
 omega_s	
 =	
 50	
 degrees,	
 and	
 omega_c	
 =	
 55	
 degrees.	
 The	
 contours	

of	
 dn	
 are	
 dn_tb_ho.	
 The	
 numerical	
 resolution	
 used	
 is	
 nxpts	
 =	
 nypts	
 =	
 704.	
 	

	

	

Figure-­‐14b)	
 Expanded	
 view	
 of	
 contours	
 (near	
 the	
 90-­‐degree	
 point)	
 of	
 the	
 tb(i,j)	
 field	

and	
 dn(i,j)	
 field	
 for	
 the	
 DSD2D-­‐FLS	
 simulation	
 of	
 detonation	
 in	
 a	
 270-­‐degree,	
 slab	

geometry	
 explosive	
 arc.	
 The	
 DSD	
 boundary	
 angles	
 are	
 omega_s	
 =	
 50	
 degrees	
 and	

omega_c	
 =	
 55	
 degrees.	
 The	
 contours	
 of	
 dn	
 were	
 generated	
 from	
 dn_tb_ho.	
 The	

numerical	
 resolution	
 used	
 is	
 nxpts	
 =	
 nypts	
 =	
 704.	
 	

	

	

Figure-­‐14c)	
 Expanded	
 view	
 of	
 contours	
 (near	
 the	
 150-­‐degree	
 point)	
 of	
 the	
 tb(i,j)	

field	
 and	
 dn(i,j)	
 field	
 for	
 the	
 DSD2D-­‐FLS	
 simulation	
 of	
 detonation	
 in	
 a	
 270-­‐degree,	

slab	
 geometry	
 explosive	
 arc.	
 The	
 DSD	
 boundary	
 angles	
 are	
 omega_s	
 =	
 50	
 degrees	

and	
 omega_c	
 =	
 55	
 degrees.	
 The	
 contours	
 of	
 dn	
 were	
 generated	
 from	
 dn_tb_ho.	
 	

	

	

Figure-­‐14d)	
 Values	
 of	
 dn	
 vs.	
 the	
 polar	
 angle	
 in	
 radians,	
 theta,	
 are	
 displayed.	
 The	

computed	
 values	
 of	
 dn	
 at	
 the	
 mesh	
 points	
 within	
 the	
 narrow	
 band	
 of	
 HE	
 mesh	

points,	
 0.0	
 =>	
 psi(i,j)	
 =>	
 -­‐dx,	
 near	
 the	
 inner	
 boundary	
 of	
 the	
 explosive	
 are	
 displayed	

for	
 the	
 DSD2D-­‐FLS	
 simulation	
 of	
 detonation	
 in	
 a	
 270-­‐degree,	
 slab	
 geometry	

explosive	
 arc.	
 The	
 DSD	
 boundary	
 angles	
 are	
 omega_s	
 =	
 50	
 degrees	
 and	
 omega_c	
 =	
 55	

degrees.	
 The	
 values	
 of	
 dn	
 were	
 generated	
 using	
 the	
 curvature	
 of	
 the	
 level-­‐set	

function,	
 dn	
 =	
 1	
 –	
 0.1*kappa,	
 where	
 kappa	
 is	
 the	
 2D	
 slab	
 geometry	
 curvature.	
 	
 A	

small	
 number	
 of	
 points	
 above	
 the	
 1.4	
 dn	
 level	
 are	
 omitted	
 from	
 the	
 plot.	
 	

	

Figure-­‐14e)	
 Values	
 of	
 dn	
 vs.	
 the	
 polar	
 angle	
 in	
 radians,	
 theta,	
 are	
 displayed.	
 The	

computed	
 values	
 of	
 dn	
 at	
 the	
 mesh	
 points	
 within	
 the	
 narrow	
 band	
 of	
 HE	
 mesh	

points,	
 0.0	
 =>	
 psi(i,j)	
 =>	
 -­‐dx,	
 near	
 the	
 inner	
 boundary	
 of	
 the	
 explosive	
 are	
 displayed	

for	
 the	
 DSD2D-­‐FLS	
 simulation	
 of	
 detonation	
 in	
 a	
 270-­‐degree,	
 slab	
 geometry	

explosive	
 arc.	
 The	
 DSD	
 boundary	
 angles	
 are	
 omega_s	
 =	
 50	
 degrees	
 and	
 omega_c	
 =	
 55	

degrees.	
 The	
 contours	
 of	
 dn	
 were	
 generated	
 from	
 dn_tb_ho.	
 All	
 the	
 data	
 points	
 are	

displayed.	
 	

	

Figure-­‐15)	
 Contours	
 of	
 the	
 tb(i,j)-­‐field	
 and	
 dn(i,j)-­‐field	
 for	
 the	
 DSD2D-­‐FLS	

simulation	
 of	
 detonation	
 in	
 a	
 270-­‐degree,	
 slab	
 geometry	
 explosive	
 arc.	
 The	
 DSD	

boundary	
 angles	
 are	
 omega_s	
 =	
 55	
 degrees	
 and	
 omega_c	
 =	
 60	
 degrees.	
 The	
 contours	

of	
 dn	
 were	
 generated	
 from	
 dn_tb_ho.	
 The	
 numerical	
 resolution	
 used	
 is	
 nxpts	
 =	
 nypts	

=	
 704.	
 	

	

Figure-­‐16)	
 Contours	
 of	
 the	
 tb(i,j)-­‐field	
 and	
 dn(i,j)-­‐field	
 for	
 the	
 DSD2D-­‐FLS	

simulation	
 of	
 detonation	
 in	
 a	
 270-­‐degree,	
 slab	
 geometry	
 explosive	
 arc.	
 The	
 DSD	

boundary	
 angles	
 are	
 omega_s	
 =	
 55	
 degrees	
 and	
 omega_c	
 =	
 70	
 degrees.	
 The	
 contours	

of	
 dn	
 were	
 generated	
 from	
 dn_tb_ho.	
 The	
 numerical	
 resolution	
 used	
 is	
 nxpts	
 =	
 nypts	

=	
 704.	
 	

	

Figure-­‐17)	
 Contours	
 of	
 the	
 tb(i,j)-­‐field	
 and	
 dn(i,j)-­‐field	
 for	
 the	
 DSD2D-­‐FLS	

simulation	
 of	
 detonation	
 in	
 a	
 270-­‐degree,	
 slab	
 geometry	
 explosive	
 arc.	
 The	
 DSD	

boundary	
 angles	
 are	
 omega_s	
 =	
 55	
 degrees	
 and	
 omega_c	
 =	
 80	
 degrees.	
 The	
 contours	

of	
 dn	
 were	
 generated	
 from	
 dn_tb_ho.	
 The	
 numerical	
 resolution	
 used	
 is	
 nxpts	
 =	
 nypts	

=	
 704.	
 	

	

Figure-­‐18)	
 Contours	
 of	
 the	
 tb(i,j)-­‐field	
 and	
 dn(i,j)-­‐field	
 for	
 the	
 DSD2D-­‐FLS	

simulation	
 of	
 detonation	
 in	
 a	
 270-­‐degree,	
 slab	
 geometry	
 explosive	
 arc.	
 The	
 DSD	

boundary	
 angles	
 are	
 omega_s	
 =	
 55	
 degrees	
 and	
 omega_c	
 =	
 90	
 degrees.	
 The	
 contours	

of	
 dn	
 were	
 generated	
 from	
 dn_tb_ho.	
 The	
 numerical	
 resolution	
 used	
 is	
 nxpts	
 =	
 nypts	

=	
 704.	
 	

	

